K c = [NH 3 ] C [H 2 S] = x 10!4

Size: px
Start display at page:

Download "K c = [NH 3 ] C [H 2 S] = x 10!4"

Transcription

1 Dr. Zellmer Chemistry 1250 Wednesday Time: 30 mins Spring Semester 2019 April 17, 2019 Quiz III Name KEY Lab TA/time 1. (10 pts) For the following reaction K c equals x 10!4 at 218EC. NH 4 HS (s) W NH 3 (g) + H 2 S (g) a) (5 pts) What are the equilibrium concentrations of NH 3 and H 2 S if solid NH 4 HS is placed in a closed container and decomposes until equilibrium is reached at 218EC? (Show the ICE table. State any assumptions made and check your percent error.) Use ICE (equil.) table (in Molarity) NH 4 HS (s) W NH 3 (g) + H 2 S (g) initial change - x - x + x equil x + x K c = [NH 3 ] C [H 2 S] = x 10!4 x 2 = x 10!4 NH 4 HS (s) doesn t appear in K (pure solids and liquids do not appear in K) x = (1.200 x 10!4 ) 1/2 = x 10!2 M [NH 3 ] = [H 2 S] = x 10!2 M b) (1 pt) What happens to the reaction when the pressure is increased (by decreasing the volume of the container) at constant temperature? (i.e. does the equilibrium shift and if so in what direction? If no shift then why not.) EXPLAIN! 0 mol gas 2 mol gas NH 4 HS (s) W NH 3 (g) + H 2 S (g) Increase pressure (by decreasing volume): Shifts to left (0 mol gas <--- 2 mol gas) Increase pressure (by decreasing volume) : shift to the side with fewer moles of gas. For Pressure changes (due to volume changes): P inc ==> fewer moles gas P dec ==> more moles gas Changes in Pressure do not affect liquids, solids or aqueous (their conc. do not change w. P like conc. of gases do) If no change in moles gas changes in P have no effect

2 1. (Continued) c) (1 pt) What happens to the reaction when NH 3 is removed? (i.e. does the equilibrium shift and if so in what direction? If no shift then why not.) EXPLAIN! Shifts to the right (forward direction) to replace some of the removed substance. When you remove something (other than a pure solid or liquid) the reaction shifts toward the removed substance to replace it. Reactant Add Product Remove Shift Right Remove Add Left Move AWAY from what is ADDED Move TOWARD what is REMOVED NOTE: K remains constant for changes in conc. & pressure (Numerical value of K changes only for temp. changes NOTE: Adding or Removing Pure SOLIDS of LIQUIDS (as long as some is present) does NOT affect the equil. This is because the conc. of pure solids and liquids are essentially constant and do NOT appear in K. d) (3 pts) What is the value of K p for this reaction? K p = K c (RT) n (Δn = change in moles of gas, products - reactants) Δn = 2! 0 = 2 Do NOT include the solid (if you do Δn = 1) R = LCatm/molCK T = 218EC = 491 K NOT J/molCK (must be in kelvin) K p = x 10!4 {( )(491 K)} 2 = = 0.195

3 2. (2 pts) Which of the following are strong acids or strong bases? (Circle all that apply.) HNO 3 H 3 PO 4 HClO 3 CsOH NH 3 HBrO 3 H & HSO 4 & HF C 6 H 5 OH The 7 strong acids are: HCl, HBr, HI binary acids HNO 3, HClO 3, HClO 4, H 2 SO 4 (1 st H + only) oxyacids (ternary) Strong bases are all group 1 A and soluble group 2 A (Ca and below) hydroxides & bases stronger than OH & (some examples are below) O 2& (conj base of OH & ), H & (conj base of H 2 - a neutral molecule), NH 2 & (conj base of NH 3, itself a base), NH 2& (conj base of NH 2 & ), N 3& (conj base of NH 2& ), S 2& (conj base of SH & itself the conj base of H 2 S), CH 3 & (conj base of CH 4, a neutral nonionizing molecule in H 2 O), CH 3 O & (conj base of CH 3 OH, a neutral nonionizing molecule in H 2 O) 3. (2 pts) What is(are) the difference(s) between the Bronsted-Lowry and Lewis definitions of an acid? Arrhenius acid: A substance that has a hydrogen, H, in the formula and when dissolved in water, increases the concentration of H + ions. Restricted to aqueous solutions. Bronsted-Lowry acid: A substance (molecule or ion) that can donate a proton, H +, to another substance. This theory is about proton transfer reactions. It is NOT restricted to aqueous solutions, whereas Arrhenius theory is. This theory also introduced the idea about conjugate acid-base pairs. Has to have a H to donate. Proton Donor This theory covers all Arrhenius acids and bases. Lewis acid: A substance (molecule or ion) that can accept a pair of electrons from another substance. It is NOT restricted to aqueous solutions, whereas Arrhenius theory is. Electron-pair Acceptor This is the most comprehensive theory of the three. It covers all B-L acids and bases (and Arrhenius acids and bases) and reactions which can explain why things w/o hydrogens in the formula can cause a solution to be acidic.

4 4. (3 pts) Would you expect the following solutions to be acidic, neutral, or basic? Explain! In general: cations => acidic soln (except group 1A & 2A(Ca, Sr, Br) cations - give neutral) anions => basic soln (except conj. bases of strong acids; Cl -, Br -, I -, NO 3 -, ClO 3 -, ClO 4 - are neutral HSO 4 - is acidic) H 2 O a) KClO > K + (aq) + ClO 3! (aq) NEUTRAL K + : group 1A cation ( conj. acid of a strong base, KOH, and does not act as an acid) - neutral ClO 3! is conj. base of a strong acid, HClO 3, & does not act as a base - neutral H 2 O b) AlCl > Al 3+ (aq) + 3 Cl! (aq) ACIDIC Cl! : conj. base of a strong acid, HCl & does not act as a base - neutral Al 3+ : metal cation - causes soln to be acidic

