NOTICE: this is the author s version of a work that was accepted for publication in Electrochemistry Communications. Changes resulting from the

Size: px
Start display at page:

Download "NOTICE: this is the author s version of a work that was accepted for publication in Electrochemistry Communications. Changes resulting from the"

Transcription

1 NOTICE: this is the author s version of a work that was accepted for publication in Electrochemistry Communications. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Electrochemistry Communications, 13, 12, DOI: j.elecom

2 Comparative Study of Screen Printed Electrodes for Ammonia Gas Sensing in Ionic Liquids Krishnan Murugappan, Junqiao Lee, Debbie S. Silvester* Nanochemistry Research Institute, Department of Chemistry, Curtin University, GPO Box U1987, Perth, 6845, Australia. Fax:+61(8) ; Tel:+61(8) Abstract Commercially available screen printed electrodes (SPEs) have been used for electrochemical ammonia (NH 3 ) gas sensing in the room temperature ionic liquid 1-ethyl-3-methylimidazolium bit(trifluoromethylsulfonyl)imide ([C 2 mim][ntf 2 ]). The SPEs consist of a 4mm diameter working electrode surface (carbon, platinum or gold) with a silver reference and C/Pt/Au counter electrode. No obvious voltammetric response was observed for NH 3 oxidation on the carbon SPE, however, clear oxidation peaks were observed on Pt and Au. Linear calibration graphs were obtained for oxidation peak current vs. concentration in the range ppm NH 3 on both Pt and Au SPEs, giving limits of detection of 50ppm and 90ppm, respectively. The voltammetry on Au was complicated by additional peaks (most likely due to water impurities in the RTIL), which leads us to suggest that Pt is the preferred electrode surface material. The conditions of the experiment were chosen to be as close to real conditions as possible (no pre-vacuuming of the RTIL and no polishing/electrochemical cleaning of the SPE surface before experiments) suggesting that Pt SPEs in conjunction with non-volatile RTILs may provide cheaper alternative sensing materials compared to those currently used in commercial amperometric gas sensing devices. Keywords Room temperature ionic liquids, screen printed electrode, gas sensing, ammonia oxidation, electrochemistry, voltammetry 1

3 1. Introduction Screen printed electrodes (SPEs) are increasingly being explored as favourable sensing surfaces due to their low manufacturing costs and commercial availability [1]. To date, many experiments with SPEs have been reported in aqueous solvents [1]; but some authors have also employed non-aqueous solvents such as room temperature ionic liquids (RTILs) as electrolytes [2-4]. RTILs are favourable electrolyte media in electrochemistry, due to their intrinsic conductivity, wide electrochemical windows and low-volatility [5-7]. They also have physical properties such as high thermal stability, high viscosity and the ability to dissolve a wide range of compounds. Due to their low-volatility, RTILs have been suggested as a replacement for conventional organic solvents in membrane-free amperometric gas sensing devices [8] with the advantage that the electrolyte will not dry out and the sensor lifetime can be extremely long. However, before RTILs can be employed in commercial gas sensing devices, the electrochemical reactions and mechanisms of gases need to be fully understood. Rogers et al. [9] have reviewed much of the recent work in this area, focussing on the detection of oxygen, carbon dioxide, hydrogen, ammonia, hydrogen sulfide, sulfur dioxide and nitrogen dioxide, mainly on metallic microdisk electrode surfaces (e.g. Pt or Au) or Au microdisk electrode arrays. The behaviour of many of these gases in RTILs on screen-printed surfaces is yet to be explored. In this work, we report the electrochemical oxidation of a target gas, ammonia, in the RTIL 1-ethyl-3- methylimidazolium bis(trifluoromethylsulfonyl)imide ([C 2 mim][ntf 2 ]) on three screen printed electrodes (carbon, platinum and gold). Although ammonia gas sensing has been reported using inkjetprinted polyaniline electrodes in aqueous solutions [10], this is believed to be the first report using commercially available SPEs and/or non-aqueous/rtil solvents. The analytical utility is studied on Pt and Au surfaces, and these results will be used to suggest if SPEs in conjunction with RTIL solvents are favourable for ammonia amperometric gas sensing. 2

4 2. Experimental 2.1 Chemicals and Gases 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C 2 mim][ntf 2 ]) was synthesized by standard literature procedures [11] and was kindly donated by Professor Christopher Hardacre at Queens University Ionic Liquids Laboratory (QUILL), Belfast, UK. Ammonia gas (4.95%, nitrogen fill) was purchased from CAC gases (Auburn, NSW, Australia). N 2 gas (for further dilution of NH 3 ) was obtained from a gas line plumbed into the building from 99.99% purity N 2 cylinder. Acetonitrile (99.8% purity, for washing) was purchased from Sigma-Aldrich. 2.2 Electrochemical Experiments All electrochemical experiments were preformed using a µ-autolab type-iii potentiostat (Eco Chemie, Netherlands) interfaced to a PC with NOVA software. A three-electrode cell was employed, with the working, counter and reference electrodes of the screen-printed electrodes (SPE) connected directly to the potentiostat via soldered wires. The SPEs from DropSens (Oviedo, Spain) consisted of a C, Pt or Au working surface (4mm diameter), Ag quasi-reference electrode and C/Pt/Au counter electrode (see The SPEs were used as-is with no polishing, activation or electrochemical cleaning of the working electrode surface before experiments, as this did not show any improved response (peak shape/current) for the ammonia oxidation peak. This also better represents the conditions required for real sensors where activation/cleaning steps may not be feasible. The SPE was housed in a modified version of a glass cell designed for investigating microsamples of ionic liquids under a controlled atmosphere [12]. ~8µL of the RTIL was drop-cast onto the SPE, the minimum volume required to fully cover the three electrode surfaces, before being placed in the air-tight cell. The cell was then purged with N 2 gas to remove impurities naturally present in the RTIL (e.g. oxygen, water). When the baseline was stable (after ~90 minutes), ammonia gas was introduced into one arm of 3

5 the cell. The gas was allowed to diffuse into the RTIL until equilibrium was obtained (typically after 10 minutes). An outlet gas line (PTFE tube) led from the other arm of the cell into a fume cupboard. All experiments were carried out at a temperature of 295±2 K Gas Mixing System NH 3 (4.95%, nitrogen fill) was diluted with N 2 gas using a gas-mixing system, which consisted of two PTFE tubes from two flow-meters (one from the ammonia cylinder and one from the N 2 line) connecting via a Swagelok T-joint. The mixed gas was then passed through an additional gas mixing segment that constricts air-flow comprising of two mirroring tapered glass-needles, inserted into a short piece of PTFE tubing for support, to create gas turbulence and ensure adequate mixing. The relative flow rates of the two flow meters were then used to calculate the % concentrations of NH 3 being introduced into the cell. 3. Results and Discussion The RTIL chosen in this work ([C 2 mim][ntf 2 ]) has a wide electrochemical window (>4.5V), high intrinsic conductivity, and is also one of the least viscous RTILs available. This RTIL was employed in all experiments described throughout this work. 3.1 Cyclic Voltammetry for Ammonia oxidation in an RTIL on three SPE surfaces Figure 1 shows cyclic voltammograms at 100mVs -1 for the oxidation of 0.136% (1360ppm) ammonia on carbon, platinum and gold SPE surfaces using the RTIL [C 2 mim][ntf 2 ] as the electrolyte (response in the absence of ammonia=dotted line). On carbon (Figure 1a), there is a much larger capacitive current most likely due to the large and rough surface of the carbon deposit. Additionally, there is no obvious oxidation peak for ammonia visible at this concentration and therefore is not a favourable 4

