Supporting Information. Poly(ethylene glycol) Ligands for High-Resolution Nanoparticle Mass Spectrometry

Size: px
Start display at page:

Download "Supporting Information. Poly(ethylene glycol) Ligands for High-Resolution Nanoparticle Mass Spectrometry"

Transcription

1 Supporting Information Poly(ethylene glycol) Ligands for High-Resolution Nanoparticle Mass Spectrometry Joseph B. Tracy, Gregory Kalyuzhny, Matthew C. Crowe, Ramjee Balasubramanian, Jai-Pil Choi, and Royce W. Murray*, Kenan Laboratories of Chemistry, University of North Carolina, Chapel Hill, North Carolina Department of Chemistry and Biochemistry, San Diego State University, San Diego, California Preparation and Purification of Gold Nanoparticles: A solution of 3.1g HAuCl 4 3H 2 O in ml deionized water was mixed with 5. g tetraoctylammonium bromide (TOABr) in ml toluene. After stirring for 3 minutes to complete the phase transfer of the gold precursor into the toluene phase, the toluene phase was separated from the water, and 3.43 ml phenylethanethiol (HSC2Ph) was added to the toluene solution and stirred overnight to form Au(I)-thiolate complexes. The next morning, the toluene solution was cooled in an ice bath, and 3.8 g NaBH 4 dissolved in 6 ml ice-cold water was quickly added while stirring rapidly with a mechanical stirrer. The temperature of the ice bath was maintained at C for 24 hours with vigorous stirring. Using a separatory funnel, the aqueous layer was discarded, and ml water was added in order to remove excess NaBH 4 and reaction side products. After shaking to mix the layers, the aqueous layer was again discarded. This procedure of adding ml water, shaking, and discarding the aqueous layer was repeated two more times. The toluene was removed at room temperature on a rotary evaporator. An oily residue remained, to which ml of proof ethanol was added. After 2 hours, most of the product had precipitated, and the precipitate was collected on a glass frit (fine porosity). The precipitate was transferred to a new flask by rinsing the frit with dichloromethane and then evaporating the dichloromethane. The sample was then treated with methanol for 45 minutes in order to remove excess TOABr and HSC2Ph, after which the methanol was discarded, and the sample was dried. The product was extracted by adding acetonitrile and then removing the acetonitrile. Multiple extractions with acetonitrile were generally necessary, and if the solid product still had an oily appearance, additional methanol treatments were performed. The methanol treatment makes the acetonitrile extractions more efficient. The product purity was verified with UV-Vis absorbance and voltammetry measurements. This product has been reported previously as Au 38 (SC2Ph) 24 (Ref. 7c), but it is shown in this paper to be Au 25 (SC2Ph) 18. S-1

2 The 4+ peaks are consistent with the assignment of M 5 Au 25 (ligand) : (a) x x (b) Figure S-1: (a) Set of 4+ peaks acquired using.44 mg (green) and.89 mg (red; scaled by 1.625) NaOAc per mg NPs, after 24 hours of exchange. (b) High resolution analysis of the same data compared with simulations (black) of x 4+ = Na 5 Au 25 (SC2Ph) 18-x (S-PEG) x 4+. S-2

3 Detailed justification for assignment Au 25 (ligand) 18 : The possible assignments for the peak that is centered at m Da [Fig. 1(c), middle panel] are shown in Table S-1. Average masses outside the range given there and generally outside a window of ±1 Da from the center of the experimental peak do not match the data. Resolution alone is not sufficient to eliminate the other possibilities, but the assignment of Na 4 Au 25 (SC2Ph) 9 (S-PEG) 9 matches the data well. Figure 2 moreover, shows that the species with m Da has undergone at least 9 successive replacements of -SC2Ph with -S-PEG. Because at least 12 successive ligand exchanges are observable in Figure 2, the Da species must have at least 9 -S-PEG and 3 -SC2Ph ligands. Therefore, all of the possible assignments in Table S-1 may be eliminated except for Na 4 Au 16 (SC2Ph) 18 (S-PEG) 11, Na 4 Au 25 (SC2Ph) 9 (S-PEG) 9, and Na 4 Au 21 (SC2Ph) 5 (S-PEG) 14. In order to cement a unique assignment, we consider the peak generated by the unexchanged material with m 7463 Da. There are many fewer possible assignments, because this species has no -S-PEG. Assignments near this mass are listed in Table S-2, where Na 3 Au 25 (SC2Ph) is the only match with the data and is therefore the unique assignment. High resolution data and simulations of Au 25 (ligand) 18 for each extent of ligand exchange are shown in Fig. S-2. In particular, we note that the match for 2+ is excellent. Because 2+ is a unique assignment, the other x n+ = Na n+1 Au 25 (SC2Ph) 18-x (S-PEG) n+ x that are generated by successive ligand exchange are also unique assignments. S-3

4 Table S-1: All possible assignments for the peak assigned as Na 4 Au 25 (SC2Ph) 9 (S-PEG) 9 with masses in a window greater than ± 1 Da for 15 n Au 4, n SC2Ph 25, and n S-PEG 25. Average mass (Da) Assignment Na 4 Au 16 (SC2Ph) 18 (S-PEG) Na 4 Au 4 (SC2Ph) Na 4 Au 36 (SC2Ph)(S-PEG) Na 4 Au 29 (SC2Ph) 13 (S-PEG) Na 4 Au 25 (SC2Ph) 9 (S-PEG) Na 4 Au 21 (SC2Ph) 5 (S-PEG) Na 4 Au 17 (SC2Ph)(S-PEG) Na 4 Au 22 (SC2Ph) 25 (S-PEG) Na 4 Au 18 (SC2Ph) 21 (S-PEG) Na 4 Au 38 (SC2Ph) 4 (S-PEG) 2 S-4

