The Nanostream (Pasadena, CA) Veloce system,

Size: px
Start display at page:

Download "The Nanostream (Pasadena, CA) Veloce system,"

Transcription

1 Micro Parallel Liquid Chromatography for High- Throughput Compound Purity Analysis and Early ADMET Profiling Paren Patel,* Sergey Osechinskiy, Jeff Koehler, Li Zhang, Surekha Vajjhala, Chris Philips, and Steve Hobbs Nanostream, Pasadena, CA Keywords: HPLC, high throughput, analytical The Nanostream (Pasadena, CA) Veloce system, together with 24-column Brio cartridges, offers a novel approach to micro parallel liquid chromatography (lplc). This system allows users to achieve unprecedented throughput for standard assays while matching the performance of conventional LC instrumentation, thus enabling routine compound purity assessment and physiochemical property profiling early in the drug discovery and development process. The Veloce system which includes instrumentation, software, and replaceable microfluidic cartridges incorporates pressure-driven flow to achieve chromatograms comparable to conventional high performance liquid chromatography (HPLC) instrumentation for a broad class of analytical applications while offering a dramatic increase in sample analysis capacity. The system enables parallel chromatographic separations and simultaneous, real-time UV detection. Each Nanostream Brio cartridge, made of polymeric materials, incorporates 24 columns packed with standard (C-18) stationary phase material to achieve reverse phase separations. Mixing and distribution of the *Correspondence: P. Patel, Ph.D., Nanostream, 580 Sierra Madre Villa, Pasadena, CA 91107; Phone: ; Fax: ; paren.patel@nanostream.com /$30.00 Copyright c 2004 by The Association for Laboratory Automation doi: /j.jala mobile phase to each of the 24 columns is precisely controlled in each cartridge. The system provides an ideal platform to accelerate assessment of compound purity and physicochemical properties (i.e., log P, CHI, etc.) for a large number of compounds. In addition, the 24-fold increase in sample analysis capacity allows standard curve generation and simultaneous analysis of multiple replicates of samples in a single run. ( JALA 2004;9:185 91) INTRODUCTION Since the introduction of combinatorial chemistry, compound libraries have undergone a significant increase in size and diversity. The expansion and diversification of compound libraries over the last decade has resulted in increased demand for analytical throughput. For example, a major bottleneck in the maintenance of compound libraries is monitoring results of individual syntheses. 1 Hundreds to thousands of compounds in a library should be evaluated for purity prior to biological testing to ensure meaningful screening results. 2,3 Routine compound purity screening and analysis of all members of a large and diverse parallel synthesis array requires a fast analytical method of wide applicability that is easily automated. 4 In many drug discovery and development laboratories, routine compound purity testing is not performed due to throughput limitations of traditional analytical techniques. JALA June

2 Figure 1. Nanostream Veloce system with 8-head auto-injector, individual dual-piston servo-controlled pumps and 24 UV absorbance detectors. Similarly, analytical throughput constraints limit availability of lipophilicity measurements early in the drug discovery process. Lipophilicity is often used as a predictor of the absorption, distribution, metabolism, and excretion (ADME) properties of a drug. The tendency for a compound to associate with a lipid-like environment is often determined as the logarithm of the octanol/water partition coefficient of a neutral molecule, or log P. Several reports describe the use of reverse-phase high-performance liquid chromatography (RP-HPLC) to obtain lipophilicity data based on log P values. 5 7 The isocratic LC/UV methods involved in generating a standard curve are typically performed in series, resulting in time-intensive studies to characterize even a single compound. Another approach to characterizing lipophilicity is based on the chromatographic hydrophobicity index (CHI), a parameter for solvent strength that moderately correlates with log P. CHI values can be derived from retention times obtained by fast-gradient, reverse-phase high-performance liquid chromatography (RP-HPLC). Retention times are calibrated using a set of standard compounds with known CHI values. 8,9 Nanostream, Inc. offers an analytical system that enables 24 parallel reverse phase separations and variable wavelength UV absorbance detection. The Nanostream Veloce system (Figure 1), used in conjunction with 24-column Brio cartridges (Figure 2), provides a high-throughput format for chromatographic separations, thus enabling routine compound purity assessment and high-throughput determination of lipophilicity early in the drug discovery and development process. MATERIALS AND METHODS Equipment Veloce system (Figure 1); Brio cartridge with 24 parallel columns (Figure 2); Stationary phase: C-18, 10 lm diameter particles with 100 A pores; Columns: mm (i.d. equiv.); Injection Volume: 0.5 ll. Figure 2. Nanostream Brio cartridge with 24 parallel, microfluidic LC columns. Compound Purity Chromatograms were obtained for 1,000 compounds using the Veloce system. Compounds were obtained from small molecule compound libraries of several partner companies. Prior to each ten-minute cycle, 24 samples were transferred from wells of a microtiter plate to individual injection reservoirs on a cartridge. Reverse phase chromatograms were obtained and absorbance was reported based on UV detection at 214 nm. The purity of each sample was then determined by calculating the primary peak area as a percentage of total peak area. Mobile phase: A: water: acetonitrile (95:5) with 0.1% formic acid; B: acetonitrile with 0.1% formic acid; Detection: UV 214 nm; Sample Size: 0.5 mg/ml; Gradient: 10:25:90% B, min % B, min % B, min. 90% B, min % B; Run Time: 10 minutes. 186 JALA June 2004