6 sensing surface. However, clear and sharp oxidation peaks for ammonia were observed on both Pt and Au surfaces (Figure 1b and 1c) and the blanks were relatively flat with low background charging currents. The voltammetry on Pt (Figure 1b) shows the ammonia oxidation peak (I), followed by two reduction peaks, (II) and (III), and a corresponding second oxidation peak (IV) on the reverse sweep. These peaks are similar to those observed on Pt microdisk electrodes [12, 13] and are assigned to the following reactions: Peak (I) NH 3 (g) + 3A 1 2 N 2(g) + 3HA + 3e (1) where A - = RTIL anion ([NTf 2 ] - ). HA can then transfer its proton to an ammonia molecule in the following equilibrium reaction: HA + NH 3 (g) NH A (2) Two reduction processes occur: the reduction of HA (eqn 3) and the reduction of NH + 4 (eqn 4) followed by oxidation of the adsorbed protons on the reverse sweep (Peak (IV)). Peak (II) HA + e A + H(ads) (3) Peak (III) NH e NH 3 (g) + H(ads) (4) To confirm the mechanism on the SPE, the reduction of NH 4 PF 6 in [C 2 mim][ntf 2 ] was also studied. In the absence of ammonia, two reduction peaks and a corresponding oxidation peak were observed for NH + 4 (voltammetry not shown here). When ammonia was introduced into the cell and oxidised by CV, all three peaks from NH + 4 reduction increased in current (albeit with a shift in reference potential of ~+0.4 V after the introduction of NH 3 likely due to ammonia adsorption on the silver quasi-reference electrode) suggesting that they correspond to the same reactions. On the Au SPE (Figure 1c), the voltammogram is complicated by additional peaks, which are also present in the blank scan. These are most likely due to trace water impurities in the RTIL that cannot be easily removed by purging with N 2 gas (these peaks are not present when the RTIL is purged of water impurities using a vacuum pump on a microelectrode [7]). It is noted here that voltammetric 5

7 peaks in the blank RTILs on Au SPE surfaces have been reported previously in an ethylene gas sensing paper [4]. Therefore, it appears that Pt surfaces are favoured for voltammetric sensing in RTILs under atmospheric conditions Peak Current vs Concentration for Ammonia Oxidation on Pt and Au SPEs Of the 3 surfaces investigated, Pt and Au were chosen for analytical studies of ammonia due to the presence of a clear oxidation peak at 0.136% NH 3. NH 3 was systematically diluted to concentrations of 0.024, 0.049, 0.073, and 0.136% ( ppm) using a gas-mixing system. Figure 2 shows linear sweep voltammograms for ammonia oxidation on both surfaces, along with corresponding calibration graphs of current (baseline corrected) vs. concentration. A small shift in the oxidation peak potential is observed on both surfaces, probably due to the unstable potential of the Ag quasi-reference electrode. The current response is linearly proportional to concentration in this range on both surfaces (R 2 =0.999 on Pt and on Au). The currents are reproducible and the error bars represent the variations of current observed when the same experiments were performed on subsequent days and also on fresh SPE surfaces (we note here that one SPE surface can be used for several days with a reproducible current response (s.d. ± 6 %)). The error bars for concentration were estimated based on the uncertainties in the flow-meter readings. Using this sensor design, limits of detection of 50ppm (Pt) and 90ppm (Au) were obtained, comparable to 48ppm reported in [C 2 mim][ntf 2 ] on a Pt microdisk electrode [12]. It was found that one SPE could be used for many experiments on several days without any appreciable change in the NH 3 oxidation peak current and shape; they are therefore not necessarily disposable sensors. 6

8 3.3. Constant-Potential Amperometry In order to test the ability of the sensor for real-time NH 3 detection, constant potential amperometry experiments were preformed on the Pt SPE. First, the cell was flushed with nitrogen until the blank voltammogram was obtained. The potential was then stepped from 0 to +1.4V and held for an extended period of time. Ammonia gas was introduced into the cell at different concentrations, while performing a nitrogen flushing step between each addition to ensure that the baseline is stable. Figure 3 shows the constant-potential transient obtained on successive additions of ammonia (shown by arrows on the graph). At the beginning of the experiment, a current close to zero is observed in the absence of ammonia. When ammonia is added, the current increases to a plateau. This is repeated for different concentrations as shown in Figure 3. The response time is relatively long under these conditions (several 100s of seconds required to obtain a true plateau current), and may be improved in future experiments e.g. by employing a thinner layer of RTIL so the gas has less distance to diffuse to the electrode surface. At longer times, the current plateau begins to drop rapidly, indicating that the surface has been fouled. The last two additions of ammonia did not show the expected current response, suggesting that the surface is no longer suitable for NH 3 sensing. It is noted that fouling also occurred on the microelectrode system (results not shown) but at longer times (~25,000 seconds), suggesting that this effect may be due to the complicated ammonia oxidation mechanism rather than the screen-printed electrode itself. Although all of the techniques used in this work are viable systems for disposable electrodes, these observations suggests that continuous real-time measurement of NH 3 concentration may not be possible using this approach, but sensing can take place via voltammetric/chronoamperometric transients taken at specific time intervals (e.g. every 5 minutes), where stable responses were observed for several days on the same SPE surface. 7

9 4. Conclusions The voltammetry for ammonia oxidation has been studied in [C 2 mim][ntf 2 ] on C, Pt and Au screenprinted electrodes. No obvious response was observed on carbon surfaces, however, clear and welldefined oxidation peaks were observed on Pt and Au. The calibration curves on both surfaces were linear, suggesting that this system is a viable method for NH 3 sensing, with Pt surfaces favoured over Au due to the lack of interfering voltammetric peaks. The use of low-cost screen-printed Pt electrode surfaces and very small (microlitre) volumes of non-volatile RTILs is a huge advantage and may significantly reduce the costs of voltammetric/amperometric ammonia gas sensing devices. Acknowledgements The authors thank Professor Christopher Hardacre (QUILL) for the kind donation of the ionic liquid, Curtin University for a Curtin Research Fellowship (D.S.S.), and D.W.M. Arrigan (Curtin) for useful discussions. 8