5 Table S-2: All possible assignments for the peak assigned as Na 3 Au 25 (SC2Ph) with masses in a window greater than ± 5 Da for 15 n Au 4 and n SC2Ph 25. Average mass (Da) Assignment Na 3 Au 34 (SC2Ph) Na 3 Au 25 (SC2Ph) Na 3 Au 32 (SC2Ph) 8 S-5

6 High resolution analysis of different extents of ligand exchange: In Fig. S-2, high resolution data for the most intense peaks for different extents of ligand exchange are compared with simulations of the assigned species, x n+ = Na n+1 Au 25 (SC2Ph) 18-x (S- PEG) n+ x. Because single isotopes are not consistently resolved, the match is assessed by how well the simulated curve is centered within the experimental data. The matches between the data and simulations are excellent. Atomic resolution has been achieved; if the simulated mass is increased or decreased by 1 Da, then the simulation will no longer match with the data. For each major peak, n+1 Na + ions and a total ion charge of n+ leaves a 1- charge on the core. High resolution analysis of the minor peaks in Fig. 2 (labeled a and b) and comparison with simulations is presented in Fig. S-3. The assignments for different extents of ligand exchange are given in Table S-3. Initially, we thought that these minor peaks were generated by protonation rather than Na + coordination, which would preserve the 1- core charge indicated by the major peaks. The less intense signals in Fig. S-3 reduce the resolution as compared with Fig. S-2, but the Fig. S-3 high resolution analysis supports the idea that 1b 2+, 1a 2+, 2b 2+, and 2a 2+ have lost Na + without coordination to protons, thereby leading to more positive ( or 1+) core charges. The 3a 2+ ion, however, does appear to be protonated. Further investigation is underway to more persuasively demonstrate these effects and to understand the origins of these minor peaks. S-6

7 hours, 4 hours, 4 2 hours, 2+ 2 no exchange, Figure S-2: High resolution analysis of different extents of ligand exchange from Fig. 2. Simulations (thick black curve) and assignments are x n+ = Na n+1 Au 25 (SC2Ph) 18-x (S-PEG) x n+. S-7

8 1b 2+ 1a 2+ 2b a 2+ 3a hours, hours, 2 hours, 2+ no exchange, 2+ Figure S-3: High resolution analysis and simulations (thick black curves) of minor peaks that are identified by labels a and b in Fig. 2. Assignments are given in Table S-3. S-8

9 Table S-3: Assignments for peaks in Fig. S-3. Label Assignment Core charge 1b NaAu 25 (SC2Ph) 17 (S-PEG) a Na 2 Au 25 (SC2Ph) 17 (S-PEG) 1 2b NaAu 25 (SC2Ph) 16 (S-PEG) a Na 2 Au 25 (SC2Ph) 16 (S-PEG) 2 3a HNa 2 Au 25 (SC2Ph) 15 (S-PEG) 3 1- S-9

10 Optical spectra and voltammetry before and after ligand exchange: The data for different extents of ligand exchange indicate that no change in core size occurs during ligand exchange, and optical spectra and electrochemistry also exhibit no substantial difference between the un-exchanged material and the exchange product. If a change in core size had occurred, the electronic structure of the nanoparticles might be substantially altered, which would be reflected in optical and electrochemical measurements. Absorbance and luminescence spectra (Fig. S-4) indicate no substantial changes. In particular, we believe that a change in core size should alter the absorbance band at ~1.8 ev. While the voltammetric features (Fig. S-5) have changed slightly, this can be attributed to the differences in the electronic coupling of -SC2Ph and -S-PEG to the Au core and to the different dielectric properties of the ligand monolayers. A change in core size would probably lead to more significant changes in the electrochemistry. S-1

11 Abs., normalized at 1.8 ev (arbitrary units) Abs. (arbitrary units) hours 4 hours 1 hour before exchange E (ev) Photoluminescence normalized to absorbance max(~1.8 ev) (arbitrary units) E (ev) Figure S-4: Absorbance and photoluminescence (45 nm excitation) measurements of Au NP samples in dichloromethane before and after different times of ligand exchange. Inset: the same absorbance spectra expanded near the absorbance edge. S-11

12 I (μa) I (μa) CV DPV V (mv) vs. Ag/AgCl 22.5 hours before exchange - - Figure S-5: (a) Cyclic voltammetry (CV) and (b) differential pulse voltammetry (DPV) of Au NP samples before and after 22.5 hours of ligand exchange with HS-PEG. Measurements were taken in a 1:1 (vol) mixture of acetonitrile and toluene with.1 M tetrabutylammonium perchlorate using.5 mm Pt working and Ag/AgCl reference electrodes. S-12

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Analyst. This journal is The Royal Society of Chemistry 2014 Supporting information Quantized double layer charging of Au 130 (SR) 50 Nanomolecules Vijay Reddy

More information

Supplementary information. Infra-red Spectroscopy of Size Selected Au 25, Au 38 and

Supplementary information. Infra-red Spectroscopy of Size Selected Au 25, Au 38 and Supplementary information Infra-red Spectroscopy of Size Selected Au 25, Au 38 and Au 144 Ligand Protected Gold Clusters Mostafa Farrag a, Martin Tschurl a, Amala Dass b, Ulrich Heiz a a TECHNISCHE UNIVERSITÄT

More information

Lab #3 Reduction of 3-Nitroacetophenone

Lab #3 Reduction of 3-Nitroacetophenone Lab #3 Reduction of 3-Nitroacetophenone Introduction: Extraction: This method uses a different technique in which the two chemical compounds being separated are in immiscible solvents, also known as phases.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.2303 Light-controlled self-assembly of non-photoresponsive nanoparticles Pintu K. Kundu, 1 Dipak Samanta, 1 Ron Leizrowice, 1,2 Baruch Margulis, 1,3 Hui Zhao, 1 Martin Börner, 1,4 T.

