10.1. Exploring the Nature of Static Electricity. A Shocking Experience

Size: px
Start display at page:

Download "10.1. Exploring the Nature of Static Electricity. A Shocking Experience"

Transcription

1 10.1 Exploring the Nature of Static Electricity Here is a summary of what you will learn in this section: Solid materials are by the transfer of electrons. When an atom gains electrons, it becomes negatively. When an atom loses electrons, it becomes positively. Electrons can be removed from objects through friction. Particles with unlike charges attract each other, and particles with like charges repel each other. Electrical insulators and conductors are materials categorized by how freely they allow electrons to move. Figure 10.1 Electric charges cause strands of hair to repel each other and be attracted to the balloon. A Shocking Experience On a cold winter day, you have probably pulled a sweater off over your head or removed your hat and felt your hair flying up. Or maybe you have reached to touch a doorknob or the door handle of a car and received an electric shock. These examples and hairraising experiences like the one in Figure 10.1 are caused by electric charges. Electric charges are particles that exert an electric force on each other. These particles are very small. In fact, there are millions of them on each standing hair in the picture above. The accumulation or gathering of even larger numbers of electric charges can lead to some impressive electrical displays. Think back to the last time you observed a lightning storm. The large, bright flashes of lightning look like the small electric sparks you may have seen when touching the doorknob or taking off your sweater. In fact, they are the same thing, just different in size. These are all examples of static electricity. 394 UNIT D The Characteristics of Electricity

2 D2 Quick Lab Characteristics of Electric Charge A characteristic is a distinguishing trait or quality of a substance or object. Purpose To observe the characteristics of electric charge Materials & Equipment confetti or gelatin powder plastic drinking straw 2 balloons Van de Graaff generator thin paper strips clear adhesive tape 3 aluminum pie plates clear plastic cup with lid polystyrene popcorn metal rod and lab stand Procedure 1. Read through the procedure steps, and make predictions about what you think will happen in each step. Record your predictions. 2. Sprinkle some confetti or gelatin powder in a small area on your desk. Push a plastic drinking straw through your hair several times, and bring it close to the confetti or gelatin powder. Record your observations. 3. Inflate two balloons, and knot the ends. Rub one side of each balloon on your hair or clothing. Hold the balloons by the knots, and bring the rubbed surfaces slowly together. Observe the results. 4. Turn one balloon so that its rubbed surface faces away from the other balloon. Again bring the balloons together. Record your observations for steps 3 and If your classroom has a Van de Graaff generator, your teacher will demonstrate the following experiments by putting the materials for each experiment in place and then turning on the generator. Record your observations for each experiment. (a) Tape one end of the thin paper strips to the Van de Graaff generator. (b) Place a stack of three aluminum pie plates on the Van de Graaff generator. (c) Place a clear plastic cup full of polystyrene popcorn on the Van de Graaff generator. Put a loosefitting lid on top of the cup. (d) Attach a metal rod to a lab stand, and place it close to the Van de Graaff generator. 6. Return everything you used to the areas designated by your teacher. Questions 7. (a) Which objects were attracted to each other? (b) Which objects were repelled or pushed away from each other? 8. How did your observations compare with your predictions for each step? 9. What do you think caused the movements that you observed? Static charges collect on surfaces and remain there until given a path to escape. 395

3 Electrically Charged Particles You may recall from earlier studies that an element is a pure substance that cannot be broken down into simpler substances. An element is made up of tiny particles called atoms. An atom is the smallest part of an element with the element s properties. Within an atom, there are three types of smaller particles: protons, neutrons, and electrons. Protons and electrons are electrically particles. Protons have a positive electric charge (), and electrons have a negative electric charge ( ). Neutrons have no electric charge, so they are neutral. The protons and neutrons are in the nucleus at the centre of the atom. The electrons are outside the nucleus (Figure 10.2). Although they contain electrically particles, atoms are neutral. The number of protons in the nucleus equals the number of electrons around the nucleus, so the number of positive and negative charges is equal. This makes an atom neutral. nucleus neutron proton electron Figure 10.2 Each atom is made up of protons and neutrons inside the nucleus and electrons in the area around the nucleus. WORDS MATTER Static is from the Greek word statikos, meaning causing to stand. The word stationary, which means not moving, is based on the same Greek word. Static Charges Objects can become when electrons move from one object to another. The electric charge that builds up on the surface of the object is called a static charge or static electricity. The charges are static because they remain very nearly fixed in one location on the surface of the object until they are given a path to escape. An object that has more electrons than protons is negatively. An object that has more protons than electrons is positively. You can group objects according to three kinds of charge: positive, negative, and neutral. If a neutral object obtains extra electrons, the object becomes negatively. If a neutral object loses electrons, the object becomes positively. 396 UNIT D The Characteristics of Electricity

4 ist9_ch10.qxd 7/21/09 3:14 PM Page 397 Home Quit Friction and the Movement of Electrons All solid materials are by the transfer of electrons. How do atoms lose or gain electrons to become electrically? One common cause of electron transfer is friction, which occurs when objects rub against each other. Friction is the force resisting the relative motion of two surfaces in contact. When two objects rub together, the force of friction can remove electrons from one object and cause them to transfer to the other object. As one object loses electrons, the other object gains them, as shown by the amber and fur in Figure If you count the electrons in Figure 10.4, you will notice that no electrons are lost during the process of charging. They are simply transferred. The position of the positive charges does not change during the process of charging. W O R D S M AT T E R Electricity comes from the Greek word elektron, meaning amber, which is fossilized tree resin (Figure 10.3). Amber has been used for thousands of years to study static electricity. Figure 10.3 Amber is fossilized tree resin. This piece of amber contains bugs that were living on the tree and got caught in the amber. electrons neutral (a) neutral negative (b) positive (c) Figure 10.4 The amber and the fur are electrically neutral (a). If you rub the amber with the fur, electrons transfer from the fur to the amber (b). As a result, the fur becomes positively and the amber becomes negatively (c). It s important to remember that the transfer of the charges from one object to another is possible because the two objects are rubbing against each other. Both objects are neutral before they are rubbed together. They become as a result of the rubbing. For any charging procedure, it s important to keep in mind that new electric charges are not being created. The electrons in each object are just being rearranged within the object or transferred to another object. Static charges collect on surfaces and remain there until given a path to escape. 397

