Choosing the Correct GC Column Dimensions and Stationary Phase

Size: px
Start display at page:

Download "Choosing the Correct GC Column Dimensions and Stationary Phase"

Transcription

1 Choosing the Correct GC Column Dimensions and Stationary Phase Daron Decker Chromatography Technical Specialist Page 1 Nothing is useless it can always serve as a bad example Custom Column: 150 m x 250 m, 1.0 m SE-30 (PDMS) 60 o C isothermal; hydrogen 28 cm/sec, split 1:100; t M = 8.9 min 2-methyl heptane 4-methyl heptane m-xylene p-xylene Page 2 1

2 Air Hydrogen Carrier Gas What You Know Matters m-xylene p-xylene Page 3 Typical Gas Chromatographic System Mol-Sieve Traps Fixed Restrictors Regulators Injection Port Detector Electrometer Cylinders or Generators Flow Controller Column Recorder/ Integrator Picking the appropriate stationary phase and optimum dimensions for the column will give the greatest resolution in the shortest analysis time. Page 4 2

3 Four Primary Selection Areas Stationary Phase Type Column Internal Diameter Stationary Phase Film Thickness Column Length Page 6 Resolution N k R s = a 1 4 k 1 a Efficiency Retention Selectivity N = (gas, L, r c ) k = (T, d f, r c ) a = (T, phase) L = Length r c = column radius d f = film thickness T = temperature Page 7 3

4 Resolution N k R s = a 1 4 k 1 a Efficiency Retention Selectivity N = (gas, L, r c ) k = (T, d f, r c ) a = (T, phase) L = Length r c = column radius d f = film thickness T = temperature Page 10 Stationary Phase - Common Types Siloxane polymers Poly(ethylene) glycols Porous polymers Page 11 4

5 Capillary Column Types Porous Layer Open Tube (PLOT) Carrier Gas Solid Particles Wall Coated Open Tube (WCOT) Carrier Gas Liquid Phase Page 12 Stationary Phase Polymers H H HO - - C-C-O - - H H H n Polyethylene glycol backbone Page 13 5

6 WCOT Column Types Agilent J&W has over 50 different stationary phase offerings Page 14 FactorFour TM Phases VF-1ms, VF-5ms, VF-5ht, VF-5ht UltiMetal VF-17ms, VF-17ms for PAH, VF-35ms, VF-200ms,VF-Xms, VF-23ms, VF-624ms, VF-DA, VF-1301ms, VF-Pesticides, VF-1701ms, VF-WAXms 6

7 20+ Different Specialty Phases Specialty phases are columns that are optimized to perform a specialized GC analysis. Column Typical Application DB-624 EPA and USP volatiles DB-VRX volatiles analysis HP-VOC volatiles analysis DB EPA Method DB EPA semi-volatiles analysis DB-608 EPA Method 608 DB-1701P EPA pesticides analysis DB-MTBE total petroleum hydrocarbon (TPH) HP-PONA petroleum hydrocarbon analysis DB-HT SimDis hi-temp simulated distillation DB-ALC1 & ALC2 blood alcohol analysis HP-88 fatty acid methyl ester (FAME) Page 16 Select TM Column Examples Environmental applications CP-Sil 88 for dioxins, Select mineral oil, CP-Select 624 CB Chiral applications CP-Chirasil Val, CP-Chirasil-DEX CB Chemical applications CP-Volamine, CP-Select CB for MTBE, CP-PONA C8, CP- Propox, Select Silanes, CP-SimDist UltiMetal TM, CP-Lowox TM Food and Beverage applications CB-Carbowax 400, Select FAME, CP-Sil 88 for FAME, CP-FFAP CB 7

8 PLOT Column Types PLOT columns are primarily, but not exclusively, used for the analysis of gases and low boiling point solutes (i.e., boiling point of solute is at or below room temperature). Agilent J&W PLOT columns begin with the designation of GS (Gas Solid) or HP-PLOT followed by a specific name 10 stationary phases GS-OxyPLOT: oxygenates HP-PLOT Molesieve: O2, N2, CO, Methane HP-PLOT Alumina and GS-Alumina: complex hydrocarbon gas matrices, ethylene and propylene purity, 1,4-butadiene HP-PLOT Q: freons, sulfides HP-PLOT U: C1 to C7 hydrocarbons, CO2, Polar Hydrocarbons GS-GasPro: freons, sulfurs, inorganic gases GS-CarbonPLOT: inorganic and organic gases GS-OxyPLOT GS-Alumina HP-PLOT Al2O3 M HP-PLOT Al2O3 S HP-PLOT Al2O3 KCl HP-PLOT MoleSieve GS-CarbonPLOT HP-PLOT Q HP-PLOT U GS-GasPro Page 18 PLOT GC Columns from Varian Line Porous Polymers CP-PoraBOND Q CP-PoraBOND U CP-PoraPLOT Q CP-PoraPLOT U CP-PoraPLOT S CP-PoraPLOT Q-HT CP-PoraPLOT amines Zeolites Molsieve 5A Molsieve 13x Alumina KCL Na 2 SO4 MAPD Multi Layer CP-Lowox Porous Silica SilicaPLOT Graphatised Carbon CP-CarboPLOT P7 CP-CarboBOND Select TM permanent gases 19 8

9 Why Is Stationary Phase Type Important? Influence of a a = k2 k1 k 2 = partition ratio of 2nd peak k 1 = partition ratio of 1st peak Page 20 Selectivity Relative spacing of the chromatographic peaks The result of all non-polar, polarizable and polar interactions that cause a stationary phase to be more or less retentive to one analyte than another Page 21 9

10 Optimizing Selectivity Match analyte polarity to stationary phase polarity -like dissolves like(oil and water don t mix) Take advantage of unique interactions between analyte and stationary phase functional groups Page 22 Compounds - Properties Compounds Polar Aromatic Hydrogen Bonding Dipole Toluene no yes no induced Hexanol yes no yes yes Phenol yes yes yes yes Decane no no no no Naphthalene no yes no induced Dodecane no no no no Page 23 10

11 100% Methyl Polysiloxane (boiling point column?) Toluene 110 o 2. Hexanol 156 o 3. Phenol 182 o 4. Decane (C10) 174 o 5. Naphthalene 218 o 6. Dodecane (C12) 216 o Strong Dispersion No Dipole No H Bonding Page 24 5% Phenyl 5% Phenyl 100% Methyl Strong Dispersion No Dipole Weak H Bonding , Strong Dispersion No Dipole No H Bonding 1. Toluene 2. Hexanol 3. Phenol 4. Decane (C10) 5. Naphthalene 6. Dodecane (C12) Page 25 11

