THERMOPHYSICAL PROPERTIES OF THE PHASE CHANGE MATERIAL MIXTURES PRELIMINARY STUDIES ON MACROMOLECULAR HYDROCARBONS EXAMPLE

Size: px
Start display at page:

Download "THERMOPHYSICAL PROPERTIES OF THE PHASE CHANGE MATERIAL MIXTURES PRELIMINARY STUDIES ON MACROMOLECULAR HYDROCARBONS EXAMPLE"

Transcription

1 THEMOPHYSICAL POPETIES OF THE PHASE CHANGE MATEIAL MIXTUES PELIMINAY STUDIES ON MACOMOLECULA HYDOCABONS EXAMPLE E. KLUGMANN-ADZIEMSKA 1, P. WCISŁO 1, H. DENDA 1, M. YMS 1 1. Gdansk University of Technology, Faculty of Chemistry, Gdansk, Poland ABSTACT The aim of this work is a theoretical and experimental analysis of the macromolecular hydrocarbons mixtures composition and the impact on thermophysical parameters of the phase change materials (PCM) made from these mixtures. The analysis of the current state of knowledge extended by the author s own studies have been presented. Thermophysical characteristics of the hydrocarbons and their mixtures have been specified, in such a way, that on this basis description of the nature of the effects from individual fractions can be obtained, and the most important parameters characterizing the PCMs, such as the temperature peak of the phase transition or the heat of transition, can be set down. INTODUCTION One of the major tasks assigned to current knowledge of phase change materials (PCM) are both research for the new compounds and description of properties of the already known substances and mixtures. At the same time the requirements for these materials, such as high purity, heat capacity and durability, a narrow range of the phase transition temperature, low price, determine the intensity of activities in this field. Therefore there is a high demand for a description of existing mixtures (sometimes fairly well known) of materials that could be used as PCMs. This is an extremely important issue, from an economic, as well as technological and environmental points of view. Solid-liquid phase change materials during isothermal phase transitions absorb, store and release heat. The heat is stored at the time of solid to liquid transition, and released during the phase change from liquid to solid. This allows for the economic utilization of the waste heat, heat from the sun, surplus heat in passive constructions or just for efficient heat management. esearch on phase change materials have been undertaken many times before, but still there is a demand for both new materials and a new usage of existing materials. Among phase change materials can be divided into [Kenisarin M., 2011]: organic compounds (e.g.: waxes, paraffins, fatty acids, alcohols), inorganic compounds (hydrated salts) and eutectic mixtures. Based on analyzes and literature the need for a theoretical and an experimental examination of the mutual relationships between the various thermophysical parameters, such as: phase transition enthalpy or melting temperature, can be indicated, not only for the pure PCMs, but also their mixtures as a function of their composition. This applies in particular to macromolecular hydrocarbon mixtures, for which primary thermophysical properties could be well defined but only as an encyclopedic data very useful form application point of view, but with rather little use in research. Due to their ability to absorb, during isothermal phase transitions, store and then release heat, phase change materials (PCMs) are very useful substances in many applications: plates with PCM layer that keeps the meal warm or cups sustaining high temperatures of the drinks, used in food industry for a constant temperatures control, cardboard plates or bags filled with PCM or directly mixed with cement, used in floors and walls as an improvement in buildings energy efficiency [Lewandowski W., 2014], storing heat during engine operation, and recovering this energy when the engine starts, heat-receiving materials to prevent overheating of the devices [Höhne G., 2003], inserts or containers for the thermo-sensitive materials transport e.g.: blood, organs, drugs, groceries, sensitive electronics, chemicals etc., protection when carrying out exothermic chemical reactions in chemistry, sportswear materials, vests for firefighters, suits for astronauts protecting from them temperature fluctuations. Mehling and Cabeza [Cabeza L.F., 2011] have been expanded above division with reference to PCMs enthalpy and melting temperature levels. Dubovsky at al. [Dubovsky V., 2011] provides PCMs tests in terms of heat exchange. Xiao at al. [Xiao W., 2009] presents a possible application of phase change materials in construction utilities. Felix at al. [Felix A., 2008] presented new PCM technological innovations such as: Nr I-IV/2014 Polska Energetyka Słoneczna 39

2 Thermal storage of solar energy, Passive storage in bioclimatic building/architecture, Cooling: use of off-peak rates and reduction of installed power, icebank, Heating and sanitary hot water: using off-peak rate and adapting unloading curves, Thermal protection of food: transport, hotel trade, ice-cream, etc., Thermal protection of electronic devices (integrated in the appliance), Medical applications: transport of blood, operating tables, hot and cold therapies, Cooling of engines (electric and combustion), Thermal comfort in vehicles, Solar power plants. In Dirand at al. [Dirand M., 2002] paraffins of straight hydrocarbon chains analysis in a wide range of carbon atoms in the molecule has been conducted. In that paper the authors also considered two Broadhurst s models, describing the melting point of hydrocarbons as a function of number of carbon atoms in the molecule. This description allowed determining the relationship between the melting point and enthalpy of straight-chain alkanes in a wide range of carbon atoms in the molecule. According to data presented in [9] and other above papers, PCMs in the form of paraffins and waxes may find their application as heat storage. In the present paper, the analysis of the hydrocarbons and their mixtures has been conducted for describing termophisical properties of PCMs made of them. THEOETICAL CONSIDEATIONS: DSC DIAGAMS COMPOSITION Differential scanning calorimetry is a useful tool for detecting the phase change transitions. The result of a DSC experiment is a curve of heat flux versus temperature level or time. This curve can be used to calculate enthalpy of transitions H by integrating the peak corresponding to a given transition [Pungor E., 1995] or may be obtained from the definition of constant-pressure specific heat: C p δh = δ T p. (1) Mathematical models for enthalpy may be obtained by integrating expressions of specific heat with respect to temperature. esulting equation in practice is simplified into: H = k A, (2) where: k the so-called calorimetric constant it can be determined by analyzing a well-characterized sample with known enthalpies of transition, A the surface area under the curve which can be determined, for example, by graphic integration. For a pure PCM substance, a DSC diagram would show a single significant growth of the energy flow at points where a phase transition occurs. In the case of mixtures, the overall performance of the mixture is a function of the characteristics of its components. However, provided that the components are neutral to each other, they will react to temperature changes independently. The theoretical characteristic of such a mixture containing two exemplary substances was shown in Figure 1. Those were chosen particulary due to relatively distant temperature levels of their phase change, respectively t 1 and t 2. It is valid for all measuring systems which work lineary, that is to say the measured signal for two distinct pulse-like events in the sample must be the superposition of the two single functions from each individual event (Fig.1) [oduit B., 2008]. Inverting this issue, this means, that observing the characteristic growth we may infer qualitative composition of the mixture. Another condition is that all measured curves of various pulse-like events should have the same shape, in other words all these measured functions divided by their peak area must yield the same function, the socalled apparatus function α(t) called Green s function. If these conditions are fulfilled, the following is valid: 40 Polska Energetyka Słoneczna Nr I-IV/2014