5 5. (12 pts) A solution of M benzoic acid, HC 7 H 5 O 2, is 3.5% ionized. (Show the ICE table. State any assumptions made and check your percent error.) Show work and explain! a) What are [H + ], [OH! ], ph and poh in this solution? [H + ] % ionization = x 100% [HC 3 H 5 O 2 ] [H + ] 3.5 % = x 100% [H + ] = 1.75 x 10!3 M = 1.8 x 10!3 M ph =!log [H + ] =!log (1.75 x 10!3 ) = = 2.76 (actually only 2 s.f. - to right of decimal) ph + poh = pkw = [H + ] x [OH! ] = Kw = 1.0 x 10!14 poh = = (2 s.f.) 1.0 x 10!14 or [OH - ] = = x 10!12 [OH & ] = 10!pOH = 10!11.24 = 5.7 x 10! x 10!3 poh = - log (5.714 x 10!12 ) = b) What is the K a for HC 7 H 5 O 2? (Show the ICE table.) HC 7 H 5 O 2 is a weak acid - weak acid equil. problem - Use ICE (equil.) table (in Molarity) HC 7 H 5 O 2 W H + + C 7 H 5 O 2! (or HC 7 H 5 O 2 + H 2 O W C 7 H 5 O 2! + H 3 O + ) initial change - x + x + x equil & x x x x = [H + ] = 1.75 x 10!3 [C 7 H 5 O 2 & ] [H + ] x 2 (1.75 x 10!3 ) 2 K a = = = = x 10!5 = 6.3 x 10!5 [HC 7 H 5 O 2 ] & x (0.050 & 1.75 x 10!3 )

6 6. (3 pts) Predict the sign of ΔS of the system or if it s approximately zero for the following reactions and explain your choices. a) 2 NH 3 (g) v N 2 (g) + 3 H 2 (g) ΔS > 0 (+) The number of moles of gas is increasing. Generally speaking, when the number of moles of gas increases in a reaction that leads to an increase in entropy and ΔS is positive. (If the change in moles of gas is small one also has to consider the molecules themselves and the number of degrees of freedom in those molecules). ΔS = J/K (calc. from SE values) b) Mg(OH) 2 (s) + 2 HCl (g) v MgCl 2 (s) + 2 H 2 O (g) ΔS. 0 (+) The number of moles of gas is on each side is the same and there is solid on each side. In this case I would expect someone to say the change in entropy is small and approx. zero. It would likely be a positive number (inc. in entropy) due to the fact the bent H 2 O molecule has many more rotational and vibrational degrees of freedom than the linear HCl and thus H 2 O many more microstates. ΔS = J/K (calc. from SE values)

7 7. (8 pts) Given ΔHE = kj and ΔSE = J/molCK for the following reaction, N 2 F 4 (g) v 2 NF 2 (g) a) (3 pt) Calculate the ΔGE of the reaction at 25EC. Is the reaction spontaneous or nonspontaneous at this temperature under standard state conditions? Show all work and explain. ΔGE = ΔHE & T ΔSE = 85.0 kj & ( K)( kj/k) = kj T in kelvin; ΔSE converted to kj/k = kj ΔGE > 0 NONspontaneous under standard conditions (Nonspont. to products - reactans predominate at equil.) b) (3 pts) If the reaction is nonspontaneous, at what temperature would it be spontaneous. If the reaction is spontaneous, at what temperature would it be nonspontaneous. If the reaction will always be spontaneous at all temperatures or never be spontaneous at any temperature state that. Rxn. is NONspont. at T = 25EC. At what temp will it become spont., i.e. at what temp will ΔGE < 0 ΔHE > 0 and ΔSE > 0 so rxn is spont at high temp ΔGE = ΔHE & T ΔSE < 0 ΔHE < T ΔSE 85.0 kj < T ( kj/k) 85.0 kj < T (Remember, when multiply or divide by a negative number an inequality ( kj/k) (<, >) flips (>, <) K < T T > 156EC (becomes spont. at temp above this) (becomes more spont as temp inc) c) (2 pt) What is the equilibrium constant at 25EC? ΔGE = & RT lnk ln K = & ΔGE/RT = & ( x 10 4 J)/(8.314 J/K)( K) = & (3 s.f.) K = e! = 2.82 x 10!5 (fairly small but not extremely small - mostly reactants at equilibrium, but not only reactants)

Dr. Zellmer Chemistry 1220 Monday Time: 18 mins Spring Semester 2019 February 11, 2019 Quiz IV. Name KEY Rec. TA/time. 0 mol gas 2 mol gas

Dr. Zellmer Chemistry 1220 Monday Time: 18 mins Spring Semester 2019 February 11, 2019 Quiz IV. Name KEY Rec. TA/time. 0 mol gas 2 mol gas Dr. Zellmer Chemistry 1220 Monday Time: 18 mins Spring Semester 2019 February 11, 2019 Quiz IV Name KEY Rec. TA/time 1. (9 pts) For the following reaction answer the questions below. NH 4 HS (s) W NH 3

More information

Dr. Zellmer Chemistry 1220 Wednesday Time: 18 mins Spring Semester 2019 February 13, 2019 Quiz IV. Name KEY Rec. TA/time. 2 mol gas 0 mol gas

Dr. Zellmer Chemistry 1220 Wednesday Time: 18 mins Spring Semester 2019 February 13, 2019 Quiz IV. Name KEY Rec. TA/time. 2 mol gas 0 mol gas Dr. Zellmer Chemistry 1220 Wednesday Time: 18 mins Spring Semester 2019 February 13, 2019 Quiz IV Name KEY Rec. TA/time 1. (9 pts) For the following reaction answer the questions below. PH 3 (g) + BCl

More information

Chemistry F18 Solutions for Practice Final

Chemistry F18 Solutions for Practice Final Copyright RJZ 11/27/18 1 no unauthorized use allowed Chemistry 1250 - F18 Solutions for Practice Final This material is copyrighted. Any use or reproduction is not allowed except with the expressed written

More information

Dr. Zellmer Chemistry 1220 Monday Time: 18 mins Spring Semester 2019 February 4, 2019 Quiz III. Name KEY Rec. TA/time

Dr. Zellmer Chemistry 1220 Monday Time: 18 mins Spring Semester 2019 February 4, 2019 Quiz III. Name KEY Rec. TA/time Dr. Zellmer Chemistry 1220 Monday Time: 18 mins Spring Semester 2019 February 4, 2019 Quiz III Name KEY Rec. TA/time 1. (8 pts) For the following reaction K P = 0.0752 at 480.0 EC. 2 Cl 2 (g) + 2 H 2 O

More information

Chapter 10. Acids, Bases, and Salts

Chapter 10. Acids, Bases, and Salts Chapter 10 Acids, Bases, and Salts Topics we ll be looking at in this chapter Arrhenius theory of acids and bases Bronsted-Lowry acid-base theory Mono-, di- and tri-protic acids Strengths of acids and

More information

Acids and Bases. A strong base is a substance that completely ionizes in aqueous solutions to give a cation and a hydroxide ion.

