Gabriele Hampel 1, Uwe Klaus 2

Size: px
Start display at page:

Download "Gabriele Hampel 1, Uwe Klaus 2"

Transcription

1 Planning of Radiation Protection Precautionary Measures in Preparation for Dismantling and Removal of the TRIGA Reactor at the Medical University of Hannover Gabriele Hampel, Uwe Klaus. Department of Nuclear Medicine, Medical University of Hannover, Carl-Neuberg-Str., D-3065 Hannover, Germany Fa. Babcock Noell Nuclear GmbH, D-97064Würzburg, Germany Abstract. At the Medical University of Hannover a research reactor of type TRIGA I was in operation between 973 and 996. The fuel is removed. It is now planned to dismantle the facility, remove the individual parts, take any radioactive waste to an external location and then to release the facility from the auspices of the German Atomic Law []. In order to carry out the decommissioning it is necessary to submit verification of adequate radiation protection precautionary measures which are based on the present radiological condition of the reactor facility, the dismantling techniques, the handling and amount of the expected radioactive waste. For the determination of the present radiological condition, samples were taken from the reactor components and both the activation and dose rates were calculated. A catalog of contamination and dose rates was drawn up. It is intended to use manual dismantling techniques and to minimize cutting of activated components. The radioactive waste will be collected, sorted, packed suitably, transported through the building, declared and then released for interim storage to an external location. For all of these steps the radiation protection measures will be described and the expected dose rates, the individual and collective doses of the staff, the radiation exposure of the not direct with the decommissioning project involved MHH personal and the general public will be estimated. In addition, the radiation exposure of small children and adults has been calculated at the most affected point where effects from spent air containing radioactive substances could be expected, under both normal and unusual operating conditions during the dismantling of the facility.. Introduction Since 973 the Clinic for Nuclear Medicine at the Medical University of Hannover (MHH) had operated a research reactor of type TRIGA I at a maximum power level of 50 kw mainly to produce radio-pharmaceuticals and for activation analyses. In 997 the facility was shut down. Two years later all of the spent TRIGA fuel elements were returned to the United States []. It is now planned to dismantle the facility, remove the individual parts, take any radioactive waste to an external location and then to release the facility from the auspices of the German Atomic Law []. In order to carry out the decommissioning it is necessary to submit verification of adequate radiation protection precautionary measures which bases on the present radiological condition of the reactor facility, the dismantling techniques, the handling and amount of the expected radioactive waste.. Present radiological condition of the reactor facility In order to determine the radiological condition of the facility after the irradiation, samples were taken from the reactor components [3] and both the activation and dose rates were calculated [4,5,6]. The main activated components are the core support, the graphite elements, the control rods, the graphite reflector with lower and upper grid plate, the rotary specimen rack, the radial beam tube, the central irradiation tube, the filter equipment, the reactor tank and the surrounding baryt concrete of the biological shield. The main data required for planning the dismantling of the reactor are the average and maximum specific activities in the irradiated reactor components, the dose rates at the surface and

2 at m distance from components and in the areas affected by dismantling and the dismantling thresholds in the reactor tank and biological shield as well. Samples were taken from the following materials and components from areas of high neutron flux (see Fig. ): Graphite from a graphite element Aluminium from the reactor tank Aluminium from the top grid plate Stainless steel from a screw in the top grid plate Baryt concrete and reinforcement irons from the biological shield Fig.. Schematic diagram of the reactor. Samples were taken from the marked positions and materials: stainless steel from a screw in the upper grid plate, baryt concrete and reinforcement irons from the biological shield, 3 aluminium from the reactor tank, 4 aluminium from the upper grid plate, 5 graphite from a graphite element.

3 The samples were prepared and analysed at the VKTA Rossendorf Laboratory for Environmental and Radionuclide Analyses and at MHH using the following methods: High resolution gamma spectrometry with HP germanium detector (type n) Comprehensive beta measurement (low level alpha beta counter) Liquid scintillation spectrometry after radio-chemical separation for determining H-3, C-4, Fe-55 and Ni-63 Mass spectrometry with inductively coupled plasma (ICP-MS) for determining traces of chemical elements The calculations of the specific activities and dose rates were done by the IKE Stuttgart [4, 5,6]. The D S N program DORT and the 3D Monte Carlo program MCNP-4C were used to solve the neutron and photon transport equation. For calculating the activity after irradiation and determination of photon sources ORIGEN- was used. Cross sections processed at IKE were used based on ENDF/B- VI and JEF-. for transport calculations and FENDL for activation calculations. The principle geometry of the TRIGA reactor is cylindrical and therefore it can be described by a D model. The non-symmetrical parts, i.e. the radial beam tube, the filter equipment, graphite elements, control rods and instrumentation tubes as well require a 3D description. Table I shows the calculated specific and total activities of the important components and materials of the TRIGA reactor. Table I. Materials and activity of components Component Material Specific activity [Bq/g] Total activity [Bq] Upper grid plate AlMg3F8 3.9E+04.0E+08 Lower grid plate AlMg3F8 5.3E+04 4.E+08 Central irradiation tube AlMg3F8.8E E+08 Instrumentation tubes AlMg3F8 5.0E+03.0E+08 Reactor tank with radial AlMg3F8 9.0E+0.E+08 beam tube Rotary specimen rack Stainless steel, Al.5E E+0 Steel components Stainless steel.7e E+09 (screws etc.) Graphite elements Graphite, Al 9.3E E+09 Control rods B 4 C, Al.5E E+08 Filter equipment Al, Pb, He, graphite 4.E+03.4E+09 Graphite reflector Graphite, Al.0E+04.6E+0 Biological shield (D Baryt concrete model) Biological shield (3D model) Baryt concrete. 7,700 The maximal total activity of the activated components and materials of the TRIGA reactor is about 84 GBq. This value includes the measured activity of the reinforcement irons of the biological shield. The main parts of the total activity are the rotary specimen rack and small stainless steel components, the graphite reflector and activated concrete of the biological shield. The stainless steel components have the highest specific activities, but a total mass of only.5 kg. The graphite reflector has less specific activity, but a mass of 800 kg and the activated concrete also has a low specific activity, but a heavy mass of 0,000 kg. 3

4 Fig. shows the activation in the reactor tank and the biological shield. Fig.. Top: Co-60 activation product in the aluminium tank with boundary for dismantling, Bottom: right: Ba-33 activation in the symmetric region of the biological shield with boundary for dismantling, left: Ba-33 activation product in the top layer of heavy concrete near the radial beam tube 4