5 Suggested Activity D3 Inquiry Activity on page 402 Electron Affinity Different substances have different abilities to hold on to electrons. The tendency of a substance to hold on to the electrons is called electron affinity. Table 10.1 lists a series of selected materials in order of their electron affinity. You will notice that the higher the material is in the list, the greater the tendency for that material to lose electrons. This means that if you rub together two materials listed in the table, you can determine which material will be positively and which material will be negatively. For Table 10.1 A Triboelectric Series Tend to lose electrons Tend to gain electrons example, if you rub nylon and steel together, the nylon will become positive and the steel will become negative. The nylon will lose electrons, because it is higher in the table. The electrons from the nylon are transferred to the steel, making the steel negative. This table is referred to as a triboelectric series. The term comes from tribos, a Greek word meaning to rub. Note that there can be a slightly different order for materials such as fur or wood depending on which type of animal the fur is from and which type of tree the wood is from. () human hands (dry) glass human hair nylon cat fur silk cotton steel wood amber ebonite plastic wrap Teflon ( ) Learning Checkpoint 1. Where are electrons in the atom? 2. What does static mean in static electricity? 3. What happens when two objects made out of different materials are rubbed together? 4. What term describes an atom s tendency to hold on to electrons? 5. In each of the following pairs, state which one is more likely to give up electrons. (a) wood or human hair (b) plastic wrap or steel (c) cotton or silk 398 UNIT D The Characteristics of Electricity

6 Laws of Attraction and Repulsion You may have heard the expression opposites attract in discussions about people. This is definitely true for electric charges (Figure 10.5). Scientists studying the interaction of objects have observed that when a positively object is brought close to a negatively object, the two objects attract each other. When two objects with the same charge are placed close together, the objects repel each other. Opposite charges attract. During Reading Visualizing and Picture Mapping Good readers use the strategy of visualizing to understand the important details of a large amount of complex information. One way to visualize is to create a picture map. Using the information about the laws of attraction and repulsion, begin drawing pictures to represent the information provided in this section. Add to your picture map as you read about electrical insulators and conductors. Like charges repel. Figure 10.5 If you increase the amount of charge on objects, the attraction or repulsion also increases. As a result of many scientific investigations, scientists have established the following laws of static electric charges. The law of attraction states that particles with opposite charges attract each other. The law of repulsion states that particles with like charges repel each other. Coulombs CharlesAugustin de Coulomb was a French physicist who worked with electric charges and made several important discoveries (Figure 10.6). He showed that when two objects are placed closer together, the attraction or repulsion increases. When the objects are moved farther apart, the attraction or repulsion decreases. In his honour, the metric unit for electric charge is named the coulomb (C). One coulomb equals electrons added to or removed from a neutral object. Figure 10.6 CharlesAugustin de Coulomb ( ) Static charges collect on surfaces and remain there until given a path to escape. 399

7 Electrical Insulators and Conductors Another way to group materials is by their conductivity. Conductivity is the ability of materials to allow electrons to move freely in them. Materials that hold onto their electrons and do not allow them to move easily are called electrical insulators. An electrical insulator is a solid, liquid, or gas that resists or blocks the movement of electrons, as shown in Figure Dry wood, glass, and plastic are all examples of electrical insulators. An insulator can hold a static charge because static charges remain nearly fixed in place. (a) Insulator: The electrons ( ) are bound tightly to the nuclei () so they resist movement. (b) Conductor: The electrons are not as tightly bound to the nuclei. They can move away from the nuclei. Figure 10.7 Electrons in an insulator cannot move freely. Electrons in a conductor can. Materials that allow electrons to change positions are called conductors (Figure 10.8). Conduction is the movement or transmission of electrons through a substance. Examples of conductors include the metals copper and aluminum. Some materials allow only some movement of electrons. This is the category of materials called fair conductors. In a fair conductor, the electrons do not move as freely as in a conductor, but they are not held almost in place as they are in an insulator. Figure 10.8 The metal wire in the electric fence allows electrons to move. The plastic insulator resists the movement of electrons. 400 UNIT D The Characteristics of Electricity

8 Table 10.2 gives some examples of conductors, fair conductors, and insulators. There are variations within each category, as some materials are better or poorer conductors than others. Table 10.2 Conductivity of Selected Materials Conductors Fair Conductors Insulators copper water with dissolved minerals rubber aluminum moist air wood iron human body plastic mercury carbon pure water other metals soil metal oxides, such as rust Water as a Conductor Notice in Table 10.2 that water is an insulator only if it is pure. However, most water has dissolved minerals in it, so its conductive properties change and it becomes a fair conductor. This is why you do not want to be in a lake during a thunderstorm. If lightning hits the water, the electric charges from the lightning will spread out through the water and cause you serious or fatal injury. This is also why you should not use water to try to put out an electrical fire (Figure 10.9). You also need to take care not to operate electrical appliances near water or with wet hands. Figure 10.9 Use an allpurpose fire extinguisher for an electrical fire. Learning Checkpoint 1. (a) What does the law of attraction state? (b) What does the law of repulsion state? 2. What is a coulomb? 3. Define electrical insulator. 4. What does conduction mean? 5. (a) Name two examples of good conductors. (b) Name two examples of fair conductors. (c) Name two examples of insulators. Take It Further A Faraday cage is an enclosure made of conducting material that protects its contents from electric charges. Find out how airplanes, cars, and even some specially designed clothes can act as Faraday cages. Start your research at ScienceSource. Static charges collect on surfaces and remain there until given a path to escape. 401