Acids and Bases. A strong base is a substance that completely ionizes in aqueous solutions to give a cation and a hydroxide ion. Acid-Base Theories Arrhenius Acids and Bases (1884) Acids and Bases An acid is a substance that, when dissolved in water, increases the concentration of hydrogen ions. A base is a substance that, when

More information

Acids and Bases. Chapter 15. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Acids and Bases. Chapter 15. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Acids and Bases Chapter 15 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Acids Have a sour taste. Vinegar owes its taste to acetic acid. Citrus fruits contain

More information

Acid/Base Definitions

Acid/Base Definitions Acids and Bases Acid/Base Definitions Arrhenius Model Acids produce hydrogen ions in aqueous solutions Bases produce hydroxide ions in aqueous solutions Bronsted-Lowry Model Acids are proton donors Bases

More information

Unit 9. Acids, Bases, & Salts Acid/Base Equilibrium

Unit 9. Acids, Bases, & Salts Acid/Base Equilibrium Unit 9 Acids, Bases, & Salts Acid/Base Equilibrium Properties of Acids sour or tart taste strong acids burn; weak acids feel similar to H 2 O acid solutions are electrolytes acids react with most metals

More information

A) Arrhenius Acids produce H+ and bases produce OH not always used because it only IDs X OH as basic species

A) Arrhenius Acids produce H+ and bases produce OH not always used because it only IDs X OH as basic species 3 ACID AND BASE THEORIES: A) Arrhenius Acids produce H+ and bases produce OH not always used because it only IDs X OH as basic species B) Bronsted and Lowry Acid = H + donor > CB = formed after H + dissociates

More information

Section 32 Acids and Bases. Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved.

Section 32 Acids and Bases. Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved. Section 32 Acids and Bases 1 Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved. Acid-Base Concepts Acids and bases are among the most familiar and important of all chemical compounds. You

More information

Chap 16 Chemical Equilibrium HSU FUYIN

Chap 16 Chemical Equilibrium HSU FUYIN Chap 16 Chemical Equilibrium HSU FUYIN 1 Definitions: Arrhenius & Brønsted Lowry acid and base Arrhenius theory: An acid is a substance that, when dissolved in water, increases the concentration of hydrogen

More information

Chapter 14: Acids and Bases

Chapter 14: Acids and Bases Chapter 14: Acids and Bases 14.1 The Nature of Acids and Bases Bronsted-Lowry Acid-Base Systems Bronsted acid: proton donor Bronsted base: proton acceptor Bronsted acid base reaction: proton transfer from

More information

Solutions are aqueous and the temperature is 25 C unless stated otherwise.

Solutions are aqueous and the temperature is 25 C unless stated otherwise. Solutions are aqueous and the temperature is 25 C unless stated otherwise. 1. According to the Arrhenius definition, an acid is a substance that produces ions in aqueous solution. A. H C. OH B. H + D.

More information

Chapter 14. Objectives

Chapter 14. Objectives Section 1 Properties of Acids and Bases Objectives List five general properties of aqueous acids and bases. Name common binary acids and oxyacids, given their chemical formulas. List five acids commonly

More information

ACID BASE EQUILIBRIUM

ACID BASE EQUILIBRIUM ACID BASE EQUILIBRIUM Part one: Acid/Base Theories Learning Goals: to identify acids and bases and their conjugates according to Arrhenius and Bronstead Lowry Theories. to be able to identify amphoteric

More information

Chapter 16 Homework Solutions

Chapter 16 Homework Solutions //05 Chapter 16 Homework Solutions 6. a) H AsO b) CH 3 NH 3 + c) HSO d) H 3 PO 8. acid base conj. base conj. acid a) H O CHO OH CH O a) HSO HCO 3 SO H CO 3 b) H 3 O + HSO 3 H O H SO 3 10. a) H C 6 H 7

More information

Chem12 Acids : Exam Questions M.C.-100

Chem12 Acids : Exam Questions M.C.-100 Chem12 Acids : Exam Questions M.C.-100 1) Given : HPO 4 2- (aq) + NH 4 + (aq) H 2 PO 4 - (aq) + NH 3 (aq), the strongest acid in the above equation is : a) NH 4 + b) HPO 4 2- c) NH 3 d) H 2 PO 4-2)

More information

Practice Exam 1: Answer Key

Practice Exam 1: Answer Key CHM 2046 Practice Exam 1: Answer Key Important: Bubble in A, B or C as the test form code at the top right of your answer sheet. Useful information is provided at the end. VERSION A 1. The reaction A(aq)

More information

Part One: Acid-Base Concepts. 1. Sour taste. (Examples: vinegar = acetic acid; lemons - citric acid) yellow

Part One: Acid-Base Concepts. 1. Sour taste. (Examples: vinegar = acetic acid; lemons - citric acid) yellow CHAPTER 15: ACIDS AND BASES Part One: Acid-Base Concepts A. Properties of Aqueous Solutions of Acids. 1. Sour taste. (Examples: vinegar = acetic acid; lemons - citric acid) 2. Change the colors of many

More information

(Label the Conjugate Pairs) Water in the last example acted as a Bronsted-Lowry base, and here it is acting as an acid. or