10 References: [1] J.P. Metters, R.O. Kadara, C.E. Banks, Analyst 136 (2011) [2] J.-L. Chang, G.-T. Wei, J.-M. Zen, Electrochem. Commun. 13 (2011) [3] D.V. Chernyshov, N.V. Shvedene, E.R. Antipova, I.V. Pletnev, Anal. Chim. Acta 621 (2008) [4] M.A.G. Zevenbergen, D. Wouters, V.-A.T. Dam, S.H. Brongersma, M. Crego-Calama, Anal. Chem. 83 (2011) [5] L.E. Barrosse-Antle, A.M. Bond, R.G. Compton, A.M. O'Mahony, E.I. Rogers, D.S. Silvester, Chem. Asian J. 5 (2010) [6] M.C. Buzzeo, R.G. Evans, R.G. Compton, ChemPhysChem 5 (2004) [7] D.S. Silvester, R.G. Compton, Z. Phys. Chem. 220 (2006) [8] M.C. Buzzeo, C. Hardacre, R.G. Compton, Anal. Chem. 76 (2004) [9] E.I. Rogers, A.M. O'Mahony, L. Aldous, R.G. Compton, ECS Transactions 33 (2010) [10] K. Crowley, A. Morrin, A. Hernandez, E. O Malley, P. G. Whitten, G. G. Wallace, M. R. Smyth, and A. J. Killard, Talanta 77:710 (2008). [11] P.A.D. Bonhôte, N. Papageorgiou, K. Kalyanasundaram, M. Grätzel, Inorg. Chem. 35 (1996) [12] X. Ji, C.E. Banks, D.S. Silvester, L. Aldous, C. Hardacre, R.G. Compton, Electroanalysis 21 (2007) [13] X. Ji, D.S. Silvester, L. Aldous, C. Hardacre, R.G. Compton, J. Phys. Chem. C 111 (2007)

11 Figure 1. Cyclic voltammograms for the oxidation of 0.136% (1360ppm) ammonia gas on (a) carbon, (b) platinum and (c) gold screen-printed electrodes in the RTIL [C 2 mim][ntf 2 ]. Dotted line= response in the absence of ammonia. Scan rate 100mVs

12 Figure 2. Linear sweep voltammograms for the oxidation of different concentrations of NH 3 in [C 2 mim][ntf 2 ] on (a) Pt and (c) Au SPEs. Dotted line=n 2 saturated (blank) RTIL. Scan rate 100mVs - 1. (b) and (d) show the corresponding calibration graphs of peak current vs. % concentration NH 3. 11

13 Figure 3. Constant-potential amperometry experiment obtained after holding the potential at +1.4V vs. Ag for different ammonia additions on a Pt SPE in [C 2 mim][ntf 2 ]. The arrows correspond to the introduction of ammonia gas at different concentrations. 12

Formic acid electro-synthesis from carbon dioxide in a room temperature ionic liquid

Formic acid electro-synthesis from carbon dioxide in a room temperature ionic liquid Supporting Information: Formic acid electro-synthesis from carbon dioxide in a room temperature ionic liquid Benjamin C. M. Martindale and Richard G. Compton a * Department of Chemistry, Physical and Theoretical

More information

Hydrogen redox reactions in 1-ethyl-2,3-dimethylimidazolium

Hydrogen redox reactions in 1-ethyl-2,3-dimethylimidazolium Accepted Manuscript Hydrogen redox reactions in 1-ethyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide on platinum single crystal electrodes Andrea P. Sandoval, Marco F. Suárez-Herrera, Juan

More information

CHAPTER-5 CYCLIC VOLTAMETRIC STUDIES OF NOVEL INDOLE ANALOGUES PREPARED IN THE PRESENT STUDY

CHAPTER-5 CYCLIC VOLTAMETRIC STUDIES OF NOVEL INDOLE ANALOGUES PREPARED IN THE PRESENT STUDY CHAPTER-5 CYCLIC VOLTAMETRIC STUDIES OF NOVEL INDOLE ANALOGUES PREPARED IN THE PRESENT STUDY Page No. 175-187 5.1 Introduction 5.2 Theoretical 5.3 Experimental 5.4 References 5. 1 Introduction Electrochemical

More information

Goals. The laboratory instructor has already purged the solutions of dissolved. Purging the from these solutions prevents spurious

Goals. The laboratory instructor has already purged the solutions of dissolved. Purging the from these solutions prevents spurious Goals 41 Cyclic Voltammetry XXGoals The goals of this experiment are to: Learn how to set up a screen-printed electrode Learn how to operate the Gamry potentiostat Determine the redox potential of potassium

More information

Heterogeneous electron transfer at Au/SAM junctions in a room-temperature ionic liquid under pressure

Heterogeneous electron transfer at Au/SAM junctions in a room-temperature ionic liquid under pressure Supporting Information Heterogeneous electron transfer at Au/SAM junctions in a room-temperature ionic liquid under pressure Tina D. Dolidze, Dimitri E. Khoshtariya,* Peter Illner and Rudi van Eldik* a)

More information

Single Catalyst Electrocatalytic Reduction of CO 2 in Water to H 2 :CO Syngas Mixtures with Water Oxidation to O 2

Single Catalyst Electrocatalytic Reduction of CO 2 in Water to H 2 :CO Syngas Mixtures with Water Oxidation to O 2 Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2014 Supporting Information Single Catalyst Electrocatalytic Reduction of CO 2

More information

Unit 2 B Voltammetry and Polarography

Unit 2 B Voltammetry and Polarography Unit 2 B Voltammetry and Polarography Voltammetric methods of Analysis What is Voltammetry? A time-dependent potential is applied to an electrochemical cell, and the current flowing through the cell is

More information

Supplementary Figure 1. Characterization of immobilized cobalt protoporphyrin electrode. The cyclic voltammogram of: (a) pyrolytic graphite

Supplementary Figure 1. Characterization of immobilized cobalt protoporphyrin electrode. The cyclic voltammogram of: (a) pyrolytic graphite Supplementary Figure 1. Characterization of immobilized cobalt protoporphyrin electrode. The cyclic voltammogram of: (a) pyrolytic graphite electrode; (b) pyrolytic graphite electrode with 100 µl 0.5 mm

More information

Voltammetric Comparison of the Electrochemical Oxidation of Toluene on Monolithic and Reticulated Glassy Carbon Electrodes in Aqueous Medium

Voltammetric Comparison of the Electrochemical Oxidation of Toluene on Monolithic and Reticulated Glassy Carbon Electrodes in Aqueous Medium Portugaliae Electrochimica Acta 2010, 28(6), 397-404 DOI: 10.4152/pea.201006397 PORTUGALIAE ELECTROCHIMICA ACTA ISSN 1647-1571 Voltammetric Comparison of the Electrochemical Oxidation of Toluene on Monolithic