More information

Structural Information on the Au-S Interface of. Thiolate-protected Gold Clusters: A Raman. Spectroscopy Study

Structural Information on the Au-S Interface of. Thiolate-protected Gold Clusters: A Raman. Spectroscopy Study Structural Information on the Au-S Interface of Thiolate-protected Gold Clusters: A Raman Spectroscopy Study Supporting Information Birte Varnholt, Patric Oulevey, Sandra Luber, Chanaka Kumara, Amala Dass

More information

Remarkable Enhancement in Aerobic Alcohol Oxidation Catalysis of Au25 Clusters by Single Pd Atom Doping

Remarkable Enhancement in Aerobic Alcohol Oxidation Catalysis of Au25 Clusters by Single Pd Atom Doping Supporting Information Remarkable Enhancement in Aerobic Alcohol Oxidation Catalysis of Au25 Clusters by Single Pd Atom Doping Songhai Xie, Hironori Tsunoyama, Wataru Kurashige, Yuichi Negishi, Tatsuya

More information

2017 Reaction of cinnamic acid chloride with ammonia to cinnamic acid amide

2017 Reaction of cinnamic acid chloride with ammonia to cinnamic acid amide 217 Reaction of cinnamic acid chloride with ammonia to cinnamic acid amide O O Cl NH 3 NH 2 C 9 H 7 ClO (166.6) (17.) C 9 H 9 NO (147.2) Classification Reaction types and substance classes reaction of

More information

Electronic Supplementary Information (ESI) for the paper:

Electronic Supplementary Information (ESI) for the paper: Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information (ESI) for the paper: [Ag59(2,5-DCBT)32] 3- : A new cluster

More information

Kinetic Isotope Effects

Kinetic Isotope Effects 1 Experiment 31 Kinetic Isotope Effects Isotopic substitution is a useful technique for the probing of reaction mechanisms. The change of an isotope may affect the reaction rate in a number of ways, providing

More information

GRIGNARD REACTION Synthesis of Benzoic Acid

GRIGNARD REACTION Synthesis of Benzoic Acid 1 GRIGNARD REACTION Synthesis of Benzoic Acid In the 1920 s, the first survey of the acceleration of chemical transformations by ultrasound was published. Since then, many more applications of ultrasound

More information

Supporting Information

Supporting Information Supporting Information Interconversion between Superatomic 6-Electron and 8-Electron Configurations of M@Au 24 (SR) 18 Clusters (M = Pd, Pt) Kyuju Kwak, Qing Tang, Minseok Kim, De-en Jiang, and Dongil

More information

[Supplementary Information] One-Pot Synthesis and Electrocatalytic Activity of Octapodal Au-Pd Nanoparticles

[Supplementary Information] One-Pot Synthesis and Electrocatalytic Activity of Octapodal Au-Pd Nanoparticles [Supplementary Information] One-Pot Synthesis and Electrocatalytic Activity of Octapodal Au-Pd Nanoparticles Jong Wook Hong, Young Wook Lee, Minjung Kim, Shin Wook Kang, and Sang Woo Han * Department of

More information

A supramolecular approach for fabrication of photo- responsive block-controllable supramolecular polymers

A supramolecular approach for fabrication of photo- responsive block-controllable supramolecular polymers Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2014 Supporting Information A supramolecular approach for fabrication of photo- responsive

More information

Enhancement of the electrocatalytic activity of Pt nanoparticles in oxygen reduction by chlorophenyl functionalization

Enhancement of the electrocatalytic activity of Pt nanoparticles in oxygen reduction by chlorophenyl functionalization Eelctornic Supplementary Information Enhancement of the electrocatalytic activity of Pt nanoparticles in oxygen reduction by chlorophenyl functionalization Zhi-You Zhou a,b, Xiongwu Kang a, Yang Song a,

More information

Supporting Information

Supporting Information Supporting Information High Performance Electrocatalyst: Pt-Cu Hollow Nanocrystals Xiaofei Yu, a Dingsheng, a Qing Peng a and Yadong Li* a a Department of Chemistry, Tsinghua University, Beijing, 100084

More information

Facile Phase Transfer of Gold Nanoparticles From Aqueous. Solution to Organic Solvents with Thiolated Poly(ethylene glycol)

Facile Phase Transfer of Gold Nanoparticles From Aqueous. Solution to Organic Solvents with Thiolated Poly(ethylene glycol) Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting Information for: Facile Phase Transfer of Gold Nanoparticles From Aqueous Solution

More information

Single Catalyst Electrocatalytic Reduction of CO 2 in Water to H 2 :CO Syngas Mixtures with Water Oxidation to O 2

Single Catalyst Electrocatalytic Reduction of CO 2 in Water to H 2 :CO Syngas Mixtures with Water Oxidation to O 2 Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2014 Supporting Information Single Catalyst Electrocatalytic Reduction of CO 2

More information

Biodegradable Hollow Silica Nanospheres Containing Gold Nanoparticle Arrays

Biodegradable Hollow Silica Nanospheres Containing Gold Nanoparticle Arrays Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Biodegradable Hollow Silica Nanospheres Containing Gold Nanoparticle Arrays Domenico Cassano a,b,

More information

Ligand effect on the catalytic activity of porphyrin-protected gold clusters in the electrochemical hydrogen evolution reaction

Ligand effect on the catalytic activity of porphyrin-protected gold clusters in the electrochemical hydrogen evolution reaction Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2017 Supporting Information Ligand effect on the catalytic activity of porphyrin-protected gold

More information

Supporting Information For:

Supporting Information For: Supporting Information For: Highly Fluorinated Ir(III)- 2,2 :6,2 -Terpyridine -Phenylpyridine-X Complexes via Selective C-F Activation: Robust Photocatalysts for Solar Fuel Generation and Photoredox Catalysis

More information

Supporting Information

Supporting Information Supporting Information Decorating Graphene Sheets with Gold Nanoparticles Ryan Muszynski, Brian Seeger and, Prashant V. Kamat* Radiation Laboratory, Departments of Chemistry & Biochemistry and Chemical

More information

Carbon powder modification. Preparation of NS1, NS2, NS3 and NS4.