(Label the Conjugate Pairs) Water in the last example acted as a Bronsted-Lowry base, and here it is acting as an acid. or Chapter 16 - Acid-Base Equilibria Arrhenius Definition produce hydrogen ions in aqueous solution. produce hydroxide ions when dissolved in water. Limits to aqueous solutions. Only one kind of base. NH

More information

Acids and bases, as we use them in the lab, are usually aqueous solutions. Ex: when we talk about hydrochloric acid, it is actually hydrogen chloride

Acids and bases, as we use them in the lab, are usually aqueous solutions. Ex: when we talk about hydrochloric acid, it is actually hydrogen chloride Acids and Bases Acids and bases, as we use them in the lab, are usually aqueous solutions. Ex: when we talk about hydrochloric acid, it is actually hydrogen chloride gas dissolved in water HCl (aq) Concentrated

More information

Name. Academic Chemistry. Acid Base. Notes. Unit #14 Test Date: cincochem.pbworks.com

Name. Academic Chemistry. Acid Base. Notes. Unit #14 Test Date: cincochem.pbworks.com Periodic Table Name Academic Chemistry Acids & Bases Notes Unit #14 Test Date: 20 cincochem.pbworks.com Acid Base cincochem.pbworks.com Notes Find ph To go from [H 3 O + ] to ph EXAMPLE: [H 3 O + ] = 3.23

More information

Chapter 16. Dr Ayman Nafady

Chapter 16. Dr Ayman Nafady Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., Bruce E. Bursten Chapter 16 Dr Ayman Nafady John D. Bookstaver St. Charles Community College Cottleville, MO Some Definitions

More information

CHEM Dr. Babb s Sections Exam #3 Review Sheet

CHEM Dr. Babb s Sections Exam #3 Review Sheet CHEM 116 Dr. Babb s Sections Exam #3 Review Sheet Acid/Base Theories and Conjugate AcidBase Pairs 111. Define the following terms: Arrhenius acid, Arrhenius base, Lewis acid, Lewis base, BronstedLowry

More information

Chapters 15 & 16 ACIDS & BASES ph & Titrations

Chapters 15 & 16 ACIDS & BASES ph & Titrations PROPERTIES OF ACIDS Chapters 15 & 16 ACIDS & BASES ph & Titrations There are 5 main properties of acids: 1. sour taste 2. change the color of acidbase indicators 3. react with metals to produce H2 gas

More information

Chapter 10. Acids and Bases

Chapter 10. Acids and Bases Chapter 10 Acids and Bases 1 Properties of Aqueous Solutions of Acids and Bases Aqueous acidic solutions have the following properties: 1. They have a sour taste.. They change the colors of many indicators.

More information

Aqueous Reactions and Solution Stoichiometry (continuation)

Aqueous Reactions and Solution Stoichiometry (continuation) Aqueous Reactions and Solution Stoichiometry (continuation) 1. Electrolytes and non-electrolytes 2. Determining Moles of Ions in Aqueous Solutions of Ionic Compounds 3. Acids and Bases 4. Acid Strength

More information

Chapter 16 Acid-Base Equilibria

Chapter 16 Acid-Base Equilibria Chapter 16 Acid-Base Equilibria Learning goals and key skills: Understand the nature of the hydrated proton, represented as either H + (aq) or H 3 O + (aq) Define and identify Arrhenuis acids and bases.

More information

Chapter 16 exercise. For the following reactions, use figure 16.4 to predict whether the equilibrium lies predominantly. - (aq) + OH - (aq)

Chapter 16 exercise. For the following reactions, use figure 16.4 to predict whether the equilibrium lies predominantly. - (aq) + OH - (aq) 1 Chapter 16 exercise Q1. Practice exercise page 671 Write the formula for the conjugate acid of the following, HSO 3, F, PO 4 3 and CO. HSO 3 H H 2 SO 4 F H HF PO 4 3 H HPO 4 2 CO H HCO Q2. Practice exercise

More information

CHEMISTRY - BROWN 14E CH.16 - ACID-BASE EQUILIBRIA.

CHEMISTRY - BROWN 14E CH.16 - ACID-BASE EQUILIBRIA. !! www.clutchprep.com CONCEPT: ACID IDENTIFICATION The most common feature of an acid is that many possess an H + ion called the. When it comes to acids there are 2 MAJOR TYPES that exist: are acids where

More information

Lecture Presentation. Chapter 16. Acid Base Equilibria. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc.

Lecture Presentation. Chapter 16. Acid Base Equilibria. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc. Lecture Presentation Chapter 16 Acid Base Equilibria John D. Bookstaver St. Charles Community College Cottleville, MO Some Definitions Arrhenius An acid is a substance that, when dissolved in water, increases

More information

Topic-1 Lowry - Bronsted and Lewis theory of acids and bases with examples and applications

Topic-1 Lowry - Bronsted and Lewis theory of acids and bases with examples and applications Topic-1 Lowry - Bronsted and Lewis theory of acids and bases with examples and applications VERY SHORT ANSWER QUESTIONS 1. What is bronsted acid and base give one example? Strength of bronsted acids and

More information

Contents and Concepts

Contents and Concepts Chapter 16 1 Learning Objectives Acid Base Concepts Arrhenius Concept of Acids and Base a. Define acid and base according to the Arrhenius concept. Brønsted Lowry Concept of Acids and Bases a. Define acid

More information

CHAPTER 13: ACIDS & BASES. Section Arrhenius Acid & Bases Svante Arrhenius, Swedish chemist ( ).

CHAPTER 13: ACIDS & BASES. Section Arrhenius Acid & Bases Svante Arrhenius, Swedish chemist ( ). CHAPTER 13: ACIDS & BASES Section 13.1 Arrhenius Acid & Bases Svante Arrhenius, Swedish chemist (1839-1927). He understood that aqueous solutions of acids and bases conduct electricity (they are electrolytes).