More information

Solution Purging. Goals. 1. Purge both solutions with an inert gas (preferably N 2

Solution Purging. Goals. 1. Purge both solutions with an inert gas (preferably N 2 Goals 43 Cyclic Voltammetry XXGoals The goals of this experiment are to: Learn how to set up a screen-printed electrode Learn how to operate the Gamry potentiostat Determine the redox potential of potassium

More information

Preparation of Prussian blue-modified screen-printed electrodes via a chemical deposition for mass production of stable hydrogen peroxide sensors

Preparation of Prussian blue-modified screen-printed electrodes via a chemical deposition for mass production of stable hydrogen peroxide sensors Procedure 7 Preparation of Prussian blue-modified screen-printed electrodes via a chemical deposition for mass production of stable hydrogen peroxide sensors Francesco Ricci, Danila Moscone and Giuseppe

More information

Supporting Information. Electrochemical Reduction of Carbon Dioxide on Nitrogen-Doped Carbons: Insights from Isotopic Labeling Studies

Supporting Information. Electrochemical Reduction of Carbon Dioxide on Nitrogen-Doped Carbons: Insights from Isotopic Labeling Studies Supporting Information Electrochemical Reduction of Carbon Dioxide on Nitrogen-Doped Carbons: Insights from Isotopic Labeling Studies Dorottya Hursán 1,2 and Csaba Janáky 1,2* 1 Department of Physical

More information

Keysight Technologies Oxygen-Free High-Resolution Electrochemical SPM. Application Note

Keysight Technologies Oxygen-Free High-Resolution Electrochemical SPM. Application Note Keysight Technologies Oxygen-Free High-Resolution Electrochemical SPM Application Note Introduction For two decades, scanning probe microscopy (SPM) has provided scientists a unique tool to study in situ

More information

An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti 3 C 2 X 2 (X=OH, F) nanosheets for Oxygen Reduction Reaction

An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti 3 C 2 X 2 (X=OH, F) nanosheets for Oxygen Reduction Reaction An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti 3 X 2 (X=OH, F) nanosheets for Oxygen Reduction Reaction Xiaohong Xie, Siguo Chen*, Wei Ding, Yao Nie, and Zidong Wei* Experimental

More information

Current based methods

Current based methods Current based methods Amperometric and voltammetric sensors More significant influence on analytical parameters (sensitivity, selectivity, interferences elimination) kind of method, potential range, electrode

More information

Sieving Behaviour of Nanoscopic Pores by. Hydrated Ions

Sieving Behaviour of Nanoscopic Pores by. Hydrated Ions Sieving Behaviour of Nanoscopic Pores by Hydrated Ions Joohan Lee a and Juhyoun Kwak* a Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 373-1 Guseong-dong, Yuseong-gu,

More information

Cyclic Voltametric Studies on the Interaction of Adrenaline With Formic Acid and Acetic Acid

Cyclic Voltametric Studies on the Interaction of Adrenaline With Formic Acid and Acetic Acid Int. J. Electrochem. Sci., 6 (2011) 6662-6669 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Cyclic Voltametric Studies on the Interaction of Adrenaline With Formic Acid and Acetic

More information

Introduction to Cyclic Voltammetry Measurements *

Introduction to Cyclic Voltammetry Measurements * OpenStax-CNX module: m34669 1 Introduction to Cyclic Voltammetry Measurements * Xianyu Li Andrew R. Barron This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License

More information

Electro Analytical Methods

Electro Analytical Methods CH 2252 Instrumental Methods of Analysis Unit II Electro Analytical Methods Dr. M. Subramanian Associate Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Kalavakkam

More information

ELECTROLYTIC DEPOSITION OF NICKEL FROM IONIC LIQUID TYPE (II) USING ETHYLENEDIAMINE (EN) AS BRIGHTENERS

ELECTROLYTIC DEPOSITION OF NICKEL FROM IONIC LIQUID TYPE (II) USING ETHYLENEDIAMINE (EN) AS BRIGHTENERS ISSN: 0974-1496 e-issn: 0976-0083 CODEN: RJCABP http://www.rasayanjournal.com http://www.rasayanjournal.co.in FROM IONIC LIQUID TYPE (II) USING ETHYLENEDIAMINE (EN) AS BRIGHTENERS K. Elttaib 1,*, A. Benhmid

More information

Hydrodynamic Electrodes and Microelectrodes

Hydrodynamic Electrodes and Microelectrodes CHEM465/865, 2004-3, Lecture 20, 27 th Sep., 2004 Hydrodynamic Electrodes and Microelectrodes So far we have been considering processes at planar electrodes. We have focused on the interplay of diffusion

More information

Study on Aqueous CO 2 Detection to Monitor the Potential Leakage of CO 2 Stored in the Ocean

Study on Aqueous CO 2 Detection to Monitor the Potential Leakage of CO 2 Stored in the Ocean tudy on Aqueous CO 2 Detection to Monitor the Potential Leakage of CO 2 tored in the Ocean ATO iroshi : Ph. D., P. E. Jp (Applied cience), Advanced Applied cience Department, Research Laboratory, Corporate

More information

ANALYSIS OF LEAD IN SEAWATER

ANALYSIS OF LEAD IN SEAWATER ANALYSIS OF LEAD IN SEAWATER BY DIFFERENTIAL PULSE POLAROGRAPHY Introduction Electrochemical methods of analysis can be used for the quantitative analysis of any electroactive species any species that

More information

NTEGRA for EC PRESENTATION

NTEGRA for EC PRESENTATION NTEGRA for EC PRESENTATION Application Purpose: In-situ control/modification of the surface morphology of single crystal and polycrystal electrodes (samples) during electrochemical process (in situ) in

More information

Single-walled carbon nanotubes as nano-electrode and nanoreactor to control the pathways of a redox reaction

Single-walled carbon nanotubes as nano-electrode and nanoreactor to control the pathways of a redox reaction Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 014 Supporting information Single-walled carbon nanotubes as nano-electrode and nanoreactor to control

More information

Electrocatalysis by Subcellular Liver Fractions Bound to Carbon Nanostructures for Stereoselective Green Drug Metabolite Synthesis

Electrocatalysis by Subcellular Liver Fractions Bound to Carbon Nanostructures for Stereoselective Green Drug Metabolite Synthesis Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supporting Information Electrocatalysis by Subcellular Liver Fractions Bound to Carbon Nanostructures

More information

Supporting information:

Supporting information: Supporting information: The Role of Anisotropic Structure and Its Aspect Ratio: High-Loading Carbon Nanospheres Supported Pt Nanowires and Their High Performance Toward Methanol Electrooxidation Feng-Zhan