5 From the specific activity the nuclide vectors in table II were determined. Table II. Nuclide vectors for the relevant materials Material Nuclide Portion [%] Aluminium Stainless steel Fe-55 Co-60 Ni-63 Eu-5 Fe-55 Co-60 Ni-63 Graphite H-3 C-4 Co-60 Eu-5 Eu-54 Baryt concrete H-3 Fe-55 Co-60 Ba-33 Eu-5 Eu Table III shows examples of the results of the dose rate calculations. The calculated dose rates of a stainless steel screw as a function of the distance can be seen in Fig. 3. Table III. Dose rates at the surface and at a distance of meter for some components Material / Location Dose rate [msv/h] At the surface At a distance of meter Empty reactor tank, m over 5.0 E-03.8 E-03 bottom Lower grid plate 6 E+00 8 E-0 Graphite reflector 9.5 E+00 9 E-0 Rotary specimen rack E+0 4. E-0 Central irradiation tube 6 E E-03 The calculations and measurements provide a complete picture of the activity of the area near the core from the center of the core to the biological shield. Thus all the main data required for planing the dismantling techniques of the reactor, handling the residual materials and the radiation protection measures are available. Additionally the amount of radioactive waste and its total activity can be estimated. 5

6 3. Basic safety goals The concept of MHH for decommissioning and dismantling of the reactor is based on the following goals: Use of common and manual dismantling techniques Minimisation of the cutting of activated components Reduction of the amount of radioactive waste by radiological measurements for release Minimisation of the radiation exposure for the working staff and the not involved persons (e.g. patients, medical personal) Prevention of pollution to the environment Maintenance of operational safety, fire and physical protection Maintenance of a safe dismantling under both normal and unusual operating conditions 4. Dismantling concept All radioactive materials of the reactor will be removed with the aim to release the facility from the German Atomic Law []. Due to the results of the measurements and calculations of the activity inventory the concept for dismantling the TRIGA reactor is based exclusively on the mechanical dismantling and taking apart of the reactor facility with manually used tools usual in the trade. Most of the build-in components can be dismantled in accordance with the regular operational procedures under water. It is planed to minimize the cutting of activated or contaminated components. For example the reflector will be attached by its shackles and lifted from the reactor tank into a special waste cask without any cutting. It is planed to dismantle the reactor in 7 phases. The schedule for decommissioning is shown in table IV. Table IV. Schedule for decommissioning No. Phase of dismantling Time in weeks Preparations 4 Built-in components of the reactor tank 8 3 Water cooling and purification system 4 4 Reactor tank and biological shield together with the 3 radial beam tube 5 Other systems like pneumatic transfer system 6 6 Final measures 4 7 Radiological measurements for the release of the 3 reactor facility and remaining structures Sum 5 The reactor tank, the biological shield and the radial beam tube will be dismantled only partial. The reactor tank will be cut into segments and separated from the biological shield with a severing tool. In order to avoid the spread of contamination, this work and the dismantling of the biological shield and the radial beam tube will be carried out in a foil tent with separate ventilation and aerosol filter. 6

7 5. Precautionary radiation protection measures The following measures are planned to ensure the radiation protection during dismantling: Shieldings (mobile and fix) Mobile ventilation systems Remote control techniques Foil tends Decontamination of components Overhead of areas and components with foils Personal protection cloth like overall, extra gloves and inhalation protection Packages for the radioactive residual materials and prevention of surface contamination of the packages In order to estimate the dose during dismantling procedure the calculated dose at the surface and at a distance of m of the components was taken as a basis to definite the following dose guidelines for the working staff: Daily 0. msv Weekly 0.5 msv Monthly.0 msv After the German Radiation Protection Ordinance [7] a total dose of 0 msv is the yearly limit of a working person. Addionally the following values of dose rates at the working positions are determined for radiation protection measures: Dose rate [µsv/h] Radiation protection measures <.5 Not necessary.5 to 00 Decision of the officer for radiation protection > 00 Necessary 6. Monitoring The monitoring includes measurements of the dose rates determination of the activity concentration in the air in working areas sampling of the components during dismantling measurements of the external radiation exposure of the personnel incorporation control of the personal control of the activity release with air and water surveillance of the environment The personnel s exposure to radiation will be solely from external radiation exposure. Incorporations during dismantling are not relevant since the release of aerosols is less and radiation protection measures are taken into account. The whole body counter of MHH is used to determine the incorporation of gamma radionuclides of the staff at the begin and at the end of their work. 7

8 7. Estimation of the radiation exposure The estimated collective dose for the working staff is 5 msv. 95 % of this value belongs to the 9 persons working for dismantling, radiation protection and handling the radioactive waste. For non involved persons in other areas of the radiological building outside the controlled area adjacent to the reactor facility there will be no significant radiation exposure. Based on German Radiation Protection Ordinance [7] the radiation exposure of persons in the surroundings and the area of the MHH was calculated using the administrative regulation (AVV) [8]. First the radiation exposure due to the emissions of airborne radioactivity from MHH facilities - not including the MHH TRIGA reactor - was calculated at selected points in the area and the surroundings of the MHH. Secondly, for the calculation of the radiation exposure caused by the dismantling of the TRIGA reactor, dose coefficients for several nuclides and selected points were determined. The results show that the effective dose for children ( year) due to the maximal emissions of airborne activity (Co-60 and H-3) from the TRIGA reactor in a year at the unfavourable point is less than µsv [9]. The regulatory limits for the general public of the German Radiation Protection Ordinance [7] will not be exceeded. 8. Summary The results show that the safe limits in accordance with the German Radiation Protection Ordinance [7] will not be exceeded for any persons as long as the usual radiation protection measures are adhered to. This, then, guarantees the prerequisite of radiation protection precautionary measures for carrying out the dismantling and removal of the TRIGA reactor. The radiation protection measures to be carried out during the dismantling and removal procedures will be stipulated in a Radiation Protection Instruction. Once all of these measures have been concluded, including the final measurements for releasing, the reactor facility can be released from the auspices of the German Atomic Law []. Reference // German Atomic Law from 5. July 985 // H. Harke, G. Hampel, U. Klaus, L. Lörcher, Radiation Protection during Handling the spent TRIGA Fuel at the Medical University of Hanover, WM 00 Conference, February 7 - March, 000,Tucson, AZ /3/ G. Hampel, H. Harke, U. Klaus, W. Kelm, L. Lörcher, Sampling and Radiological Analysis of Components of the TRIGA Reactor at the Medical University of Hannover, WM 0 Conference, February 5 - March, 00,Tucson, AZ /4/ G. Hampel, F. Scheller, W. Bernnat, G. Pfister, U. Klaus, E. Gerhards: Calculation of the Activity Inventory for the TRIGA Reactor at the Medical University of Hannover (MHH) in Preparation for Dismantling the Facility, WM 0 Conference, February 4 8, 00, Tucson, AZ /5/ W. Bernnat, E. Gerhards, G. Hampel, U. Klaus, G. Pfister: Two and Three Dimensional Activity and Dose Rate Calculations for the TRIGA Reactor at the Medical University of Hannover (MHH), Jahrestagung Kerntechnik, Stuttgart (Mai 00), S , ISSN /6/ W. Bernnat,, E. Gerhards, G. Hampel, U. Klaus, G. Pfister Measurements and Calculations for Determination the Activity Inventory and Dose rates of the TRIGA Reactor at the Medical University of Hanover, st World TRIGA Users Conference, June 00, Pavia, Italy /7/ German Radiation Protection Ordinance from July 0 th 00 /8/ Administration Regulation to 45 of the German Radiation Protection Ordinance from February st 990 /9/ G. Hampel, U. Klaus, W.-H. Knapp, W. Stratmann Radiation Exposure of the Public due to the Emission of airborne Radioactivity from the Medical University of Hannover, 34. Jahrestagung des Fachverbandes für Strahlenschutz 8