12 50% Phenyl 50% Phenyl 100% Methyl Strong Dispersion No Dipole Weak H Bonding Strong Dispersion No Dipole No H Bonding 1. Toluene 110 o 2. Hexanol 156 o 3. Phenol 182 o 4. Decane (C10) 174 o 5. Naphthalene 218 o 6. Dodecane (C12) 216 o Page 26 14% Cyanopropylphenyl 14% Cyanopropylphenyl 100% Methyl Strong Dispersion None/Strong Dipole (Ph/CNPr) Weak/Moderate H Bonding (Ph/CNPr) Strong Dispersion No Dipole No H Bonding 1. Toluene 2. Hexanol 3. Phenol 4. Decane (C10) 5. Naphthalene 6. Dodecane (C12) Page 27 12

13 50% Cyanopropyl 50% Cyanopropyl 100% Methyl Strong Dispersion Strong Dipole Moderate H Bonding Strong Dispersion No Dipole No H Bonding 1. Toluene 2. Hexanol 3. Phenol 4. Decane (C10) 5. Naphthalene 6. Dodecane (C12) Page % Polyethylene Glycol 100% PEG Strong Dispersion Strong Dipole Moderate H Bonding % Methyl Strong Dispersion No Dipole No H Bonding 1. Toluene 2. Hexanol 3. Phenol 4. Decane (C10) 5. Naphthalene 6. Dodecane (C12) Page 29 13

14 Selectivity is important but not everything Inertness and Bleed can be critical factors in column selection. Temperature limits will play a role as well. Page 30 Stationary Phase Bleed A thermodynamic equilibrium process that occurs to some degree in all columns, and is proportional to the mass amount of stationary phase inside the capillary tubing/carrier gas flow path Polysiloxane backbone releases low molecular weight, cyclic fragments Is negligible in low temperature, O2-free, clean GC systems Increased by increased temperature, oxygen exposure, or chemical damage Page 31 14

15 Bleed: Why Does It Happen? Back Biting Mechanism of Product Formation CH 3 CH 3 CH 3 CH 3 CH 3 CH 3 CH 3 Si O Si O Si O Si O Si O Si O Si OH H 3 C Si HO CH 3 CH 3 CH 3 CH 3 CH 3 CH 3 Si O Si O Si O Si O Si Si CH 3 CH 3 CH 3 O CH3 CH CH 3 3 CH3 O CH 3 CH 3 CH 3 CH 3 CH 3 CH 3 CH 3 CH 3 CH 3 CH 3 CH 3 Si O Si O Si O Si OH CH 3 CH 3 CH 3 CH 3 + H 3 C CH 3 Si O O CH H 3 C Si Si 3 O H 3 C CH 3 Cyclic products are thermodynamically more stable! Repeat Page 32 DB-5ms Structure O CH 3 Si CH 3 O O Si CH 3 Si CH 3 O DB-5 Structure Si CH 3 CH 3 DB-5 5% Phenyl CH 3 CH 3 DB-5ms Structure CH 3 CH 3 Si O Si CH 3 CH 3 CH 3 O CH 3 Si Si DB-5ms 1.Increased stability 2.Different selectivity 3.Optimized to match DB-5 Page 33 15

16 Difference in Selectivity Solid line: DB-5ms 30 m x.25 mm I.D. x.25 m Dashed line:db-5 30 m x.25 mm I.D. x.25 m Oven: 60 o C isothermal Carrier gas: H 2 at 40 cm/sec 1: Ethylbenzene 2: m-xylene 3: p-xylene 4: o-xylene Page 34 Four Types Of Low Bleed Phases Phases tailored to mimic currently existing polymers -Examples: DB-5ms, DB-35ms, DB-17ms, DB-225ms Phases unrelated to any previously existing polymers -Examples: DB-XLB Optimized manufacturing processes -DB-1ms, HP-1ms, HP-5ms Hand selected columns Page 35 16

17 Benefits of Low Bleed Phases PAH Sensitivity Using HP-35MS Commercially Available 35% phenyl column HP-35MS Benzo[ghi]perylene S/N = 15 Benzo[ghi]perylene S/N = Naphthalene 2. Acenaphthylene 3. Acenaphthene 4. Fluorene 5. Phenanthrene 6. Anthracene 7. Fluoranthene 8. Pyrene 9. Benz[a]anthracene 10. Chrysene 11. Benzo[b]fluoranthene 12. Benzo[k]fluoranthene 13. Benzo[a]pyrene 14. Indeno[1,2,3,- c,d]anthracene 15. Dibenz[a,h]anthracene 16. Benzo[g,h,i]perylene min. Columns: 30 m x 0.32 mm x 0.35 um. Carrier: H2, constant flow, 5 psi at 100 o C. Injector: 275 o C, splitless, 1 ul, 0.5-5ppm. Oven: 100 o C to 250 o C (5 min.) at 15 o C/min.,; then to 320 o C (10 min.) at 7.5 o C/min. Detector: FID, 320 o C. Page 36 Benefits of Low Bleed Phases DB-35ms vs Standard 35% Phenyl Benzo[g,h,i]perylene, 1ng Standard 35% Phenyl DB-35ms Page 37 17

18 Higher Spectral Purity Abundance Scan 1118 (20.560min): D Abundance Scan 1138 (20.640min): D Standard 35% Phenyl DB-35ms M/Z -> M/Z -> Page 38 Polarity vs Stability/Temperature Range Polarity Stability Temperature Range Page 39 18

19 Stationary Phase Selection Existing information Selectivity/Polarity Critical separations Temperature limits Application designed Examples: DB-VRX, DB-MTBE, DB-TPH, DB-ALC1, DB-ALC2, DB-HTSimDis, DB-Dioxin, HP-VOC, etc. Choose the column phase that gives the best separation but not at the cost of robustness or ruggedness. Page 40 Resolution N k R s = a 1 4 k 1 a Efficiency Retention Selectivity N = (gas, L, r c ) k = (T, d f, r c ) a = (T, phase) L = Length r c = column radius d f = film thickness T = temperature Page 42 19

20 Column Diameter - Theoretical Efficiency I.D. (mm) n/m , , , Page 43 Column Diameter and Capacity I.D. (mm) Capacity (ng) Like Polarity Phase/Solute 0.25 µm film thickness Page 44 20

21 Column Diameter - Inlet Head Pressures (Helium) I.D (mm) Pressure (psig) meters Hydrogen pressures x 1/ Page 45 Column Diameter and Carrier Gas Flow Lower flow rates: Smaller diameter columns Higher flow rates: Larger diameter columns Low flow rates : GC/MS High flow rates: Headspace, purge & trap Page 46 21

22 Diameter Summary To increase Efficiency Resolution Pressure Capacity Flow rate Diameter Smaller Smaller Smaller Larger Larger Page 47 Resolution N k R s = a 1 4 k 1 a Efficiency Retention Selectivity N = (gas, L, r c ) k = (T, d f, r c ) a = (T, phase) L = Length r c = column radius d f = film thickness T = temperature Page 49 22