3 Fig. 1. Theoretical DSC curve for a exemplary PCM substances φ m ( T) c [ φ ( T ) α( T T )] dt = φ ( T) α( T) = (3) where: φ measured signal heat flow rate, m φ heat flow rate developed in the sample, T temperature level, α apparatus function, c constant. This defines the so-called convolution product of two functions in the form of integral equation. The equation is valid for all DSCs which work in the above-described linear manner, irrespective of whether a certain approximate formula is explicitly known. The seamy side of this desmearing method also called deconvolution, is the rather ambitious mathematics required to solve integral equation (3) for the function of interest φ ( T). There are essentially two methods, the Fourier transform and the recursion method. Both require numerical calculations. The DSC trace shows the value of the total energy flow needed to change the temperature by a set value. Thermodynamically, it depends directly on the specific heat and mass of the individual components of the mixture. This means that by measurement of the total heat transported in the vicinity of specific points, the quantitative component mixture can also be estimated. EXPEIMENTAL SECTION Macromolecular hydrocarbons under considerations The In order to confirm (or not confirmed) a dependency defined by the equation (3) PCMs and their mixtures with different proportions of the individual components has been examined. All mixtures were analyzed by the TA Q20 DSC device with the compressor cooling unit, which allows operating in the wide temperature range between 90 to 450ºC. For individual mixture its theoretically predicted DSC diagram has been calculated. Then the curves obtained that way were compared with experimental data collected from the DSC device. To determine the presence (or absence) of dependencies between the composition of PCMs and their thermophysical parameters and to confront it with the results obtained by a particular test, a verification process of existing knowledge on the subject procedure should be performed. Samples were prepared in two steps. In the first step two selected higher hydrocarbons (mixtures of various higher hydrocarbons with a chain length from C 19 to C 45 ) were weighted and closing in measuring cells. In the second one source materials from the first step were mixture in proportions of 1:1, 1:3 and also closing in separate measuring cells. All prepared samples were analyzed by the DSC device in the temperature range of from about -50 to 90ºC. In such way reference samples and their mixtures compositions have been obtained. Outcome DSC diagrams were recalculated according to the composition of the sample in such way that the curves obtained for the pure substances and their mixtures can be compared on one graph. As an example of above mentioned procedure analysis of the macromolecular hydrocarbons has been taken into considerations. Those substances have quite well known properties that were promising in term of theoretical and experimental comparisons. In Table 1 most significant DSC data results for hydrocarbons and in Table 2 their mixture samples has been presented. According the fact, that most investigated substances has distinct hysteresis between heating and cooling of the samples, the overall analysis contains this data, but as more important only heating DSC diagrams has been investigated in subsequent analysis. Seven PCM samples from the pure substances and their mixtures mentioned in Table 1 have been chosen for further analysis and comparison with theoretical considerations. Nr I-IV/2014 Polska Energetyka Słoneczna 41

4 No. Mass [mg] Table 1. DSC results of preliminary tests of various higher hydrocarbons Heating/ Temperature Enthalpy H Cooling Melting Congealing Melting Crystalliza ate Area/Main Area [kj/kg] -tion [ºC/min] Peak [kj/kg] Heating/ Cooling Program Temperature range Sample No. Table 2. DSC results of selected higher hydrocarbons and their compositions DSC Mass [mg] Melting Area/Main Peak Temperature Congealing Area Melting [kj/kg] Enthalpy H Crystallization [kj/kg] Temperature range ESULTS DSC diagrams obtained during measurements have been compared with theoretically calculated functions representing superposition of the basic component mixtures form Table 1. Calculations has been conducted with specially designed computer software, according to theoretical considerations, and will be the subject of separate article. 42 Polska Energetyka Słoneczna Nr I-IV/2014