3 Table 1. Mobile phase compositions Acetonitrile (%) Run time (minutes) Log P. A single Brio cartridge was used to generate a standard curve for four known compounds and to analyze a fifth compound, which was unknown. Retention times were determined for the four known compounds (acetanilide, benzophenone, naphthalene, and dipheneylamine) and one standard (uracil) at five different isocratic mobile phase compositions (Table 1). Ten columns were used to analyze all compounds in duplicate. Uracil, which eluted in the void volume, provided the retention time corresponding to t 0. Two additional columns were used for simultaneous analysis of the unknown compound. Values for the log of the capacity factor, k9, were calculated for every compound at each % organic content of the mobile phase: log k9=log (t R ÿ t 0 )/t 0. For each compound, a plot of log k9 vs. % acetonitrile was used to calculate log k w 9 (i.e., log k9 at 0% acetonitrile). A standard curve was then generated by plotting the log k w 9 data against log P values obtained for all compounds from the literature. The standard curve was then used to determine log P for the unknown compound. Sample Size: 100 lg/ml in 50:50 (v/v) mobile phases A and B; Flow Rate: 15 ll/min; Mobile phase: A: 50 mm ammonium acetate, ph 7.0; B: 100% acetonitrile (); Detection: UV 254 nm. standard curve was obtained by plotting the published CHI value against the retention times of the reference compounds. CHI values for the unknown compound were determined using the standard curve. Mobile phase: A: 50 mm ammonium acetate, ph 7.0; B: 100% acetonitrile (); Detection: UV 254 nm; Flow Rate: 15 ll/min; Sample Size: 125 lg/ml (per component) in 50:50 (v/v) mobile phase A and B; Gradient: 10:90% B, min % B, min. 90% B, min. 10% B. Comparison to HPLC For comparison, the procedures were repeated using a conventional HPLC instrument (Shimadzu VP) with a mm (i.d.) column packed with 5 lm C18 stationary phase under the same conditions but with a higher flow rate (0.5 ml/min) and larger sample injection volumes (2.5 ll). RESULTS AND DISCUSSION Compound Purity The Veloce system enabled analysis of 1,000 samples within 8 hours, consuming less than 300 ml of mobile phase over the course of the study compared to 167 hours and 5,000 ml of mobile phase (flow rate 0.5 ml/min) using conventional HPLC (Table 2, Figure 3). The chromatograms generated using the Veloce system showed excellent correlation to results obtained from conventional LC instrumentation (Figures 4 and 5). CHI A single Brio cartridge was used to generate a standard curve for compounds with known CHI values. Chromatograms were obtained for seven reference compounds (5-phenyltetrazole, benzimidazole, colchicine, indole, propiophenone, butyrophenone, and valerophenone). Three columns were used to analyze the reference compound mixture in triplicate, and seven columns were used to analyze each individual compound to determine its retention time. The remaining 14 columns were available for analysis of unknown samples. A Table 2. Comparison of study duration and solvent consumption for compound purity analysis by the Veloce lplc system and HPLC Instrument Study duration Solvent consumption Veloce 8 hours \300 ml HPLC 167 hours 5000 ml Figure 3. Comparison of study duration and solvent consumption for compound purity analysis by Veloce lplc system and HPLC. JALA June

4 Figure 4. Chromatogram of sample RX from the Veloce system with baseline corrected. Injection volume=0.5 ll; Gradient=10:25:90 acetonitrile; Flow rate=12.5 ll/min; Column=C18, 10 lm, mm. Percent purity results from the Veloce system were in good agreement with results from HPLC, within experimental error. Figure 6 shows results for primary peak area for 384 samples analyzed by both the Veloce system and HPLC using comparable settings. In this data set, the average deviation between the two values was 5%. Log P. Table 3 shows the average retention times (t R ) for each compound at various mobile phase compositions. As an example of the data analysis, Figure 7 shows the determination of log k w 9 for benzophenone. Data was extrapolated to determine the y-intercept, which corresponds to a value of log k w 9 =2.05 for this compound. Log k w 9 values for the four compounds based on data obtained from the Veloce system were comparable to results from the same study performed using HPLC (Table 4). These values were plotted against known log P values to generate standard curves (Figure 8). 10 Figure 6. Comparison of primary peak area results for 384 samples analyzed using the Veloce system and HPLC. The primary peak purity (%) obtained using conventional HPLC and the Veloce system differed by an average of 5%. The curves were then used to predict log P of the unknown compound (Table 5). The slight variation (2%) between the values predicted by the two methods is reasonable within experimental error. The Veloce system provided significant savings in time for log P analysis compared to HPLC (Table 5 and Figure 9). Excess Brio cartridge capacity would have permitted simultaneous determination of log P for six additional compounds. CHI Retention times for the reference compounds were determined from the chromatograms obtained for the standard mixture (Figure 10). Figure 5. Chromatogram of sample RX from HPLC with baseline corrected. Injection volume=2.5 ll; Gradient=10:20:90 acetonitrile; Flow rate=500 ll/min; Column=C18, 5 lm, mm. Table 3. Average retention times from isocratic separations at five mobile phase concentrations Retention time, t R (minutes) Compound 80% 70% 60% 50% 40% Uracil Acetanilide Benzophenone Naphthalene Diphenylamine Unknown JALA June 2004

5 Figure 7. Log k9 vs. % acetonitrile for benzophenone. Linear regression was used to determine the y-intercept, which corresponds to log k w 9, i.e., log k9 at 0% acetonitrile. Figure 8. Comparison of log P curves obtained using the Veloce system and HPLC. The average retention time (t R ), %CV for three runs of the reference compound mixture and published CHI values for each reference compound are listed in Table 6. The low values of the coefficient of variation (%CV) indicate that the retention time measurements were very reproducible and did not depend on which column was used. A curve was generated by plotting the published CHI values against the average retention times for the seven compounds. The curve was compared to results obtained by conventional HPLC instrumentation. Note that the increased sample analysis capacity of the Veloce system facilitated parallel analysis of three replicates of the mixture of reference compounds, whereas only one analysis was performed using HPLC in the same amount of time. A comparison of the standard curves is shown in Figure 11. An unknown compound was analyzed under the same conditions (in a separate column of the Brio cartridge) in parallel with the reference compound mixtures. CHI was determined for the unknown compound using the standard curves shown in Figure 11. Table 7 compares the CHI value predicted by the Veloce system to the value predicted by HPLC. The predicted CHI values differ by \5%, which is reasonable within experimental error. Table 4. Log k w 9 values for each compound as determined using the Veloce system and HPLC Compound Log k w 9 Veloce Log k w 9 HPLC Acetanilide Benzophenone Naphthalene Diphenylamine Figure 12 compares the study duration and solvent consumption for CHI determination by the Veloce system and by HPLC. Excess Brio cartridge capacity would have permitted simultaneous determination of CHI for 14 compounds. CONCLUSION This study demonstrates use of the Veloce system for quantitative assessment of compound purity and ADMET parameters for a wide variety of compounds. For selected applications, the system offers a dramatic increase in throughput, and at the same time, matches the accuracy and precision of traditional techniques. The parallel format allows analysis of a large number of compounds and/or multiple replicates of samples in a single run. Compared to serial HPLC approaches, the 24-fold increase in sample analysis capacity dramatically reduces the time required to characterize these properties for a large number of samples and offers the flexibility to design experiments that provide statistically meaningful, high-quality data. Compared to systems of equivalent capacity, the Veloce system occupies minimal bench space. Additionally, the platform significantly decreases mixed waste by reducing consumption of samples and solvents. Table 5. Comparison of log P values for unknown compound based on results from Veloce and HPLC log k w 9 Log P, predicted Study duration Solvent consumption Veloce TM \1 hour* 20 ml HPLC hours 300 ml *Excess Brio cartridge capacity would have permitted simultaneous determination of log P for six additional compounds. JALA June

6 Figure 11. Comparison of CHI curves obtained using the Veloce system and HPLC. Figure 9. Comparison of study duration and solvent consumption for log P determination by the Veloce lplc system and HPLC. Figure 10. An overlay of chromatograms obtained using the Veloce system. Three replicates of the reference compound mixture were simultaneously analyzed on a Brio cartridge. Table 6. Average retention time (t R ), %CV and published CHI values for each reference compound based on analysis of three replicates of reference compound mixture using the Veloce system Compound Ave t R (min) %CV CHI 6 5-phenyl-tetrazole Benzimidazole Colchicine Indole Propiophenone Butyrophenone Valerophenone Figure 12. Comparison of study duration and solvent consumption for CHI determination by the Veloce lplc system and HPLC. Table 7. Comparison of CHI values for an unknown compound based on analysis by the Veloce system and by HPLC t R (minutes) CHI, predicted Study duration Solvent consumption Veloce TM minutes* 4 ml HPLC hours 120 ml *Excess Brio cartridge capacity would have permitted simultaneous determination of CHI for 14 compounds. 190 JALA June 2004