23 Film Thickness and Retention: Isothermal Thickness (µm) Retention Change Constant Diameter Normalized to 0.25 µm Page 50 Film Thickness and Resolution When solute k < 5 d f R (early eluters) or T When solute k > 5 (later eluters) d f or T R Page 51 23

24 Other Retention - Adsorption Analysis of Noble & Fixed Gases Using HP PLOT MoleSieve Column: Carrier: Oven: Sample: HP-PLOT/MoleSieve 30 m x 0.53 mm x 50 m HP part no P-MS0 Helium, 4 ml/min 35 C (3 min) to 120 C (5 min) at 25 C/min 250 l, split (ratio 50:1) Neon 2. Argon 3. Oxygen 4. Nitrogen 5. Krypton 6. Xenon Time (min) Page 52 Film Thickness and Capacity Thickness (µm) Capacity (ng) mm I.D. Like Polarity Phase/Solute Page 53 24

25 Film Thickness and Bleed More stationary phase = More degradation products Page 54 Film Thickness and Inertness active inactive active inactive active inactive Page 55 25

26 Film Thickness Summary To Increase Retention Resolution (k<5) Resolution (k>5) Capacity Bleed Inertness Efficiency Make Film Thicker Thicker Thinner Thicker Thicker Thicker Thinner Page 56 Resolution N k R s = a 1 4 k 1 a Efficiency Retention Selectivity N = (gas, L, r c ) k = (T, d f, r c ) a = (T, phase) L = Length r c = column radius d f = film thickness T = temperature Page 58 26

27 Column Length and Efficiency (Theoretical Plates) Length (m) n 15 69, , , mm ID n/m = 4630 (for k = 5) Page 59 Column Length and Resolution R a n a L Length X 4 = Resolution X 2 t a L Page 60 27

28 Column Length VS Resolution and Retention: Isothermal R= min R= min R= min 15 m 30 m 60 m Double the plates, double the time but not double the the resolution Page 61 Column Length and Cost 15m 30m 60m $ $ $ $ $ $ $ Page 62 28

29 Length Summary To Increase Efficiency Resolution Analysis Time Pressure Cost Length Longer Longer Longer Longer Longer Page 63 Regular Unleaded Gasoline California Phase I Normal Column: DB-PETRO m x 0.25 mm I.D., 0.5 µm Carrier: H 2, 24 psig, 31 cm/s Oven: 35 C// 9.5 min// 13.3 /min// 45 // 11 min// 1.4 /min// 60 // 11min// 2.7 /min// 220 // 3.6 min Injector: Split 1:200, 0.2 µl Detector: 300 C Time (min.) High Speed Column: DB-1 40 m x 0.10 mm I.D., 0.20 µm Carrier: H 2, 78 psig, 34.8 cm/s Oven: 35 C// 3.6 min // 36.1 /min// 45 C// 4.15 min // 3.91 /min// 60 C// 4.15 min//6.9 / min// 220 C// 1.38 min Injector: Split 1:400, 250 C, 0.2 µl Detector: 300 C Time (min.)

30 Still Can t Decide Which Column to Use????? Call Us!!! TECHNICAL SUPPORT Agilent #3, #3, # (Daron) Daron_Decker@Agilent.com Page 65 30

Selection of a Capillary

Selection of a Capillary Selection of a Capillary GC Column - Series 3 Mark Sinnott Application Engineer March 19, 2009 Page 1 Typical Gas Chromatographic System Mol-Sieve Traps Fixed Restrictors Regulators Injection Port Detector

More information

Selection of a Capillary GC Column

Selection of a Capillary GC Column Selection of a Capillary GC Column Mark Sinnott Application Engineer March 13, 2008 Page 1 Typical Gas Chromatographic System Mol-Sieve Traps Fixed Restrictors Regulators Injection Port Detector Electrometer

More information

So Many Columns! How Do I Choose? Daron Decker Chromatography Technical Specialist

So Many Columns! How Do I Choose? Daron Decker Chromatography Technical Specialist So Many Columns! How Do I Choose? Daron Decker Chromatography Technical Specialist GC Columns Wall Coated Open Tubulars Liquid phase coated capillaries Internal Diameter 0.05 0.53mm Length 5m 100m Porous

More information

Understanding the Capillary GC Column: How to Choose the Correct Type and Dimension

Understanding the Capillary GC Column: How to Choose the Correct Type and Dimension Understanding the Capillary GC Column: How to Choose the Correct Type and Dimension Simon Jones Application Engineer Things to Consider Is it Volatile enough to chromatograph by GC? Is it a Gas or a Liquid?

More information

How To Select the Correct GC Column. Simon Jones Application Engineer

How To Select the Correct GC Column. Simon Jones Application Engineer How To Select the Correct GC Column Simon Jones Application Engineer Things to Consider Is it Volatile enough to chromatograph by GC? Is it a Gas or a Liquid? How are we getting the Sample Injected? What

More information

GC Resolution Do You See What I See?

GC Resolution Do You See What I See? GC Resolution Do You See What I See? Column Dimensions and Carrier Gas Optimization Deans Switch Page 1 Variables for Maximizing Resolution Optimized Stationary Phase Longer Column Length Decrease Internal

More information

Agilent J&W GC Column Selection Guide SPEED YOUR SELECTION WITH THIS ONE-STOP RESOURCE

Agilent J&W GC Column Selection Guide SPEED YOUR SELECTION WITH THIS ONE-STOP RESOURCE Agilent J&W GC Column Selection Guide SPEED YOUR SELECTION WITH THIS ONE-STOP RESOURCE Table of Contents The story behind Agilent J&W Advanced GC Columns... 1 Column Selection Principles... 3 Selecting

More information

Secrets of GC Column Dimensions

Secrets of GC Column Dimensions Secrets of GC Column Dimensions GC Columns and Consumables Simon Jones Application Engineer May 20, 2008 Slide 1 Secrets of GC Column Dimensions Do I have the right column phase? Resolution Equation Changes

More information

Column Dimensions. GC Columns and Consumables. Mark Sinnott Application Engineer. March 12, 2010

Column Dimensions. GC Columns and Consumables. Mark Sinnott Application Engineer. March 12, 2010 Secrets of GC Column Dimensions GC Columns and Consumables Mark Sinnott Application Engineer Folsom California March 12, 2010 Page 1 Secrets of GC Column Dimensions Do I have the right column phase? Resolution

More information

Introduction and Principles of Gas Chromatography

Introduction and Principles of Gas Chromatography Introduction and Principles of Gas Chromatography Jaap de Zeeuw Restek, Middelburg, The Netherlands Jaap.dezeeuw@restek.com Definition and Uses of Gas Chromatography GC Components and Types of Columns