5 Fig. 2. Theoretical DSC curve for a exemplary PCM substances Nr I-IV/2014 Polska Energetyka Słoneczna 43

6 Fig. 3. Theoretical DSC curve for a exemplary PCM substances In Figure 2 and 3 all experimental and theoretical data for chosen examples of differently composition mixtures has been presented. Samples 9 and 10 are a mixture of test samples 1 and 2 in 1:1 and 1:3 ratio respectively. Sample 11 and 12 are a mixture of test samples 1 and 3 in 1:1 and 1:3 ratio respectively. Sample 13 and 14 are a mixture of test samples 1 and 4 in 1:1 and 1:3 ratio respectively. Sample 15 and 16 is a mixture of test samples 1 and 5 in a 1:1 and 1: 3 ratio respectively. Sample 17 and 18 is a mixture of test samples 1 and 6 in a 1:1 and 1: 3 ratio respectively. Sample 19 and 20 is a mixture of test samples 1 and 6 in a 1:1 and 1: 3 ratio respectively. As shown in the Figure 2 the correlation between the resulting from the measurement and the designated theoretical overlap of 80% (the standard differential individual values in the range of the graph is equal about 20%, hence known that the curves are consistent at about 80%). CONCLUSIONS Nearly 100 different samples with different compositions have been examined. DSC diagrams analysis confirmed a dependency in signals from not only the pure substances and their mixtures, but also between mixtures and their mixtures compositions. However, the correlation of those diagrams, with theoretical superposition functions, reaches only about 80%. Therefore it is necessary to continue this future analysis to determine the relevant correlating functions, which allows better matching between theoretical and experimental DSC diagrams. The analysis of the graphs shows that it is possible to predict with fairly good accuracy the theoretical shape of DSC diagrams of the mixtures made from substances with well known DSC diagrams and thus to evaluate the usefulness of the potential PCM mixtures, taking into account the probable properties of such product. EFEENCES Cabeza L.F., Castell A., Barreneche C., Gracia A., Fernández A.I., 2011, Materials used as PCM in thermal energy storage in buildings: a review, enewable and Sustainable Energy eviews, Vol. 15, pp Dirand M., Bouroukba M., Briard A.J., Chevallier V., Petitjean D., Corriou J.P., 2002, Temperatures and enthalpies of (solid + solid) and (solid + liquid) transitions of n-alkanes, Journal of Chemical Thermodynamics, Vol. 34, pp Dubovsky V., Ziskind G., Letan., 2011, Analytical model of a PCM-air heat exchanger, Applied Thermal Engineering, 31 No. 16, Felix A., Solanki S.C., Saini J.S., 2008, Heat transfer characteristics of thermal energy storage system using PCM capsules: A review, enewable and Sustainable Energy eviews, 12, Np. 9, pp Polska Energetyka Słoneczna Nr I-IV/2014

7 Höhne G., Hemminger W., Flammersheim H.J., 2003, Differential Scanning Calorimetry, Springer, Germany 2003 Kenisarin M., Mahkamov K., 2011, Solar energy storage using phase change materials, enewable Sustainable Energy evievs, 11, No. 9, pp , 2007 Lewandowski W., Lewandowska-Iwaniak W., 2014, The external walls of a passive building: A classification and description of their thermal and optical, Energy and Buildings, Vol. 69, pp Pungor E., 1995, A Practical Guide to Instrumental Analysis, Boca aton, Florida egin A.F., Solanki S.C., Saini J.S., 2008, Heat transfer characteristics of thermal energy storage system using PCM capsules: A review, enewable and Sustainable Energy eviews, 12, No. 9, pp oduit B., Xia L., Folly P., Berger B., Mathieu J., Sarbach A., Andres H., amin M., Vogelsanger B., Spitzer D., Moulard H., Dilhan D., 2008, The simulation of the thermal behavior of energetic materials based on DSC and HFC signals, Journal of Thermal Analysis and Calorimetry, Vol. 93, pp Xiao W., Wang X., Zhang Y., 2009, Analytical optimization of interior PCM for energy storage in a lightweight passive solar room, Applied Energy, 86, No. 10, pp Nr I-IV/2014 Polska Energetyka Słoneczna 45

What Do You Think? Investigate GOALS. Part A: Freezing Water

What Do You Think? Investigate GOALS. Part A: Freezing Water Activity 5 Freezing Water GOALS In this activity you will: Determine the freezing point of water. Show graphically what happens to the temperature as water is cooled to freezing and while it is freezing.

More information

Study on the flow and thermal characteristics of a heat storage system

Study on the flow and thermal characteristics of a heat storage system THE ASIAN SYMPOSIUM ON COMPUTATIONAL HEAT TRANSFER AND FLUID FLOW - 2011, 22 26 SEPTEMBER 2011, KYOTO, JAPAN Study on the flow and thermal characteristics of a heat storage system Chung-Jen Tseng, Tzu-Yu

More information

Enthalpy of Phase Change Materials as a Function of Temperature: Required Accuracy and Suitable Measurement Methods

Enthalpy of Phase Change Materials as a Function of Temperature: Required Accuracy and Suitable Measurement Methods Int J Thermophys (2009) 30:1257 1269 DOI 10.1007/s10765-009-0641-z Enthalpy of Phase Change Materials as a Function of Temperature: Required Accuracy and Suitable Measurement Methods Eva Günther Stefan

More information

Mr Chiasson Advanced Chemistry 12 / Chemistry 12 1 Unit B: Thermochemical Changes

Mr Chiasson Advanced Chemistry 12 / Chemistry 12 1 Unit B: Thermochemical Changes Mr Chiasson Advanced Chemistry 12 / Chemistry 12 1 Unit B: Thermochemical Changes Students will be expected to: Compare the molar enthalpies of several combustion reactions involving organic compounds.

More information

A NEW MEASUREMENT AND EVALUATION METHOD FOR DSC OF PCM SAMPLES

A NEW MEASUREMENT AND EVALUATION METHOD FOR DSC OF PCM SAMPLES A NEW MEASUREMENT AND EVALUATION METHOD FOR DSC OF PCM SAMPLES H Mehling, E Günther, S Hiebler, Bavarian Center for Applied Energy Research (ZAE Bayern), Walther-Meißner-Str. 6, D-85748 Garching, Germany.