Carbon powder modification. Preparation of NS1, NS2, NS3 and NS4. SUPPORTING INFORMATION EXPERIMENTAL SECTION Reagents. Carbon powder (Norit-S50) was purchased from Norit, 4-aminobenzene sulfonic acid (99%), lithium perchlorate (99%, potassium ferricyanide (99%) and

More information

Electronic supplementary information

Electronic supplementary information Electronic supplementary information Surface plasmon resonance enhanced upconversion luminescence in aqueous media for TNT selective detection Nina Tu and Leyu Wang* State Key Laboratory of Chemical Resource

More information

TOSYLHYDRAZONE CLEAVAGE OF AN α,β-epoxy KETONE; OXIDATIVE KMnO 4 CLEAVAGE OF AN ALKYNE EXPERIMENT A

TOSYLHYDRAZONE CLEAVAGE OF AN α,β-epoxy KETONE; OXIDATIVE KMnO 4 CLEAVAGE OF AN ALKYNE EXPERIMENT A 1 EXPERIMENT A EPOXIDATION OF AN α,β-unsaturated KETONE; TOSYLYDRAZONE CLEAVAGE OF AN α,β-epoxy KETONE; OXIDATIVE KMnO 4 CLEAVAGE OF AN ALKYNE The goal of this experiment is the correct assignment of the

More information

Supporting Information

Supporting Information Supporting Information From the Aggregation-Induced Emission of Au(I)-Thiolate Complexes to Ultra- Bright Au(0)@Au(I)-Thiolate Core-Shell Nanoclusters Zhentao Luo, a Xun Yuan, a Yue Yu, a Qingbo Zhang,

More information

Supplementary Figure 1. SEM and TEM images of the metal nanoparticles (MNPs) and metal oxide templates.

Supplementary Figure 1. SEM and TEM images of the metal nanoparticles (MNPs) and metal oxide templates. Supplementary Figure 1. SEM and TEM images of the metal nanoparticles (MNPs) and metal oxide templates. (a) 13 nm Au, (b) 60 nm Au, (c) 3.3 nm Pt, (d) ZnO spheres, (e) Al 2O 3 spheres and (f) Cu 2O cubes.

More information

4023 Synthesis of cyclopentanone-2-carboxylic acid ethyl ester from adipic acid diethyl ester

4023 Synthesis of cyclopentanone-2-carboxylic acid ethyl ester from adipic acid diethyl ester NP 4023 Synthesis of cyclopentanone-2-carboxylic acid ethyl ester from adipic acid diethyl ester NaEt C 10 H 18 4 Na C 2 H 6 C 8 H 12 3 (202.2) (23.0) (46.1) (156.2) Classification Reaction types and substance

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Analyst. This journal is The Royal Society of Chemistry 2015 Supporting Information Experimental Methods Instrumentation Zeta potentials and sizes of colloidal

More information

Charge transfer state emission dynamics in blueemitting. functionalized silicon nanocrystals

Charge transfer state emission dynamics in blueemitting. functionalized silicon nanocrystals Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 Supporting Information Charge transfer state emission dynamics in blueemitting

More information

Experiment 24. Chemical recycling of poly(ethylene) terephthalate (PET)

Experiment 24. Chemical recycling of poly(ethylene) terephthalate (PET) Methods of pollution control and waste management Experiment 24 Chemical recycling of poly(ethylene) terephthalate (PET) Manual Department of Chemical Technology The aim of this experiment is to gain knowledge

More information

1+2 on GHD (5 µl) Volume 1+2 (µl) 1 on GHD 1+2 on GHD

1+2 on GHD (5 µl) Volume 1+2 (µl) 1 on GHD 1+2 on GHD 1+2 on GHD (20 µl) 1+2 on GHD (15 µl) 1+2 on GHD (10 µl) 1+2 on GHD (5 µl) Volume 1+2 (µl) 1 on GHD 1+2 on GHD Supplementary Figure 1 UV-Vis measurements a. UV-Vis spectroscopy of drop-casted volume of

More information

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003 Supporting Information for Angew. Chem. Int. Ed. Z53001 Wiley-VCH 2003 69451 Weinheim, Germany 1 Ordered Self-Assembly and Electronic Behavior of C 60 -Anthrylphenylacetylene Hybrid ** Seok Ho Kang 1,

More information

Supporting Information. Autocatalytic Cycles in a Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction

Supporting Information. Autocatalytic Cycles in a Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction Supporting Information Autocatalytic Cycles in a Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction Sergey N. Semenov, a Lee Belding, a Brian J. Cafferty, a Maral P.S. Mousavi, a Anastasiia M. Finogenova,

More information

Chlorobenzene from Aniline via the Sandmeyer Reaction. August 21, By ParadoxChem126. Introduction

Chlorobenzene from Aniline via the Sandmeyer Reaction. August 21, By ParadoxChem126. Introduction Chlorobenzene from Aniline via the Sandmeyer Reaction August 21, 2014 By ParadoxChem126 Introduction Chlorobenzene is a useful chemical in organic syntheses. It dissolves a wide range of organic compounds,

More information

Supporting Information

Supporting Information Gold Nanoparticle-Modified ITO Electrode for Electrogenerated Chemiluminescence: Well-Preserved Transparency and Highly-Enhanced Activity Zuofeng Chen and Yanbing Zu * Department of Chemistry, The University