More information

Speakers. Moderator. John V Hinshaw GC Dept. Dean CHROMacademy. Tony Taylor Technical Director CHROMacademy. Dave Walsh Editor In Chief LCGC Magazine

Speakers. Moderator. John V Hinshaw GC Dept. Dean CHROMacademy. Tony Taylor Technical Director CHROMacademy. Dave Walsh Editor In Chief LCGC Magazine Webcast Notes Type your questions in the Submit Question box, located below the slide window You can enlarge the slide window at any time by clicking on the Enlarge Slides button, located below the presentation

More information

Practical Faster GC Applications with High-Efficiency GC Columns and Method Translation Software

Practical Faster GC Applications with High-Efficiency GC Columns and Method Translation Software Practical Faster GC Applications with High-Efficiency GC Columns and Method Translation Software GC Columns and Consumables Mark Sinnott Application Engineer January 8 th, 2008 Page 1 Questions to Ask

More information

The Suite for Environmental GC Analysis

The Suite for Environmental GC Analysis The Suite for Environmental GC Analysis SGE Environmental GC Columns Performance Selectivity Delivery Promise www.sge.com SGE Environmental GC Columns The Suite for Environmental GC Analysis SGE GC Columns

More information

Agilent J&W GC Column Selection Guide

Agilent J&W GC Column Selection Guide Agilent J&W GC Column Selection Guide Rely on unsurpassed reproducibility, efficiency, and inertness. Speed your selection with this one-stop resource. Agilent J&W GC Column Selection Guide Table of Contents

More information

Practical Faster GC Applications with High-Efficiency GC Columns and Method Translation Software

Practical Faster GC Applications with High-Efficiency GC Columns and Method Translation Software Practical Faster GC Applications with High-Efficiency GC Columns and Method Translation Software High Efficiency GC Columns Page 1 Variables for Shortening Run Times Stationary Phase Shorten Column Length

More information

Introduction to Gas Chromatography

Introduction to Gas Chromatography Introduction to Gas Chromatography 31-1 Objectives To know what is chromatography To understand the mechanism of compound separation To know the basic of gas chromatography system 31-2 Chromatography Definition

More information

Low Bleed Stationary Phases for Gas Chromatography

Low Bleed Stationary Phases for Gas Chromatography Low Bleed Stationary Phases for Gas Chromatography Slide 4 Advantages of Low Bleed Phase Lower bleed compared to standard phases Better signal to noise (sensitivity) Higher upper temperature - shorter

More information

Multi-residue Analysis for PAHs, PCBs and OCPs on Agilent J&W FactorFour VF-Xms

Multi-residue Analysis for PAHs, PCBs and OCPs on Agilent J&W FactorFour VF-Xms Multi-residue Analysis for PAHs, PCBs and OCPs on Agilent J&W FactorFour VF-Xms Application Note Author Laura Provoost Agilent Technologies, Inc. Introduction In multi-residue analysis different groups

More information

Column Selection. there is more to life than a boiling point column. Jaap de Zeeuw Restek Corporation, The Netherlands. Copyrights: Restek Corporation

Column Selection. there is more to life than a boiling point column. Jaap de Zeeuw Restek Corporation, The Netherlands. Copyrights: Restek Corporation Column Selection there is more to life than a boiling point column Jaap de Zeeuw Restek Corporation, The Netherlands Stationary Phase Selectivity Boiling Point versus Solubility Retention of a compound

More information

Water Injections in GC - Does Water Cause Bleed?

Water Injections in GC - Does Water Cause Bleed? Water Injections in GC - Does Water Cause Bleed? Eberhardt Kuhn Applications Chemist April 4, 2001 Practical Advice and Useful Tips for the Analysis of Semivolatile Organics by GC and GC/MS 11:00 a.m.

More information

Get Selective. By Jaap de Zeeuw

Get Selective. By Jaap de Zeeuw 34 Get Selective Modern narrow bore columns have made chromatographers lazy when it comes to stationary phase selection. Here s how getting back to basics in gas chromatography by using selectivity can

More information

Trajan SGE GC Columns

Trajan SGE GC Columns Trajan Scientific and Medical Trajan SGE GC Columns Trajan Scientific and Medical Our focus is on developing and commercializing technologies that enable analytical systems to be more selective, sensitive

More information

Optimizing GC Parameters for Faster Separations with Conventional Instrumentation

Optimizing GC Parameters for Faster Separations with Conventional Instrumentation Optimizing GC Parameters for Faster Separations with Conventional Instrumentation Anila I. Khan, Thermo Fisher Scientific, Runcorn, Cheshire, UK Technical Note 243 Key Words TraceGOLD fast GC analysis

More information

Continuous Improvement in Petroleum/Petrochemical Analysis HP s Family of Innovative PLOT Columns

Continuous Improvement in Petroleum/Petrochemical Analysis HP s Family of Innovative PLOT Columns Continuous Improvement in Petroleum/Petrochemical Analysis HP s Family of Innovative PLOT Columns Brochure Brief Porous Layer Open Tubular (PLOT) columns have been replacing traditional packed columns

More information

The Design of High Temperature Capillary Gas Chromatography Columns Based on Polydimethylsiloxane

The Design of High Temperature Capillary Gas Chromatography Columns Based on Polydimethylsiloxane The Design of High Temperature Capillary Gas Chromatography Columns Based on Polydimethylsiloxane Jarl Snider, D. J. Hotnisky, Kristi Sellers, Dinesh V. Patwardhan Ph. D. Restek Corporation www.restekcorp.com

More information

Chromatography. Gas Chromatography

Chromatography. Gas Chromatography Chromatography Chromatography is essentially the separation of a mixture into its component parts for qualitative and quantitative analysis. The basis of separation is the partitioning of the analyte mixture

More information

Volatile organic compounds (VOCs):

Volatile organic compounds (VOCs): Volatile organic compounds (VOCs): Organic chemicals with a high vapour pressure at room temperature. High vapour pressure results from a low boiling point. The World Health Organization (WHO) defined

More information

GAS CHROMATOGRAPHY. Mobile phase is a gas! Stationary phase could be anything but a gas

GAS CHROMATOGRAPHY. Mobile phase is a gas! Stationary phase could be anything but a gas GAS CHROMATOGRAPHY Mobile phase is a gas! Stationary phase could be anything but a gas Gas Chromatography (GC) GC is currently one of the most popular methods for separating and analyzing compounds. This

More information

Understanding Gas Chromatography

Understanding Gas Chromatography Understanding Gas Chromatography What is Really Going on Inside the Box? Simon Jones GC Applications Engineer Page 1 Group/Presentation Title Month ##, 200X ?? K? Page 2 Typical GC System Gas supply Injector

More information

Introduction to Capillary GC. Page 1. Agilent Restricted February 2, 2011

Introduction to Capillary GC. Page 1. Agilent Restricted February 2, 2011 ?? Kβ? Page 1 Typical GC System Gas supply Injector Detector Data handling GAS Column Oven Page 2 CARRIER GAS Carries the solutes down the column Selection and velocity influences efficiency and retention

More information

Gas Chromatography (GC)

Gas Chromatography (GC) Gas Chromatography (GC) Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh 11541 Saudi Arabia Office: AA53

More information

An Advanced Base Deactivated Capillary Column for analysis of Volatile amines Ammonia and Alcohols.