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is The Royal Society of Chemistry 2018 Supporting Information Poly(ionic liquid) Binders as Ion conductors and Polymer

More information

Highly efficient hydrogen evolution of platinum via tuning the interfacial dissolved-gas concentration

Highly efficient hydrogen evolution of platinum via tuning the interfacial dissolved-gas concentration Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2018 Supporting Information for Highly efficient hydrogen evolution of platinum via tuning

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/332/6025/81/dc1 Supporting Online Material for Electrochemically Mediated Atom Transfer Radical Polymerization Andrew J. D. Magenau, Nicholas C. Strandwitz, Armando

More information

Dr. Aoife Morrin. School of Chemical Sciences Dublin City University Ireland. The National Centre for Sensor Research

Dr. Aoife Morrin. School of Chemical Sciences Dublin City University Ireland. The National Centre for Sensor Research INVESTIGATION OF NANOSTRUCTURED MATERIALS FOR NOVEL BIOSENSOR FABRICATION METHODOLOGIES Dr. Aoife Morrin National Centre for Sensor Research School of Chemical Sciences Dublin City University Ireland Introduction

More information

Bistriazole-p-benzoquinone and its alkali salts: electrochemical behaviour in aqueous alkaline solutions

Bistriazole-p-benzoquinone and its alkali salts: electrochemical behaviour in aqueous alkaline solutions Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2017 Bistriazole-p-benzoquinone and its alkali salts: electrochemical behaviour in aqueous

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 217 Supporting Information Catalyst preparation A certain of aqueous NiCl 2 6H 2 O (2 mm), H 2 PtCl

More information

Specific Determination of Hydrogen Peroxide With A Catalase Biosensor Based on Mercury Thin Film Electrodes

Specific Determination of Hydrogen Peroxide With A Catalase Biosensor Based on Mercury Thin Film Electrodes Turk J Chem 24 (2000), 95 99 c TÜBİTAK Specific Determination of Hydrogen Peroxide With A Catalase Biosensor Based on Mercury Thin Film Electrodes Nil ERTAŞ Ege University, Faculty of Science, Department

More information

Hydrogen Evolution on InSb Semiconductor in Liquid Ammonia (223 K)

Hydrogen Evolution on InSb Semiconductor in Liquid Ammonia (223 K) Portugaliae Electrochimica Acta 20 (2002) 199-205 PORTUGALIAE ELECTROCHIMICA ACTA Hydrogen Evolution on InSb Semiconductor in Liquid Ammonia (223 K) C. Mathieu, O. Seitz, A.-M Gonçalves *, M. Herlem, A.

More information

Study of Electrode Mechanism by Cyclic Voltammetry

Study of Electrode Mechanism by Cyclic Voltammetry Study of Electrode Mechanism by Cyclic Voltammetry Please note that this experiment is NT in the P. Chem lab in Mergenthaler. Students doing this experiment should go directly to Dunning Hall 14. Purpose

More information

Supporting Information for A potential-controlled switch on/off mechanism for selective excitation in mixed electrochemiluminescent systems

Supporting Information for A potential-controlled switch on/off mechanism for selective excitation in mixed electrochemiluminescent systems Supporting Information for A potential-controlled switch on/off mechanism for selective excitation in mixed electrochemiluminescent systems Egan H. Doeven, Elizabeth M. Zammit, Gregory J. Barbante, Paul

More information

Determination of Electron Transfer Number for Oxygen Reduction Reaction: from Theory to Experiment

Determination of Electron Transfer Number for Oxygen Reduction Reaction: from Theory to Experiment Supporting Information Determination of Electron Transfer Number for Oxygen Reduction Reaction: from Theory to Experiment Ruifeng Zhou 1, 2, Yao Zheng 1, Mietek Jaroniec 3 and Shi-Zhang Qiao 1, * 1 School

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2017 Supplementary Information The electrochemical discrimination of pinene enantiomers by

More information

Supporting Information for. Highly durable Pd metal catalysts for the oxygen. reduction reaction in fuel cells; Coverage of Pd metal with.

Supporting Information for. Highly durable Pd metal catalysts for the oxygen. reduction reaction in fuel cells; Coverage of Pd metal with. Supporting Information for Highly durable Pd metal catalysts for the oxygen reduction reaction in fuel cells; Coverage of Pd metal with silica Sakae Takenaka 1 *, Naoto Susuki 1, Hiroaki Miyamoto 1, Eishi

More information

Leveraging Commercial Silver Inks as Oxidation Reduction Reaction Catalysts in Alkaline Medium

Leveraging Commercial Silver Inks as Oxidation Reduction Reaction Catalysts in Alkaline Medium Supporting Information Leveraging Commercial Silver Inks as Oxidation Reduction Reaction Catalysts in Alkaline Medium Shlomi Polani, Naftali Kanovsky and David Zitoun, *, Bar Ilan University, Department

More information

Electrochemical Sensors: trace detection for specific detection and pattern recognition for complex matrices

Electrochemical Sensors: trace detection for specific detection and pattern recognition for complex matrices 4 Electrochemical Sensors: trace detection for specific detection and pattern recognition for complex matrices TH 29 ARTICLE Peter Rabenecker Fraunhofer-Institute for Chemical Technology (ICT), Joseph-von-Fraunhofer-Str.

More information

In a typical routine, the pristine CNT (purchased from Bill Nanotechnology, Inc.) were

In a typical routine, the pristine CNT (purchased from Bill Nanotechnology, Inc.) were Supplementary Information Pd induced Pt(Ⅳ) reduction to form Pd@Pt/CNT core-shell catalyst for a more complete oxygen reduction Preparation of SH- functionalized CNT In a typical routine, the pristine

More information

Fundamental molecular electrochemistry - potential sweep voltammetry

Fundamental molecular electrochemistry - potential sweep voltammetry Fundamental molecular electrochemistry - potential sweep voltammetry Potential (aka voltammetric) sweep methods are the most common electrochemical methods in use by chemists today They provide an efficient

More information

Electrochemical study and applications of the selective electrodeposition of silver on quantum dots

Electrochemical study and applications of the selective electrodeposition of silver on quantum dots SUPPORTING INFORMATION Electrochemical study and applications of the selective electrodeposition of silver on quantum dots Daniel Martín-Yerga*, Estefanía Costa Rama and Agustín Costa-García Department

More information

Lithium-ion Batteries Based on Vertically-Aligned Carbon Nanotubes and Ionic Liquid

Lithium-ion Batteries Based on Vertically-Aligned Carbon Nanotubes and Ionic Liquid Electronic Supplementary Information Lithium-ion Batteries Based on Vertically-Aligned Carbon Nanotubes and Ionic Liquid Electrolytes Wen Lu, * Adam Goering, Liangti Qu, and Liming Dai * 1. Synthesis of