7 REFERENCES 1. Greig, M. Am. Lab. 1999, Fang, L.; Cournoyer, J.; Demee, M.; Zhao, J.; Tokushige, D.; Yan, B. Rapid Commun. Mass Spectrom. 2002, 16, Lee, M. S. LC/MS Applications in Drug Development Weller, H. N.; Young, M. G.; Michalczyk, S. J.; Reitnauer, G. H.; Coley, R. S.; Rahn, P. C.; Loyd, D. J.; Fiore, D.; Fischman, S. J. Mol. Divers. 1997, 3, Valko, K. J. Liq. Chromatogr. 1984, 7, Mirrless, M. S.; Moulton, S. J.; Murphy, C. T.; Taylor, P. J. J. Med. Chem. 1976, 19, Lombardo, F.; Shalaeva, M. Y.; Tupper, K. A.; Gao, F.; Abraham, M. H. J. Med. Chem. 2000, 43, Du, C. M.; Valko, K.; Bevan, C.; Reynolds, D.; Abraham, M. H. Anal. Chem. 1998, 70, Valko, K.; Bevan, C.; Reynolds, D. Anal. Chem. 1997, 69, Syracuse Research Corporation Interactive LogKow (KowWIn) Demo. JALA June

High Performance Liquid Chromatography. Table 1: Allowed HPLC Adjustment of USP <621> and EP <2.2.46>

High Performance Liquid Chromatography. Table 1: Allowed HPLC Adjustment of USP <621> and EP <2.2.46> High Performance Liquid Chromatography HPLC-9 Ultra-high Speed Analysis of Ibuprofen within USP Allowed Limits by Nexera Method Scouting In recent years, high-throughput analytical techniques have

More information

LC Technical Information

LC Technical Information LC Technical Information Method Transfer to Accucore.6 μm Columns Containing solid core particles, which are engineered to a diameter of.6μm and a very narrow particle size distribution; Accucore HPLC

More information

Luna 2.5 µm C18(2)-HST. Advantages of 2.5 µm for increasing the speed of analysis while maintaining high efficiency

Luna 2.5 µm C18(2)-HST. Advantages of 2.5 µm for increasing the speed of analysis while maintaining high efficiency Luna 2.5 µm C18(2)-HST Advantages of 2.5 µm for increasing the speed of analysis while maintaining high efficiency Table of Contents Part 1 Theory 1.1 Abstract...3 1.2 Introduction...3 Part 2 Set Up 2.1

More information

Performance evaluation of the Agilent 1290 Infinity 2D-LC Solution for comprehensive two-dimensional liquid chromatography

Performance evaluation of the Agilent 1290 Infinity 2D-LC Solution for comprehensive two-dimensional liquid chromatography Performance evaluation of the Agilent 1290 Infinity 2D-LC Solution for comprehensive two-dimensional liquid chromatography Technical Overview 2D-LC Conventional 1D-LC Abstract This Technical Overview presents

More information

PosterREPRINT AN INTERACTIVE PHYSICOCHEMICAL PROPERTY PROFILING SOFTWARE FOR EARLY CANDIDATE ANALYSIS IN DRUG DISCOVERY INTRODUCTION

PosterREPRINT AN INTERACTIVE PHYSICOCHEMICAL PROPERTY PROFILING SOFTWARE FOR EARLY CANDIDATE ANALYSIS IN DRUG DISCOVERY INTRODUCTION INTRODUCTION Full characterization of the physicochemical properties of new chemical entities (NCE s) typically takes place in pharmaceutical development laboratories. However, in an effort to minimize

More information

High Performance Liquid Chromatography

High Performance Liquid Chromatography High Performance Liquid Chromatography What is HPLC? It is a separation technique that involves: Injection of small volume of liquid sample Into a tube packed with a tiny particles (stationary phase).

More information

SIMULTANEOUS RP HPLC DETERMINATION OF CAMYLOFIN DIHYDROCHLORIDE AND PARACETAMOL IN PHARMACEUTICAL PREPARATIONS.

SIMULTANEOUS RP HPLC DETERMINATION OF CAMYLOFIN DIHYDROCHLORIDE AND PARACETAMOL IN PHARMACEUTICAL PREPARATIONS. Ind. J. Anal. Chem Vol. 7 11. 2008 SIMULTANEOUS RP HPLC DETERMINATION OF CAMYLOFIN DIHYDROCHLORIDE AND PARACETAMOL IN PHARMACEUTICAL PREPARATIONS. Authors for correspondence : R. R. Singh1*, M. V. Rathnam,

More information

Using the Agilent 1290 Infinity II Multicolumn Thermostat with Extreme Temperatures and Flow Rates

Using the Agilent 1290 Infinity II Multicolumn Thermostat with Extreme Temperatures and Flow Rates Using the Agilent 9 Infinity II Multicolumn Thermostat with Extreme Temperatures and Flow Rates Technical Overview Author Florian Rieck Agilent Technologies, Inc. Waldbronn, Germany Abstract This Technical

More information

HPLC Praktikum Skript

HPLC Praktikum Skript HPLC Praktikum Skript Assistants: Gianluca Bartolomeo HCI D330, 3 46 68, bartolomeo@org.chem.ethz.ch Sahar Ghiasikhou HCI E330, 2 29 29, ghiasikhou@org.chem.ethz.ch 1. Introduction In chromatographic techniques,

More information

Open Column Chromatography, GC, TLC, and HPLC

Open Column Chromatography, GC, TLC, and HPLC Open Column Chromatography, GC, TLC, and HPLC Murphy, B. (2017). Introduction to Chromatography: Lecture 1. Lecture presented at PHAR 423 Lecture in UIC College of Pharmacy, Chicago. USES OF CHROMATOGRAPHY

More information

Reversed Phase Solvents

Reversed Phase Solvents Part 1. General Chromatographic Theory Part 2. verview of HPLC Media Part 3. The Role of the Mobile Phase in Selectivity Part 4. Column Care and Use Reversed Phase Solvents 2 Solvents for RP Chromatography

More information

Basic Principles for Purification Using Supercritical Fluid Chromatography

Basic Principles for Purification Using Supercritical Fluid Chromatography Basic Principles for Purification Using Supercritical Fluid Chromatography Jo-Ann M. Jablonski, Christopher J. Hudalla, Kenneth J. Fountain, Steven M. Collier, and Damian Morrison Waters Corporation, Milford,