9 DI Key Activity D3 Question Inquiry Activity Investigating Static Electricity What is the effect of objects on each other and on neutral objects? Materials & Equipment 2 vinyl strips clear adhesive tape ring stand paper towel 2 acetate strips beaker watch glass wooden ruler or metre stick Skills Reference 2 SKILLS YOU WILL USE Adapting or extending procedures Drawing conclusions 4. Bring one of the vinyl strips close to the suspended acetate strip. Make sure the two strips do not touch each other. Record your observations. 5. Place the beaker upside down on the desk or table. Place the watch glass on top of the beaker as shown in Figure Balance the ruler so it is lying flat and centred on the watch glass. Bring a vinyl strip near, but not touching, one end of the ruler. Record your observations. Procedure 1. Copy the following table into your notebook to record your findings. Give your table a title. Hanging Object vinyl Approaching Object Predictions Observations vinyl Figure Balance the ruler on the watch glass on top of the beaker. acetate acetate ruler ruler acetate vinyl vinyl acetate 2. Tape one end of a vinyl strip to the ring stand so the strip hangs down. Rub the hanging vinyl strip with the paper towel to charge it. Then, rub the other vinyl strip with the paper towel, and bring that vinyl strip close to the suspended strip. Record your observations in your table. 3. Repeat step 2, using the two acetate strips and the paper towel. Record your observations. 6. Bring a acetate strip near one end of the ruler. Record your observations. Analyzing and Interpreting 7. Usually, vinyl is negative and acetate is positive. How does this information explain your observations? Skill Practice 8. Describe how you would modify the procedure in this activity so that you could identify the type of charge on a object. Forming Conclusions 9. Write three statements that summarize your observations. 402 UNIT D The Characteristics of Electricity

10 10.1 CHECK and REFLECT Key Concept Review 1. (a) Draw a diagram of an atom that has four protons, five neutrons, and four electrons. (b) Label each particle with its name and whether it is positive (), negative ( ), or neutral. 2. (a) What is friction? (b) Explain how friction can be used to transfer electrons. Use two substances from the triboelectric series in Table 10.1 on page 398 in your answer. 3. Explain why this statement is false: A neutral object contains no charge. 4. State the two laws of static electric charges. 5. Where are static charges held? 6. Why might a plastic rod that contains a large number of electrons not have a static charge? 7. (a) What is the difference between a conductor and an insulator? (b) What is an example of a conductor? (c) What is an example of an insulator? 8. (a) What is the difference between a conductor and a fair conductor? (b) What is an example of a fair conductor? 9. Why can you not use water to put out an electrical fire? Connect Your Understanding 10. Do two identical objects become statically when you rub them together? Explain why they do or do not. 11. Copy this chart into your notebook. For each pair, predict which substance becomes more positively and which becomes more negatively when the two substances are rubbed together. Use Table 10.1, A Triboelectric Series on page 398, to help you make predictions. Charged Pairs Pairs cotton, steel cotton, silk human hair, human hands (dry) Teflon, wood glass, plastic wrap 12. Make a list of five different ways in which you experience static electricity in your own life. 13. (a) While fishing in an aluminum boat in the middle of a lake, you notice storm clouds forming nearby. Why is it a good idea to get to shore as fast as possible? (b) Would your answer change if the lake somehow became filled with distilled water with no ions present in it? Explain why or why not. Reflection Becomes More Positively Charged Becomes More Negatively Charged 14. What are two questions about static electricity that you would like to explore further? For more questions, go to ScienceSource. Static charges collect on surfaces and remain there until given a path to escape. 403

10.1 Exploring the Nature of Static Electricity

10.1 Exploring the Nature of Static Electricity 10.1 Exploring the Nature of Static Electricity static electricity is caused by electric charges: charged particles that exert an electric force on each other examples of static electricity: lightning,

More information

7.2. Electric Force 7-2A. What Is the Attraction to Water? Words to Know. Find Out ACTIVITY. Materials. What Did You Find Out?

7.2. Electric Force 7-2A. What Is the Attraction to Water? Words to Know. Find Out ACTIVITY. Materials. What Did You Find Out? 7.2 Electric Force Electric force acts on objects even if they are not touching. Objects with the same charge repel each other. Objects with opposite charges attract each other. Neutral objects are attracted

More information

AP Physics-B ElectroStatics Electric Charges: Subatomic Particles and Electricity: atoms subatomic particles protons neutrons electrons nucleus

AP Physics-B ElectroStatics Electric Charges: Subatomic Particles and Electricity: atoms subatomic particles protons neutrons electrons nucleus AP Physics-B ElectroStatics Electric Charges: It made my hair stand on end! Perhaps you are familiar with this expression, which is often used to describe a frightening or startling experience. According

More information

Review of Static Electricity

Review of Static Electricity Name: Block: Date: IP 614 Review of Static Electricity Central Concept: Stationary and moving charged particles result in the phenomena known as electricity and magnetism. 5.1 Recognize that an electric

More information

Review of Static Electricity

Review of Static Electricity Name: KEY lock: Date: IP 670 Match each of the following terms with the appropriate description. Write the letter of the best answer to the left. Terms Description C 1. atom a. a small, negatively charged

More information

Unit 2: Fields. Substances that possessed an electric charge were noticed to show two different states; these were classified as either negative or

Unit 2: Fields. Substances that possessed an electric charge were noticed to show two different states; these were classified as either negative or Unit 2: Fields Part 1: Electrostatics (Read section 524-534) Section I : Definition of Electrostatics Electrostatics is the study of electricity at rest. Early Greeks noticed that when a piece of sap or

More information

Electric Charge and Force

Electric Charge and Force CHAPTER 17 21 SECTION Electricity Electric Charge and Force KEY IDEAS As you read this section, keep these questions in mind: What are the different kinds of electric charge? How do materials become electrically

More information

ELECTRICITY. This chain is similar to the fire fighter's bucket brigades in olden times. But

ELECTRICITY. This chain is similar to the fire fighter's bucket brigades in olden times. But ELECTRICITY Electricity figures everywhere in our lives. Electricity lights up our homes, cooks our food, powers our computers, television sets, and other electronic devices. Electricity from batteries

More information

7.9.4 Static Electricity

7.9.4 Static Electricity 7.9.4 Static Electricity 71 minutes 79 marks Page 1 of 19 Q1. The diagram shows a student after rubbing a balloon on his hair. The balloon and hair have become charged. (a) Draw a ring around the correct