An Advanced Base Deactivated Capillary Column for analysis of Volatile amines Ammonia and Alcohols. An Advanced Base Deactivated Capillary Column for analysis of Volatile amines Ammonia and Alcohols. Jaap de Zeeuw, Ron Stricek and Gary Stidsen Restek Corp Bellefonte, USA To analyze basic compounds at

More information

Rely on Rxi -PAH Columns

Rely on Rxi -PAH Columns Rely on Rxi -PAH Columns to Ensure Successful Polycyclic Aromatic Hydrocarbon (PAH) Analysis Optimized Efficiency, Selectivity, and Robustness Let You: Report accurate results with speed and confidence.

More information

Chapter 27: Gas Chromatography. Principles Instrumentation Detectors Columns and Stationary Phases Applications

Chapter 27: Gas Chromatography. Principles Instrumentation Detectors Columns and Stationary Phases Applications Chapter 27: Gas Chromatography Principles Instrumentation Detectors Columns and Stationary Phases Applications GC-MS Schematic Interface less critical for capillary columns Several types of Mass Specs

More information

Chemistry Instrumental Analysis Lecture 28. Chem 4631

Chemistry Instrumental Analysis Lecture 28. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 28 Two types in general use: -packed (stationary phase) -open tubular or capillary determine selectivity and efficiency of the sample. Column Materials Column

More information

Chapter 27: Gas Chromatography

Chapter 27: Gas Chromatography Chapter 27: Gas Chromatography Gas Chromatography Mobile phase (carrier gas): gas (He, N 2, H 2 ) - do not interact with analytes - only transport the analyte through the column Analyte: volatile liquid

More information

Introduction to Capillary GC

Introduction to Capillary GC ?? Kβ? Page 1 Typical GC System Gas supply Injector Detector Data handling GAS Column Oven Page 2 CARRIER GAS Carries the solutes down the column Selection and velocity influences efficiency and retention

More information

CHEM340 Tutorial 4: Chromatography

CHEM340 Tutorial 4: Chromatography CHEM340 Tutorial 4: Chromatography 1. The data in the table below was obtained from a chromatogram obtained with a 10 cm liquid chromatography column. Under the conditions used, the compound uracil is

More information

Developing Large Volume Injection (LVI) in Split / Splitless Inlets. Philip J. Koerner Phenomenex Inc. NEMC 2014

Developing Large Volume Injection (LVI) in Split / Splitless Inlets. Philip J. Koerner Phenomenex Inc. NEMC 2014 Developing Large Volume Injection (LVI) in Split / Splitless Inlets Philip J. Koerner Phenomenex Inc. NEMC 2014 Goal To produce a method that provides the largest response of analytes that will produce

More information

Gas Chromatography (GC)! Environmental Organic Chemistry CEE-PUBH Analysis Topic 5

Gas Chromatography (GC)! Environmental Organic Chemistry CEE-PUBH Analysis Topic 5 Gas Chromatography (GC)! Environmental Organic Chemistry CEE-PUBH 5730-6730 Analysis Topic 5 Chromatography! Group of separation techniques based on partitioning (mobile phase/stationary phase). Two immiscible

More information

Theory and Instrumentation of GC. GC Columns

Theory and Instrumentation of GC. GC Columns Theory and Instrumentation of GC GC Columns i Wherever you see this symbol, it is important to access the on-line course as there is interactive material that cannot be fully shown in this reference manual.

More information

Capillary GC Column Selection and Method Development A Primer on Column Parameters and Instrument Conditions

Capillary GC Column Selection and Method Development A Primer on Column Parameters and Instrument Conditions Capillary GC Column Selection and Method Development A Primer on Column Parameters and Instrument Conditions Michael D. Buchanan September 11, 2014 sigma-aldrich.com/analytical 2012 Sigma-Aldrich Co. All

More information

Product Brief. - Hydrocarbons alkanes, alkenes, alkynes, dienes including natural gas, refinery gas, liquified petroleum gas

Product Brief. - Hydrocarbons alkanes, alkenes, alkynes, dienes including natural gas, refinery gas, liquified petroleum gas Agilent Porous Polymer PLOT Columns: New Products, Expanded Uses, Prices Cut in Half! Product Brief Need improved resolution of small volatile compounds? Didn't try a PLOT column due to high price, short

More information

Supelco Ionic Liquid GC Columns Introduction to the Technology

Supelco Ionic Liquid GC Columns Introduction to the Technology Supelco Ionic Liquid GC Columns Introduction to the Technology Updated: -Jan-203 Agenda Overview GC Column Polarity Scale Temperature Effects on Selectivity Column Selectivity: QC Test Mix (0.2 mm I.D.

More information

2401 Gas (liquid) Chromatography

2401 Gas (liquid) Chromatography 2401 Gas (liquid) Chromatography Chromatography Scheme Gas chromatography - specifically gas-liquid chromatography - involves a sample being vaporized and injected onto the head of the chromatographic

More information

PAH Analyses with High Efficiency GC Columns: Column Selection and Best Practices

PAH Analyses with High Efficiency GC Columns: Column Selection and Best Practices PAH Analyses with High Efficiency GC Columns: Column Selection and Best Practices Food Quality and Environmental Author Ken Lynam Agilent Technologies, Inc. 280 Centerville Road Wilmington, DE 19808 Abstract

More information

New ZB-5HT Inferno The World s Highest Temperature Non-Metal GC Column

New ZB-5HT Inferno The World s Highest Temperature Non-Metal GC Column New ZB-5HT Inferno The World s Highest Temperature Non-Metal GC Column The World's First Non-metal 5% Phenyl Phase GC Column Rated to 430 C * Specially processed for thermal stability up to 430 C A true

More information

Ch24. Gas Chromatography (GC)

Ch24. Gas Chromatography (GC) Ch24. Gas Chromatography (GC) 24.1 What did they eat in the year 1000? From 13 C content of cholesterol in ancient bone 13 C : 1.1%, 12 C: 98.9% 13 C/ 12 C ratio types of plants Bones of 50 people in Barton-on-Humber

More information

BP1 PONA BPX1. GC Capillary Columns BP1 PONA and BPX1

BP1 PONA BPX1. GC Capillary Columns BP1 PONA and BPX1 GC Capillary Columns 100% Dimethyl Polysiloxane GC Columns and Applications ID (mm) Film Thickness (µm) Length (m) Temperature Limits ( C) Part No. 0.32 0.5 60-60 to 320/340 054069 0.32 1 60-60 to 320/340