More information

Ionic Liquids. Nicolas Bartilla

Ionic Liquids. Nicolas Bartilla Ionic Liquids Nicolas Bartilla 03-23-2011 [4]DECHEMA-Meeting, February 2011, Erlangen Technological Applications What are Ionic Liquids? The term ionic liquids refers to compounds consisting entirely of

More information

Electrochemical behaviour of alkaline copper complexes

Electrochemical behaviour of alkaline copper complexes Proc. Indian Acad. Sci. (Chem. Sci.), Vol. 112, No. 5, October 2000, pp. 543 550 Indian Academy of Sciences Electrochemical behaviour of alkaline copper complexes 1. Introduction C L ARAVINDA a, S M MAYANNA

More information

Supporting Information

Supporting Information Platinum-Gold Nanoparticles: A Highly Active Bifunctional Electrocatalyst for Rechargeable Lithium-Air Batteries Yi-Chun Lu, Zhichuan Xu, Hubert A. Gasteiger, Shuo Chen, Kimberly Hamad- Schifferli and

More information

Cyclic Voltammetry. Fundamentals of cyclic voltammetry

Cyclic Voltammetry. Fundamentals of cyclic voltammetry Cyclic Voltammetry Cyclic voltammetry is often the first experiment performed in an electrochemical study of a compound, biological material, or an electrode surface. The effectiveness of cv results from

More information

Carbon nanotubes and conducting polymer composites

Carbon nanotubes and conducting polymer composites University of Wollongong Thesis Collections University of Wollongong Thesis Collection University of Wollongong Year 4 Carbon nanotubes and conducting polymer composites May Tahhan University of Wollongong

More information

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry Supplementary Information

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry Supplementary Information Supplementary Information 1 2-(2-Hydroxyphenyl)-1H-benzimidazole-manganese oxide hybrid as a promising structural model for Tyrosine 161/Histidine 190-manganese cluster in Photosystem II Mohammad Mahdi

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION An Oxygen Reduction Electrocatalyst Based on Carbon Nanotube- Nanographene Complexes Yanguang Li, Wu Zhou, Hailiang Wang, Liming Xie, Yongye Liang, Fei Wei, Juan-Carlos Idrobo,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Supporting Information Synthesis and Application of Hexagonal Perovskite BaNiO 3 with Quadrivalent

More information

Homogeneous Electrochemical Assay for Protein Kinase Activity

Homogeneous Electrochemical Assay for Protein Kinase Activity Homogeneous Electrochemical Assay for Protein Kinase Activity Ik-Soo Shin,,, Rohit Chand, Sang Wook Lee, Hyun-Woo Rhee, Yong-Sang Kim, * and Jong-In Hong* Corresponding Author *Prof. Dr. J.-I. Hong, Department

More information

Materials. The three sulfonated calixarene host molecules, p- molecules, 5,6-dihydropyrazion[1,2,3,4-lmn][1,10]phenanthroline-4,7-diium (DP 2+ ) 4

Materials. The three sulfonated calixarene host molecules, p- molecules, 5,6-dihydropyrazion[1,2,3,4-lmn][1,10]phenanthroline-4,7-diium (DP 2+ ) 4 Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 214 Experimental Section Materials. The three sulfonated calixarene host molecules, p- sulfonatocalix[4]arene

More information

Oxidation state. Electrochemical Techniques OCN Nov. 25, Redox chemistry refresher. Intro to electrochemistry. Electrochemical techniques

Oxidation state. Electrochemical Techniques OCN Nov. 25, Redox chemistry refresher. Intro to electrochemistry. Electrochemical techniques Electrochemical Techniques OCN 633 - Nov. 25, 2013 Brian Glazer glazer@hawaii.edu Redox chemistry refresher Life on Earth is comprised of e - transfer reactions Intro to electrochemistry voltaic cells,

More information

Supporting Information. Electropolymerization of aniline on nickel-based electrocatalysts substantially

Supporting Information. Electropolymerization of aniline on nickel-based electrocatalysts substantially Supporting Information Electropolymerization of aniline on nickel-based electrocatalysts substantially enhances their performance for hydrogen evolution Fuzhan Song, Wei Li, Guanqun Han, and Yujie Sun*

More information

Correlating Hydrogen Evolution Reaction Activity in Alkaline Electrolyte to Hydrogen Binding Energy on Monometallic Surfaces

Correlating Hydrogen Evolution Reaction Activity in Alkaline Electrolyte to Hydrogen Binding Energy on Monometallic Surfaces Supplemental Materials for Correlating Hydrogen Evolution Reaction Activity in Alkaline Electrolyte to Hydrogen Binding Energy on Monometallic Surfaces Wenchao Sheng, a MyatNoeZin Myint, a Jingguang G.

More information

1. Electrochemical measurements employed in the present work. Measurements conducted in a three-electrode system using 6 mol L 1 KOH

1. Electrochemical measurements employed in the present work. Measurements conducted in a three-electrode system using 6 mol L 1 KOH This journal is The Royal Society of Chemistry 213 Page 22 of 28 Supporting Information: 1. Electrochemical measurements employed in the present work. Measurements conducted in a three-electrode system

More information

Supporting Information

Supporting Information Supporting Information Trace Levels of Copper in Carbon Materials Show Significant Electrochemical CO 2 Reduction Activity Yanwei Lum,,,, Youngkook Kwon,,, Peter Lobaccaro,,,# Le Chen,, Ezra Lee Clark,,,#

More information

Tunable nitrogen-doped carbon aerogels as sustainable electrocatalysts in the oxygen. reduction reaction Electronic Supplementary information (ESI)

Tunable nitrogen-doped carbon aerogels as sustainable electrocatalysts in the oxygen. reduction reaction Electronic Supplementary information (ESI) Tunable nitrogen-doped carbon aerogels as sustainable electrocatalysts in the oxygen reduction reaction Electronic Supplementary information (ESI) Stephanie-Angelika Wohlgemuth,* a Tim-Patrick Fellinger

More information

TERNARY POLYMER ELECTROLYTES WITH 1-METHYLIMIDAZOLE BASED IONIC LIQUIDS AND APROTIC SOLVENTS

TERNARY POLYMER ELECTROLYTES WITH 1-METHYLIMIDAZOLE BASED IONIC LIQUIDS AND APROTIC SOLVENTS TERNARY POLYMER ELECTROLYTES WITH -METHYLIMIDAZOLE BASED IONIC LIQUIDS AND APROTIC SOLVENTS J. Reiter, J Vondrák, J Michálek,3 Institute of Inorganic Chemistry, Academy of Sciences, 50 68 Řež near Prague

More information

ABSTRACT. ds bond and raised the hydrogen over voltage. Key words: Cyclic voltammetry, Zinc-glycine complexes, Hydrogen evolution, Thiourea