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Materials Chemistry Frontiers. This journal is the Partner Organisations 2018 Supplementary Information Facile one-pot synthesis of MOF supported gold pseudo-single-atom

More information

Superatom State-Resolved Dynamics of the Au 25 (SC 8 H 9 ) - 18 Cluster from Two-Dimensional Electronic Spectroscopy

Superatom State-Resolved Dynamics of the Au 25 (SC 8 H 9 ) - 18 Cluster from Two-Dimensional Electronic Spectroscopy Supporting Information for: Superatom State-Resolved Dynamics of the Au 25 (SC 8 H 9 ) - 18 Cluster from Two-Dimensional Electronic Spectroscopy Tatjana Stoll, 1 Enrico Sgrò, 1 Jeremy W. Jarrett, 2 Julien

More information

Matthew B. E. Griffiths, Peter J. Pallister, David J. Mandia, and Seán T. Barry *

Matthew B. E. Griffiths, Peter J. Pallister, David J. Mandia, and Seán T. Barry * Atomic Layer Deposition of Gold Metal Matthew B. E. Griffiths, Peter J. Pallister, David J. Mandia, and Seán T. Barry * Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario,

More information

Supporting Information Reagents. Physical methods. Synthesis of ligands and nickel complexes.

Supporting Information Reagents. Physical methods. Synthesis of ligands and nickel complexes. Supporting Information for Catalytic Water Oxidation by A Bio-inspired Nickel Complex with Redox Active Ligand Dong Wang* and Charlie O. Bruner Department of Chemistry and Biochemistry and Center for Biomolecular

More information

Red Color CPL Emission of Chiral 1,2-DACH-based Polymers via. Chiral Transfer of the Conjugated Chain Backbone Structure

Red Color CPL Emission of Chiral 1,2-DACH-based Polymers via. Chiral Transfer of the Conjugated Chain Backbone Structure Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2015 Red Color CPL Emission of Chiral 1,2-DACH-based Polymers via Chiral Transfer of the Conjugated

More information

Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, (P. R. China).

Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, (P. R. China). Electronic Supplementary Material (ESI) for Nanoscale Synergistically enhanced activity of graphene quantum dot/multi-walled carbon nanotube composites as metal-free catalysts for oxygen reduction reaction

More information

Sub-10-nm Au-Pt-Pd Alloy Trimetallic Nanoparticles with. High Oxidation-Resistant Property as Efficient and Durable

Sub-10-nm Au-Pt-Pd Alloy Trimetallic Nanoparticles with. High Oxidation-Resistant Property as Efficient and Durable Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information Sub-10-nm Au-Pt-Pd Alloy Trimetallic Nanoparticles with High

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting Information Au nanoparticles supported on magnetically separable Fe 2 O 3 - graphene

More information

Supporting Information:

Supporting Information: Supporting Information: Sequential Actuation of Shape-Memory Polymers through Wavelength-Selective Photothermal Heating of Gold Nanospheres and Nanorods Sumeet R. Mishra and Joseph B. Tracy*, Department

More information

Thiol-reactive amphiphilic block copolymer for coating gold nanoparticles with neutral and functionable surfaces

Thiol-reactive amphiphilic block copolymer for coating gold nanoparticles with neutral and functionable surfaces Supporting information for: Thiol-reactive amphiphilic block copolymer for coating gold nanoparticles with neutral and functionable surfaces Hongwei Chen 1,*, Hao Zou 1,2, Hayley J. Paholak 1, Masayuki

More information

Supplementary Information. Seeding Approach to Noble Metal Decorated Conducting Polymer Nanofiber Network

Supplementary Information. Seeding Approach to Noble Metal Decorated Conducting Polymer Nanofiber Network Supplementary Information Seeding Approach to Noble Metal Decorated Conducting Polymer Nanofiber Network Zhen Liu, Selcuk Poyraz, Yang Liu, Xinyu Zhang* Department of Polymer and Fiber Engineering, Auburn

More information

4. CV curve of GQD on platinum electrode S9

4. CV curve of GQD on platinum electrode S9 Supporting Information Luminscent Graphene Quantum Dots (GQDs) for Organic Photovoltaic Devices Vinay Gupta*, Neeraj Chaudhary, Ritu Srivastava, Gauri Dutt Sharma, Ramil Bhardwaj, Suresh Chand National

More information

Novel Supercapacitor Materials Including OLED emitters

Novel Supercapacitor Materials Including OLED emitters Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015 Supporting Information Novel

More information

with EDCI (5.73 g, 30.0 mmol) for 10 min. Bromoethylamine hydrobromide (6.15

with EDCI (5.73 g, 30.0 mmol) for 10 min. Bromoethylamine hydrobromide (6.15 2. A solution of Rhodamine B (14.2 g, 30.0 mmol) in CH 2 Cl 2 (40 ml) was treated with EDCI (5.73 g, 30.0 mmol) for 10 min. Bromoethylamine hydrobromide (6.15 g, 30.0 mmol) and TEA (4.21 ml, 3.03 g, 30.0

More information

Supplementary Material:

Supplementary Material: Supplementary Material: Water soluble amphiphilic gold nanoparticles with structured ligand shells Oktay Uzun, Ying Hu, Ayush Verma, Suelin Chen, Andrea Centrone, and Francesco Stellacci* Department of

More information

Electronic Supporting Information for

Electronic Supporting Information for Electronic Supporting Information for An efficient long fluorescence lifetime polymer-based sensor based on europium complex as chromophore for the specific detection of F -, CH 3 COO - -, and H 2 PO 4

More information

Aggregation and Interaction of Cationic Nanoparticles on Bacterial Surfaces.

Aggregation and Interaction of Cationic Nanoparticles on Bacterial Surfaces. Aggregation and Interaction of Cationic Nanoparticles on Bacterial Surfaces. Steven C. Hayden, a Gengxiang Zhao, e Krishnendu Saha, c Ronnie L. Phillips, a Xiaoning Li, c Oscar R. Miranda, c Vincent M.