More information

Use of Phase-Change Materials to Enhance the Thermal Performance of Building Insulations

Use of Phase-Change Materials to Enhance the Thermal Performance of Building Insulations Introduction Use of Phase-Change Materials to Enhance the Thermal Performance of Building Insulations R. J. Alderman, Alderman Research Ltd., Wilmington, DE David W. Yarbrough, R&D Services, Inc., Cookeville,

More information

Chapter 6: Thermochemistry

Chapter 6: Thermochemistry Chapter 6: Thermochemistry 1. Light the Furnace: The Nature of Energy and Its Transformations a. Thermochemistry is the study of the relationships between chemistry and energy i. This means that we will

More information

40P (2 x 60 x 60) = 2.5 x 10 6 (4200)(5) P = 1.82 x 10 5 W

40P (2 x 60 x 60) = 2.5 x 10 6 (4200)(5) P = 1.82 x 10 5 W NAME : F.3C ( ) Marks: /50 Form 3 Physics Assessment on Heat Time allowed: 45 minutes Section A (34 marks) 1. An indoor swimming pool containing 2.5 x 10 6 kg of water uses 40 identical heaters to maintain

More information

Name Class Date. As you read Lesson 17.1, use the cause and effect chart below. Complete the chart with the terms system and surroundings.

Name Class Date. As you read Lesson 17.1, use the cause and effect chart below. Complete the chart with the terms system and surroundings. Name Class Date Thermochemistry 17.1 The Flow of Energy As you read Lesson 17.1, use the cause and effect chart below. Complete the chart with the terms system and surroundings. Process Cause Effect endothermic

More information

THERMAL CHARACTERIZATION OF GYPSUM COMPOSITES BY USING DIFFERENTIAL SCANNING CALORIMETRY

THERMAL CHARACTERIZATION OF GYPSUM COMPOSITES BY USING DIFFERENTIAL SCANNING CALORIMETRY THERMAL CHARACTERIZATION OF GYPSUM COMPOSITES BY USING DIFFERENTIAL SCANNING CALORIMETRY ANA M. BORREGUERO, IGNACIO GARRIDO, JOSE L. VALVERDE, JUAN F. RODRÍGUEZ AND MANUEL CARMONA INTRODUCTION THERMAL

More information

Chemistry Heat Review. Heat: Temperature: Enthalpy: Calorimetry: Activation energy:

Chemistry Heat Review. Heat: Temperature: Enthalpy: Calorimetry: Activation energy: Chemistry Heat Review Name Date Vocabulary Heat: Temperature: Enthalpy: Calorimetry: Activation energy: Formulas Heat of phase change Heat for temperature increase Heat of reaction Endothermic/Exothermic

More information

1.4 Energetics. N Goalby chemrevise.org 1. Standard Enthalpy Change of Formation. Standard Enthalpy Change of Combustion

1.4 Energetics. N Goalby chemrevise.org 1. Standard Enthalpy Change of Formation. Standard Enthalpy Change of Combustion 1.4 Energetics Definition: Enthalpy change is the amount of heat energy taken in or given out during any change in a system provided the pressure is constant. In an exothermic change energy is transferred

More information

Thermal Analysis measurements

Thermal Analysis measurements Thermal Analysis measurements R W McCallum Ames Laboratory And Materials Science and Engineering Phase vs Phase Field phase set of states of a macroscopic physical system that have relatively uniform chemical

More information

Chapter Objectives. Chapter 9 Energy and Chemistry. Chapter Objectives. Energy Use and the World Economy. Energy Use and the World Economy

Chapter Objectives. Chapter 9 Energy and Chemistry. Chapter Objectives. Energy Use and the World Economy. Energy Use and the World Economy Chapter Objectives Larry Brown Tom Holme www.cengage.com/chemistry/brown Chapter 9 Energy and Chemistry Explain the economic importance of conversions between different forms of energy and the inevitability

More information

Uncertainty of Thermal Characterization of Phase Change Material by Differential Scanning Calorimetry Analysis

Uncertainty of Thermal Characterization of Phase Change Material by Differential Scanning Calorimetry Analysis Uncertainty of Thermal Characterization of Phase Change Material by Differential Scanning Calorimetry Analysis Rami M. Saeed Department of Nuclear Engineering, Missouri University of Science and Technology,

More information

Name: Section: Score: /10 PRE LABORATORY ASSIGNMENT EXPERIMENT 7

Name: Section: Score: /10 PRE LABORATORY ASSIGNMENT EXPERIMENT 7 Name: Section: Score: /10 PRE LABORATORY ASSIGNMENT EXPERIMENT 7 1. Is the sign of Δ r H for an exothermic reaction positive or negative? Why? 2. When 4.21 grams of potassium hydroxide are added to 250.

More information

Thermochemistry Ch. 8

Thermochemistry Ch. 8 De#initions I. Energy ( ): II. Heat ( ): A. Heat is not a substance. Objects do not contain heat, they B. Molecules with each other. III. Reaction perspectives: A. System: B. Surroundings: IV: Heat changes:

More information

Heat. Heat Terminology 04/12/2017. System Definitions. System Definitions

Heat. Heat Terminology 04/12/2017. System Definitions. System Definitions System Definitions Heat Physical Science 20 Ms. Hayduk Heat Terminology System: the part of the universe being studied (big Earth, or small one atom) Surroundings: the part of the universe outside the

More information

Ch. 17 Thermochemistry

Ch. 17 Thermochemistry Ch. 17 Thermochemistry 17.1 The Flow of Energy Energy Transformations Thermochemistry: study of energy changes in chemical reactions and changes in state Chemical potential energy: energy stored in bonds

More information

CHAPTER 17 Thermochemistry

CHAPTER 17 Thermochemistry CHAPTER 17 Thermochemistry Thermochemistry The study of the heat changes that occur during chemical reactions and physical changes of state. Chemical Change: new substances created during chemical reaction

More information

8. Energetics I. N Goalby chemrevise.org 1

8. Energetics I. N Goalby chemrevise.org 1 8. Energetics I Definition: Enthalpy change is the amount of heat energy taken in or given out during any change in a system provided the pressure is constant. In an exothermic change energy is transferred

More information

Complex Compounds Background of Complex Compound Technology

Complex Compounds Background of Complex Compound Technology Complex Compounds For more than 20 years, Rocky Research has been a pioneer in the field of sorption refrigeration utilizing complex compounds. Our technology earned special recognition from NASA in 1999.