ABSTRACT. ds bond and raised the hydrogen over voltage. Key words: Cyclic voltammetry, Zinc-glycine complexes, Hydrogen evolution, Thiourea 89 ROLE OF THIOUREA ON THE ELECTROCHEMICAL BEHAVIOUR OF ZINC GLYCINE COMPLEXES S.Shabanna Begum, C.Siva Kumar, S.M.Mayanna*, and V S.Muralidharan " Department of Chemistry, Central College, Bangalore,

More information

Comparison of Admittance Plots for Glass Carbon (GC) and Edge Plane Pyrolytie Graphite (EPPG) Electrodes in Three Typical Kinds of Electrolytes

Comparison of Admittance Plots for Glass Carbon (GC) and Edge Plane Pyrolytie Graphite (EPPG) Electrodes in Three Typical Kinds of Electrolytes Portugaliae Electrochimica Acta 25 (2007) 401-407 PORTUGALIAE ELECTROCHIMICA ACTA Comparison of Admittance Plots for Glass Carbon (GC) and Edge Plane Pyrolytie Graphite (EPPG) Electrodes in Three Typical

More information

Cyclic Voltammetry. Objective: To learn the basics of cyclic voltammetry with a well-behaved echem system

Cyclic Voltammetry. Objective: To learn the basics of cyclic voltammetry with a well-behaved echem system Cyclic Voltammetry Objective: To learn the basics of cyclic voltammetry with a well-behaved echem system Introduction Cyclic voltammetry (CV) is a popular electroanalytical technique for its relative simplicity

More information

Standard Operating Procedure. edaq Potentionstat. Miramar College Potentiostat. -Report by Marianne Samonte, Dec 2009

Standard Operating Procedure. edaq Potentionstat. Miramar College Potentiostat. -Report by Marianne Samonte, Dec 2009 Standard Operating Procedure edaq Potentionstat Miramar College Potentiostat -Report by Marianne Samonte, Dec 2009 I. Instrument Description of Potentiostat and ecorder The components of the edaq ecorder

More information

Supporting Information

Supporting Information Supporting Information Electrochemical Synthesis of Ammonia from N 2 and H 2 O under Ambient Conditions Using Pore-Size Controlled Hollow Gold Nanocatalysts with Tunable Plasmonic Properties Mohammadreza

More information

Supporting Information

Supporting Information Supporting Information Multielectron Cycling of a Low Potential Anolyte in Alkali Metal Electrolytes for Non-Aqueous Redox Flow Batteries Koen H. Hendriks, ab Christo S. Sevov, ab Monique E. Cook, ab and

More information

Supporting Information. Oxygen Reduction Catalysis at a Dicobalt Center: The Relationship of Faradaic Efficiency to Overpotential

Supporting Information. Oxygen Reduction Catalysis at a Dicobalt Center: The Relationship of Faradaic Efficiency to Overpotential Supporting Information Oxygen Reduction Catalysis at a Dicobalt Center: The Relationship of Faradaic Efficiency to Overpotential Guillaume Passard, Andrew M. Ullman, Casey N. Brodsky and Daniel G. Nocera*

More information

Table S1. Electrocatalyst plating conditions Metal Anode (foil) Plating Potential (V versus Ag/AgCl) Rh Pt 1 M HCl/HPLC.

Table S1. Electrocatalyst plating conditions Metal Anode (foil) Plating Potential (V versus Ag/AgCl) Rh Pt 1 M HCl/HPLC. 1 Materials and Methods Electrode Preparation All chemicals and supplies were high purity (> 999%) and supplied from Alfa Aesar or Fisher Scientific For anodic catalyst selection, 5 cm 2 titanium foil

More information

4.1 Screen printed carbon electrode

4.1 Screen printed carbon electrode 4.1 Screen printed carbon electrode 4.1 Screen printed carbon electrode Screen printed electrode is one of greatest invention in the 20 th century, which is the significant improvement of electrochemical

More information

A Sensitive Dissolved Oxygen Sensor Based on a Charge-Transfer Complex Modified Electrode

A Sensitive Dissolved Oxygen Sensor Based on a Charge-Transfer Complex Modified Electrode Sensors & Transducers ISSN 1726-5479 2006 by IFSA http://www.sensorsportal.com A Sensitive Dissolved Oxygen Sensor Based on a Charge-Transfer Complex Modified Electrode TU Yifeng Institute of Analytical

More information

Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, 191

Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, 191 High Stability, High Activity Pt/ITO Oxygen Reduction Electrocatalysts Ying Liu and William E. Mustain* Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, 191 Auditorium

More information

Metal-free electrocatalytic hydrogen oxidation using frustrated Lewis pairs and carbon-based Lewis acids

Metal-free electrocatalytic hydrogen oxidation using frustrated Lewis pairs and carbon-based Lewis acids Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2016 Supplementary Information Metal-free electrocatalytic hydrogen oxidation using frustrated

More information

Electrochemistry and Detection of Organic and Biological Molecules Such as Catechol and Ascorbic Acid at Conducting Poly (2,2-bithiophene) Electrode

Electrochemistry and Detection of Organic and Biological Molecules Such as Catechol and Ascorbic Acid at Conducting Poly (2,2-bithiophene) Electrode Electrochemistry and Detection of Organic and Biological Molecules Such as Catechol and Ascorbic Acid at Conducting Poly (2,2-bithiophene) Electrode Suzanne K. Lunsford a*, Jelynn Stinson a, and Justyna

More information

Supporting Information for

Supporting Information for Supporting Information for Electrodeposition of Isolated Platinum Atoms and Clusters on Bismuth Characterization and Electrocatalysis Min Zhou, Jeffrey E. Dick, and Allen J. Bard Center for Electrochemistry,

More information

Electrochemical detection of phenol in aqueous solutions

Electrochemical detection of phenol in aqueous solutions Indian Journal of Chemical Technology Vol. 11, November 2004, pp. 797-803 Electrochemical detection of phenol in aqueous solutions J Mathiyarasu*, James Joseph, K L N Phani & V Yegnaraman Electrodics &

More information

Supporting Information. Single Particle Detection by Area Amplification Single Wall Carbon Nanotube Attachment to a Nanoelectrode

Supporting Information. Single Particle Detection by Area Amplification Single Wall Carbon Nanotube Attachment to a Nanoelectrode Supporting Information Single Particle Detection by Area Amplification Single Wall Carbon Nanotube Attachment to a Nanoelectrode Jun Hui Park, Scott N. Thorgaard, Bo Zhang, Allen J. Bard * Center for Electrochemistry,

More information

Supporting Information. High Wettable and Metallic NiFe-Phosphate/Phosphide Catalyst Synthesized by

Supporting Information. High Wettable and Metallic NiFe-Phosphate/Phosphide Catalyst Synthesized by Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information High Wettable and Metallic NiFe-Phosphate/Phosphide