ACTIVATION ANALYSIS OF DECOMISSIONING OPERATIONS FOR RESEARCH REACTORS

ACTIVATION ANALYSIS OF DECOMISSIONING OPERATIONS FOR RESEARCH REACTORS ACTIVATION ANALYSIS OF DECOMISSIONING OPERATIONS FOR RESEARCH REACTORS Hernán G. Meier, Martín Brizuela, Alexis R. A. Maître and Felipe Albornoz INVAP S.E. Comandante Luis Piedra Buena 4950, 8400 San Carlos

More information

Evaluation of Radiation Characteristics of Spent RBMK-1500 Nuclear Fuel Storage Casks during Very Long Term Storage

Evaluation of Radiation Characteristics of Spent RBMK-1500 Nuclear Fuel Storage Casks during Very Long Term Storage SESSION 7: Research and Development Required to Deliver an Integrated Approach Evaluation of Radiation Characteristics of Spent RBMK-1500 Nuclear Fuel Storage Casks during Very Long Term Storage A. Šmaižys,

More information

FIR TRIGA activity inventories for decommissioning planning

FIR TRIGA activity inventories for decommissioning planning FIR TRIGA activity inventories for decommissioning planning Antti RÄTY a*, Petri KOTILUOTO a a VTT Technical Research Centre of Finland Ltd, Otakaari 3, 02150 Espoo, Finland *corresponding author: antti.raty@vtt.fi

More information

THE IMPLEMENTATION OF RADIOLOGICAL CHRACTERIZATION FOR REACTOR DECOMMISSIONING. China Nuclear Power Engineering Co. Ltd, Beijing , China

THE IMPLEMENTATION OF RADIOLOGICAL CHRACTERIZATION FOR REACTOR DECOMMISSIONING. China Nuclear Power Engineering Co. Ltd, Beijing , China Proceedings of the 18th International Conference on Nuclear Engineering ICONE18 May 17-21, 2010, Xi'an, China ICONE18- THE IMPLEMENTATION OF RADIOLOGICAL CHRACTERIZATION FOR REACTOR DECOMMISSIONING DENG

More information

RPR 29 CYCLOTRON RADIOCHEMISTRY LABORATORY

RPR 29 CYCLOTRON RADIOCHEMISTRY LABORATORY RPR 29 CYCLOTRON RADIOCHEMISTRY LABORATORY PURPOSE This procedure provides instructions for developing, maintaining, and documenting, radiation safety procedures conducted at the Cyclotron Radiochemistry

More information

Residual activity (contamination) Radiation exposure levels

Residual activity (contamination) Radiation exposure levels Field Survey Techniques to be Used for the PRR-1 Kristine Marie Romallosa Radiation Protection Services PHILIPPINE NUCLEAR RESEARCH INSTITUTE Why field survey? To identify location measure and give extent

More information

Calculation of dose rate, decay heat and criticality for verifying compliance with transport limits for steel packages

Calculation of dose rate, decay heat and criticality for verifying compliance with transport limits for steel packages 2005, April 14th & 15th Radioactivity, radionuclides & radiation Lars Niemann Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Nuclear Facilities Decommissioning Division Calculation of dose rate,

More information

CALCULATION OF ISOTOPIC COMPOSITION DURING CONTINUOUS IRRADIATION AND SUBSEQUENT DECAY IN BIOLOGICAL SHIELD OF THE TRIGA MARK ΙΙ REACTOR

CALCULATION OF ISOTOPIC COMPOSITION DURING CONTINUOUS IRRADIATION AND SUBSEQUENT DECAY IN BIOLOGICAL SHIELD OF THE TRIGA MARK ΙΙ REACTOR International Conference Nuclear Energy for New Europe 2002 Kranjska Gora, Slovenia, September 9-12, 2002 www.drustvo-js.si/gora2002 CALCULATION OF ISOTOPIC COMPOSITION DURING CONTINUOUS IRRADIATION AND

More information

GRAPHITE GAS REACTORS SLA1 & SLA2 : FROM SAMPLING STRATEGY TO WORKING CONDITIONS

GRAPHITE GAS REACTORS SLA1 & SLA2 : FROM SAMPLING STRATEGY TO WORKING CONDITIONS Decomissioning & Waste Management Unit GRAPHITE GAS REACTORS SLA1 & SLA2 : FROM SAMPLING STRATEGY TO WORKING CONDITIONS Atoms for the future 27 th -30 th June 2016 Contact : Clémence WEILL clemence.weill@edf.fr

More information

RADIOLOGICAL CHARACTERIZATION ACTIVITIES DURING THE PARTIAL DISMANTLING OF THE IRT SOFIA RESEARCH REACTOR FACILITIES

RADIOLOGICAL CHARACTERIZATION ACTIVITIES DURING THE PARTIAL DISMANTLING OF THE IRT SOFIA RESEARCH REACTOR FACILITIES RADIOLOGICAL CHARACTERIZATION ACTIVITIES DURING THE PARTIAL DISMANTLING OF THE IRT SOFIA RESEARCH REACTOR FACILITIES TZ. NONOVA, D. STANKOV, AL. MLADENOV, K. KREZHOV Institute for Nuclear Research and

More information

Neutron Dose near Spent Nuclear Fuel and HAW after the 2007 ICRP Recommendations

Neutron Dose near Spent Nuclear Fuel and HAW after the 2007 ICRP Recommendations Neutron Dose near Spent Nuclear Fuel and HAW after the 2007 ICRP Recommendations Gunter Pretzsch Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbh Radiation and Environmental Protection Division

More information

The outermost container into which vitrified high level waste or spent fuel rods are to be placed. Made of stainless steel or inert alloy.

The outermost container into which vitrified high level waste or spent fuel rods are to be placed. Made of stainless steel or inert alloy. Glossary of Nuclear Waste Terms Atom The basic component of all matter; it is the smallest part of an element having all the chemical properties of that element. Atoms are made up of protons and neutrons

More information

Application of national regulations for metallic materials recycling from the decommissioning of an Italian nuclear facility.