More information

Successfully Scaling and Transferring HPLC and UPLC Methods

Successfully Scaling and Transferring HPLC and UPLC Methods Successfully Scaling and Transferring HPLC and UPLC Methods Esa Lehtorinne Esa_Lehtorinne@waters.com Tel: +358-9-5659 6288 Fax: +358-9-5659 6282 Waters Finland Kutomotie 16 00380 Helsinki 2013 Waters Corporation

More information

penta-hilic UHPLC COLUMNS

penta-hilic UHPLC COLUMNS penta-hilic UHPLC COLUMNS penta-hilic Highly retentive, proprietary penta-hydroxy-ligand Excellent peak shape for polar compounds with a variety of functional groups: acids, bases, zwitterions strong and

More information

Biotage 2012 Webinar series

Biotage 2012 Webinar series Biotage 2012 Webinar series Title: Isolera Spektra - A Revolution in Intelligent Flash Chromatography Date: 13 th June 2012 Summary: Automated flash has until today been based upon simple evolutionary

More information

Polymer analysis by GPC-SEC. Technical Note. Introduction

Polymer analysis by GPC-SEC. Technical Note. Introduction Polymer analysis by GPC-SEC Technical Note Introduction Gel Permeation Chromatography (GPC), also referred to as Size Exclusion Chromatography (SEC) is a mode of liquid chromatography in which the components

More information

Performance characteristics of the Agilent 1290 Infinity Quaternary Pump

Performance characteristics of the Agilent 1290 Infinity Quaternary Pump Performance characteristics of the Agilent 129 Infinity Quaternary Pump Technical Overview Author A.G.Huesgen Agilent Technologies, Inc. Waldbronn, Germany Abstract This Technical Overview presents Proof

More information

A Quality by Design (QbD) Based Method Development for the Determination of Impurities in a Peroxide Degraded Sample of Ziprasidone

A Quality by Design (QbD) Based Method Development for the Determination of Impurities in a Peroxide Degraded Sample of Ziprasidone A Quality by Design (QbD) Based Method Development for the Determination of Impurities in a Peroxide Degraded Sample of Ziprasidone Mia Summers and Kenneth J. Fountain Waters Corporation, 34 Maple St.,

More information

The Secrets of Rapid HPLC Method Development. Choosing Columns for Rapid Method Development and Short Analysis Times

The Secrets of Rapid HPLC Method Development. Choosing Columns for Rapid Method Development and Short Analysis Times The Secrets of Rapid HPLC Method Development Choosing Columns for Rapid Method Development and Short Analysis Times Rapid Analysis Is More Than Run Time It is developing a method to meet a goal and developing

More information

Preparative Chromatography with Improved Loadability

Preparative Chromatography with Improved Loadability 05 LCGC RTH AMERICA VLUME 0 UMBER VEMBER 00 www.chromatographyonline.com Preparative Chromatography with Improved Loadability In combinatorial chemistry and drug development, as well as in the full-scale

More information

Application Note. Pharmaceutical QA/QC. Author. Abstract. Siji Joseph Agilent Technologies, Inc. Bangalore, India

Application Note. Pharmaceutical QA/QC. Author. Abstract. Siji Joseph Agilent Technologies, Inc. Bangalore, India Reducing analysis time and solvent consumption for isocratic USP assay methods with current and proposed USP guidelines using the Agilent 129 Infinity LC System An efficient way to reduce cost of analysis

More information

Confirmation of In Vitro Nefazodone Metabolites using the Superior Fragmentation of the QTRAP 5500 LC/MS/MS System

Confirmation of In Vitro Nefazodone Metabolites using the Superior Fragmentation of the QTRAP 5500 LC/MS/MS System Confirmation of In Vitro Nefazodone Metabolites using the Superior Fragmentation of the QTRAP 5500 LC/MS/MS System Claire Bramwell-German, Elliott Jones and Daniel Lebre AB SCIEX, Foster City, California

More information

Multi-Channel SFC System for Fast Chiral Method Development and Optimization

Multi-Channel SFC System for Fast Chiral Method Development and Optimization Multi-Channel SFC System for Fast Chiral Method Development and ptimization Lakshmi Subbarao, Ziqiang Wang, Ph.D., and Rui Chen, Ph.D. Waters Corporation, Milford, USA APPLICATIN BENEFITS The Method Station

More information

Fast methods for the determination of ibuprofen in drug products

Fast methods for the determination of ibuprofen in drug products APPLICATION NOTE 779 Fast s for the determination of ibuprofen in drug products Authors Sylvia Grosse, Mauro De Pra, Frank Steiner, Thermo Fisher Scientific, Germering, Germany Keywords Pharmaceutical,

More information

HPLC Preparative Scaleup of Calcium Channel Blocker Pharmaceuticals Application

HPLC Preparative Scaleup of Calcium Channel Blocker Pharmaceuticals Application HPLC Preparative Scaleup of Calcium Channel Blocker Pharmaceuticals Application Pharmaceuticals Author Cliff Woodward and Ronald Majors Agilent Technologies, Inc. 2850 Centerville Road Wilmington, DE 19808

More information

Chromatography- Separation of mixtures CHEM 212. What is solvent extraction and what is it commonly used for?

Chromatography- Separation of mixtures CHEM 212. What is solvent extraction and what is it commonly used for? Chromatography- Separation of mixtures CHEM 212 What is solvent extraction and what is it commonly used for? How does solvent extraction work? Write the partitioning coefficient for the following reaction:

More information

Automating Gradient Method Development in Flash Chromatography For Greater Productivity and Minimizing Solvent Use

Automating Gradient Method Development in Flash Chromatography For Greater Productivity and Minimizing Solvent Use Automating Gradient in Flash For Greater Productivity and Minimizing Solvent Use Melissa Wilcox, Rakesh Bose, Scott Anderson, Kathy Lawrence Grace Davison Discovery Sciences 251 Waukegan Rd. Deerfield

More information

Prep 150 LC System: Considerations for Analytical to Preparative Scaling

Prep 150 LC System: Considerations for Analytical to Preparative Scaling Andrew Aubin and Jo-Ann Jablonski Waters Corporation, Milford, MA, USA APPLICATION BENEFITS The Prep 150 LC System is an affordable, highly reliable system for preparative chromatography and is suitable

More information

LECTURE 2. Advanced Separation Science Techniques Present and Future Separation Tools

LECTURE 2. Advanced Separation Science Techniques Present and Future Separation Tools LECTURE 2 Advanced Separation Science Techniques Present and Future Separation Tools Jack Henion, Ph.D. Emeritus Professor, Analytical Toxicology Cornell University Ithaca, NY 14850 Lecture 2, Page 1 Contents

More information

Chemistry 3200 High Performance Liquid Chromatography: Quantitative Determination of Headache Tablets

Chemistry 3200 High Performance Liquid Chromatography: Quantitative Determination of Headache Tablets Chemistry 3200 High Performance Liquid Chromatography: Quantitative Determination of Headache Tablets Liquid chromatography was developed by Tswett in early 1900 s and was shown to be a powerful separation