More information

Acids, Bases, and ph. ACIDS, BASES, & ph

Acids, Bases, and ph. ACIDS, BASES, & ph I. Arrhenius Acids and Bases ACIDS, BASES, & ph Acid any substance which delivers hydrogen ion (H + ) _ to the solution. Base any substance which delivers hydroxide ion (OH ) to the solution. II ph ph

More information

E) Buffer capacity is the amount of acid that can be added until all of the base is used up.

E) Buffer capacity is the amount of acid that can be added until all of the base is used up. Chem 124 Spring 2016 Exam 3 VERSION 1 Name make sure you fill in your version number in the TN box on the side of your scantron sheet 1) Which of the following solutions is a good buffer system? A) a solution

More information

Exam 2 Practice (Chapter 15-17)

Exam 2 Practice (Chapter 15-17) Exam 2 Practice (Chapter 15-17) 28. The equilibrium constant Kp for reaction (1) has a value of 0.112. What is the value of the equilibrium constant for reaction (2)? (1) SO2 (g) + 1/2 O2(g) SO3 (g) Kp

More information

Chapter 16. Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten

Chapter 16. Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., Bruce E. Bursten Chapter 16 John D. Bookstaver St. Charles Community College Cottleville, MO Some Definitions Arrhenius

More information

Unit 4: Acid/Base I. abinotes. I) Introduction to Acids and Bases What is an acid?

Unit 4: Acid/Base I. abinotes. I) Introduction to Acids and Bases What is an acid? Unit 4: Acid/Base I I) Introduction to Acids and Bases What is an acid? http://www.kidsknowit.com/flash/animations/acidsbases.swf What are properties of acids? 1) Acids react with. 2) Acids create when

More information

CHM 1046 FINAL REVIEW

CHM 1046 FINAL REVIEW CHM 1046 FINAL REVIEW Prepared & Presented By: Marian Ayoub PART II Chapter Description 14 Chemical Equilibrium 15 Acids and Bases 16 Acid-Base Equilibrium 17 Solubility and Complex-Ion Equilibrium 19

More information

Chapter 10 - Acids & Bases

Chapter 10 - Acids & Bases Chapter 10 - Acids & Bases 10.1-Acids & Bases: Definitions Arrhenius Definitions Acids: substances that produce hydrogen ions when dissolved in H 2 O Common Strong Acids: Common Weak acids: Organic carboxylic

More information

Aqueous Equilibria: Acids and Bases

Aqueous Equilibria: Acids and Bases Slide 1 Chapter 14 Aqueous Equilibria: Acids and Bases Slide 2 Acid Base Concepts 01 Arrhenius Acid: A substance which dissociates to form hydrogen ions (H + ) in solution. HA(aq) H + (aq) + A (aq) Arrhenius

More information

ACID-BASE REACTIONS & THE ph SCALE

ACID-BASE REACTIONS & THE ph SCALE Introduction ACID-BASE REACTIONS & THE ph SCALE In acid-base reactions in aqueous solution, the active agents are commonly the hydronium ion H 3 0 + or the hydroxide ion OH. The range of concentrations

More information

Acid / Base Properties of Salts

Acid / Base Properties of Salts Acid / Base Properties of Salts n Soluble ionic salts produce may produce neutral, acidic, or basic solutions depending on the acidbase properties of the individual ions. n Consider the salt sodium nitrate,

More information

IB Chemistry ABS Introduction An acid was initially considered a substance that would produce H + ions in water.

IB Chemistry ABS Introduction An acid was initially considered a substance that would produce H + ions in water. IB Chemistry ABS Introduction An acid was initially considered a substance that would produce H + ions in water. The Brønsted-Lowry definition of an acid is a species that can donate an H + ion to any

More information

Equations. M = n/v. M 1 V 1 = M 2 V 2 if the moles are the same n 1 n 2 you can cancel out the n s. ph = -log [H + ] poh = -log [OH - ] ph + poh = 14

Equations. M = n/v. M 1 V 1 = M 2 V 2 if the moles are the same n 1 n 2 you can cancel out the n s. ph = -log [H + ] poh = -log [OH - ] ph + poh = 14 Equations M = n/v M 1 V 1 = M 2 V 2 if the moles are the same n 1 n 2 you can cancel out the n s. ph = -log [H + ] poh = -log [OH - ] ph + poh = 14 [H 3 O + ] = 10^-pH [OH - ] = 10^-pOH [H 3 O + ] [OH

More information

Duncan. UNIT 14 - Acids & Bases. COMMON ACIDS NOTES lactic acetic phosphoric NAMING ACIDS NOTES

Duncan. UNIT 14 - Acids & Bases. COMMON ACIDS NOTES lactic acetic phosphoric NAMING ACIDS NOTES COMMON ACIDS NOTES lactic acetic phosphoric citric malic PROPERTIES OF ACIDS 1. 1. PROPERTIES OF BASES 2. 2. 3. 3. 4. 4. 5. 5. NAMING ACIDS NOTES Binary acids (H + one element) 1. hydro- - HF 2. root of

More information

Acids and Bases. Feb 28 4:40 PM

Acids and Bases. Feb 28 4:40 PM Acids and Bases H O s O Cl H O O H H N H Na O H H Feb 28 4:40 PM Properties of Acids 1. Taste sour 2. Conduct electrical current 3. Liberate H 2 gas when reacted with a metal. 4. Cause certain dyes to

More information

A is capable of donating one or more H+

A is capable of donating one or more H+ Slide 1 / 48 1 According to the Arrhenius concept, an acid is a substance that. A is capable of donating one or more H+ B C D E causes an increase in the concentration of H+ in aqueous solutions can accept

More information

Acids - Bases in Water

Acids - Bases in Water more equilibrium Dr. Fred Omega Garces Chemistry, Miramar College 1 Acids-Bases Characteristics Acids (Properties) Taste Sour Dehydrate Substances Neutralizes bases Dissolves metals Examples: Juices: TJ,

More information

Chapter 14 Acids and Bases

Chapter 14 Acids and Bases Properties of Acids and Bases Chapter 14 Acids and Bases Svante Arrhenius (1859-1927) First to develop a theory for acids and bases in aqueous solution Arrhenius Acids Compounds which dissolve (dissociate)