Application of national regulations for metallic materials recycling from the decommissioning of an Italian nuclear facility. Application of national regulations for metallic materials recycling from the decommissioning of an Italian nuclear facility. Giovanni Varasano *, Leonardo Baldassarre*, Edoardo Petagna*. SOGIN Spa, ITREC

More information

Procedure for determining radionuclides in foodstuffs at elevated levels of contamination by gamma spectrometry

Procedure for determining radionuclides in foodstuffs at elevated levels of contamination by gamma spectrometry Procedure for determining radionuclides in foodstuffs at elevated levels of contamination by gamma spectrometry E- -SPEKT-LEBM-02 Authors: O. Frindik M. Heilgeist W. Kalus R. Schelenz Federal coordinating

More information

Active concentration for material not requiring radiological regulation

Active concentration for material not requiring radiological regulation Translated English of Chinese Standard: GB27742-2011 www.chinesestandard.net Sales@ChineseStandard.net Wayne Zheng et al. ICS 17. 240 F 70 GB National Standard of the People s Republic of China Active

More information

Planning and preparation approaches for non-nuclear waste disposal

Planning and preparation approaches for non-nuclear waste disposal Planning and preparation approaches for non-nuclear waste disposal Lucia Sarchiapone Laboratori Nazionali di Legnaro (Pd) Istituto Nazionale di Fisica Nucleare INFN Lucia.Sarchiapone@lnl.infn.it +39 049

More information

8 th International Workshop on Radiation Safety at Synchrotron Radiation Sources

8 th International Workshop on Radiation Safety at Synchrotron Radiation Sources 8 th International Workshop on Radiation Safety at Synchrotron Radiation Sources DESY Hamburg, 3 5 June 2015 Proposed material release plan for The decommissioning of the ESRF storage ring Paul Berkvens

More information

Estimation of Radioactivity and Residual Gamma-ray Dose around a Collimator at 3-GeV Proton Synchrotron Ring of J-PARC Facility

Estimation of Radioactivity and Residual Gamma-ray Dose around a Collimator at 3-GeV Proton Synchrotron Ring of J-PARC Facility Estimation of Radioactivity and Residual Gamma-ray Dose around a Collimator at 3-GeV Proton Synchrotron Ring of J-PARC Facility Y. Nakane 1, H. Nakano 1, T. Abe 2, H. Nakashima 1 1 Center for Proton Accelerator

More information

Radioactive Waste Management

Radioactive Waste Management International Journal of Research in Engineering and Science (IJRES) ISSN (Online): 2320-9364, ISSN (Print): 2320-9356 Volume 4 Issue 6 ǁ June. 2016 ǁ PP.67-71 Asma Osman Ibrahim Osman 1, Hamid Mohamed

More information

Depth Distribution of H-3, C-14 and Co-60 in Decommissioning of the Biological Shielding Concrete of KRR-2

Depth Distribution of H-3, C-14 and Co-60 in Decommissioning of the Biological Shielding Concrete of KRR-2 Depth Distribution of H-3, C-14 and Co-60 in Decommissioning of the Biological Shielding Concrete of KRR-2 S.B. Hong, H.R. Kim, K.H. Chung, K.H. Chung, J.H. Park Korea Atomic Energy Research Institute

More information

AP1000 European 15. Accident Analyses Design Control Document

AP1000 European 15. Accident Analyses Design Control Document 15.7 Radioactive Release from a Subsystem or Component This group of events includes the following: Gas waste management system leak or failure Liquid waste management system leak or failure (atmospheric

More information

Measurement of induced radioactivity in air and water for medical accelerators

Measurement of induced radioactivity in air and water for medical accelerators Measurement of induced radioactivity in air and water for medical accelerators K. Masumoto 1, K. Takahashi 1, H. Nakamura 1, A. Toyoda 1, K. Iijima 1, K. Kosako 2, K. Oishi 2, F. Nobuhara 1 High Energy

More information

Higher -o-o-o- Past Paper questions o-o-o- 3.6 Radiation

Higher -o-o-o- Past Paper questions o-o-o- 3.6 Radiation Higher -o-o-o- Past Paper questions 2000-2010 -o-o-o- 3.6 Radiation 2000 Q29 Radium (Ra) decays to radon (Rn) by the emission of an alpha particle. Some energy is also released by this decay. The decay

More information

Wallace Hall Academy Physics Department. Radiation. Pupil Notes Name:

Wallace Hall Academy Physics Department. Radiation. Pupil Notes Name: Wallace Hall Academy Physics Department Radiation Pupil Notes Name: Learning intentions for this unit? Be able to draw and label a diagram of an atom Be able to state what alpha particles, beta particles

More information

Radiation Protection Considerations *

Radiation Protection Considerations * Chapter 11 Radiation Protection Considerations * C. Adorisio 1, S. Roesler 1, C. Urscheler 2 and H. Vincke 1 1 CERN, TE Department, Genève 23, CH-1211, Switzerland 2 Bundesamt fuer Gesundheit, Direktionsbereich

More information

Reactor radiation skyshine calculations with TRIPOLI-4 code for Baikal-1 experiments

Reactor radiation skyshine calculations with TRIPOLI-4 code for Baikal-1 experiments DOI: 10.15669/pnst.4.303 Progress in Nuclear Science and Technology Volume 4 (2014) pp. 303-307 ARTICLE Reactor radiation skyshine calculations with code for Baikal-1 experiments Yi-Kang Lee * Commissariat

More information

Title: Assessment of activity inventories in Swedish LWRs at time of decommissioning

Title: Assessment of activity inventories in Swedish LWRs at time of decommissioning Paper presented at the seminar Decommissioning of nuclear facilities, Studsvik, Nyköping, Sweden, 14-16 September 2010. Title: Assessment of activity inventories in Swedish LWRs at time of decommissioning

More information

Júlio Takehiro Marumo. Nuclear and Energy Research Institute, IPEN CNEN/SP, Brazil

Júlio Takehiro Marumo. Nuclear and Energy Research Institute, IPEN CNEN/SP, Brazil Júlio Takehiro Marumo Nuclear and Energy Research Institute, IPEN CNEN/SP, Brazil Introduction Brazil State of São Paulo City of São Paulo Reactor IEA-R1 Source: http://www.relevobr.cnpm.embrapa.br Source:

More information

M.Cagnazzo Atominstitut, Vienna University of Technology Stadionallee 2, 1020 Wien, Austria

M.Cagnazzo Atominstitut, Vienna University of Technology Stadionallee 2, 1020 Wien, Austria Measurements of the In-Core Neutron Flux Distribution and Energy Spectrum at the Triga Mark II Reactor of the Vienna University of Technology/Atominstitut ABSTRACT M.Cagnazzo Atominstitut, Vienna University

More information

Shutdown dose calculations for the IFMIF test facility and the high flux test module

Shutdown dose calculations for the IFMIF test facility and the high flux test module DOI: 10.15669/pnst.4.233 Progress in Nuclear Science and Technology Volume 4 (2014) pp. 233-237 ARTICLE Shutdown dose calculations for the IFMIF test facility and the high flux test module Keitaro Kondo

More information

Characterization of Large Structures & Components

Characterization of Large Structures & Components Structures & Components KEY BENEFITS Key Drivers: Lack of good knowledge about the position, the identification and the radiological specification of contamination on or inside large components. Significant