More information

Particle symbol. electron negative outside nucleus e

Particle symbol. electron negative outside nucleus e What Is Static Electricity? Have you ever had your hair stand up after putting on, or taking off, a sweater (Figure 1)? Or have you perhaps noticed that a balloon placed near your head will attract your

More information

Lab 3 Electrostatics: Charging Objects by Friction

Lab 3 Electrostatics: Charging Objects by Friction 1 Overview Lab 3 Electrostatics: Charging Objects by Friction Static electricity is the result of an imbalance of charge in materials. All material is made up of atoms. Atoms are extremely small and are

More information

Electrostatics Notes (614) (teacher)

Electrostatics Notes (614) (teacher) Electrostatics Notes (614) (teacher) Charge!!! Have you ever walked across the carpet and gotten shocked when you touched the doorknob? ! What about static cling? Have you ever gotten to school only to

More information

Welcome to the exciting world of Electricity!

Welcome to the exciting world of Electricity! Welcome to the exciting world of Electricity! In this unit we will explore: static and current electricity circuits, how to build and design them the cost/benefit of our own electrical usage and the impact

More information

Unit 3 Lesson 1 Electric Charge and Static Electricity. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 3 Lesson 1 Electric Charge and Static Electricity. Copyright Houghton Mifflin Harcourt Publishing Company Opposites Attract What is electric charge? Electric charge is a property that leads to electromagnetic interactions between the particles that make up matter. An object can have a positive (+) charge,

More information

Electric Charge and Static Electricity

Electric Charge and Static Electricity Electric Charge and Static Electricity Electric Charge All matter is made up of atoms Atoms contain 1. Protons (+) 2. Neutrons (0) 3. Electrons (-) Law of Electric Charges The law of electric charges states

More information

Electric Charge and Electric Forces

Electric Charge and Electric Forces CHAPTER 19 Electricity LESSON 1 Electric Charge and Electric Forces What do you think? Read the two statements below and decide whether you agree or disagree with them. Place an A in the Before column

More information

Magnetism and Electricity

Magnetism and Electricity Magnetism and Electricity UNIT 7 Student Reader E3 Student Reader v. 9 Unit 7 Page 1 2016 KnowAtom TM Front Cover: The front cover shows a photograph of a girl with her hair standing straight up. This

More information

Conceptual Questions. Fig.8.51 EXERCISES. 8. Why can t electric field lines cross? 9. In which direction do charges always move in an electric field?

Conceptual Questions. Fig.8.51 EXERCISES. 8. Why can t electric field lines cross? 9. In which direction do charges always move in an electric field? EXERCISES Conceptual Questions 1. Explain why a neutral object can be attracted to a charged object. Why can this neutral object not be repelled by a charged object? 2. What is the function of an electroscope?

More information

Welcome to the exciting world of Electricity!

Welcome to the exciting world of Electricity! Welcome to the exciting world of Electricity! In this unit we will explore: static and current electricity circuits, how to build and design them the cost/benefit of our own electrical usage and the impact

More information

Electrostatics. The Nature of Electric Charge

Electrostatics. The Nature of Electric Charge Electrostatics GIRL SAFELY CHARGED TO SEVERAL HUNDRED THOUSAND VOLTS GIRL IN GREAT DANGER AT SEVERAL THOUSAND VOLTS The Nature of Electric Charge Discovery of charge The Greeks first noticed electric charges

More information

Static Electricity. Lyzinski Physics. These notes will be on Mr. L s website for your studying enjoyment!!! Not moving or stationary

Static Electricity. Lyzinski Physics. These notes will be on Mr. L s website for your studying enjoyment!!! Not moving or stationary Not moving or stationary Static Electricity These notes will be on Mr. L s website for your studying enjoyment!!! Lyzinski Physics Some very simple rules There are only two types of charge: POSITIVE AND

More information

Materials can become electrically charged.

Materials can become electrically charged. Page of 8 KY CONCPT Materials can become electrically charged. BFOR, you learned Atoms are made up of particles called protons, neutrons, and electrons Protons and electrons are electrically charged NOW,

More information

Static Electricity Class Practice

Static Electricity Class Practice Static Electricity Class Practice 1. You are given 4 spheres that are electrically. If sphere 3 is positively, what are the charges of the other objects? 1 2 2 3 3 4 2. You have five spheres which are

More information

Static Electricity. (A Qualitative Study of Electrostatics using Sticky Tape)

Static Electricity. (A Qualitative Study of Electrostatics using Sticky Tape) Goals: (A Qualitative Study of Electrostatics using Sticky Tape) To become familiar with basic electrostatic phenomena To learn the charge model and learn to apply it to conductors and insulators To understand

More information

7.1 Properties of Electric Charge

7.1 Properties of Electric Charge 7.1 Properties of Electric Charge A visit to a science museum can be, literally, a hair-raising experience. In Figure 1, the device that the child is touching is a Van de Graaff generator, which produces

More information

Electricity. Year 10 Science

Electricity. Year 10 Science Electricity Year 10 Science What is electricity? The collection or flow of electrons in the form of an electric charge What is static electricity? A stationary electrical charge that is built up on the

More information

Electrostatics. Experiment NC. Objective. Introduction. Procedure

Electrostatics. Experiment NC. Objective. Introduction. Procedure Electrostatics Experiment NC Objective In this experiment you will explore various aspects of electrostatic charging and electrostatic forces. Introduction You are probably aware of various phenomena associated

More information

Note on Posted Slides

Note on Posted Slides Note on Posted Slides These are the slides that I intended to show in class on Wed. Mar. 13, 2013. They contain important ideas and questions from your reading. Due to time constraints, I was probably

More information

What Is Static Electricity? A stationary electrical charge that is built up on the surface of a material

What Is Static Electricity? A stationary electrical charge that is built up on the surface of a material Static Electricity What Is Static Electricity? A stationary electrical charge that is built up on the surface of a material Two kinds of charges After being rubbed, a plastic ruler can attract paper scraps.