More information

Chapter 14 Acid- Base Equilibria Study Guide

Chapter 14 Acid- Base Equilibria Study Guide Chapter 14 Acid- Base Equilibria Study Guide This chapter will illustrate the chemistry of acid- base reactions and equilibria, and provide you with tools for quantifying the concentrations of acids and

More information

Chapter 7 Acids and Bases

Chapter 7 Acids and Bases Chapter 7 Acids and Bases 7.1 The Nature of Acids and Bases 7.2 Acid Strength 7.3 The ph Scale 7.4 Calculating the ph of Strong Acid Solutions 7.5 Calculating the ph of Weak Acid Solutions 7.6 Bases 7.7

More information

CHEMISTRY. Chapter 16 Acid-Base Equilibria

CHEMISTRY. Chapter 16 Acid-Base Equilibria CHEMISTRY The Central Science 8 th Edition Chapter 16 Acid-Base Equilibria Kozet YAPSAKLI Why study acids bases? bases are common in the everyday world as well as in the lab. Some common acidic products

More information

CHEM 1412 Answers to Practice Problems Chapters 15, 16, & 17

CHEM 1412 Answers to Practice Problems Chapters 15, 16, & 17 CHEM 1412 Answers to Practice Problems Chapters 15, 16, & 17 1. Definitions can be found in the end-of-chapter reviews and in the glossary at the end of the textbook! 2. Conjugate Base Conjugate Acid Compound

More information

CHEMISTRY - CLUTCH CH.15 - ACID AND BASE EQUILIBRIUM.

CHEMISTRY - CLUTCH CH.15 - ACID AND BASE EQUILIBRIUM. !! www.clutchprep.com CONCEPT: ACID IDENTIFICATION The most common feature of an acid is that many possess an H + ion called the. When it comes to acids there are 2 MAJOR TYPES that exist: are acids where

More information

Aqueous solutions of acids have a sour Aqueous solutions of bases taste bitter

Aqueous solutions of acids have a sour Aqueous solutions of bases taste bitter Acid and Bases Exam Review Honors Chemistry 3 April 2012 Chapter 14- Acids and Bases Section 14.1- Acid and Base Properties List five general properties of aqueous acids and bases Properties of Acids Properties

More information

UNIT 14 - Acids & Bases

UNIT 14 - Acids & Bases COMMON ACIDS NOTES lactic sour milk, sore muscles acetic vinegar phosphoric soft drinks citric citrus fruits malic apples PROPERTIES OF ACIDS PROPERTIES OF BASES 1. Taste sour 1. Taste bitter 2. react

More information

2 NO, has reached a state of dynamic equilibrium, which statement below is true?

2 NO, has reached a state of dynamic equilibrium, which statement below is true? Chemistry 11-014, Vining Exam #3 NAME: Answer Key Take Home Version 1. When the reversible reaction, N + O NO, has reached a state of dynamic equilibrium, which statement below is true? (a) Both the forward

More information

Name%% %Period%% % Precipitation+Reaction+Practice+

Name%% %Period%% % Precipitation+Reaction+Practice+ Name%% %Period%% % Precipitation+Reaction+Practice+ 1.%Write%a%balanced%equation%for%the%following%precipitation%reactions,%circle%the%precipitate%that%is% formed:% a) K 3 PO 4 %+%3%Sr(NO 3 ) 2 %% % %

More information

Acids and Bases. Properties, Reactions, ph, and Titration

Acids and Bases. Properties, Reactions, ph, and Titration Acids and Bases Properties, Reactions, ph, and Titration C-19 2017 Properties of acids 1. Taste Sour (don t try this except with foods). 2. Are electrolytes (conduct electricity). Some are strong, some

More information

The 5 th planet in our solar system, Jupiter. The Mass Action Expression describes a system undergoing a chemical change.

The 5 th planet in our solar system, Jupiter. The Mass Action Expression describes a system undergoing a chemical change. Unit 5 The 5 th planet in our solar system, Jupiter Ch. 15 Chemical equilibrium: This is based on the idea that reactions go forwards and backwards at the same conditions The Mass Action Expression describes

More information

UNIT 14 - Acids & Bases

UNIT 14 - Acids & Bases COMMON ACIDS NOTES lactic acetic phosphoric citric malic PROPERTIES OF ACIDS 1. 1. PROPERTIES OF BASES 2. 2. 3. 3. 4. 4. 5. 5. NAMING ACIDS NOTES Binary acids (H + one element) Practice: 1. hydro- - HF

More information

Cu 2+ (aq) + 4NH 3(aq) = Cu(NH 3) 4 2+ (aq) I (aq) + I 2(aq) = I 3 (aq) Fe 3+ (aq) + 6H 2O(l) = Fe(H 2O) 6 3+ (aq) Strong acids

Cu 2+ (aq) + 4NH 3(aq) = Cu(NH 3) 4 2+ (aq) I (aq) + I 2(aq) = I 3 (aq) Fe 3+ (aq) + 6H 2O(l) = Fe(H 2O) 6 3+ (aq) Strong acids There are three definitions for acids and bases we will need to understand. Arrhenius Concept: an acid supplies H + to an aqueous solution. A base supplies OH to an aqueous solution. This is the oldest

More information

Properties of Acids and Bases

Properties of Acids and Bases Chapter 15 Aqueous Equilibria: Acids and Bases Properties of Acids and Bases Generally, an acid is a compound that releases hydrogen ions, H +, into water. Blue litmus is used to test for acids. Blue litmus

More information

Chapter 8 Acid-Base Equilibria

Chapter 8 Acid-Base Equilibria Chapter 8 Acid-Base Equilibria 8-1 Brønsted-Lowry Acids and Bases 8-2 Water and the ph Scale 8-3 The Strengths of Acids and Bases 8-4 Equilibria Involving Weak Acids and Bases 8-5 Buffer Solutions 8-6