More information

Gravity is a force which keeps us stuck to the earth. The Electrostatic force attracts electrons to protons in an atom.

Gravity is a force which keeps us stuck to the earth. The Electrostatic force attracts electrons to protons in an atom. Energy Relations in Chemistry: Thermochemistry The Nature of Energy Sugar you eat is "combusted" by your body to produce CO 2 and H 2 O. During this process energy is also released. This energy is used

More information

Numerical Study of a High Temperature Latent Heat Storage ( C) Using NaNO 3 -KNO 3 Binary Mixture

Numerical Study of a High Temperature Latent Heat Storage ( C) Using NaNO 3 -KNO 3 Binary Mixture 1 Presented at the COMSOL Conference 2010 Paris Numerical Study of a High Temperature Latent Heat Storage (200-300 0 C) Using NaNO 3 -KNO 3 Binary Mixture Foong Chee Woh, 17-11-2010 2 Background 3 Background

More information

Chapter 5 THERMO. THERMO chemistry. 5.4 Enthalpy of Reactions 5.5 Calorimetry 5.6 Hess s Law 5.7 Enthalpies of Formation

Chapter 5 THERMO. THERMO chemistry. 5.4 Enthalpy of Reactions 5.5 Calorimetry 5.6 Hess s Law 5.7 Enthalpies of Formation Chapter 5 THERMO THERMO chemistry 5.4 Enthalpy of Reactions 5.5 Calorimetry 5.6 Hess s Law 5.7 Enthalpies of Formation Chemical Equations 1 st WRITE the Chemical Equation 2 nd BALANCE the Chemical Equation

More information

Life Assessment of Energetic Materials using Advanced Kinetic Elaboration of HFC Signals

Life Assessment of Energetic Materials using Advanced Kinetic Elaboration of HFC Signals Life Assessment of Energetic Materials using Advanced Kinetic Elaboration of HFC Signals Bertrand Roduit AKTS AG Advanced Kinetics and Technology Solutions, TECHNOArk 1, 3960 Siders, Switzerland. http://www.akts.com

More information

Enthalpy changes

Enthalpy changes 3.2.1. Enthalpy changes In an exothermic change energy is transferred from the system (chemicals) to the surroundings. The products have less energy than the If an enthalpy change occurs then energy is

More information

Chapter 11. Thermochemistry: Heat & Chemical Change

Chapter 11. Thermochemistry: Heat & Chemical Change Chapter 11 Thermochemistry: Heat & Chemical Change The Flow of Energy Thermochemistry: Study of heat changes that occur during physical processes and chemical reactions Energy Energy is the capacity to

More information

Thermodynamics: Enthalpy of Hydration of MgSO 4 A Calorimetry experiment HASPI Medical Chemistry Lab Background/Introduction

Thermodynamics: Enthalpy of Hydration of MgSO 4 A Calorimetry experiment HASPI Medical Chemistry Lab Background/Introduction Name(s): Period: Date: Thermodynamics: Enthalpy of Hydration of MgSO 4 A Calorimetry experiment HASPI Medical Chemistry Lab Background/Introduction Iron filings are also able to be used as a hot pack.

More information

Reproduction Chemical Reactions. 8J Light 8G Metals & Their Uses 8C Breathing & Respiration 8D Unicellular Organisms

Reproduction Chemical Reactions. 8J Light 8G Metals & Their Uses 8C Breathing & Respiration 8D Unicellular Organisms Science: Key Stage 3 Based on the Exploring Science Scheme of Learning Term 1 & 2 Term 3 & 4 Term 5 & 6 Year 7 Cells, Tissues & Organs Particles Forces & Motion Reproduction Chemical Reactions Chemical

More information

Properties of a New Type of Plaster Containing Phase-Change Material

Properties of a New Type of Plaster Containing Phase-Change Material 2012 IACSIT Coimbatore Conferences IPCSIT vol. 28 (2012) (2012) IACSIT Press, Singapore Properties of a New Type of Plaster Containing Phase-Change Zbyšek Pavlík 1 +, Milena Pavlíková 1, Petra Volfová

More information

CFD Analysis on Thermal Energy storage in Phase change Material

CFD Analysis on Thermal Energy storage in Phase change Material CFD Analysis on Thermal Energy storage in Phase change Material #1 Ghadge S. S, #2 Vivekananda Navadagi, #3 C Shriramshastri Student M.E (Heat Power) Savithribai Phule, Pune University, DPCOE, Wagholi,

More information

Topic 05 Energetics : Heat Change. IB Chemistry T05D01

Topic 05 Energetics : Heat Change. IB Chemistry T05D01 Topic 05 Energetics 5.1-5.2: Heat Change IB Chemistry T05D01 5.1 Exothermic and endothermic reactions - 1 hour 5.1.1 Define the terms exothermic reaction, endothermic reaction and standard enthalpy change

More information

Heat Transfer. Heat always moves from a warmer place to a cooler place. Hot objects in a cooler room will cool to room temperature.