More information

Chromatographic Analysis

Chromatographic Analysis Chromatographic Analysis Distribution of Analytes between Phases An analyte is in equilibrium between the two phases [S 1 ] [S 2 ] (in phase 1) (in phase 2) AS [S2 ] K 2 A S [S1 ] 1 AS, A 1 S Activity

More information

Gemini-NX Performance paired with Axia Technology

Gemini-NX Performance paired with Axia Technology Si Si Si Si Si Si Si C Si Si Si Si Si Gemini-NX Performance paired with Axia Technology Gemini -NX Axia Packed Technology Improves Yield, Throughput, and Column Lifetime Ideal Purification Platform While

More information

Varian Galaxie Chromatography Data System for Preparative HPLC

Varian Galaxie Chromatography Data System for Preparative HPLC Varian Galaxie Chromatography Data System for Preparative HPLC By Gary Burce Varian, Inc. 2700 Mitchell Drive, Walnut Creek, CA 95498 USA Abstract Galaxie is an ideal chromatography data system for the

More information

Assay Transfer from HPLC to UPLC for Higher Analysis Throughput

Assay Transfer from HPLC to UPLC for Higher Analysis Throughput MAY 2005 SEPARATION SCIENCE REDEFINED 31 Assay Transfer from HPLC to UPLC for Higher Analysis Throughput A typical HPLC assay was transferred and optimized for a Waters ACQUITY UPLC system to achieve both

More information

High Speed 2D-HPLC Through the Use of Ultra-Fast High Temperature HPLC as the Second Dimension

High Speed 2D-HPLC Through the Use of Ultra-Fast High Temperature HPLC as the Second Dimension High Speed 2D-HPLC Through the Use of Ultra-Fast High Temperature HPLC as the Second Dimension Minnesota Chromatography Forum Spring Symposium Dwight Stoll and Peter W. Carr Department of Chemistry University

More information

Application Note. Author. Abstract. Pharmaceutical QA/QC. Siji Joseph Agilent Technologies, Inc. Bangalore, India

Application Note. Author. Abstract. Pharmaceutical QA/QC. Siji Joseph Agilent Technologies, Inc. Bangalore, India Effective use of pharmacopeia guidelines to reduce cost of chromatographic analysis Optimized, cost-effective HPLC analysis of atorvastatin by varying column dimensions within the USP allowed limts

More information

Analysis of Illegal Dyes in Food Matrices using Automated Online Sample Preparation with LC/MS

Analysis of Illegal Dyes in Food Matrices using Automated Online Sample Preparation with LC/MS Application Note: 56 Analysis of Illegal Dyes in Food Matrices using Automated Online Sample Preparation with LC/MS Yang Shi, Catherine Lafontaine, Matthew Berube, John Fink, François Espourteille Thermo

More information

Peptide Isolation Using the Prep 150 LC System

Peptide Isolation Using the Prep 150 LC System Jo-Ann M. Jablonski and Andrew J. Aubin Waters Corporation, Milford, MA, USA APPLICATION BENEFITS The Prep 150 LC System, an affordable, highly reliable system for preparative chromatography, is suitable

More information

Liquid Chromatography

Liquid Chromatography Liquid Chromatography 1. Introduction and Column Packing Material 2. Retention Mechanisms in Liquid Chromatography 3. Method Development 4. Column Preparation 5. General Instrumental aspects 6. Detectors

More information

Product Bulletin. ACE LC/MS and Rapid Analysis HPLC Columns. HPLC Columns

Product Bulletin. ACE LC/MS and Rapid Analysis HPLC Columns. HPLC Columns Product Bulletin HPLC Columns ACE LC/MS and Rapid Analysis HPLC Columns 0 mm, 30 mm, 35 mm and 50 mm column lengths.0,., 3.0, 4.0 and 4.6 mm column diameters Configured for High Sample Throughput Specially

More information

Thermo Scientific Accucore XL HPLC Columns. Technical Manual

Thermo Scientific Accucore XL HPLC Columns. Technical Manual Thermo Scientific Accucore XL HPLC Columns Technical Manual Thermo Scientific Accucore XL HPLC Columns Based on Core Enhanced Technology using µm solid core particles, Accucore XL HPLC columns allow users

More information

Rapid Screening and Analysis of Components in Nonalcoholic Drinks Application

Rapid Screening and Analysis of Components in Nonalcoholic Drinks Application Rapid Screening and Analysis of Components in Nonalcoholic Drinks Application Food Author Michael Woodman Agilent Technologies, Inc. 285 Centerville Road Wilgton, DE 1988-161 USA Abstract Soft drinks,

More information

Achieve confident synthesis control with the Thermo Scientific ISQ EC single quadrupole mass spectrometer

Achieve confident synthesis control with the Thermo Scientific ISQ EC single quadrupole mass spectrometer APPLICATION NOTE 72385 Achieve confident synthesis control with the Thermo Scientific ISQ EC single quadrupole mass spectrometer Authors Stephan Meding, Katherine Lovejoy, Martin Ruehl Thermo Fisher Scientific,

More information

LC walk-up system using the Agilent 1200 Series LC Method Development Solution and Agilent Easy Access software. Application Note

LC walk-up system using the Agilent 1200 Series LC Method Development Solution and Agilent Easy Access software. Application Note LC walk-up system using the Agilent 12 Series LC Method Development Solution and Agilent Easy Access software Test of reaction kinetics, column scouting, and impurity checks with one LC system and up to

More information

FRAGMENT SCREENING IN LEAD DISCOVERY BY WEAK AFFINITY CHROMATOGRAPHY (WAC )

FRAGMENT SCREENING IN LEAD DISCOVERY BY WEAK AFFINITY CHROMATOGRAPHY (WAC ) FRAGMENT SCREENING IN LEAD DISCOVERY BY WEAK AFFINITY CHROMATOGRAPHY (WAC ) SARomics Biostructures AB & Red Glead Discovery AB Medicon Village, Lund, Sweden Fragment-based lead discovery The basic idea:

More information

HPLC Background Chem 250 F 2008 Page 1 of 24

HPLC Background Chem 250 F 2008 Page 1 of 24 HPLC Background Chem 250 F 2008 Page 1 of 24 Outline: General and descriptive aspects of chromatographic retention and separation: phenomenological k, efficiency, selectivity. Quantitative description

More information

Hydrophilic Interaction Liquid Chromatography: Some Aspects of Solvent and Column Selectivity

Hydrophilic Interaction Liquid Chromatography: Some Aspects of Solvent and Column Selectivity Hydrophilic Interaction Liquid Chromatography: Some Aspects of Solvent and Column Selectivity Monica Dolci, Thermo Fisher Scientific, Runcorn, Cheshire, UK Technical Note 20544 Key Words Hydrophilic, HILIC,

More information

Volume 6, Issue 2, January February 2011; Article-015

Volume 6, Issue 2, January February 2011; Article-015 Research Article DEVELOPMENT AND VALIDATION OF A RP-HPLC METHOD FOR THE DETERMINATION OF DAPOXETINE HYDROCHLORIDE IN PHARMACEUTICAL FORMULATION USING AN EXPERIMENTAL DESIGN Pratik Mehta*, Ujjwal Sahoo,

More information

Packings for HPLC. Packings for HPLC

Packings for HPLC. Packings for HPLC Summary of packings for HPLC In analytical HPLC, packings with particle sizes of 3 to 10 µm are preferred. For preparative separation tasks, also particles with diameters larger than 10 µm are applied.