More information

Quest Chapter 32. Think Is this any different than the electrons flying around a nucleus?

Quest Chapter 32. Think Is this any different than the electrons flying around a nucleus? 1 How does the mass of an object change when it acquires a positive charge? 1. Increases 2. More information is needed. 3. Decreases 4. Doesn t change 2 Why do clothes often cling together after tumbling

More information

SOWETO/DIEPKLOOF P.O.BOX BOOYSENS 2016!!! " /7 #

SOWETO/DIEPKLOOF P.O.BOX BOOYSENS 2016!!!  /7 # ! SOWETO/DIEPKLOOF P.O.BOX 39067 BOOYSENS 2016!!! " 011 9381666/7 # 011 9383603 email: sec@global.co.za Content Page Electrostatics: Summary of Relevant Theory 1 4 Worksheet 1: Multiple Choice Questions

More information

Pre-LAB 1 Preparation: Electric Charge & Electric Interactions

Pre-LAB 1 Preparation: Electric Charge & Electric Interactions Name: Lab Partners: Date: Pre-LAB 1 Preparation: Electric Charge & Electric Interactions Directions: Read over the lab handout and then answer the following questions. Question 1 What are the two hypotheses

More information

A negatively charged object has more electrons than protons. A negatively charged object has more electrons than protons

A negatively charged object has more electrons than protons. A negatively charged object has more electrons than protons Electricity Electricity Describes all phenomena caused by positive and negative charges Electrical charge is caused by protons and electrons Electrons and protons are subatomic particles found in the atom

More information

Chapter 20. Static Electricity

Chapter 20. Static Electricity Chapter 20 Static Electricity Chapter 20 Static Electricity In this chapter you will: Observe the behavior of electric charges and analyze how these charges interact with matter. Examine the forces that

More information

Electric Charge. Thales. William Gilbert. Thales and Gilbert

Electric Charge. Thales. William Gilbert. Thales and Gilbert Thales Greek who lived around 600 B.C.E. One of the first to describe phenomenon related to electricity Described what happened when rubbed a piece of amber with wool William Gilbert English scientist

More information

11.2 Charging by Contact

11.2 Charging by Contact 11.2 Charging by Contact Over 2500 years ago, Thales of Miletus, a Greek philosopher, noticed something unusual when he rubbed a piece of amber with a piece of fur. He noticed that after contact with the

More information

Science 265 Fun with Tape!

Science 265 Fun with Tape! Science 265 Fun with Tape! Challenge At the end of this lab you are to answer the question that follows. Please keep it in mind as you explore static electricity today. The question: Is a thin stream of

More information

Unit 3. Electrostatics

Unit 3. Electrostatics Unit 3. Electrostatics Electricity throughout history Even though electricity is present in nature in many ways lightning is probably the most spectacular one, it has not been easy to interpret and understand

More information

History. The word electricity comes from the Greek elektron which means amber. The amber effect is what we call static electricity.

History. The word electricity comes from the Greek elektron which means amber. The amber effect is what we call static electricity. Electrostatics 1 History The word electricity comes from the Greek elektron which means amber. The amber effect is what we call static electricity. 2 ELECTROSTATICS the study of electric charges, forces

More information

Charge. Electrostatics Notes (614) Review: Atomic Structure 3/10/14! Charge!! 3 Basic Particles make up Atoms:

Charge. Electrostatics Notes (614) Review: Atomic Structure 3/10/14! Charge!! 3 Basic Particles make up Atoms: Electrostatics Notes (614) Charge!! Review: Atomic Structure Sketch of Atomic Structure:! 3 Basic Particles make up Atoms: 1. 2. 3. Charge! Protons & Electrons have a property called Protons: electric

More information

Electrostatics Notes (614) Charge!

Electrostatics Notes (614) Charge! Electrostatics Notes (614) Charge! n Have you ever walked across the carpet and gotten shocked when you touched the doorknob? n What about static cling? Have you ever gotten to school only to be embarrassed

More information

Dissectable Leyden Jar P6-3380

Dissectable Leyden Jar P6-3380 WWW.ARBORSCI.COM Dissectable Leyden Jar P6-3380 BACKGROUND: This apparatus is designed to demonstrate the principles of static electricity, the use of a Leyden jar, and to allow the student to investigate

More information

Definition: Electricity at rest (stationary)

Definition: Electricity at rest (stationary) Electrostatics Definition: Electricity at rest (stationary) Static means to stand and is used in Mechanical Engineering to study forces on bridges and other structures. Statue, stasis, stationary, ecstatic,

More information

Static Electricity. What is Electricity? What is Static Electricity? difference between them?

Static Electricity. What is Electricity? What is Static Electricity? difference between them? What is Electricity? What is Static Electricity? difference between them? What is Electricity Electricity is a form of energy. Electricity is the flow of electrons. All matter is made up of atoms, and

More information

Electric Charge. Labs, Activities & Demonstrations: Notes: Unit: Electricity & Magnetism NGSS Standards: N/A

Electric Charge. Labs, Activities & Demonstrations: Notes: Unit: Electricity & Magnetism NGSS Standards: N/A Add Important Electric Charge Page: 424 NGSS Standards: N/A Electric Charge MA Curriculum Frameworks (2006): 5.1, 5.4 AP Physics 1 Learning Objectives: 1.B.1.1, 1.B.1.2, 1.B.2.1, 1.B.3.1 Knowledge/Understanding

More information

1.61 Electric Charge and Electric Force

1.61 Electric Charge and Electric Force 1.61. Electric Charge and Electric Force www.ck12.org 1.61 Electric Charge and Electric Force Define electric charge. Describe electric forces between charged particles. A lightning bolt is like the spark

More information

Science 265 Fun with Tape!