Heat Transfer. Heat always moves from a warmer place to a cooler place. Hot objects in a cooler room will cool to room temperature. Heat Transfer Heat always moves from a warmer place to a cooler place. Hot objects in a cooler room will cool to room temperature. Cold objects in a warmer room will heat up to room temperature. Question

More information

Thermal conductivity measurement of two microencapsulated phase change slurries

Thermal conductivity measurement of two microencapsulated phase change slurries Thermal conductivity measurement of two microencapsulated phase change slurries Xiaoli Ma (corresponding author), Siddig Omer, Wei Zhang and S. B. Riffat Institute of Sustainable Energy Technology, School

More information

Modulated DSC Paper #8 Use Of Quasi-isothermal Mode for Improved Understanding of Structure Change

Modulated DSC Paper #8 Use Of Quasi-isothermal Mode for Improved Understanding of Structure Change Modulated DSC Paper #8 Use Of Quasi-isothermal Mode for Improved Understanding of Structure Change Leonard C. Thomas TA Instruments, 109 Lukens Drive, New Castle, DE 19720, USA ABSTRACT MDSC provides the

More information

Thermochemistry. Energy (and Thermochemistry) World of Chemistry Chapter 10. Energy. Energy

Thermochemistry. Energy (and Thermochemistry) World of Chemistry Chapter 10. Energy. Energy Thermochemistry Thermodynamics is the science of the relationship between heat and other forms of energy. (and Thermochemistry) World of Chemistry Chapter 10 is defined as the ability to do work or produce

More information

EXPERIMENT 9 ENTHALPY OF REACTION HESS S LAW

EXPERIMENT 9 ENTHALPY OF REACTION HESS S LAW EXPERIMENT 9 ENTHALPY OF REACTION HESS S LAW INTRODUCTION Chemical changes are generally accompanied by energy changes; energy is absorbed or evolved, usually as heat. Breaking chemical bonds in reactants

More information

Phone: , For Educational Use. SOFTbank E-Book Center, Tehran. Fundamentals of Heat Transfer. René Reyes Mazzoco

Phone: , For Educational Use. SOFTbank E-Book Center, Tehran. Fundamentals of Heat Transfer. René Reyes Mazzoco 8 Fundamentals of Heat Transfer René Reyes Mazzoco Universidad de las Américas Puebla, Cholula, Mexico 1 HEAT TRANSFER MECHANISMS 1.1 Conduction Conduction heat transfer is explained through the molecular

More information

5.1 Exothermic and endothermic reactions

5.1 Exothermic and endothermic reactions Topic 5: Energetics 5.1 Exothermic and endothermic reactions Chemical reactions involve the breaking and making of bonds. Breaking bonds requires energy,whereas energy is given out when new bonds are formed.

More information

ST. STEPHEN S GIRLS COLLEGE Mid Year Examination PHYSICS Time Allowed: 1 hour 30 minutes NAME: F.3 ( ) MARKS:

ST. STEPHEN S GIRLS COLLEGE Mid Year Examination PHYSICS Time Allowed: 1 hour 30 minutes NAME: F.3 ( ) MARKS: F.3 Physics Mid Year Examination 2005-2006 page 1 Form 3 193 students ST. STEPHEN S GIRLS COLLEGE Mid Year Examination 2005-2006 PHYSICS Time Allowed: 1 hour 30 minutes YRKwong, WYYau NAME: F.3 ( ) MARKS:

More information

Saturday Study Session 1 3 rd Class Student Handout Thermochemistry

Saturday Study Session 1 3 rd Class Student Handout Thermochemistry Saturday Study Session 1 3 rd Class Student Handout Thermochemistry Multiple Choice Identify the choice that best completes the statement or answers the question. 1. C 2 H 4 (g) + 3 O 2 (g) 2 CO 2 (g)

More information

Solutions. Solutions. How Does a Solution Form? Solutions. Energy Changes in Solution. How Does a Solution Form

Solutions. Solutions. How Does a Solution Form? Solutions. Energy Changes in Solution. How Does a Solution Form Ummm Solutions Solutions Solutions are homogeneous mixtures of two or more pure substances. In a solution, the solute is dispersed uniformly throughout the solvent. Solutions The intermolecular forces

More information

Measurements of Heat Capacity and Enthalpy of Phase Change Materials by Adiabatic Scanning Calorimetry

Measurements of Heat Capacity and Enthalpy of Phase Change Materials by Adiabatic Scanning Calorimetry Int J Thermophys (2011) 32:913 924 DOI 10.1007/s10765-011-0984-0 Measurements of Heat Capacity and Enthalpy of Phase Change Materials by Adiabatic Scanning Calorimetry Patricia Losada-Pérez Chandra Shekhar

More information

Chapter 17. Free Energy and Thermodynamics. Chapter 17 Lecture Lecture Presentation. Sherril Soman Grand Valley State University

Chapter 17. Free Energy and Thermodynamics. Chapter 17 Lecture Lecture Presentation. Sherril Soman Grand Valley State University Chapter 17 Lecture Lecture Presentation Chapter 17 Free Energy and Thermodynamics Sherril Soman Grand Valley State University First Law of Thermodynamics You can t win! The first law of thermodynamics

More information

Thermal Methods of Analysis Theory, General Techniques and Applications. Prof. Tarek A. Fayed

Thermal Methods of Analysis Theory, General Techniques and Applications. Prof. Tarek A. Fayed Thermal Methods of Analysis Theory, General Techniques and Applications Prof. Tarek A. Fayed 1- General introduction and theory: Thermal analysis (TA) is a group of physical techniques in which the chemical

More information

Thermochemistry Chapter 8

Thermochemistry Chapter 8 Thermochemistry Chapter 8 Thermochemistry First law of thermochemistry: Internal energy of an isolated system is constant; energy cannot be created or destroyed; however, energy can be converted to different

More information

CFD Analysis On Thermal Energy Storage In Phase Change Materials Using High Temperature Solution

CFD Analysis On Thermal Energy Storage In Phase Change Materials Using High Temperature Solution CFD Analysis On Thermal Energy Storage In Phase Change Materials Using High Temperature Solution Santosh Chavan 1, M. R. Nagaraj 2 1 PG Student, Thermal Power Engineering, PDA College of Engineering, Gulbarga-585102,

More information

AP Chemistry: Designing an Effective Hand Warmer Student Guide INTRODUCTION

AP Chemistry: Designing an Effective Hand Warmer Student Guide INTRODUCTION AP Chemistry: Designing an Effective Hand Warmer Student Guide INTRODUCTION AP and the Advanced Placement Program are registered trademarks of the College Entrance Examination Board. The activity and materials

More information

11B, 11E Temperature and heat are related but not identical.