More information

MODERN HPLC FOR PRACTICING SCIENTISTS

MODERN HPLC FOR PRACTICING SCIENTISTS MODERN HPLC FOR PRACTICING SCIENTISTS Michael W. Dong Synomics Pharmaceutical Services, LLC Wareham, Massachusetts WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Preface xv 1 Introduction 1

More information

A RP-HPLC METHOD DEVELOPMENT AND VALIDATION OF PARA- PHENYLENEDIAMINE IN PURE FORM AND IN MARKETED PRODUCTS

A RP-HPLC METHOD DEVELOPMENT AND VALIDATION OF PARA- PHENYLENEDIAMINE IN PURE FORM AND IN MARKETED PRODUCTS A RP-HPLC METHOD DEVELOPMENT AND VALIDATION OF PARA- PHENYLENEDIAMINE IN PURE FORM AND IN MARKETED PRODUCTS CH.MOUNIKA*, M.KINNERA Research Article SIR.C.R.REDDY COLLEGE OF PHARMACEUTICAL SCIENCES, ELURU.

More information

Minimizing Solvent Impact on Purification of Nitrogencontaining

Minimizing Solvent Impact on Purification of Nitrogencontaining Minimizing Solvent Impact on Purification of Nitrogencontaining Compounds J. Liu and P. C. Rahn Biotage Discovery Chemistry Group US 1725 Discovery Drive Charlottesville, VA 22911 USA 1 Abstract This paper

More information

LC and LC/MS Column Selection Flow Chart

LC and LC/MS Column Selection Flow Chart LC and LC/MS Column Selection Flow Chart To use the column selection diagram below, simply follow the path for your analyte and mobile phase. At the far right, follow your final column selection to the

More information

penta-hilic UHPLC COLUMNS

penta-hilic UHPLC COLUMNS penta-hilic UHPLC COLUMNS Highly retentive, proprietary penta-hydroxy-ligand penta-hilic Excellent peak shape for polar compounds with a variety of functional groups: acids, bases, zwitterions strong and

More information

Appendix II- Bioanalytical Method Development and Validation

Appendix II- Bioanalytical Method Development and Validation A2. Bioanalytical method development 1. Optimization of chromatographic conditions Method development and optimization of chromatographic parameters is of utmost important for validating a method in biological

More information

LC-MS/MS Method for the Determination of Diclofenac in Human Plasma

LC-MS/MS Method for the Determination of Diclofenac in Human Plasma LC-MS/MS Method for the Determination of Diclofenac in Human Plasma J. Jones, Thermo Fisher Scientific, Runcorn, Cheshire, UK Application Note 20569 Key Words SPE, SOLA, Accucore RP-MS, diclofenac, Core

More information

High Resolution Fast LC

High Resolution Fast LC High Resolution Fast LC Easier Than You Think Rita Steed LC Columns Application Engineer May 9, 2013 What is High Resolution Fast LC? Maintain Resolution with Faster Run Time Increased Resolution with

More information

Packed Column for Ultra-Fast Reversed-Phase Liquid Chromatography, TSKgel Super-ODS. Table of Contents

Packed Column for Ultra-Fast Reversed-Phase Liquid Chromatography, TSKgel Super-ODS. Table of Contents No. 089 SEPARATION REPORT Packed Column for Ultra-Fast Reversed-Phase Liquid Chromatography, TSKgel Super-ODS Table of Contents 1. Introduction 1 2. Column Specification 1 3. Features of Packing Materials

More information

VALIDATION OF A UPLC METHOD FOR A BENZOCAINE, BUTAMBEN, AND TETRACAINE HYDROCHLORIDE TOPICAL SOLUTION

VALIDATION OF A UPLC METHOD FOR A BENZOCAINE, BUTAMBEN, AND TETRACAINE HYDROCHLORIDE TOPICAL SOLUTION VALIDATION OF A UPLC METHOD FOR A BENZOCAINE, BUTAMBEN, AND TETRACAINE HYDROCHLORIDE TOPICAL SOLUTION Andrew J. Aubin and Tanya L. Jenkins Waters Corporation, Milford, MA, USA INTRODUCTION Benzocaine (4-Aminobenzoic

More information

Automating Method Development with an HPLC System Optimized for Scouting of Columns and Eluents

Automating Method Development with an HPLC System Optimized for Scouting of Columns and Eluents Automating Method Development with an HPLC System Optimized for Scouting of Columns and Eluents Marco Karsten, Bas, Dolman, Giovanni Maio, Frank Steiner, Holger Franz, Frank Arnold and Remco Swart LC Packings,

More information

Analytical determination of testosterone in human serum using an Agilent Ultivo Triple Quadrupole LC/MS

Analytical determination of testosterone in human serum using an Agilent Ultivo Triple Quadrupole LC/MS Application Note Clinical Research Analytical determination of testosterone in human serum using an Agilent Ultivo Triple Quadrupole LC/MS Authors Yanan Yang 1, Victor Mandragon 2, and Peter Stone 1 1

More information

Application Note LCMS-112 A Fully Automated Two-Step Procedure for Quality Control of Synthetic Peptides

Application Note LCMS-112 A Fully Automated Two-Step Procedure for Quality Control of Synthetic Peptides Application Note LCMS-112 A Fully Automated Two-Step Procedure for Quality Control of Synthetic Peptides Abstract Here we describe a two-step QC procedure for synthetic peptides. In the first step, the

More information

Rapid and Accurate Forensics Analysis using High Resolution All Ions MS/MS

Rapid and Accurate Forensics Analysis using High Resolution All Ions MS/MS Rapid and Accurate Forensics Analysis using High Resolution All Ions MS/MS Application Note Forensic Toxicology Authors Martin Josefsson, and Markus Roman National Board of Forensic Medicine Linköping,

More information

HPLC. GRATE Chromatography Lab Course. Dr. Johannes Ranke. September 2003

HPLC. GRATE Chromatography Lab Course. Dr. Johannes Ranke. September 2003 HPLC GRATE Chromatography Lab Course Dr. Johannes Ranke Organisation The groups Start at 9:00 am End at 18:00 pm at the latest Friday, 19th we will finish at 2:00 pm Thursday, 11th: Lecture at 08:15 am

More information

Chromatographic Hydrophobicity Index (CHI) Application to Agrochemical Research. Eric Clarke & Beth Shirley, Chemistry Design Group, Jealott s Hill

Chromatographic Hydrophobicity Index (CHI) Application to Agrochemical Research. Eric Clarke & Beth Shirley, Chemistry Design Group, Jealott s Hill Chromatographic Hydrophobicity Index (CHI) Application to Agrochemical Research Eric Clarke & Beth Shirley, Chemistry Design Group, Jealott s Hill Properties affecting agrochemical availability and movement

More information

Separation of Explosives in EPA 8330: Column Choices Optimize Speed, Resolution, and Solvent Use. Application. Authors. Abstract.