Science 265 Fun with Tape! Science 265 Fun with Tape! Challenge At the end of this lab you are to answer the question that follows. Please keep it in mind as you explore static electricity today. The question: Is a thin stream of

More information

*We studied the following types of En.: Potential and kinetic EX of potential is Chemical EX of kinetic is Temperature Another Ex of kinetic En is:

*We studied the following types of En.: Potential and kinetic EX of potential is Chemical EX of kinetic is Temperature Another Ex of kinetic En is: *We studied the following types of En.: Potential and kinetic EX of potential is Chemical EX of kinetic is Temperature Another Ex of kinetic En is: *Electrical Energy also called Electricity - ( the result

More information

Electricity and Electromagnetism SOL review Scan for a brief video. A. Law of electric charges.

Electricity and Electromagnetism SOL review Scan for a brief video. A. Law of electric charges. A. Law of electric charges. Electricity and Electromagnetism SOL review Scan for a brief video The law of electric charges states that like charges repel and opposite charges attract. Because protons and

More information

LAB 1 - ELECTROSTATICS

LAB 1 - ELECTROSTATICS Lab 1 - Electrostatics 7 Name Date Partners LAB 1 - ELECTROSTATICS OBJECTIVES OVERVIEW To understand the difference between conducting and insulating materials. To observe the effects of charge polarization

More information

Charge Transfer Diagrams

Charge Transfer Diagrams + + = CHAPTER 7 BLM 33 Charge Transfer Diagrams Goal Review your understanding of charge transfer Use the following diagram to answer question 1 3 Use ( ) to represent negative charges and (+) to represent

More information

Notes Methods of Charging

Notes Methods of Charging Notes Methods of Charging From ancient times it was known that when certain materials are rubbed together, they can form an attraction to one another. This is the same discovery that is made every time

More information

PHY132 Introduction to Physics II Class 8 Outline:

PHY132 Introduction to Physics II Class 8 Outline: PHY132 Introduction to Physics II Class 8 Outline: Ch. 25, sections 25.1-25.4 Developing a Charge Model Electric Charge Insulators and Conductors Coulomb's Law [Photo by David He Aug. 9, 2009. http://www.flickr.com/photos/davidymhe/3809482563/

More information

PE q. F E = q. = kq 1q 2 d 2. Q = ne F e

PE q. F E = q. = kq 1q 2 d 2. Q = ne F e Chapters 32 & 33: Electrostatics NAME: Text: Chapter 32 Chapter 33 Think and Explain: 1-6, 8 Think and Explain: 1, 4, 5, 8, 10 Think and Solve: Think and Solve: 1-2 Vocabulary: electric forces, charge,

More information

Greeks noticed when they rubbed things against amber an invisible force of attraction occurred.

Greeks noticed when they rubbed things against amber an invisible force of attraction occurred. Ben Franklin, 1750 Kite Experiment link between lightening and sparks Electrostatics electrical fire from the clouds Greeks noticed when they rubbed things against amber an invisible force of attraction

More information

Lab 1 ELECTROSTATICS

Lab 1 ELECTROSTATICS 5 Name Date Partners Lab 1 ELECTROSTATICS OBJECTIVES To understand the difference between conducting and insulating materials. To observe the effects of charge polarization in conductors and insulators

More information

Electric Charge. Labs, Activities & Demonstrations: Notes: Unit: Electricity & Magnetism NGSS Standards: N/A

Electric Charge. Labs, Activities & Demonstrations: Notes: Unit: Electricity & Magnetism NGSS Standards: N/A Add Important Electric Charge Page: 44 NGSS Standards: N/A Electric Charge MA Curriculum Frameworks (006): 5.1, 5.4 AP Physics 1 Learning Objectives: 1.B.1.1, 1.B.1., 1.B..1, 1.B.3.1 Knowledge/Understanding

More information

HIGH SCHOOL SCIENCE. Physical Science 7: Electricity & Magnetism

HIGH SCHOOL SCIENCE. Physical Science 7: Electricity & Magnetism HIGH SCHOOL SCIENCE Physical Science 7: Electricity & Magnetism WILLMAR PUBLIC SCHOOL 2013-2014 EDITION CHAPTER 7 Electricity & Magnatism In this chapter you will: 1. Analyze factors that affect the strength

More information

Electric charge. Book page Syllabus Lightening 16/3/2016

Electric charge. Book page Syllabus Lightening 16/3/2016 Electric charge Book page 66 69 Syllabus 2.19 2.23 16/3/2016 Lightening cgrahamphysics.com 2016 Test your knowledge Where is the lightning capital of the world? What should you do when you hear thunder?

More information

Faraday Cage P BACKGROUND: KIT CONTENTS: CAUTION: BACKGROUND ON STATIC ELECTRICITY:

Faraday Cage P BACKGROUND: KIT CONTENTS: CAUTION: BACKGROUND ON STATIC ELECTRICITY: WWW.ARBORSCI.COM Faraday Cage P6-3370 BACKGROUND: Named after the English chemist and physicist Michael Faraday, this apparatus is designed to demonstrate the principles of static electricity, and to allow

More information

Fun with Tape! Discuss with your group: what you know about electrical charges? Summarize the keys ideas below.

Fun with Tape! Discuss with your group: what you know about electrical charges? Summarize the keys ideas below. Fun with Tape! Name: Group: NOTE: All the activities involving Scotch tape requires properly charged tape. After you peel the tape off, handle it carefully. Try not to touch them with other objects, especially

More information

32 Electrostatics. Electrostatics involves electric charges, the forces between them, and their behavior in materials.

32 Electrostatics. Electrostatics involves electric charges, the forces between them, and their behavior in materials. Electrostatics involves electric charges, the forces between them, and their behavior in materials. Electrostatics, or electricity at rest, involves electric charges, the forces between them, and their

More information

Electrostatics. Thomas Jefferson National Accelerator Facility - Office of Science Education

Electrostatics. Thomas Jefferson National Accelerator Facility - Office of Science Education Electrostatics Electrostatics What happens to Different objects when they are electrically charged? 1. In this experiment, a device called a Van de Graaff generator will be used to place extra electrons

More information

Electrostatics 1 July 6. Name Date Partners ELECTROSTATICS

Electrostatics 1 July 6. Name Date Partners ELECTROSTATICS Electrostatics 1 Name Date Partners ELECTROSTATICS OBJECTIVES OVERVIEW To understand the difference between conducting and insulating materials. To observe the effects of charge polarization in conductors

More information

People experience static electricity everyday.