More information

MEASUREMENT OF SPENT FUEL ASSEMBLIES IN SPRR-300

MEASUREMENT OF SPENT FUEL ASSEMBLIES IN SPRR-300 MEASUREMENT OF SPENT FUEL ASSEMBLIES IN SPRR-300 CHEN Wei, HU Zhiyong, YANG Rui Institute of Nuclear Physics and Chemistry, Sichuan, China 1 Preface SPRR-300 is a pool-typed research reactor which uses

More information

Methods to identify and locate spent radiation sources

Methods to identify and locate spent radiation sources IAEA-TECDOC-804 Methods to identify and locate spent radiation sources INTERNATIONAL ATOMIC ENERGY AGENCY The originating Section of this publication in the IAEA was: Waste Management Section International

More information

Activation of Air and Concrete in Medical Isotope Production Cyclotron Facilities

Activation of Air and Concrete in Medical Isotope Production Cyclotron Facilities Activation of Air and Concrete in Medical Isotope Production Cyclotron Facilities CRPA 2016, Toronto Adam Dodd Senior Project Officer Accelerators and Class II Prescribed Equipment Division (613) 993-7930

More information

General Regression Neural Networks for Estimating Radiation Workers Internal Dose

General Regression Neural Networks for Estimating Radiation Workers Internal Dose General Regression Neural Networks for Estimating Radiation s Internal Dose Eman Sarwat and Nadia Helal Radiation Safety Dep. ENRRA., Egyptian Nuclear and Radiological Regulatory Authority, 3, Ahmed El

More information

Monitoring of Ionizing Radiations facilities Experience and challenge

Monitoring of Ionizing Radiations facilities Experience and challenge Monitoring of Ionizing Radiations facilities Experience and challenge Lebanese Atomic Energy Commission The LAEC was established in 1996 with the full support and assistance of the IAEA, having the mandate

More information

THE UNIVERSITY OF NEWCASTLE SCHOOL of BIOMEDICAL SCIENCES

THE UNIVERSITY OF NEWCASTLE SCHOOL of BIOMEDICAL SCIENCES THE UNIVERSITY OF NEWCASTLE SCHOOL of BIOMEDICAL SCIENCES STANDARD OPERATING PROCEDURE PROCEDURE NO: BS-GDP 018 MOD: 3 rd Issue Page: 1 of 5 Procedure Type: General Discipline Procedure 1. Risk Assessment:

More information

RADIATION SAFETY. Working Safely with Radiation

RADIATION SAFETY. Working Safely with Radiation RADIATION SAFETY Working Safely with Radiation 12 NOV 2015 Dr. Raed Felimban Department of Transfusion Medicine King Abdul-Aziz University E-mail: felimbanr@yahoo.com KING ABDULAZIZ UNIVERSITY How most

More information

Information about the effects of the reactor disaster in Fukushima on the worldwide networked

Information about the effects of the reactor disaster in Fukushima on the worldwide networked We make radiation measureable! Information about the effects of the reactor disaster in Fukushima on the worldwide networked economy Detect radiation in a reliable way www.sea-duelmen.de The reactor disaster

More information

Radiation protection considerations along a radioactive ion beam transport line

Radiation protection considerations along a radioactive ion beam transport line Applications of Nuclear Techniques (CRETE15) International Journal of Modern Physics: Conference Series Vol. 44 (2016) 1660238 (7 pages) The Author(s) DOI: 10.1142/S2010194516602386 Radiation protection

More information

Assessment of Radioactivity Inventory a key parameter in the clearance for recycling process

Assessment of Radioactivity Inventory a key parameter in the clearance for recycling process Assessment of Radioactivity Inventory a key parameter in the clearance for recycling process MR2014 Symposium, April 8-10, 2014, Studsvik, Nyköping, Sweden Klas Lundgren Arne Larsson Background Studsvik

More information

Accelerator Facility Accident Report

Accelerator Facility Accident Report Accelerator Facility Accident Report 31 May 2013 Incorporated Administrative Agency - Japan Atomic Energy Agency Inter-University Research Institute - High Energy Accelerator Research Organization Subject:

More information

MCNP CALCULATION OF NEUTRON SHIELDING FOR RBMK-1500 SPENT NUCLEAR FUEL CONTAINERS SAFETY ASSESMENT

MCNP CALCULATION OF NEUTRON SHIELDING FOR RBMK-1500 SPENT NUCLEAR FUEL CONTAINERS SAFETY ASSESMENT MCNP CALCULATION OF NEUTRON SHIELDING FOR RBMK-15 SPENT NUCLEAR FUEL CONTAINERS SAFETY ASSESMENT R. Plukienė 1), A. Plukis 1), V. Remeikis 1) and D. Ridikas 2) 1) Institute of Physics, Savanorių 231, LT-23

More information

1 General information and technical data of TRIGA RC-1 reactor

1 General information and technical data of TRIGA RC-1 reactor Contacts: Maria Grazia Iorio ENEA C.R. CASACCIA - UTFISST-REANUC - S.P. 040 via Anguillarese 301 00123 S. MARIA DI GALERIA (ROMA) mariagrazia.iorio@enea.it Link to IAEA Research Reactors Data Base: TRIGA

More information

MONTE CALRLO MODELLING OF VOID COEFFICIENT OF REACTIVITY EXPERIMENT

MONTE CALRLO MODELLING OF VOID COEFFICIENT OF REACTIVITY EXPERIMENT MONTE CALRLO MODELLING OF VOID COEFFICIENT OF REACTIVITY EXPERIMENT R. KHAN, M. VILLA, H. BÖCK Vienna University of Technology Atominstitute Stadionallee 2, A-1020, Vienna, Austria ABSTRACT The Atominstitute

More information

Characterisation of radioactive waste from nuclear decommissioning. Peter Ivanov. Acoustics & Ionising Radiation National Physical Laboratory, UK

Characterisation of radioactive waste from nuclear decommissioning. Peter Ivanov. Acoustics & Ionising Radiation National Physical Laboratory, UK Characterisation of radioactive waste from nuclear decommissioning Peter Ivanov Acoustics & Ionising Radiation National Physical Laboratory, UK IAEA WS RER9106/9009/01, Visaginas, Lithuania, 24-28 August

More information

APPLICATION FOR AUTHORIZATION

APPLICATION FOR AUTHORIZATION INSTRUCTIONS: This form is intended to be a template for completion by the applicant, followed by subsequent review by the Radiation Safety Officer, and then the Radiation Safety Committee. Please fill

More information

The PEAC-WMD Gamma Radiation Dose Calculator

The PEAC-WMD Gamma Radiation Dose Calculator The PEAC-WMD Gamma Radiation Dose Calculator During the last couple of months newsletters I ve discussed some of the new computational tools included in the PEAC-WMD 2007 (v5.5) application. This month

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

RECH-1 RESEARCH REACTOR: PRESENT AND FUTURE APPLICATIONS

RECH-1 RESEARCH REACTOR: PRESENT AND FUTURE APPLICATIONS RECH-1 RESEARCH REACTOR: PRESENT AND FUTURE APPLICATIONS E.Vargas, S. Bustamante, R. Crispieri Subdepartamento de reactores Comisión Chilena de Energía Nuclear, Amunategui 95, P.O.Box 188-D, Santiago Chile