11B, 11E Temperature and heat are related but not identical. Thermochemistry Key Terms thermochemistry heat thermochemical equation calorimeter specific heat molar enthalpy of formation temperature enthalpy change enthalpy of combustion joule enthalpy of reaction

More information

Ch 6. Energy and Chemical Change. Brady & Senese, 5th Ed.

Ch 6. Energy and Chemical Change. Brady & Senese, 5th Ed. Ch 6. Energy and Chemical Change Brady & Senese, 5th Ed. Energy Is The Ability To Do Work Energy is the ability to do work (move mass over a distance) or transfer heat Types: kinetic and potential kinetic:

More information

Calorimetry. Chapter 2. Differential Scanning heat flux calorimetry

Calorimetry. Chapter 2. Differential Scanning heat flux calorimetry Chapter 2 Calorimetry In this Chapter, the technique of differential scanning heat flux calorimetry is explained. We used a salt, of which the heat capacity is well-known, NaF, to test the equipment. After

More information

Lecture Presentation. Chapter 12. Solutions. Sherril Soman, Grand Valley State University Pearson Education, Inc.

Lecture Presentation. Chapter 12. Solutions. Sherril Soman, Grand Valley State University Pearson Education, Inc. Lecture Presentation Chapter 12 Solutions Sherril Soman, Grand Valley State University Thirsty Seawater Drinking seawater can cause dehydration. Seawater Is a homogeneous mixture of salts with water Contains

More information

Numerical analysis of natural convection in a latent heat thermal energy storage system containing rectangular enclosures

Numerical analysis of natural convection in a latent heat thermal energy storage system containing rectangular enclosures EUROTHERM99-01-074 Numerical analysis of natural convection in a latent heat thermal energy storage system containing rectangular enclosures Julian Vogel, Maike Johnson, Markus Eck, Dörte Laing German

More information

2. Enthalpy changes. N Goalby chemrevise.org

2. Enthalpy changes. N Goalby chemrevise.org 2. Enthalpy changes In an exothermic change energy is transferred from the system (chemicals) to the surroundings. The have less energy than the If an enthalpy change occurs then energy is transferred

More information

Characterization of Solid State Drugs by Calorimetry

Characterization of Solid State Drugs by Calorimetry Characterization of Solid State Drugs by Calorimetry Christin T. Choma TA Instruments, 109 Lukens Drive, New Castle, DE 19720, USA Drug product development and manufacture requires numerous studies to

More information

Experimental and Numerical Investigation on Thermal Behavior of PCM in Storage Tank

Experimental and Numerical Investigation on Thermal Behavior of PCM in Storage Tank Experimental and Numerical Investigation on Thermal Behavior of PCM in Storage Tank Ei Ei Phyu Abstract These The present work investigates the thermal performance of storage unit using phase change material

More information

Chapter 16 Theories of Energy Changes

Chapter 16 Theories of Energy Changes {Read p. 624 and 626 to understand concepts} Class discussion for chapter 17.3 Chapter 16 Theories of Energy Changes Section 16.1A Temperature change and Heat THERMODYNAMICS - the study of energy and energy

More information

Energetics. Topic

Energetics. Topic Energetics Topic 5.1 5.2 Topic 5.1 Exothermic and Endothermic Reactions?? total energy of the universe is a constant if a system loses energy, it must be gained by the surroundings, and vice versa Enthalpy

More information

Q=mcDt. Chemistry 30 notes review of specific heat capacity. Thermodynamics the movement of thermal energy

Q=mcDt. Chemistry 30 notes review of specific heat capacity. Thermodynamics the movement of thermal energy Chemistry 30 notes review of specific heat capacity Thermodynamics the movement of thermal energy o Open system: both matter and energy are allowed to enter or leave the system. o Closed system: energy

More information

Thermochemistry. Energy. 1st Law of Thermodynamics. Enthalpy / Calorimetry. Enthalpy of Formation

Thermochemistry. Energy. 1st Law of Thermodynamics. Enthalpy / Calorimetry. Enthalpy of Formation THERMOCHEMISTRY Thermochemistry Energy 1st Law of Thermodynamics Enthalpy / Calorimetry Hess' Law Enthalpy of Formation The Nature of Energy Kinetic Energy and Potential Energy Kinetic energy is the energy

More information

Thermodynamics - Energy Relationships in Chemical Reactions:

Thermodynamics - Energy Relationships in Chemical Reactions: Thermodynamics - Energy Relationships in Chemical Reactions: energy - The capacity to do work. Types of Energy: radiant-energy from the sun. potential-energy due to an objects position. chemical-energy

More information

Review Article Comments on Thermal Physical Properties Testing Methods of Phase Change Materials

Review Article Comments on Thermal Physical Properties Testing Methods of Phase Change Materials Hindawi Publishing Corporation Advances in Mechanical Engineering Volume 2013, Article ID 695762, 9 pages http://dx.doi.org/10.1155/2013/695762 Review Article Comments on Thermal Physical Properties Testing

More information

AP Chapter 6: Thermochemistry Name

AP Chapter 6: Thermochemistry Name AP Chapter 6: Thermochemistry Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. AP Chapter 6: Thermochemistry 2 Warm-Ups (Show your work for credit)

More information

COMPUTATIONAL ANALYSIS OF ENCAPSULATED THERMAL ENERGY PHASE CHANGE STORAGE SYSTEM: CYLINDRICAL AND SPHERICAL GEOMETRY

COMPUTATIONAL ANALYSIS OF ENCAPSULATED THERMAL ENERGY PHASE CHANGE STORAGE SYSTEM: CYLINDRICAL AND SPHERICAL GEOMETRY International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 5, May 2018, pp. 662 668, Article ID: IJMET_09_05_073 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=9&itype=5

More information

Master School of Province de Liege -Industrial Engineer Department Nano-P.C.M.