More information

Gas Chromatography. Rosa Yu, David Reckhow CEE772 Instrumental Methods in Environmental Analysis CEE 772 #16 2

Gas Chromatography. Rosa Yu, David Reckhow CEE772 Instrumental Methods in Environmental Analysis CEE 772 #16 2 Print version Gas Chromatography Rosa Yu, David Reckhow CEE772 Instrumental Methods in Environmental Analysis CEE 772 #16 1 Contents The primary components to a GC system 1. Carrier Gas System (including

More information

Agilent UltiMetal Plus Stainless Steel Deactivation for Tubing, Connectors, and Fittings

Agilent UltiMetal Plus Stainless Steel Deactivation for Tubing, Connectors, and Fittings Agilent UltiMetal Plus Stainless Steel Deactivation for Tubing, Connectors, and Fittings Technical Overview Introduction Modern GC and GC/MS instruments are important analytical tools for accurate and

More information

CH 2252 Instrumental Methods of Analysis Unit V Gas Chromatography. M. Subramanian

CH 2252 Instrumental Methods of Analysis Unit V  Gas Chromatography.  M. Subramanian CH 2252 Instrumental Methods of Analysis Unit V Gas Chromatography M. Subramanian Assistant Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Kalavakkam 603

More information

Chemistry Instrumental Analysis Lecture 27. Chem 4631

Chemistry Instrumental Analysis Lecture 27. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 27 Gas Chromatography Introduction GC covers all chromatographic methods in which the mobile phase is gas. It may involve either a solid stationary phase (GSC)

More information

Activity in the FID Detection Port: A Big Problem if Underestimated

Activity in the FID Detection Port: A Big Problem if Underestimated Activity in the FID Detection Port: A Big Problem if Underestimated Jaap de Zeeuw, Restek Corporation, Middelburg, The Netherlands It is commonly known in gas chromatography, that many problems can be

More information

METHOD 8100 POLYNUCLEAR AROMATIC HYDROCARBONS

METHOD 8100 POLYNUCLEAR AROMATIC HYDROCARBONS METHOD 8100 POLYNUCLEAR AROMATIC HYDROCARBONS 1.0 SCOPE AND APPLICATION 1.1 Method 8100 is used to determine the concentration of certain polynuclear aromatic hydrocarbons (PAH). Table 1 indicates compounds

More information

Analysis of Trace (mg/kg) Thiophene in Benzene Using Two-Dimensional Gas Chromatography and Flame Ionization Detection Application

Analysis of Trace (mg/kg) Thiophene in Benzene Using Two-Dimensional Gas Chromatography and Flame Ionization Detection Application Analysis of Trace (mg/kg) Thiophene in Using Two-Dimensional Gas Chromatography and Flame Ionization Detection Application Petrochemical Authors James D. McCurry and Bruce D. Quimby Agilent Technologies

More information

GC Columns PLOT Columns

GC Columns PLOT Columns GC Columns PLOT Columns PLOT Column Selection...117 119 Fused Silica Silica BOND Columns...120 Fused Silica Alumina BOND Columns...121 124 Fused Silica Molecular Sieve 5A Columns...125 Fused Silica Porous

More information

Gas Chromatography. Introduction

Gas Chromatography. Introduction Gas Chromatography Introduction 1.) Gas Chromatography Mobile phase (carrier gas) is a gas - Usually N 2, He, Ar and maybe H 2 - Mobile phase in liquid chromatography is a liquid Requires analyte to be

More information

Author. Abstract. Introduction

Author. Abstract. Introduction Improved Performance for the Analysis of Aromatics in Gasoline by ASTM Method D5769 Using the Agilent 5973 inert Gas Chromatography/Mass Spectrometry System Application Author James D. McCurry Agilent

More information

Ultra-Inert chemistry for Trace Level Analysis

Ultra-Inert chemistry for Trace Level Analysis Ultra-Inert chemistry for Trace Level Analysis Cikui Liang, Ph.D. Challenges and Needs of Today s Laboratories Challenges Qualification/quantification of trace samples Keep instrument up and running Needs

More information

AppNote 2/2000. Stir Bar Sorptive Extraction (SBSE) applied to Environmental Aqueous Samples

AppNote 2/2000. Stir Bar Sorptive Extraction (SBSE) applied to Environmental Aqueous Samples AppNote 2/2 Stir Bar Sorptive Extraction (SBSE) applied to Environmental Aqueous Samples Pat Sandra Department of Organic Chemistry, University of Gent, Krijgslaan 281 S4, B-9 Gent, Belgium Erik Baltussen

More information

Evaluation of Capillary Columns for General Performance Parameters

Evaluation of Capillary Columns for General Performance Parameters Evaluation of Capillary s for General Performance Parameters Application Authors Mitch Hastings, Eberhardt R. Kuhn and Allen K. Vickers Agilent Technologies, Inc 91 Blue Ravine Road Folsom, CA 95630 USA

More information

Principles of Instrumental Analysis

Principles of Instrumental Analysis Principles of Instrumental Analysis Chapter 27 Gas Chromatography Gas Chromatography (GC): vaporized analytes (solutes) are partitioned between a mobile gaseous phase and a liquid or a solid stationary

More information

Chromatographic Methods of Analysis Section: 5 Gas Chromatography (GC) Prof. Tarek A. Fayed

Chromatographic Methods of Analysis Section: 5 Gas Chromatography (GC) Prof. Tarek A. Fayed Chromatographic Methods of Analysis Section: 5 Gas Chromatography (GC) Prof. Tarek A. Fayed Gas Chromatography (GC) In gas chromatography, the sample is vaporized and injected onto the head of a chromatographic

More information

GC Instruments. GC Instruments - Sample Introduction

GC Instruments. GC Instruments - Sample Introduction GC Instruments 1 Fairly simple instrumentation Maintaining constant average pressure is important! Pressure controls flow rate T influences retention (k ) Flow rate monitoring Changing flow rate changes

More information

Gas Chromatography (Chapter 2 and 3 in The essence of chromatography)

Gas Chromatography (Chapter 2 and 3 in The essence of chromatography) Gas Chromatography 1. Introduction. Stationary phases 3. Retention in Gas-Liquid Chromatography 4. Capillary gas-chromatography 5. Sample preparation and injection 6. Detectors (Chapter and 3 in The essence

More information

Gas Chromatography. Presented By Mr. Venkateswarlu Mpharm KTPC

Gas Chromatography. Presented By Mr. Venkateswarlu Mpharm KTPC Gas Chromatography Gas Chromatography Presented By Mr. Venkateswarlu Mpharm KTPC What is Gas Chromatography? It is also known as Gas-Liquid Chromatography (GLC) GAS CHROMATOGRAPHY Separation of gaseous

More information

Partitioning. Separation is based on the analyte s relative solubility between two liquid phases or a liquid and solid.