More information

Employees Contractors

Employees Contractors Attachment Exposure Dose Distribution 1. Effective Dose from External Exposure Table 1 shows the distribution of external exposure dose of workers who were involved in radiation work at the Fukushima Daiichi

More information

Radiation safety of the Danish Center for Proton Therapy (DCPT) Lars Hjorth Præstegaard Dept. of Medical Physics, Aarhus University Hospital

Radiation safety of the Danish Center for Proton Therapy (DCPT) Lars Hjorth Præstegaard Dept. of Medical Physics, Aarhus University Hospital Radiation safety of the Danish Center for Proton Therapy (DCPT) Lars Hjorth Præstegaard Dept. of Medical Physics, Aarhus University Hospital Rationale of proton therapy Dose deposition versus depth in

More information

Assessment of Radiation Dose from Radioactive Waste in Bangladesh and Probable Impact on Health

Assessment of Radiation Dose from Radioactive Waste in Bangladesh and Probable Impact on Health Journal of Nuclear and Particle Physics 1, (): 79-86 DOI: 1.593/j.jnpp.1.5 Assessment of Radiation Dose from Radioactive Waste in Bangladesh and Probable Impact on Health M. Moshiur Rahman 1,*, M. A. H.

More information

Welcome to the 2015 Radiation Safety Refresher Training session for sealed source users. As a radiological worker, training concerning the safety

Welcome to the 2015 Radiation Safety Refresher Training session for sealed source users. As a radiological worker, training concerning the safety Welcome to the 2015 Radiation Safety Refresher Training session for sealed source users. As a radiological worker, training concerning the safety aspects related to using radioactive materials must be

More information

Fundamentals of radiation protection

Fundamentals of radiation protection Fundamentals of radiation protection Kamel ABBAS European Commission, Joint Research Centre Institute for Transuranium Elements, Nuclear Security Unit Via E. Fermi, 2749, I-21027 Ispra, Italy tel. +39-0332-785673,

More information

RADIATION SAFETY GUIDELINES FOR NON-USERS

RADIATION SAFETY GUIDELINES FOR NON-USERS RADIATION SAFETY GUIDELINES FOR NON-USERS This is a Read and Sign Awareness Training document. You should read and sign this document if you: 1. DO NOT work directly with radioactive materials, but 2.

More information

Institute of Atomic Energy POLATOM OTWOCK-SWIERK POLAND. Irradiations of HEU targets in MARIA RR for Mo-99 production. G.

Institute of Atomic Energy POLATOM OTWOCK-SWIERK POLAND. Irradiations of HEU targets in MARIA RR for Mo-99 production. G. Instytut Energii Atomowej Institute of Atomic Energy OTWOCK-SWIERK POLAND Irradiations of HEU targets in MARIA RR for Mo-99 production G. Krzysztoszek IAEA TM on Commercial Products and Services of Research

More information

A Beam Dump Facility (BDF) at CERN - The Concept and a First Radiological Assessment

A Beam Dump Facility (BDF) at CERN - The Concept and a First Radiological Assessment A Beam Dump Facility (BDF) at CERN - The Concept and a First Radiological Assessment M. Calviani 1, M. Casolino 1, R. Jacobsson 1, M. Lamont 1, S. Roesler 1, H. Vincke 1, C. Ahdida 2 1 CERN, 2 PSI AccApp

More information

O R D E R OF THE HEAD OF THE STATE NUCLEAR POWER SAFETY INSPECTORATE

O R D E R OF THE HEAD OF THE STATE NUCLEAR POWER SAFETY INSPECTORATE O R D E R OF THE HEAD OF THE STATE NUCLEAR POWER SAFETY INSPECTORATE ON THE APPROVAL OF NUCLEAR SAFETY REQUIREMENTS BSR-1.9.1-2011 STANDARDS OF RELEASE OF RADIONUCLIDES FROM NUCLEAR INSTALLATIONS AND REQUIREMENTS

More information

Michael G. Stabin. Radiation Protection and Dosimetry. An Introduction to Health Physics. 4) Springer

Michael G. Stabin. Radiation Protection and Dosimetry. An Introduction to Health Physics. 4) Springer Michael G. Stabin Radiation Protection and Dosimetry An Introduction to Health Physics 4) Springer Table of Contents Preface Acknowledgments Chapter 1. Introduction to Health Physics 1 1.1 Definition of

More information

Storing, using and disposing of unsealed radioactive substances in a Type C Laboratory: Extract of regulatory requirements

Storing, using and disposing of unsealed radioactive substances in a Type C Laboratory: Extract of regulatory requirements Storing, using disposing of unsealed radioactive substances in a Type C Laboratory: Extract of regulatory requirements Radiation Protection Control (Ionising Radiation) Regulations 2000 Requirements for

More information

Analysis of the TRIGA Reactor Benchmarks with TRIPOLI 4.4

Analysis of the TRIGA Reactor Benchmarks with TRIPOLI 4.4 BSTRCT nalysis of the TRIG Reactor Benchmarks with TRIPOLI 4.4 Romain Henry Jožef Stefan Institute Jamova 39 SI-1000 Ljubljana, Slovenia romain.henry@ijs.si Luka Snoj, ndrej Trkov luka.snoj@ijs.si, andrej.trkov@ijs.si

More information

Characterization Survey Techniques and Some Practical Feedback

Characterization Survey Techniques and Some Practical Feedback International Atomic Energy Agency Characterization Survey Techniques and Some Practical Feedback Lawrence E. Boing R 2 D 2 Project Workshop December 3-7, 2007 Manila, The Philippines 3/17/2008 NSRW/WSS

More information

RADIATION SAFETY TRAINING SEALED SOURCES

RADIATION SAFETY TRAINING SEALED SOURCES RADIATION SAFETY TRAINING SEALED SOURCES PLEASE REFER TO THE RADIATION SAFETY HANDBOOK, PARTICULARLY THE SEALED SOURCES CHAPTER, AS A SUPPLEMENT TO THIS PACKET. Sealed source use at CU State and federal

More information

1. What would be the dose rate of two curies of 60Co with combined energies of 2500 kev given off 100% of the time?

1. What would be the dose rate of two curies of 60Co with combined energies of 2500 kev given off 100% of the time? 1.11 WORKSHEET #1 1. What would be the dose rate of two curies of 60Co with combined energies of 500 kev given off 100% of the time?. What would be the dose rate of 450 mci of 137Cs (gamma yield is 90%)?