Separation of Explosives in EPA 8330: Column Choices Optimize Speed, Resolution, and Solvent Use. Application. Authors. Abstract. Separation of Explosives in EPA 833: Column Choices Optimize Speed, Resolution, and Solvent Use Application Environmental Authors John W. Henderson Jr. and William J. Long Agilent Technologies, Inc. 28

More information

Method Transfer between HPLC and UHPLC Instruments Equipment-related challenges and solutions

Method Transfer between HPLC and UHPLC Instruments Equipment-related challenges and solutions Method Transfer between HPLC and UHPLC Instruments Equipment-related challenges and solutions Today, ultra-high-performance liquid chromatography (UHPLC) has taken a firm foothold in the analytical laboratory.

More information

Quantitative Analysis of EtG and EtS in Urine Using FASt ETG and LC-MS/MS

Quantitative Analysis of EtG and EtS in Urine Using FASt ETG and LC-MS/MS Quantitative Analysis of EtG and EtS in Urine Using FASt ETG and LC-MS/MS UCT Part Numbers: CSFASETG203 - CLEAN SCREEN FASt ETG, 200mg / 3mL tube SLETG100ID21-3UM - Selectra ETG HPLC column, 100 x 2.1

More information

Quantitative Analysis of EtG and EtS in Urine Using FASt ETG and LC-MS/MS

Quantitative Analysis of EtG and EtS in Urine Using FASt ETG and LC-MS/MS Quantitative Analysis of EtG and EtS in Urine Using FASt ETG and LC-MS/MS UCT Part Numbers: CSFASETG203 - CLEAN SCREEN FASt ETG, 200mg / 3mL tube SLETG100ID21-3UM - Selectra ETG HPLC column, 100 x 2.1

More information

Analysis of Stachydrine in Leonurus japonicus Using an Agilent ZORBAX RRHD HILIC Plus Column with LC/ELSD and LC/MS/MS

Analysis of Stachydrine in Leonurus japonicus Using an Agilent ZORBAX RRHD HILIC Plus Column with LC/ELSD and LC/MS/MS Analysis of Stachydrine in Leonurus japonicus Using an Agilent ZORBAX RRHD HILIC Plus Column with LC/ELSD and LC/MS/MS Application Note Traditional Chinese Medicine Author Rongjie Fu Agilent Technologies

More information

Quantitative Analysis of Caffeine in Energy Drinks by High Performance Liquid Chromatography

Quantitative Analysis of Caffeine in Energy Drinks by High Performance Liquid Chromatography Quantitative Analysis of Caffeine in Energy Drinks by High Performance Liquid Chromatography CHEM 329 Professor Vogt TA: Fahad Hasan Allison Poget Date Performed: April 5, 2016 Date Submitted: April 12,

More information

CHAPTER 19 PARACETAMOL + IBUPROFEN

CHAPTER 19 PARACETAMOL + IBUPROFEN CHAPTER 19 PARACETAMOL + IBUPROFEN SUMMARY 246 A combination of paracetamol and ibuprofen is marketed in India. Literature survey indicated that one titrimetnc-1-** and one HPLC193 methods are reported

More information

Routine MS Detection for USP Chromatographic Methods

Routine MS Detection for USP Chromatographic Methods Daniel S. Root, Thomas E. Wheat, and Patricia McConville Waters Corporation, Milford, MA, USA APPLICATION BENEFITS This approach enables mass spectral analysis of peaks directly from unmodified USP HPLC

More information

Automatization for development of HPLC methods

Automatization for development of HPLC methods Fresenius J Anal Chem (2001) 369 : 36 41 Springer-Verlag 2001 SPECIAL ISSUE PAPER M. Pfeffer H. Windt Automatization for development of HPLC methods Received: 31 May 2000 / Revised: 13 July 2000 / Accepted:

More information

Chapter content. Reference

Chapter content. Reference Chapter 7 HPLC Instrumental Analysis Rezaul Karim Environmental Science and Technology Jessore University of Science and Technology Chapter content Liquid Chromatography (LC); Scope; Principles Instrumentation;

More information

Automated Switching Between 1D-LC and Comprehensive 2D-LC Analysis

Automated Switching Between 1D-LC and Comprehensive 2D-LC Analysis Automated Switching Between D-LC and Comprehensive D-LC Analysis The Agilent 90 Infinity D-LC Solution Technical Overview Author Sonja Krieger Agilent Technologies, Inc. Waldbronn, Germany Abstract This

More information

8. Methods in Developing Mobile Phase Condition for C18 Column

8. Methods in Developing Mobile Phase Condition for C18 Column I. HPLC Columns Technical Information 8. Methods in Developing Mobile Phase Condition for C18 Column Introduction In reversed phase HPLC, octadecyl group bonded silica columns (C18, ODS) are the most widely

More information

Liquid storage: Holds the solvent which is going to act as the mobile phase. Pump: Pushes the solvent through to the column at high pressure.

Liquid storage: Holds the solvent which is going to act as the mobile phase. Pump: Pushes the solvent through to the column at high pressure. High performance liquid chromatography (HPLC) is a much more sensitive and useful technique than paper and thin layer chromatography. The instrument used for HPLC is called a high performance liquid chromatograph.

More information

Figure 1. Structures for Vitamin B2 and Vitamin B1.

Figure 1. Structures for Vitamin B2 and Vitamin B1. CH 461 & CH 461H F 15 Name Experiment 2C Integrated Laboratory Experiment DETERMINATION OF RIBOFLAVIN: A COMPARISON OF TECHNIQUES PART C. HIGH PERFORMANCE LIQUID CHROMATOGRAPHY The purpose of this experiment

More information

Accelerating the Metabolite Identification Process Using High Resolution Q-TOF Data and Mass-MetaSite Software

Accelerating the Metabolite Identification Process Using High Resolution Q-TOF Data and Mass-MetaSite Software Accelerating the Metabolite Identification Process Using High Resolution Q-TOF Data and Mass-MetaSite Software Application ote Drug discovery and development: Metabolite Identifi cation Authors Yuqin Dai,

More information

LC800. Smart HPLC. Until now UHPLC From now Smart HPLC

LC800. Smart HPLC. Until now UHPLC From now Smart HPLC LC800 Smart HPLC Until now UHPLC From now Smart HPLC Smart HPLC Leads to Ultimate Performance Patent Pending S LC800 is a completely new and unique concept, designed for maximum performance in high resolution

More information

Analytical Chemistry

Analytical Chemistry Analytical Chemistry Chromatographic Separations KAM021 2016 Dr. A. Jesorka, 6112, aldo@chalmers.se Introduction to Chromatographic Separations Theory of Separations -Chromatography Terms Summary: Chromatography

More information

Determination of Gallic acid from their Methanolic Extract of Punica granatum By HPLC Method

Determination of Gallic acid from their Methanolic Extract of Punica granatum By HPLC Method International Journal of ChemTech Research CODEN( USA): IJCRGG ISSN : 0974-4290 Vol.5, No.5, pp 2598-2602, July-Sept 2013 Determination of Gallic acid from their Methanolic Extract of Punica granatum By

More information

It s hot! ZIC -chilic

It s hot! ZIC -chilic It s hot! ZIC -chilic Complementary selectivity for HPLC and LC-MS separation of polar hydrophilic compounds EMD Millipore Corp. is a subsidiary of Merck KGaA, Darmstadt, Germany ZIC -chilic Your benefits

More information

Figure 1. Structures for Vitamin B2 and Vitamin B1.