More information

ADVANCED PLACEMENT CHEMISTRY ACIDS, BASES, AND AQUEOUS EQUILIBRIA

ADVANCED PLACEMENT CHEMISTRY ACIDS, BASES, AND AQUEOUS EQUILIBRIA ADVANCED PLACEMENT CHEMISTRY ACIDS, BASES, AND AQUEOUS EQUILIBRIA Acids- taste sour Bases(alkali)- taste bitter and feel slippery Arrhenius concept- acids produce hydrogen ions in aqueous solution while

More information

Acids and Bases. Unit 10

Acids and Bases. Unit 10 Acids and Bases Unit 10 1 Properties of Acids and Bases Acids Bases Taste Sour Turns Litmus Dye Red Reacts with Metals to give H 2 (g) Taste Bitter Turns Litmus Dye Blue Do Not React with Metals Reacts

More information

Chapter Menu Chapter Menu

Chapter Menu Chapter Menu Chapter Menu Chapter Menu Section 18.1 Section 18.3 Section 18.4 Introduction to Acids and Bases Hydrogen Ions and ph Neutralization Section 18.1 Intro to Acids and Bases Objectives: Compare the Arrhenius,

More information

Chapter 4 - Types of Chemical Reactions and Solution Chemistry

Chapter 4 - Types of Chemical Reactions and Solution Chemistry Chapter 4 - Types of Chemical Reactions and Solution Chemistry 4.1 Water, the Common Solvent - the water molecule is bent with and H-O-H angles of approx. 105 º - O-H bonds are covalent - O is slightly

More information

Acids & Bases. Chapter 17

Acids & Bases. Chapter 17 Acids & Bases Chapter 17 Arrhenius Definition: Classic Definition of Acids and Bases Acid: A substance that increases the hydrogen ion concetration, [H + ], (also thought of as hydronium ion, H 3 O + )

More information

Chapter 15. Properties of Acids. Structure of Acids 7/3/08. Acid and Bases

Chapter 15. Properties of Acids. Structure of Acids 7/3/08. Acid and Bases Chapter 15 Acid and Bases Properties of Acids! Sour taste! React with active metals! React with carbonates, producing CO 2! Change color of vegetable dyes!blue litmus turns red! React with bases to form

More information

11/14/10. Properties of Acids! CHAPTER 15 Acids and Bases. Table 18.1

11/14/10. Properties of Acids! CHAPTER 15 Acids and Bases. Table 18.1 11/14/10 CHAPTER 15 Acids and Bases 15-1 Properties of Acids! Sour taste React with active metals i.e., Al, Zn, Fe, but not Cu, Ag, or Au 2 Al + 6 HCl 2 AlCl3 + 3 H2 corrosive React with carbonates, producing

More information

CHAPTER 8: ACID/BASE EQUILIBRIUM

CHAPTER 8: ACID/BASE EQUILIBRIUM CHAPTER 8: ACID/BASE EQUILIBRIUM Already mentioned acid-base reactions in Chapter 6 when discussing reaction types. One way to define acids and bases is using the Brønsted-Lowry definitions. A Brønsted-Lowry

More information

Chemistry I Notes Unit 10: Acids and Bases

Chemistry I Notes Unit 10: Acids and Bases Chemistry I Notes Unit 10: Acids and Bases Acids 1. Sour taste. 2. Acids change the color of acid- base indicators (turn blue litmus red). 3. Some acids react with active metals and release hydrogen gas,

More information

1. Strengths of Acids and Bases 2. K a, K b 3. Ionization of Water 4. Relative Strengths of Brønsted-Lowry Acids and Bases

1. Strengths of Acids and Bases 2. K a, K b 3. Ionization of Water 4. Relative Strengths of Brønsted-Lowry Acids and Bases Chemistry 12 Acid-Base Equilibrium II Name: Date: Block: 1. Strengths of Acids and Bases 2. K a, K b 3. Ionization of Water 4. Relative Strengths of Brønsted-Lowry Acids and Bases Strengths of Acids and

More information

Part 01 - Assignment: Introduction to Acids &Bases

Part 01 - Assignment: Introduction to Acids &Bases Part 01 - Assignment: Introduction to Acids &Bases Classify the following acids are monoprotic, diprotic, or triprotic by writing M, D, or T, respectively. 1. HCl 2. HClO4 3. H3As 4. H2SO4 5. H2S 6. H3PO4

More information

Name Date Class ACID-BASE THEORIES

Name Date Class ACID-BASE THEORIES 19.1 ACID-BASE THEORIES Section Review Objectives Define the properties of acids and bases Compare and contrast acids and bases as defined by the theories of Arrhenius, Brønsted-Lowry, and Lewis Vocabulary

More information

Acids and Bases. Acid. Acid Base 2016 OTHS. Acid Properties. A compound that produces H + ions when dissolved in water. Examples!

Acids and Bases. Acid. Acid Base 2016 OTHS. Acid Properties. A compound that produces H + ions when dissolved in water. Examples! Acids and Bases Acid A compound that produces H + ions when dissolved in water. Examples! Vinegar Acetic acid Lemon Juice Citric acid Sour Candy Malic acid (and others) Milk Lactic acid HCl(aq) Acid Properties

More information

Unit 4a Acids, Bases, and Salts Theory

Unit 4a Acids, Bases, and Salts Theory Unit 4a Acids, Bases, and Salts Theory Chemistry 12 Arrhenius Theory of Acids and Bases The first theory that was proposed to explain the actions of acids and bases was by Svante Arrhenius. It is still

More information

Assignment 16 A incorrect

Assignment 16 A incorrect Assignment 16 A 1- What is the concentration of hydronium ions in a solution with a hydroxide-ion concentration of 2.31 10 4 M at 25 C? a) 4.33 10 11 M b) 2.31 10 4 M c) 2.31 10 18 M d) 2.31 10 10 M (The

More information

Dynamic equilibrium: rate of evaporation = rate of condensation II. In a closed system a solid obtains a dynamic equilibrium with its dissolved state

Dynamic equilibrium: rate of evaporation = rate of condensation II. In a closed system a solid obtains a dynamic equilibrium with its dissolved state CHEMISTRY 111 LECTURE EXAM III Material PART 1 CHEMICAL EQUILIBRIUM Chapter 14 I Dynamic Equilibrium I. In a closed system a liquid obtains a dynamic equilibrium with its vapor state Dynamic equilibrium:

More information

CHEMISTRY - BROWN 13E CH.16 - ACID-BASE EQUILIBRIA - PART 2.