Partitioning. Separation is based on the analyte s relative solubility between two liquid phases or a liquid and solid. Chromatography Various techniques for the separation of complex mixtures that rely on the differential affinities of substances for a gas or liquid mobile medium and for a stationary adsorbing medium through

More information

Gas Chromatography. Vaporization of sample Gas-solid Physical absorption Gas-liquid Liquid immobilized on inert solid

Gas Chromatography. Vaporization of sample Gas-solid Physical absorption Gas-liquid Liquid immobilized on inert solid Gas Chromatography Vaporization of sample Gas-solid Physical absorption Gas-liquid Liquid immobilized on inert solid Principles Instrumentation Applications 18-1 Retention Volumes Volumes rather than times

More information

Application Note. Abstract. Introduction. Determination of Polycyclic Aromatic Hydrocarbons in Seafood by an Automated QuEChERS Solution

Application Note. Abstract. Introduction. Determination of Polycyclic Aromatic Hydrocarbons in Seafood by an Automated QuEChERS Solution Application Note Abstract Determination of Polycyclic Aromatic Hydrocarbons in Seafood by an Automated QuEChERS Solution Page 1 Polycyclic Aromatic Hydrocarbons (PAHs) are a large group of organic compounds

More information

Course goals: Course goals: Lecture 1 A brief introduction to chromatography. AM Quality parameters and optimization in Chromatography

Course goals: Course goals: Lecture 1 A brief introduction to chromatography. AM Quality parameters and optimization in Chromatography Emqal module: M0925 - Quality parameters and optimization in is a separation technique used for quantification of mixtures of analytes Svein.mjos@kj.uib.no Exercises and lectures can be found at www.chrombox.org/emq

More information

A New PEG GC Column with Improved Inertness Reliability and Column Lifetime Agilent J&W DB-WAX Ultra Inert Polyethylene Glycol Column

A New PEG GC Column with Improved Inertness Reliability and Column Lifetime Agilent J&W DB-WAX Ultra Inert Polyethylene Glycol Column A New PEG GC Column with Improved Inertness Reliability and Column Lifetime Agilent J&W DB-WAX Ultra Inert Polyethylene Glycol Column Competitive Comparison Authors Ngoc-A Dang and Allen K. Vickers Agilent

More information

THE NEW QUANTITATIVE ANALYTICAL METHOD FOR ULTRATRACE SULFUR COMPOUNDS IN NATURAL GAS

THE NEW QUANTITATIVE ANALYTICAL METHOD FOR ULTRATRACE SULFUR COMPOUNDS IN NATURAL GAS International Gas Union Research Conference 14 THE NEW QUANTITATIVE ANALYTICAL METHOD FOR ULTRATRACE SULFUR COMPOUNDS IN NATURAL GAS Main author Hironori IMANISHI Tokyo Gas Co., Ltd. JAPAN himanishi@tokyo-.co.jp

More information

Validation of New VPH GC/MS Method using Multi-Matrix Purge and Trap Sample Prep System

Validation of New VPH GC/MS Method using Multi-Matrix Purge and Trap Sample Prep System Validation of New VPH GC/MS Method using Multi-Matrix Purge and Trap Sample Prep System Application Note Abstract The Massachusetts Department of Environmental Protection (MassDEP) developed the Method

More information

New Gs BP GC Columns

New Gs BP GC Columns New Gs BP GC Columns GS-Tek What really makes GsBP GC columns different from other brand name columns? GsBP columns are developed and made in USA with proprietary manufacturing processes developed by column

More information

Introduction to Capillary GC

Introduction to Capillary GC Introduction to Capillary GC LC Columns and Consumables Simon Jones Chromatography Applications Engineer February 20, 2008 Page 1 Introduction to Capillary GC t r K c?? Kβ k = - tr t m? t m R s Page 2

More information

TOTALLY INNOVATIVE MULTIMODE AUTOSAMPLER NEW KONIK ROBOKROM Laboratory Gas Generators An Overview +8 OPERATIONAL MODES MAIN FEATURES

TOTALLY INNOVATIVE MULTIMODE AUTOSAMPLER NEW KONIK ROBOKROM Laboratory Gas Generators An Overview +8 OPERATIONAL MODES MAIN FEATURES ROBOKROM 1 TOTALLY INNOVATIVE MULTIMODE AUTOSAMPLER NEW KONIK ROBOKROM Laboratory Gas Generators An Overview ROBOKROM 2 +8 OPERATIONAL MODES HRGC+HRGC-MS HRGC+HPLC-MS STATIC HEAD SPACE PURGE & TRAP SMPE

More information

Appendices References...49 Glossary Equations

Appendices References...49 Glossary Equations Table of Contents List of Tables...2 List of Figures...2 Column Selection General Considerations for Column Selection... 3-11 Your Zebron Capillary GC Column... 12-29 Column Installation Pre-Installation

More information

10/27/10. Chapter 27. Injector typically 50 C hotter than oven

10/27/10. Chapter 27. Injector typically 50 C hotter than oven Sample and solvent are vaporized onto the head of a column Vaporized solvent and solute are carried through the column by an inert gas (mobile phase) The mobile phase does not interact with compounds of

More information

GUIDELINES FOR THE DESIGN OF CHROMATOGRAPHIC ANALYTICAL METHODS INTENDED FOR CIPAC COLLABORATIVE STUDY

GUIDELINES FOR THE DESIGN OF CHROMATOGRAPHIC ANALYTICAL METHODS INTENDED FOR CIPAC COLLABORATIVE STUDY Page 1 of 13 CIPAC/4105/R GUIDELINES FOR THE DESIGN OF CHROMATOGRAPHIC ANALYTICAL METHODS INTENDED FOR CIPAC COLLABORATIVE STUDY Prepared for CIPAC by Dr M J Tandy*, P M Clarke and B White (UK) The rapid

More information

Meeting Challenging Laboratory Requirements for USEPA Method 8270 Using a Highly Sensitive, Robust, and Easy-to-Use GC/MS

Meeting Challenging Laboratory Requirements for USEPA Method 8270 Using a Highly Sensitive, Robust, and Easy-to-Use GC/MS Application Note # CA 284780 Meeting Challenging Laboratory Requirements for USEPA Method 8270 Using a Highly Sensitive, Robust, and Easy-to-Use GC/MS Abstract The analysis of semi-volatile organic compounds

More information

Jaap de Zeeuw Varian, Inc.. Middelburg, The Netherlands

Jaap de Zeeuw Varian, Inc.. Middelburg, The Netherlands "Innovations in capillary gas chromatography for improving reproducibility, reliability and ease-of-use in the gas chromatographic separation of complex samples" Jaap de Zeeuw Varian, Inc.. Middelburg,