More information

Highly Efficient Orange Electrophosphorescence from a Trifunctional Organoboron-Pt(II) Complex

Highly Efficient Orange Electrophosphorescence from a Trifunctional Organoboron-Pt(II) Complex Supporting Information Highly Efficient Orange Electrophosphorescence from a Trifunctional Organoboron-Pt(II) Complex Zachary M. Hudson, Michael G. Helander, Zheng-Hong Lu and Suning Wang S1. General Experimental

More information

Spring 2009 EE 710: Nanoscience and Engineering

Spring 2009 EE 710: Nanoscience and Engineering Spring 2009 EE 710: Nanoscience and Engineering Part 13: Gold Colloids and NanoBioTechnology Images and Charts taken from: Hornyak, et.al, Introduction to Nanoscience, CRC press, 2008 Chapter 12 And Various

More information

Supplementary Information

Supplementary Information Supplementary Information Metal tips on pyramid-shaped PbSe/CdSe/CdS heterostructure nanocrystal photocatalysts: study of ripening and core/shell formation Whi Dong Kim, a Sooho Lee, a Chaewon Pak, a Ju

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting information Synthesis, Characterization and Photoelectrochemical properties of HAP Gang

More information

Supporting Information. Single Particle Detection by Area Amplification Single Wall Carbon Nanotube Attachment to a Nanoelectrode

Supporting Information. Single Particle Detection by Area Amplification Single Wall Carbon Nanotube Attachment to a Nanoelectrode Supporting Information Single Particle Detection by Area Amplification Single Wall Carbon Nanotube Attachment to a Nanoelectrode Jun Hui Park, Scott N. Thorgaard, Bo Zhang, Allen J. Bard * Center for Electrochemistry,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2019 Supporting Information for Halide-assisted activation of atomic hydrogen for photoreduction on

More information

Bottom-up Optimization of SERS Hot Spots. Supplementary Information

Bottom-up Optimization of SERS Hot Spots. Supplementary Information Bottom-up Optimization of SERS Hot Spots Laura Fabris, * Department of Materials Science and Engineering, Institute for Advanced Materials Devices ad Nanotechnology, Rutgers, The State University of New

More information

Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation

Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation Zhigang Xiong, Li Li Zhang, Jizhen Ma, X. S. Zhao* Department of Chemical and Biomolecular Engineering,

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017 Electronic Supplementary Information

More information

An isolated seven-coordinate Ru(IV) dimer complex with [HOHOH] bridging. ligand as an intermediate for catalytic water oxidation

An isolated seven-coordinate Ru(IV) dimer complex with [HOHOH] bridging. ligand as an intermediate for catalytic water oxidation Supporting Information An isolated seven-coordinate Ru(IV) dimer complex with [HOHOH] bridging ligand as an intermediate for catalytic water oxidation Lele Duan, Andreas Fisher, Yunhua Xu, and Licheng

More information

As you can see from the reactions below for the reduction of camphor, there are two possible products, borneol and isoborneol.

As you can see from the reactions below for the reduction of camphor, there are two possible products, borneol and isoborneol. E19-1 Experiment 19 Fig. 19-1 REDUTIN WIT NaB 4 : STERI AND NJUGATIN EFFETS (3 Experiments) erbert. Brown (1912-2004) Received Nobel prize for synthetic organic chemistry work with boron compounds. http://nobelprize.org/chemistry/laureates/1979/brown-autobio.html

More information

Supporting Information. Temperature dependence on charge transport behavior of threedimensional

Supporting Information. Temperature dependence on charge transport behavior of threedimensional Supporting Information Temperature dependence on charge transport behavior of threedimensional superlattice crystals A. Sreekumaran Nair and K. Kimura* University of Hyogo, Graduate School of Material

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2016 Supporting Information Single-crystalline Pd square nanoplates enclosed by {100}

More information

Microwave-assisted polyol synthesis of copper nanocrystals without additional protective agents

Microwave-assisted polyol synthesis of copper nanocrystals without additional protective agents Electronic Supporting Information Microwave-assisted polyol synthesis of copper nanocrystals without additional protective agents Hideya Kawasaki, a Yuka Kosaka, a Ryuichi Arakawa a Yuki Myoujin, a Takashi

More information

Templated electrochemical fabrication of hollow. molybdenum sulfide micro and nanostructures. with catalytic properties for hydrogen production

Templated electrochemical fabrication of hollow. molybdenum sulfide micro and nanostructures. with catalytic properties for hydrogen production Supporting Information Templated electrochemical fabrication of hollow molybdenum sulfide micro and nanostructures with catalytic properties for hydrogen production Adriano Ambrosi, Martin Pumera* Division

More information

Synthesis of Benzoic Acid

Synthesis of Benzoic Acid E x p e r i m e n t 5 Synthesis of Benzoic Acid Objectives To use the Grignard reagent in a water free environment. To react the Grignard reagent with dry ice, CO 2(s). To assess the purity of the product

More information

Convenient Synthesis of Nucleoside 5 -Triphosphates for RNA Transcription. Supplemental Materials

Convenient Synthesis of Nucleoside 5 -Triphosphates for RNA Transcription. Supplemental Materials Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2010 Convenient Synthesis of ucleoside 5 -Triphosphates for RA Transcription Julianne Caton-Williams,

More information

Studying the Chemical, Optical and Catalytic Properties of Noble Metal (Pt, Pd, Ag, Au)/Cu 2 O Core-Shell Nanostructures Grown via General Approach