CHEMISTRY - BROWN 13E CH.16 - ACID-BASE EQUILIBRIA - PART 2. !! www.clutchprep.com CONCEPT: ph and poh To deal with incredibly small concentration values of [H + ] and [OH - ] we can use the ph scale. Under normal conditions, the ph scale operates within the range

More information

Chapter 16. Acid-Base Equilibria

Chapter 16. Acid-Base Equilibria Chapter 16 Acid-Base Equilibria Arrhenius Definition Acids produce hydrogen ions in aqueous solution. Bases produce hydroxide ions when dissolved in water. Limits to aqueous solutions. Only one kind of

More information

Unit 9: Acid and Base Multiple Choice Practice

Unit 9: Acid and Base Multiple Choice Practice Unit 9: Acid and Base Multiple Choice Practice Name June 14, 2017 1. Consider the following acidbase equilibrium: HCO3 H2O H2CO3 OH In the reaction above, the BrönstedLowry acids are: A. H2O and OH B.

More information

Amount of substance dissolved in 1 L of water

Amount of substance dissolved in 1 L of water Chapter 7: Phenomena Phenomena: Scientists dissolved different substances in water and then measured the [H + ] and [OH - ] concentrations in each solution. What patterns do you notice about the substances?

More information

Review: Acid-Base Chemistry. Title

Review: Acid-Base Chemistry. Title Review: Acid-Base Chemistry Title Basics General properties of acids & bases Balance neutralization equations SA + SB water + salt Arrhenius vs. Bronsted-Lowry BL plays doubles tennis match with H+) Identify

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The effect of a catalyst on a chemical reaction is to. A) increase the entropy change

More information

8.1 Explaining the Properties of Acids & Bases. SCH4U - Chemistry, Gr. 12, University Prep

8.1 Explaining the Properties of Acids & Bases. SCH4U - Chemistry, Gr. 12, University Prep 8.1 Explaining the Properties of Acids & Bases SCH4U - Chemistry, Gr. 12, University Prep Equilibrium & Acids & Bases 2 So far, we have looked at equilibrium of general chemical systems: We learned about

More information

Acids and Bases Unit 11

Acids and Bases Unit 11 Mr. B s Chemistry Acids and Bases Unit 11 Name Block Let s start our discussion of acids and bases by defining some terms that are essential to the topics that follow. Arrhenius acids and bases are: acid

More information

Experiment Initial [A] Initial [B] Initial Rate form. C M 0.10 M 4.0 x 10-4 M/min

Experiment Initial [A] Initial [B] Initial Rate form. C M 0.10 M 4.0 x 10-4 M/min Unit 1: Kinetics and Equilibrium ANSWER KEY Chem 1B Kinetics Name 1. What factors affect rates? Give examples of each. 1. Nature of the reactants- physical state, surface area-examples Li, Na, K react

More information

ACIDS AND BASES CONTINUED

ACIDS AND BASES CONTINUED ACIDS AND BASES CONTINUED WHAT HAPPENS WHEN AN ACID DISSOLVED IN WATER? Water acts as a Brønsted Lowry base and abstracts a proton (H+) from the acid. As a result, the conjugate base of the acid and a

More information

Acids and Bases. Bases react with acids to form water and a salt. Bases do not commonly with metals.

Acids and Bases. Bases react with acids to form water and a salt. Bases do not commonly with metals. Acids and Bases Properties of Acids and Bases Acids taste. Lemon juice and, for example, are both aqueous solutions of acids. Acids conduct electricity; they are. Some are strong electrolytes, while others

More information

CHM 2046 Test #3 Review: Chapters , 15, & 16

CHM 2046 Test #3 Review: Chapters , 15, & 16 Chapter 14 1. For the following reaction Kc = 0.513 at 500 K. N 2 O 4 (g) 2 NO 2 (g) If a reaction vessel initially contains an N 2 O 4 concentration of 0.0500 M at 500 K, what are the equilibrium concentrations

More information

Acids and Bases. There are a number of definitions of acids and bases we will use two of the most useful definitions for nursing applications.

Acids and Bases. There are a number of definitions of acids and bases we will use two of the most useful definitions for nursing applications. Acids and Bases We all know that acids taste sour and bases taste bitter but is this definition useful when you as a nurse will need to determine if a patient is in acidosis? There are a number of definitions

More information

1) What is the Arrhenius definition of an acid? Of a base? 2) What is the Bronsted-Lowry definition of an acid? Of a base?

1) What is the Arrhenius definition of an acid? Of a base? 2) What is the Bronsted-Lowry definition of an acid? Of a base? Problems, Chapter 16 (with solutions) NOTE: Unless otherwise stated, assume T = 25. C in all problems) 1) What is the Arrhenius definition of an acid? Of a base? An Arrhenius acid is a substance that produces

More information

Chemistry 102 Chapter 15 ACID-BASE CONCEPTS

Chemistry 102 Chapter 15 ACID-BASE CONCEPTS General Properties: ACID-BASE CONCEPTS ACIDS BASES Taste sour Bitter Change color of indicators Blue Litmus turns red no change Red Litmus no change turns blue Phenolphtalein Colorless turns pink Neutralization

More information

Chapter 16. Acid-Base Equilibria

Chapter 16. Acid-Base Equilibria Chapter 16. Acid-Base Equilibria 16.1 Acids and Bases: A Brief Review Acids taste sour and cause certain dyes to change color. Bases taste bitter and feel soapy. Arrhenius concept of acids and bases: An

More information

Definitions. Acids give off Hydrogen ions (protons) Bases give off hydroxide ions

Definitions. Acids give off Hydrogen ions (protons) Bases give off hydroxide ions Acids and Bases Arrhenius- Definitions Acids give off Hydrogen ions (protons) Bases give off hydroxide ions This definition did not include enough acids but does explain many. Brønsted-Lowry Acids are

More information