More information

A New Web-Based Application for Modeling Gas Chromatographic Separations. Dr. Hansjoerg Majer Restek Corporation Market Development Manager Europe

A New Web-Based Application for Modeling Gas Chromatographic Separations. Dr. Hansjoerg Majer Restek Corporation Market Development Manager Europe A New Web-Based Application for Modeling Gas Chromatographic Separations Dr. Hansjoerg Majer Restek Corporation Market Development Manager Europe The Method Development Process in GC $ SUCCESS! Developing

More information

Application Note # Performance of Method 8270 Using Hydrogen Carrier Gas on SCION Bruker SCION GC-MS

Application Note # Performance of Method 8270 Using Hydrogen Carrier Gas on SCION Bruker SCION GC-MS Application Note #1820230 Performance of Method 8270 Using Hydrogen Carrier Gas on SCION Bruker SCION GC-MS GC-MS Introduction USEPA Method 8270 [1] for semivolatiles is is used by by laboratories to measure

More information

Theory and Instrumentation of GC. Chromatographic Parameters

Theory and Instrumentation of GC. Chromatographic Parameters Theory and Instrumentation of GC Chromatographic Parameters i Wherever you see this symbol, it is important to access the on-line course as there is interactive material that cannot be fully shown in this

More information

Chapter 11 Conventional Gas Chromatography

Chapter 11 Conventional Gas Chromatography Chapter 11 Conventional Gas Chromatography Gas Chromatography GC is the first instrumental chromatographic method developed commercially It is relatively easy to introduce a stable flow and pressure for

More information

Determination of Volatile Substances Proof of Food Adulteration

Determination of Volatile Substances Proof of Food Adulteration ANALYSIS OF FOOD AND NATURAL PRODUCTS LABORATORY EXERCISE Determination of Volatile Substances Proof of Food Adulteration (method: gas chromatography with mass spectrometric detection) Exercise guarantor:

More information

Fast Analysis of Aromatic Solvent with 0.18 mm ID GC column. Application. Authors. Introduction. Abstract. Gas Chromatography

Fast Analysis of Aromatic Solvent with 0.18 mm ID GC column. Application. Authors. Introduction. Abstract. Gas Chromatography Fast Analysis of Aromatic Solvent with.8 mm ID GC column Application Gas Chromatography Authors Yun Zou Agilent Technologies (Shanghai) Co. Ltd. Ying Lun Road Waigaoqiao Free Trade Zone Shanghai 3 P.R.

More information

Analysis. Priority LC GC. Zebron PAH Accurately quantitate EU and EPA PAHs in less than 28 minutes

Analysis. Priority LC GC. Zebron PAH Accurately quantitate EU and EPA PAHs in less than 28 minutes Priority Analysis LC GC Core-Shell Technology GC Columns Kinetex PAH Expanded resolution with chemical selectivity specifically for PAHs Increased throughput and sensitivity with core-shell technology

More information

Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS

Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS 1. List two advantages of temperature programming in GC. a) Allows separation of solutes with widely varying retention factors in a reasonable

More information

Guide to GC Column Selection and Optimizing Separations

Guide to GC Column Selection and Optimizing Separations Guide to GC Column Selection and Optimizing Separations WHICH COLUMN DO I NEED? Learn how to choose the right column the first time. Optimize separations for the best balance of resolution and speed. Troubleshoot

More information

Gas chromatography. Advantages of GC. Disadvantages of GC

Gas chromatography. Advantages of GC. Disadvantages of GC Advantages of GC Gas chromatography Fast analysis, typically minutes Effi cient, providing high resolution Sensitive, easily detecting ppm and often ppb Nondestructive, making possible on - line coupling;

More information

CHAPTER 6 GAS CHROMATOGRAPHY

CHAPTER 6 GAS CHROMATOGRAPHY CHAPTER 6 GAS CHROMATOGRAPHY Expected Outcomes Explain the principles of gas chromatography Able to state the function of each components of GC instrumentation Able to state the applications of GC 6.1

More information

This project has been funded with support from the European Commission. This publication reflects the views only of the authors, and the Commission

This project has been funded with support from the European Commission. This publication reflects the views only of the authors, and the Commission This project has been funded with support from the European Commission. This publication reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made

More information

Slightly Polar Columns

Slightly Polar Columns 9000 Варна, ул.поп Харитон 47 e-mail : gea99@abv.bg www.geya99.com Slightly Polar Columns With the partnership of Teknokroma SLIGHTLY POLAR COLUMNS TRB-5 It is the most universal and versatile stationary

More information

REFINED RESTEK. innovative petrochemical solutions. Visit us at Innovative Chromatography Solutions

REFINED RESTEK. innovative petrochemical solutions. Visit us at   Innovative Chromatography Solutions RESTEK REFINED innovative petrochemical solutions Innovative bonding process minimizes particle release. More consistent flow means stable retention times. Outstanding peak symmetry improves impurity analysis.

More information

Introducing New Functionalities in Liquid Stationary Phases in GC Columns for Confirming Organic Volatile Impurity Testing in Pharmaceutical Products.

Introducing New Functionalities in Liquid Stationary Phases in GC Columns for Confirming Organic Volatile Impurity Testing in Pharmaceutical Products. Introducing New Functionalities in Liquid Stationary Phases in GC Columns for Confirming Organic Volatile Impurity Testing in Pharmaceutical Products. CHRISTOPHER M. ENGLISH, CHRISTOPHER S. COX, FRANK

More information

A New Web-Based Application for Modeling Gas Chromatographic Separations

A New Web-Based Application for Modeling Gas Chromatographic Separations A New Web-Based Application for Modeling Gas Chromatographic Separations Jaap de Zeeuw**, Rebecca Stevens*, Amanda Rigdon, Linx Waclaski*and Dan Li* *Restek Corporation, Bellefonte, PA, USA **Restek Corporation,

More information

Semivolatile Organics Analysis Using an Agilent J&W HP-5ms Ultra Inert Capillary GC Column

Semivolatile Organics Analysis Using an Agilent J&W HP-5ms Ultra Inert Capillary GC Column Semivolatile Organics Analysis Using an Agilent J&W HP-5ms Ultra Inert Capillary GC Column Application Note Environmental Author Doris Smith and Kenneth Lynam Agilent Technologies, Inc. 285 Centerville

More information

2. a) R N and L N so R L or L R 2.

2. a) R N and L N so R L or L R 2. 1. Use the formulae on the Some Key Equations and Definitions for Chromatography sheet. a) 0.74 (remember that w b = 1.70 x w ½ ) b) 5 c) 0.893 (α always refers to two adjacent peaks) d) 1.0x10 3 e) 0.1

More information