Studying the Chemical, Optical and Catalytic Properties of Noble Metal (Pt, Pd, Ag, Au)/Cu 2 O Core-Shell Nanostructures Grown via General Approach Studying the Chemical, Optical and Catalytic Properties of Noble Metal (Pt, Pd, Ag, Au)/Cu 2 O Core-Shell Nanostructures Grown via General Approach Noga Meir, Ilan Jen-La Plante, Kobi Flomin, Elina Chockler,

More information

Determination of Electron Transfer Number for Oxygen Reduction Reaction: from Theory to Experiment

Determination of Electron Transfer Number for Oxygen Reduction Reaction: from Theory to Experiment Supporting Information Determination of Electron Transfer Number for Oxygen Reduction Reaction: from Theory to Experiment Ruifeng Zhou 1, 2, Yao Zheng 1, Mietek Jaroniec 3 and Shi-Zhang Qiao 1, * 1 School

More information

Ultrasensitive Immunoassay Based on Pseudobienzyme. Amplifying System of Choline Oxidase and Luminol-Reduced

Ultrasensitive Immunoassay Based on Pseudobienzyme. Amplifying System of Choline Oxidase and Luminol-Reduced Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information Ultrasensitive Immunoassay Based on Pseudobienzyme Amplifying System of

More information

Block: Synthesis, Aggregation-Induced Emission, Two-Photon. Absorption, Light Refraction, and Explosive Detection

Block: Synthesis, Aggregation-Induced Emission, Two-Photon. Absorption, Light Refraction, and Explosive Detection Electronic Supplementary Information (ESI) Luminogenic Materials Constructed from Tetraphenylethene Building Block: Synthesis, Aggregation-Induced Emission, Two-Photon Absorption, Light Refraction, and

More information

Experiment 8 Synthesis of Aspirin

Experiment 8 Synthesis of Aspirin Experiment 8 Synthesis of Aspirin Aspirin is an effective analgesic (pain reliever), antipyretic (fever reducer) and anti-inflammatory agent and is one of the most widely used non-prescription drugs. The

More information

Application Determination of isocyanate (NCO-) content

Application Determination of isocyanate (NCO-) content Determination of isocyanate (NCO-) content date: 20.06.2013 page 1 from 10 Use This method is applicable for material containing reactive isocyanate groups.the isocyanate is reacted with di-n-butyl amine

More information

Supporting information for Bulk nanostructure of the prototypical good and poor

Supporting information for Bulk nanostructure of the prototypical good and poor Electronic Supplementary Material (ESI) for Physical hemistry hemical Physics. This journal is the wner Societies 06 Supporting information for Bulk nanostructure of the prototypical good and poor solvate

More information

Supporting Information

Supporting Information Supporting Information MgFeCe ternary layered double hydroxide as highly efficient and recyclable heterogeneous base catalyst for synthesis of dimethyl carbonate by transesterification Nayana T. Nivangune

More information

Introduction 1. DSC scan 5-bromo-2-aminopyridine..3. DSC scan 5-bromo-2-nitropyridine...4

Introduction 1. DSC scan 5-bromo-2-aminopyridine..3. DSC scan 5-bromo-2-nitropyridine...4 SUPPORTING INFORMATION Introduction 1 DSC scan 5-bromo-2-aminopyridine..3 DSC scan 5-bromo-2-nitropyridine.....4 Oxidant mixture. Adiabatic test stability, glass cell and Hastelloy C22 test cell 5 Hastelloy

More information

Fundamental molecular electrochemistry - potential sweep voltammetry

Fundamental molecular electrochemistry - potential sweep voltammetry Fundamental molecular electrochemistry - potential sweep voltammetry Potential (aka voltammetric) sweep methods are the most common electrochemical methods in use by chemists today They provide an efficient

More information

Sacrifical Template-Free Strategy

Sacrifical Template-Free Strategy Supporting Information Core/Shell to Yolk/Shell Nanostructures by a Novel Sacrifical Template-Free Strategy Jie Han, Rong Chen and Rong Guo* School of Chemistry and Chemical Engineering, Yangzhou University,

More information

Experiment : Reduction of Ethyl Acetoacetate

Experiment : Reduction of Ethyl Acetoacetate Experiment 7-2007: eduction of Ethyl Acetoacetate EXPEIMENT 7: eduction of Carbonyl Compounds: Achiral and Chiral eduction elevant sections in the text: Fox & Whitesell, 3 rd Ed. Chapter 12, pg.572-584.

More information

Supporting Information

Supporting Information Supporting Information Fabrication of Cubic Nanocages and Nanoframes by Dealloying Au/Ag Alloy Nanoboxes with an Aqueous Etchant Based on Fe(NO 3 ) 3 or NH 4 OH Xianmao Lu, 1,2 Leslie Au, 1 Joseph McLellan,

More information

Chia-Shing Wu, Huai-An Lu, Chiao-Pei Chen, Tzung-Fang Guo and Yun Chen*

Chia-Shing Wu, Huai-An Lu, Chiao-Pei Chen, Tzung-Fang Guo and Yun Chen* Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry Supporting Information Water/alcohol soluble electron injection material containing azacrown ether groups: Synthesis, characterization

More information

Supporting Information

Supporting Information Supporting Information Kinetic and Mechanistic Characterization of Low-Overpotential, H2O2-Selective Reduction of O2 Catalyzed by N2O2-Ligated Cobalt Complexes Yu-Heng Wang, Zachary K. Goldsmith, Patrick

More information

An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti 3 C 2 X 2 (X=OH, F) nanosheets for Oxygen Reduction Reaction

An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti 3 C 2 X 2 (X=OH, F) nanosheets for Oxygen Reduction Reaction An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti 3 X 2 (X=OH, F) nanosheets for Oxygen Reduction Reaction Xiaohong Xie, Siguo Chen*, Wei Ding, Yao Nie, and Zidong Wei* Experimental

More information

Supporting Information for. Shape Transformation of Gold Nanoplates and their Surface Plasmon. Characterization: Triangular to Hexagonal Nanoplates