More information

Radioactive Waste Characterization and Management Post-Assessment Answer Key Page 1 of 7

Radioactive Waste Characterization and Management Post-Assessment Answer Key Page 1 of 7 Key Page 1 of 7 1. Uranium tailings from mining operations are typically left in piles to. a. decay b. dry c. be re-absorbed d. be shipped to a disposal site 2. is the most important radioactive component

More information

Specific Accreditation Criteria Calibration ISO/IEC Annex. Ionising radiation measurements

Specific Accreditation Criteria Calibration ISO/IEC Annex. Ionising radiation measurements Specific Accreditation Criteria Calibration ISO/IEC 17025 Annex Ionising radiation measurements January 2018 Copyright National Association of Testing Authorities, Australia 2014 This publication is protected

More information

Employees Contractors

Employees Contractors Attachment Exposure Dose Distribution 1. Effective Dose from External Exposure Table 1 shows the distribution of external exposure dose of workers who were involved in radiation work at the Fukushima Daiichi

More information

Calibration of a Whole Body Counter and In Vivo measurements for Internal Dosimetry Evaluation in Chile, Two years experience.

Calibration of a Whole Body Counter and In Vivo measurements for Internal Dosimetry Evaluation in Chile, Two years experience. Calibration of a Whole Body Counter and In Vivo measurements for Internal Dosimetry Evaluation in Chile, Two years experience. Osvaldo Piñones O., Sylvia Sanhueza M. Radio medicine Section, Chilean Commission

More information

AnswerIT! Atoms and isotopes. Structure of an atom Mass number, atomic number and isotopes Development of the model of the atom.

AnswerIT! Atoms and isotopes. Structure of an atom Mass number, atomic number and isotopes Development of the model of the atom. AnswerIT! Atoms and isotopes Structure of an atom Mass number, atomic number and isotopes Development of the model of the atom. Atoms and isotopes - AnswerIT 1. The diameter of an atom is about 0.000 000

More information

SURVEILLANCE OF RADIOACTIVE DISCHARGES FROM THE CENTRE OF ISOTOPES OF CUBA

SURVEILLANCE OF RADIOACTIVE DISCHARGES FROM THE CENTRE OF ISOTOPES OF CUBA SURVEILLANCE OF RADIOACTIVE DISCHARGES FROM THE CENTRE OF ISOTOPES OF CUBA Amador Balbona Z. H., Pérez Pijuán S., Rivero A.T., Oropesa P. Centre of Isotopes, Ave. Monumental y carretera La Rada, Km. 3

More information

Measurement of Tritium in Helium

Measurement of Tritium in Helium detect and identify Measurement of Tritium in Helium Dr. Alfred Klett Berthold Technologies, Bad Wildbad, Germany 22 nd Annual Air Monitoring Users Group (AMUG) Meeting Palace Station Hotel, Las Vegas,

More information

Chem 481 Lecture Material 4/22/09

Chem 481 Lecture Material 4/22/09 Chem 481 Lecture Material 4/22/09 Nuclear Reactors Poisons The neutron population in an operating reactor is controlled by the use of poisons in the form of control rods. A poison is any substance that

More information

Hospital Cyclotrons: Radiation Safety Aspects. Matthew Griffiths

Hospital Cyclotrons: Radiation Safety Aspects. Matthew Griffiths Hospital Cyclotrons: Radiation Safety Aspects Matthew Griffiths Isotope Production. Positron decay is a way for an atom with too many protons to get to a more relaxed state. ν Fluorine 18 excess Proton

More information

RADIOLOGICAL CHARACTERIZATION Laboratory Procedures

RADIOLOGICAL CHARACTERIZATION Laboratory Procedures RADIOLOGICAL CHARACTERIZATION Laboratory Procedures LORNA JEAN H. PALAD Health Physics Research Unit Philippine Nuclear Research Institute Commonwealth Avenue, Quezon city Philippines 3-7 December 2007

More information

October 2017 November Employees Contractors

October 2017 November Employees Contractors Attachment Exposure Dose Distribution 1. Effective Dose from External Exposure Table 1 shows the distribution of external exposure dose of workers who were involved in radiation work at the Fukushima Daiichi

More information

Radiological Characterization of the RA RR in Vinča Institute: Approach and Experiences

Radiological Characterization of the RA RR in Vinča Institute: Approach and Experiences IAEA R2D2P TM Characterization Workshop Manila, Philippines, 3-7 December 2007 Radiological Characterization of the RA RR in Vinča Institute: Approach and Experiences Vladan Ljubenov, Miodrag Milošević,

More information

12/18/2016. Radioanalysis Laboratory Capabilities and Issues. Eleventh Annual Radiation Measurement Cross Calibration Workshop RMCC XI

12/18/2016. Radioanalysis Laboratory Capabilities and Issues. Eleventh Annual Radiation Measurement Cross Calibration Workshop RMCC XI 1. Introduction 2. Laboratories Gamma spectrometry laboratory. Radiochemistry laboratory. Analytical chemistry laboratory. Alpha spectrometry laboratory Gross alpha / beta laboratory. Neutron activation

More information

Name Date Class NUCLEAR RADIATION. alpha particle beta particle gamma ray

Name Date Class NUCLEAR RADIATION. alpha particle beta particle gamma ray 25.1 NUCLEAR RADIATION Section Review Objectives Explain how an unstable nucleus releases energy Describe the three main types of nuclear radiation Vocabulary radioisotopes radioactivity radiation alpha

More information

MEASUREMENT OF THE NEUTRON EMISSION RATE WITH MANGANESE SULPHATE BATH TECHNIQUE

MEASUREMENT OF THE NEUTRON EMISSION RATE WITH MANGANESE SULPHATE BATH TECHNIQUE MEASUREMENT OF THE NEUTRON EMISSION RATE WITH MANGANESE SULPHATE BATH TECHNIQUE Branislav Vrban, Štefan Čerba, Jakub Lüley, Filip Osuský, Lenka Dujčíková, Ján Haščík Institute of Nuclear and Physical Engineering,

More information

Safety Assessment on the Storage of Irradiated Graphite Waste Produced from the Decommissioning of KRR-2

Safety Assessment on the Storage of Irradiated Graphite Waste Produced from the Decommissioning of KRR-2 Safety Assessment on the Storage of Irradiated Graphite Waste Produced from the Decommissioning of KRR-2 D.G. Lee, G.H. Jeong, W.Z. Oh, K.W. Lee Korea Atomic Energy Research Institute Korea ABSTRACT Irradiated

More information

Pete Burgess, Nuvia Limited. Clearance and exemption

Pete Burgess, Nuvia Limited. Clearance and exemption Pete Burgess, Nuvia Limited Clearance and exemption The clearance, exclusion and exemption process Most of the UK nuclear industry (and many other organisations) refer to the Clearance and Exemption Working

More information

Industrial Hygiene: Assessment and Control of the Occupational Environment

Industrial Hygiene: Assessment and Control of the Occupational Environment Industrial Hygiene: Assessment and Control of the Occupational Environment Main Topics Air Pollution Control Analytical Methods Ergonomics Gas and Vapour Sampling General Practice Heat and Cold Stress

More information

LAGUNA VERDE NPP DAW DRUMS CLASSIFICATION

LAGUNA VERDE NPP DAW DRUMS CLASSIFICATION ABSTRACT LAGUNA VERDE NPP DAW DRUMS CLASSIFICATION M. Medrano, D. Linares, C. Rodriguez and N. Zarate Gerencia Subsede Sureste National Institute of Nuclear Research Mexico R. Ramirez Radiation Protection