People experience static electricity everyday. Electrostatics Electrostatics/static electricity is the branch of physics that deals with electrical charges or charged objects, and their interactions. The charges are stationary. People experience static

More information

Young Physicists Program: January 2011 Lab 4: Shocking facts about electrostatics

Young Physicists Program: January 2011 Lab 4: Shocking facts about electrostatics Young Physicists Program: January 2011 Lab 4: Shocking facts about electrostatics Laboratory: Static electricity- Charge, con/induction, Coulomb's Law Introduction The purpose of this lab is to study the

More information

Intro Video: n What is charge? n v=dvlpasdwxpy

Intro Video: n What is charge? n   v=dvlpasdwxpy Electrostatics Intro Video: n What is charge? n https://www.youtube.com/watch? v=dvlpasdwxpy What is electrostatics? n Electrostatics or electricity at rest n Involves electric charges, the forces between

More information

Electric charges. Basics of Electricity

Electric charges. Basics of Electricity Electric charges Basics of Electricity Electron has a negative charge Neutron has a no charge Proton has a positive charge But what is a charge? Electric charge, like mass, is a fundamental property of

More information

AQA GCSE Physics. 60 minutes. 60 marks. Q1 to Q4 to be worked through with tutor. Q5 to Q8 to be worked through independently.

AQA GCSE Physics. 60 minutes. 60 marks. Q1 to Q4 to be worked through with tutor. Q5 to Q8 to be worked through independently. AQA GCSE Physics Electricity 4.2.5: Static Electricity & Electric Fields Name: Class: Date: Time: 60 minutes Marks: 60 marks Comments: Q to Q4 to be worked through with tutor. Q5 to Q8 to be worked through

More information

Charge! (The electric kind)

Charge! (The electric kind) Charge! (The electric kind) 1. Early Days of Electrical Phenomena. Modern Overview 3. Triboelectricity 4. Coulomb's Law 1. Early Days of Electrical Phenomena Phenomena associated with charged objects has

More information

Name Date Block Review for Test on Universal Gravitation and Electrostatics Test is on:

Name Date Block Review for Test on Universal Gravitation and Electrostatics Test is on: Name Date Block Review for Test on Universal Gravitation and Electrostatics Test is on: Please bring a completed (in your own handwriting) and corrected packet to the test. You will be able to use it on

More information

Electric Charge & Force - 1 v Goodman & Zavorotniy

Electric Charge & Force - 1 v Goodman & Zavorotniy Electric Charge and Force Introduction From ancient times it was known that when certain materials are rubbed together, they can form an attraction to one another. This is the same discovery that is made

More information

1. Electrostatic Lab [1]

1. Electrostatic Lab [1] 1. Electrostatic Lab [1] Purpose: To determine the charge and charge distribution on insulators charged by the triboelectric effects and conductors charged by an Electrostatic Voltage Source. Equipment:

More information

International Journal of Mathematics and Computer Sciences (IJMCS) Vol.10 October 2012 International Scientific Researchers (ISR) ISSN:

International Journal of Mathematics and Computer Sciences (IJMCS) Vol.10 October 2012 International Scientific Researchers (ISR) ISSN: California Physics Standard 5e Send comments to: layton@physics.ucla.edu Electric and magnetic phenomena are related and have many practical applications As a basis for understanding this concept: e. Students

More information

Name: SNC1 Date: Investigation Electrostatic Series

Name: SNC1 Date: Investigation Electrostatic Series ACTIVITY #1 Purpose: To determine how charged objects respond to one another and what kind of charge is transferred when a charged object contacts an uncharged one. Pre Lab Questions 1. When acetate and

More information

f Static Electricity:

f Static Electricity: ELECTRICITV VOCflB WORDS Electricity: f Static Electricity: Current Electricity: Electron: Neutron: Proton: Attraction: Repulsion: / ^ Source: Conductor: Insulator: Load: Switch: Series Circuit: Parallel

More information

Electric Charge. Demo Lab. Return to Table of Contents. abp_electric charge force presentation_ notebook. March 21, 2017

Electric Charge. Demo Lab. Return to Table of Contents. abp_electric charge force presentation_ notebook. March 21, 2017 abp_electricchargeforcepresentation_20170207.notebook Electric Charge Demo Lab https://www.njctl.org/video/?v=xbmbaekusb4 Return to Table of Contents 1 abp_electricchargeforcepresentation_20170207.notebook

More information

Review for Statics and Magnetism Test

Review for Statics and Magnetism Test Review for tatics and Magnetism Test Multiple Choice 1. The following diagram represents some of the magnetic lines of force between two bar magnets. Pole X of one magnet and pole Y of the other magnet

More information

20.1 Electric Charge and Static Electricity. Electric charge is responsible for clothes that stick together when they are removed from a dryer.

20.1 Electric Charge and Static Electricity. Electric charge is responsible for clothes that stick together when they are removed from a dryer. Electric charge is responsible for clothes that stick together when they are removed from a dryer. Electric Charge What produces a net electric charge? An excess or shortage of electrons produces a net

More information

Electrostatics: Coulomb's Law

Electrostatics: Coulomb's Law Electrostatics: Coulomb's Law Objective: To learn how excess charge is created and transferred. To measure the electrostatic force between two objects as a function of their electrical charges and their

More information

ELECTRICITY. Chapter ELECTRIC CHARGE & FORCE

ELECTRICITY. Chapter ELECTRIC CHARGE & FORCE ELECTRICITY Chapter 17 17.1 ELECTRIC CHARGE & FORCE Essential Questions: What are the different kinds of electric charge? How do materials become charged when rubbed together? What force is responsible

More information

Name: Class: Date: 1. Friction can result in the transfer of protons from one object to another as the objects rub against each other.