Figure 1. Structures for Vitamin B2 and Vitamin B1. CH 461 & CH 461H F 18 Name Experiment 2C Integrated Laboratory Experiment DETERMINATION OF RIBOFLAVIN: A COMPARISON OF TECHNIQUES PART C. HIGH PERFORMANCE LIQUID CHROMATOGRAPHY The purpose of this experiment

More information

Development and validation a RP-HPLC method: Application for the quantitative determination of quetiapine fumarate from marketed bulk tablets

Development and validation a RP-HPLC method: Application for the quantitative determination of quetiapine fumarate from marketed bulk tablets Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2016, 8(1):142-146 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Development and validation a RP-HPLC method: Application

More information

High Pressure/Performance Liquid Chromatography (HPLC)

High Pressure/Performance Liquid Chromatography (HPLC) High Pressure/Performance Liquid Chromatography (HPLC) High Performance Liquid Chromatography (HPLC) is a form of column chromatography that pumps a sample mixture or analyte in a solvent (known as the

More information

Application Note Pharmaceutical QA/QC. Agilent Application Solution. Authors. Abstract. Syed Salman Lateef Agilent Technologies, Inc.

Application Note Pharmaceutical QA/QC. Agilent Application Solution. Authors. Abstract. Syed Salman Lateef Agilent Technologies, Inc. Agilent Application Solution Transfer of a USP method for tolazamide from normal phase HPLC to SFC using the Agilent 126 Infinity Hybrid SFC/UHPLC System Improving peak shape and providing wider UV selectivity

More information

Preparative Separation of Active Components from Natural Products using Low-pressure Gradient Preparative HPLC

Preparative Separation of Active Components from Natural Products using Low-pressure Gradient Preparative HPLC PO-CON1405E Preparative Separation of Active Components from Natural Products using Low-pressure Gradient Preparative HPLC Pittcon 014 50-7P Kenichiro Tanaka 1, William Hedgepeth 1, Lincoln Grimes, Tsutomu

More information

Shodex TM ODP2 HP series columns

Shodex TM ODP2 HP series columns HPLC Columns Shodex TM ODP2 HP series columns Better retention of highly polar substances Technical notebook No. 6 Contents 1. Introduction 1-1. Specifications 1-2. Eluent Compatibility of ODP2 HP Series

More information

Ultrafast Analysis of Buprenorphine and Norbuprenorphine in Urine Using the Agilent RapidFire High-Throughput Mass Spectrometry System

Ultrafast Analysis of Buprenorphine and Norbuprenorphine in Urine Using the Agilent RapidFire High-Throughput Mass Spectrometry System Ultrafast Analysis of Buprenorphine and Norbuprenorphine in Urine Using the Agilent RapidFire High-Throughput Mass Spectrometry System Application Note Authors Mohamed Youssef and Vaughn P. Miller Agilent

More information

Comparison of log P/D with bio-mimetic properties

Comparison of log P/D with bio-mimetic properties Comparison of log P/D with bio-mimetic properties Klara Valko Bio-Mimetic Chromatography Consultancy for Successful Drug Discovery Solvation process First we need to create a cavity Solute molecule Requires

More information

SCPC Systems for Liquid-Liquid Extraction

SCPC Systems for Liquid-Liquid Extraction SCPC Systems for Liquid-Liquid Extraction The SCPC systems are a combination of HPLC with the SCPC as separation column for the purification of active ingredients by liquid-liquid extraction or distribution

More information

CHEM 429 / 529 Chemical Separation Techniques

CHEM 429 / 529 Chemical Separation Techniques CHEM 429 / 529 Chemical Separation Techniques Robert E. Synovec, Professor Department of Chemistry University of Washington Lecture 1 Course Introduction Goal Chromatography and Related Techniques Obtain

More information

Maximizing Triple Quadrupole Mass Spectrometry Productivity with the Agilent StreamSelect LC/MS System

Maximizing Triple Quadrupole Mass Spectrometry Productivity with the Agilent StreamSelect LC/MS System Maximizing Triple Quadrupole Mass Spectrometry Productivity with the Agilent StreamSelect LC/MS System Application Note Authors Kevin McCann, Sameer Nene, Doug McIntyre, Edmond Neo, Dennis Nagtalon, and

More information

UPC 2 Strategy for Scaling from Analytical to Preparative SFC Separations

UPC 2 Strategy for Scaling from Analytical to Preparative SFC Separations UPC Strategy for Scaling from Analytical to Preparative SFC Separations Christopher J. Hudalla, Abhijit Tarafder, Jo-Ann Jablonski, and Kenneth J. Fountain Waters Corporation, Milford, MA, USA APPLICATION

More information

2501 High Performance Liquid Chromatography

2501 High Performance Liquid Chromatography 2501 High Performance Liquid Chromatography High Performance Liquid Chromatography Scheme Chp25:: 1 High Performance Liquid Chromatography Components of HPLC High Performance Liquid Chromatography Scheme

More information

ImprovIng ADmE ScrEEnIng productivity In Drug DIScovEry

ImprovIng ADmE ScrEEnIng productivity In Drug DIScovEry Improving ADME Screening Productivity in Drug Discovery INTRODUCTION Improving the quality of the decisions made at the drug discovery stage can profoundly impact the efficiency of the drug discovery and

More information

TEMPLATE FOR AN EXAMPLE STANDARD TEST METHOD

TEMPLATE FOR AN EXAMPLE STANDARD TEST METHOD APPENDIX V TEMPLATE FOR AN EXAMPLE STANDARD TEST METHOD Validating Chromatographic Methods. By David M. Bliesner Copyright 2006 John Wiley & Sons, Inc. 159 160 APPENDIX V Title: Effective: Document No:

More information

FLASH CHROMATOGRAPHY

FLASH CHROMATOGRAPHY Turnkey Laboratories Solutions FLASH CHROMATOGRAPHY FC 3065 EPC / PRODUCTS / APPLICATION / SOFTWARE / ACCESSORIES / CONSUMABLES / SERVICES Analytical Technologies Limited An ISO 9001 Certified Company

More information