More information

PREP Course 13: Radiation Safety for Laboratory Research. William Robeson Radiology Service Line Physicist

PREP Course 13: Radiation Safety for Laboratory Research. William Robeson Radiology Service Line Physicist PREP Course 13: Radiation Safety for Laboratory Research William Robeson Radiology Service Line Physicist CME Disclosure Statement The North Shore LIJ Health System adheres to the ACCME s new Standards

More information

VERIFICATION OF MONTE CARLO CALCULATIONS OF THE NEUTRON FLUX IN THE CAROUSEL CHANNELS OF THE TRIGA MARK II REACTOR, LJUBLJANA

VERIFICATION OF MONTE CARLO CALCULATIONS OF THE NEUTRON FLUX IN THE CAROUSEL CHANNELS OF THE TRIGA MARK II REACTOR, LJUBLJANA International Conference Nuclear Energy for New Europe 2002 Kranjska Gora, Slovenia, September 9-12, 2002 www.drustvo-js.si/gora2002 VERIFATION OF MONTE CARLO CALCULATIONS OF THE NEUTRON FLUX IN THE CAROUSEL

More information

STUDIES ON THE AEROSOL RADIOACTIVITY LEVEL AND AIR QUALITY AROUND NUCLEAR RESEARCH INSTITUTE AREA

STUDIES ON THE AEROSOL RADIOACTIVITY LEVEL AND AIR QUALITY AROUND NUCLEAR RESEARCH INSTITUTE AREA STUDIES ON THE AEROSOL RADIOACTIVITY LEVEL AND AIR QUALITY AROUND NUCLEAR RESEARCH INSTITUTE AREA A. STOCHIOIU 1, F. MIHAI 1, C. STOCHIOIU 2 1 Horia Hulubei National Institute for Physics and Nuclear Engineering,

More information

PECULIARITIES OF FORMING THE RADIATION SITUATION AT AN AREA OF NSC KIPT ACCELERATORS LOCATION

PECULIARITIES OF FORMING THE RADIATION SITUATION AT AN AREA OF NSC KIPT ACCELERATORS LOCATION PECULIARITIES OF FORMING THE RADIATION SITUATION AT AN AREA OF NSC KIPT ACCELERATORS LOCATION A.N. Dovbnya, A.V. Mazilov, M.V. Sosipatrov National Science Center Kharkov Institute of Physics and Technology,

More information

International Conference on the Safety of Radioactive Waste Management

International Conference on the Safety of Radioactive Waste Management IAEA - CN - 78 / 43 International Conference on the Safety of Radioactive Waste Management 13-17 March 2000, Cordoba, Spain Subject : Assessment of the safety of radioactive waste management Considerations

More information

Core Questions Physics unit 4 - Atomic Structure

Core Questions Physics unit 4 - Atomic Structure Core Questions Physics unit 4 - Atomic Structure No. Question Answer 1 What did scientists think about atoms before the discovery of the They were tiny spheres that could not be broken up electron? 2 Which

More information

WM2014 Conference, March 2 6, 2014, Phoenix, Arizona, USA

WM2014 Conference, March 2 6, 2014, Phoenix, Arizona, USA Determination of Components of Fuel Matrix in Water and in Bottom Slimes in the MR Reactor Ponds in NRC Kurchatov Institute 14038 Alexey Stepanov *, Iurii Simirskii *, Ilya Semin *, Anatoly Volkovich *

More information

8 th International Summer School 2016, JRC Ispra on Nuclear Decommissioning and Waste Management

8 th International Summer School 2016, JRC Ispra on Nuclear Decommissioning and Waste Management 8 th International Summer School 2016, JRC Ispra on Nuclear Decommissioning and Waste Management Nucleonica: Nuclear Applications for Radioactive Waste Management and Decommissioning cloud based nuclear

More information

RADIOPHARMACY PURPOSE

RADIOPHARMACY PURPOSE RADIOPHARMACY PURPOSE This procedure provides general instructions for developing, maintaining, and documenting, radiation safety procedures for Intermountain Radiopharmacy, Radiology Department, University

More information

5) Measurement of Nuclear Radiation (1)

5) Measurement of Nuclear Radiation (1) 5) Measurement of Nuclear Radiation (1) Registration of interactions between nuclear radiation and matter Universal principle: Measurement of the ionisation Measurement of the ionisation measurement of

More information

Volume 1 No. 4, October 2011 ISSN International Journal of Science and Technology IJST Journal. All rights reserved

Volume 1 No. 4, October 2011 ISSN International Journal of Science and Technology IJST Journal. All rights reserved Assessment Of The Effectiveness Of Collimation Of Cs 137 Panoramic Beam On Tld Calibration Using A Constructed Lead Block Collimator And An ICRU Slab Phantom At SSDL In Ghana. C.C. Arwui 1, P. Deatanyah

More information

Radioactive effluent releases from Rokkasho Reprocessing Plant (1) - Gaseous effluent -

Radioactive effluent releases from Rokkasho Reprocessing Plant (1) - Gaseous effluent - Radioactive effluent releases from Rokkasho Reprocessing Plant (1) - Gaseous effluent - K.Anzai, S.Keta, M.Kano *, N.Ishihara, T.Moriyama, Y.Okamura K.Ogaki, K.Noda a a Reprocessing Business Division,

More information

Industrial and Commercial Applications of FRM II

Industrial and Commercial Applications of FRM II Industrial and Commercial Applications of FRM II Heiko Gerstenberg (and many colleagues) Forschungsneutronenquelle FRM II, Technische Universität München Campus of the TUM in Garching near Munich FRM II

More information

DISMANTLEMENT OF AN UNIT OF METABOLIC TREATMENTS WITH IODINE 131

DISMANTLEMENT OF AN UNIT OF METABOLIC TREATMENTS WITH IODINE 131 DISMANTLEMENT OF AN UNIT OF METABOLIC TREATMENTS WITH IODINE 131 Autores: J.M. Jiménez 1, A.R. Cortés 2, P.Alcorta 2 E-mail: jmjimenez@hsan.osakidetza.net 1 Unidad de Radiofísica. Hospital Santiago Apóstol,

More information

Radionuclides in food and water. Dr. Ljudmila Benedik

Radionuclides in food and water. Dr. Ljudmila Benedik Radionuclides in food and water Dr. Ljudmila Benedik ISO-FOOD WP 3 and WP4 WP 3 Research and education P1 Food authenticity P2 Translation of regional isotopic and elemental signatures from natural environment

More information

Clearance Monitoring. Chris Goddard.

Clearance Monitoring. Chris Goddard. Clearance Monitoring Chris Goddard Outline What is Clearance? Clearance Limits around Europe Measurement techniques Plastic scintillators Long Range Alpha Detection Example systems Thermo SAM12 VF FRM-2

More information