Supporting Information for. Shape Transformation of Gold Nanoplates and their Surface Plasmon. Characterization: Triangular to Hexagonal Nanoplates 1 Supporting Information for Shape Transformation of Gold Nanoplates and their Surface Plasmon Characterization: Triangular to Hexagonal Nanoplates Soonchang Hong, Kevin L. Shuford *,, and Sungho Park

More information

Homogeneous Electrochemical Assay for Protein Kinase Activity

Homogeneous Electrochemical Assay for Protein Kinase Activity Homogeneous Electrochemical Assay for Protein Kinase Activity Ik-Soo Shin,,, Rohit Chand, Sang Wook Lee, Hyun-Woo Rhee, Yong-Sang Kim, * and Jong-In Hong* Corresponding Author *Prof. Dr. J.-I. Hong, Department

More information

A Poly(ethylene glycol)-supported Quaternary Ammonium Salt: An Efficient, Recoverable, and Recyclable Phase-Transfer Catalyst

A Poly(ethylene glycol)-supported Quaternary Ammonium Salt: An Efficient, Recoverable, and Recyclable Phase-Transfer Catalyst Supplementary Information for A Poly(ethylene glycol)-supported Quaternary Ammonium Salt: An Efficient, Recoverable, and Recyclable Phase-Transfer Catalyst Rita Annunziata, Maurizio Benaglia, Mauro Cinquini,

More information

CdTe quantum dot sensitized hexaniobate nanoscrolls and Photoelectrochemical properties

CdTe quantum dot sensitized hexaniobate nanoscrolls and Photoelectrochemical properties CdTe quantum dot sensitized hexaniobate nanoscrolls and Photoelectrochemical properties Feriha Eylul Sarac a, Ceren Yilmaz,b, Funda Yagci Acar a,b,c and Ugur Unal* a,b,c a Koc University, Chemistry Department,

More information

Electronic Supplementary Information. Facile synthesis of polypyrrole coated copper nanowire: new concept to engineered core-shell structures

Electronic Supplementary Information. Facile synthesis of polypyrrole coated copper nanowire: new concept to engineered core-shell structures Electronic Supplementary Information Facile synthesis of polypyrrole coated copper nanowire: new concept to engineered core-shell structures Yang Liu, a Zhen Liu, a Ning Lu, b Elisabeth Preiss, a Selcuk

More information

Supporting Information for

Supporting Information for Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017 Supporting Information for

More information

Electropolymerization of cobalto(5,10,15-tris(4-aminophenyl)- 20-phenylporphyrin) for electrochemical detection of antioxidant-antipyrine

Electropolymerization of cobalto(5,10,15-tris(4-aminophenyl)- 20-phenylporphyrin) for electrochemical detection of antioxidant-antipyrine Supplementary material Electropolymerization of cobalto(5,10,15-tris(4-aminophenyl)- 20-phenylporphyrin) for electrochemical detection of antioxidant-antipyrine Sambandam Anandan* a, Arumugam Manivel a,

More information

Molecular Imaging of Labile Iron(II) Pools in Living Cells with a Turn-on Fluorescent Probe

Molecular Imaging of Labile Iron(II) Pools in Living Cells with a Turn-on Fluorescent Probe Supporting Information for Molecular Imaging of Labile Iron(II) Pools in Living Cells with a Turn-on Fluorescent Probe Ho Yu Au-Yeung, Jefferson Chan, Teera Chantarojsiri and Christopher J. Chang* Departments

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 Supporting Information Electrochemical reduction of CO 2 to ethylene glycol on

More information

Ligand Symmetry-Equivalence on Thiolate Protected Gold Nanoclusters Determined by NMR Spectroscopy

Ligand Symmetry-Equivalence on Thiolate Protected Gold Nanoclusters Determined by NMR Spectroscopy Supporting Information Ligand Symmetry-Equivalence on Thiolate Protected Gold Nanoclusters Determined by NMR Spectroscopy O. Andrea Wong, Christine L. Heinecke, Ashli R. Simone, Robert L. Whetten, Christopher

More information

Shape-selective Synthesis and Facet-dependent Enhanced Electrocatalytic Activity and Durability of Monodisperse Sub-10 nm Pt-Pd Tetrahedrons and Cubes

Shape-selective Synthesis and Facet-dependent Enhanced Electrocatalytic Activity and Durability of Monodisperse Sub-10 nm Pt-Pd Tetrahedrons and Cubes Supporting Information Shape-selective Synthesis and Facet-dependent Enhanced Electrocatalytic Activity and Durability of Monodisperse Sub-10 nm Pt-Pd Tetrahedrons and Cubes An-Xiang Yin, Xiao-Quan Min,

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Faraday Discussions. This journal is The Royal Society of Chemistry 2015 Supporting information Phase diagram studies When selecting the surfactant its stability

More information

Solid-Supported DNA for Asymmetric Synthesis: a Stepping Stone toward Practical Applications

Solid-Supported DNA for Asymmetric Synthesis: a Stepping Stone toward Practical Applications Solid-Supported DA for Asymmetric Synthesis: a Stepping Stone toward Practical Applications Soyoung Park, * a Keiichi Ikehata, a and iroshi Sugiyama*,a,b,c a Department of Chemistry, Graduate School of

More information

Supporting Information

Supporting Information Supporting Information A fishnet electrochemical Hg 2+ sensing strategy based on gold nanopartical-bioconjugate and thymine-hg 2+ -thymine coordination chemistry Xuemei Tang 1, Huixiang Liu 1, Binghua

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION Optimizing The Generation Of Narrow Polydispersity ArmFirst Star Polymers Made Using RAFT Polymerization Julien Ferrera, a Jay Syrett, b Michael Whittaker, a David Haddleton, b Thomas

More information