Name: Class: Date: 1. Friction can result in the transfer of protons from one object to another as the objects rub against each other. Class: Date: Physics Test Review Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true. 1. Friction can result in

More information

PHY222 Lab 1 Electric Charge Positive and negative electric charge, electroscope, phenomenon of electrical induction

PHY222 Lab 1 Electric Charge Positive and negative electric charge, electroscope, phenomenon of electrical induction PHY222 Lab 1 Electric Charge Positive and negative electric charge, electroscope, phenomenon of electrical induction Print Your Name Print Your Partners' Names Instructions September 4, 2015 Before the

More information

Electricity Electrostatics Types of materials Charging an Object Van de Graaff Generator

Electricity Electrostatics Types of materials Charging an Object Van de Graaff Generator Electricity Electricity is the physical phenomena associated with the position or movement of electric charge. The study of electricity is generally divided into two areas electrostatics and current electricity.

More information

Chapter 19. Electric Charges, Forces and Electric Fields

Chapter 19. Electric Charges, Forces and Electric Fields Chapter 19 Electric Charges, Forces and Electric Fields Agenda Atom History Induction Static Conductors Insulators Coulomb s Law Observation/ question Quiz The electrons in an atom are in a cloud surrounding

More information

Magnets attract some metals but not others

Magnets attract some metals but not others Electricity and Magnetism Junior Science Magnets attract some metals but not others Some objects attract iron and steel. They are called magnets. Magnetic materials have the ability to attract some materials

More information

Electric Charge. Positive and Negative Charge

Electric Charge. Positive and Negative Charge Positive and Negative Charge Atoms contain particles called protons, neutrons, and electrons. Protons and electrons have electric charge, and neutrons have no electric charge. Positive and Negative Charge

More information

STATIC ELECTRICITY. II. Directions:Answer the following questions with short answers. Use the back of this sheet to write your answers.

STATIC ELECTRICITY. II. Directions:Answer the following questions with short answers. Use the back of this sheet to write your answers. 1 Pre-Test I. Directions: Circle the word that completes the sentence. 1. The "building blocks of matter" are called neutrons atoms electrons. 2. When charged objects jump apart we say they each other.

More information

I. Origin of Electricity

I. Origin of Electricity Name Regents Physics Mr. Mellon Based on Chapter 20 and 21 Essential Questions What is the charge of an elementary charge? Know how to convert elementary charges to Coulombs (vice-versa). Explain the conservation

More information

Algebra Based Physics

Algebra Based Physics 1 / 88 Algebra Based Physics Electric Charge and Force 20151130 www.njctl.org 2 / 88 Electric Charge and Force Click on the topic to go to that section Electric Charge Atomic Structure and Source of Charge

More information

Figure 1 shows the charges on the acetate rod and cloth before and after rubbing. Figure 1

Figure 1 shows the charges on the acetate rod and cloth before and after rubbing. Figure 1 A student rubs an acetate rod with a cloth. Figure shows the charges on the acetate rod and cloth before and after rubbing. Figure (a) Explain how rubbing an acetate rod with a cloth causes the rod and

More information

ELECTRON THEORY

ELECTRON THEORY ELECTRON THEORY We will start our discussion of electron theory with a few definitions. Matter- is anything that has mass and takes up space. The basic unit of matter is the atom. Another Definition Energy-

More information

MAGNETISM. B.Directions: Answer the following questions with a short answer. You may use the back of this sheet if you need more space.

MAGNETISM. B.Directions: Answer the following questions with a short answer. You may use the back of this sheet if you need more space. 1 Pre-Test A. Directions: Circle the word or phrase that completes the sentence. 1. If two bar magnets are brought near each other and they repel, then the poles of the magnets are the same. the poles

More information

Learning Outcomes from Last Time. Class 3. Learning Outcomes. What Causes Forces -Two Experiments. What Causes Forces -Two Experiments

Learning Outcomes from Last Time. Class 3. Learning Outcomes. What Causes Forces -Two Experiments. What Causes Forces -Two Experiments Learning Outcomes from Last Time Class 3 Electrostatic Forces Physics 106 Winter 2018 Press CTRL-L to view as a slide show. You should be able to answer these questions: What is science? What is physics?

More information

Electrostatic and Electromagnetic Exam Wednesday

Electrostatic and Electromagnetic Exam Wednesday Name: KEY Period: Electrostatic and Electromagnetic Exam Wednesday 3-9-2016 This is a review guide none of these questions are on the test. You have to understand the skills necessary to answer these questions

More information

Electric Charges & Electric Forces Chapter 20 Structure of atom

Electric Charges & Electric Forces Chapter 20 Structure of atom Electric Charges & Electric Forces Chapter 20 Electric Charges & Electric Forces Chapter 20 Structure of atom Mass (kg) Charge (Coulombs) Proton 1.673X10-27 +1.60X10-19 Neutron 1.675X10-27 0 = + e Electron

More information

Electrostatics. Electrostatics - the study of electrical charges that can be collected and held in one place - charges at rest.

Electrostatics. Electrostatics - the study of electrical charges that can be collected and held in one place - charges at rest. Electrostatics Electrostatics - the study of electrical charges that can be collected and held in one place - charges at rest. Examples: BASIC IDEAS: Electricity begins inside the atom itself. An atom

More information

Student Instruction Sheet: Unit 3 Lesson 1. Static and Current Electricity

Student Instruction Sheet: Unit 3 Lesson 1. Static and Current Electricity Student Instruction Sheet: Unit 3 Lesson 1 Suggested Time: 1.2 Hours What s important in this lesson: Static and Current Electricity explain common electrostatic phenomena (e.g., clothes that stick together,

More information

Electrostatics II. Introduction

Electrostatics II. Introduction Electrostatics II Objective: To learn how excess charge is created and transferred. To measure the electrostatic force between two objects as a function of their electrical charges and their separation

More information

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME PHYSICAL SCIENCES GRADE 10 SESSION 13 LEARNER NOTES

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME PHYSICAL SCIENCES GRADE 10 SESSION 13 LEARNER NOTES ELECTROTATIC Learner ote: In Grade 10 learners are introduced to electric charges. There are two types of electric charge, positive and negative. Equal numbers of positive and negative charges result in

More information