More information

Electrogenerated Upconverted Emission from Doped Organic Nanowires

Electrogenerated Upconverted Emission from Doped Organic Nanowires Electrogenerated Upconverted Emission from Doped Organic Nanowires Qing Li, Chuang Zhang, Jian Yao Zheng, Yong Sheng Zhao*, Jiannian Yao* Electronic Supplementary Information (ESI) 1 Experimental details

More information

Supporting Information

Supporting Information Gold Nanoparticle-Modified ITO Electrode for Electrogenerated Chemiluminescence: Well-Preserved Transparency and Highly-Enhanced Activity Zuofeng Chen and Yanbing Zu * Department of Chemistry, The University

More information

Electrochemical Techniques: Cyclic Voltammetry

Electrochemical Techniques: Cyclic Voltammetry Electrochemical Techniques: Cyclic Voltammetry Cyclic Voltammetry of Ferrocene Carboxylic Acid 1. Aims To use cyclic voltammetry to investigate the solution electrochemistry of a simple redox couple. 2.

More information

Johary Rivera (Chemistry - University of Puerto Rico, Río Piedras Campus)

Johary Rivera (Chemistry - University of Puerto Rico, Río Piedras Campus) SUNFEST 2010 Evaluation of Composite Electronic Materials Based on Poly (3, 4 propylenedioxythiophene/poly (p Naptheleneethynylene) Wrapped Single Wall Carbon Nanotubes for Supercapacitors Johary Rivera

More information

A simple on-plastic/paper inkjet-printed solid-state Ag/AgCl pseudoreference

A simple on-plastic/paper inkjet-printed solid-state Ag/AgCl pseudoreference Supporting Information A simple on-plastic/paper inkjet-printed solid-state Ag/AgCl pseudoreference electrode Everson Thiago Santos Gerôncio da Silva,, Sandrine Miserere, Lauro Tatsuo Kubota and Arben

More information

Electronic Supplementary Information (ESI )

Electronic Supplementary Information (ESI ) Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information (ESI ) Hollow nitrogen-doped carbon spheres as an efficient

More information

Supporting Information

Supporting Information Supporting Information 1 The influence of alkali metal cations upon AQ redox system Figure 1 depicts the anthraquinone-2-sulfonate (AQ) redox signals in aqueous solutions supported with various alkali

More information

Functionalization of reduced graphene oxides by redox-active ionic liquids for energy storage

Functionalization of reduced graphene oxides by redox-active ionic liquids for energy storage Supplementary Material (ESI) for Chemical Communications Functionalization of reduced graphene oxides by redox-active ionic liquids for energy storage Sung Dae Cho, a Jin Kyu Im, b Han-Ki Kim, c Hoon Sik

More information

Contents. Publisher s Foreword. Glossary of Symbols and Abbreviations

Contents. Publisher s Foreword. Glossary of Symbols and Abbreviations Publisher s Foreword Glossary of Symbols and Abbreviations v xiii 1 Equilibrium Electrochemistry and the Nernst Equation 1 1.1 Cell Thermodynamics....................... 1 1.2 The Nernst Equation........................

More information

SUPPORTING INFORMATION. Direct Observation on Reaction Intermediates and the Role of. Cu Surfaces

SUPPORTING INFORMATION. Direct Observation on Reaction Intermediates and the Role of. Cu Surfaces SUPPORTING INFORMATION Direct Observation on Reaction Intermediates and the Role of Bicarbonate Anions in CO 2 Electrochemical Reduction Reaction on Cu Surfaces Shangqian Zhu, Bei Jiang, Wen-Bin Cai, Minhua

More information

Supplementary Information for

Supplementary Information for Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 014 Supplementary Information for High Resolution Mapping of Oxygen Reduction Reaction

More information

Experiment 1C. The Rotating Ring-Disk Electrode

Experiment 1C. The Rotating Ring-Disk Electrode Experiment 1C The Rotating Ring-Disk Electrode Experiment Overview When one sets the potential of an electrode away from the equilibrium potential, a current flows. The amount a potential deviates away

More information

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011 Supplementary Information for Selective adsorption toward toxic metal ions results in selective response: electrochemical studies on polypyrrole/reduced graphene oxide nanocomposite Experimental Section

More information

Cavitation for Megasonic Cleaning Applications

Cavitation for Megasonic Cleaning Applications Use of Sonoluminescence and Sono-Electrochemistry Based Techniques for Fundamental Investigations of Acoustic Cavitation for Megasonic Cleaning Applications Presenter: M. Keswani Students involved: Z.

More information

Theory of Headspace Sampling

Theory of Headspace Sampling Theory of Headspace Sampling Contents 1 Basics 2 2 Static headspace sampling 2 2.1 Preconcentration time and volume.......................... 3 2.2 Sample temperature..................................

More information

Redox Titration. Properties of Umass Boston

Redox Titration. Properties of Umass Boston Redox Titration Redox Titration Ce 4+ + Fe 2+ Ce 3+ + Fe 3+ Redox titration is based on the redox reaction (oxidation-reduction) between analyte and titrant. Position of the end point Determine the end

More information

Evidence for Covalent Bonding of Aryl Groups to MnO 2 Nanorods from Diazonium-Based Grafting

Evidence for Covalent Bonding of Aryl Groups to MnO 2 Nanorods from Diazonium-Based Grafting Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supplementary Information for Evidence for Covalent Bonding of Aryl Groups to MnO 2 Nanorods from

More information

"Egg of Columbus": Single-Step Complete Removal of Chloride Impurities from Ionic Liquids by AgCl Deposition on Silver Electrode

Egg of Columbus: Single-Step Complete Removal of Chloride Impurities from Ionic Liquids by AgCl Deposition on Silver Electrode "Egg of Columbus": Single-Step Complete Removal of Chloride Impurities from Ionic Liquids by AgCl Deposition on Silver Electrode Serena Arnaboldi a, Mirko Magni a, Patrizia R. Mussini a* Armando Gennaro

More information

3R Phase of MoS 2 and WS 2 Outperforms Corresponding 2H Phase for Hydrogen Evolution

3R Phase of MoS 2 and WS 2 Outperforms Corresponding 2H Phase for Hydrogen Evolution Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 3R Phase of MoS 2 and WS 2 Outperforms Corresponding 2H Phase for Hydrogen Evolution Rou Jun Toh,

More information

EIS and differential capacitance measurements onto single crystal faces in different solutions Part II: Cu(111) and Cu(100) in 0.

EIS and differential capacitance measurements onto single crystal faces in different solutions Part II: Cu(111) and Cu(100) in 0. Journal of Electroanalytical Chemistry 541 (2003) 13/21 www.elsevier.com/locate/jelechem EIS and differential capacitance measurements onto single crystal faces in different solutions Part II: Cu(111)

More information