Master School of Province de Liege -Industrial Engineer Department Nano-P.C.M. Master School of Province de Liege -Industrial Engineer Department Nano-P.C.M. Course: Buildings and HVAC Systems 2 nd Master Academic year: 2013-2014 Teacher: MASY Gabrielle Authors: BAELE Ariel DESSART

More information

Calorimetric Determination of Reaction Enthalpies

Calorimetric Determination of Reaction Enthalpies H + (aq) + OH - q H 2 O Calorimetric Determination of Reaction Enthalpies Purpose: Determine the enthalpy of dissociation of CH 3 COOH CH 3 COOH (aq) CH 3 COO - (aq) + H + (aq) Techniques: Calorimetry

More information

Calorimetric investigations. in multi-component salt systems

Calorimetric investigations. in multi-component salt systems Calorimetric investigations in multi-component salt systems D. Sergeev 1, E. Yazhenskikh 1, N. Talukder 1, D. Kobertz 1, K. Hack 2, M. Müller 1 1 Forschungszentrum Jülich, IEK-2 2 - GTT-Technologies 1

More information

Energy Changes in Reactions p

Energy Changes in Reactions p Energy Changes in Reactions p.126 210 Heat vs. temperature: Heat is a form of energy, it is transferred from one system to another Temperature is an indication of the intensity of heat, it measures the

More information

THERMOCHEMISTRY. This section explains the relationship between energy and heat, and distinguishes between heat capacity and specific heat.

THERMOCHEMISTRY. This section explains the relationship between energy and heat, and distinguishes between heat capacity and specific heat. I Name _ Date _ Class _ THERMOCHEMISTRY SECTION 17.1 THE FLOW OF ENERGY-HEAT AND WORK (pages 505-510) This section explains the relationship between energy and heat, and distinguishes between heat capacity

More information

12. Heat of melting and evaporation of water

12. Heat of melting and evaporation of water VS 12. Heat of melting and evaporation of water 12.1 Introduction The change of the physical state of a substance in general requires the absorption or release of heat. In this case, one speaks of a first

More information

Thermochemistry: Heat and Chemical Change

Thermochemistry: Heat and Chemical Change Thermochemistry: Heat and Chemical Change 1 Heat or Thermal Energy (q) Heat is a form of energy Is heat the same as temperature? Heat flows between two objects at different temperatures. Hot Cold 2 Chemical

More information

Thermochemistry. Section The flow of energy

Thermochemistry. Section The flow of energy Thermochemistry Section 17.1 - The flow of energy What is Energy? Energy is the capacity for doing work or supplying heat Energy does not have mass or volume, and it can only be detected because of its

More information

Chapter 6 Energy and Chemical Change. Brady and Senese 5th Edition

Chapter 6 Energy and Chemical Change. Brady and Senese 5th Edition Chapter 6 Energy and Chemical Change Brady and Senese 5th Edition Index 6.1 An object has energy if it is capable of doing work 6.2 Internal energy is the total energy of an object s molecules 6.3 Heat

More information

TAWN tests for quantitatively measuring the resolution and sensitivity of DSCs (version 2.1)

TAWN tests for quantitatively measuring the resolution and sensitivity of DSCs (version 2.1) TAWN tests for quantitatively measuring the resolution and sensitivity of DSCs (version 2.1) 1. Introduction There are many properties that characterise the performance of differential scanning calorimeters

More information

June Which is a closed system? (A) burning candle (B) halogen lightbulb (C) hot water in a sink (D) ripening banana

June Which is a closed system? (A) burning candle (B) halogen lightbulb (C) hot water in a sink (D) ripening banana June 2005 28. Which is a closed system? burning candle halogen lightbulb hot water in a sink ripening banana 29. Which involves the greatest energy change? chemical reaction nuclear reaction phase change

More information

Chapter 14: Temperature and Heat

Chapter 14: Temperature and Heat Chapter 14 Lecture Chapter 14: Temperature and Heat Goals for Chapter 14 To study temperature and temperature scales. To describe thermal expansion and its applications. To explore and solve problems involving

More information

Most hand warmers work by using the heat released from the slow oxidation of iron: The amount your hand temperature rises depends on several factors:

Most hand warmers work by using the heat released from the slow oxidation of iron: The amount your hand temperature rises depends on several factors: Lecture Presentation Chapter 6 Thermochemistry Chemical Hand Warmers Most hand warmers work by using the heat released from the slow oxidation of iron: Exothermic reaction 4 Fe(s) + 3 O 2 (g) 2 Fe 2 O

More information

Melting and solidi cation of Pb nanoparticles embedded in an Al matrix as studied by temperature-modulated di erential scanning calorimetry

Melting and solidi cation of Pb nanoparticles embedded in an Al matrix as studied by temperature-modulated di erential scanning calorimetry PHILOSOPHICAL MAGAZINE LETTERS, 1998, VOL. 78, NO. 1, 37± 44 Melting and solidi cation of Pb nanoparticles embedded in an Al matrix as studied by temperature-modulated di erential scanning calorimetry

More information

World Academy of Science, Engineering and Technology International Journal of Aerospace and Mechanical Engineering Vol:9, No:10, 2015

World Academy of Science, Engineering and Technology International Journal of Aerospace and Mechanical Engineering Vol:9, No:10, 2015 Vol:9, No:, 5 An Analysis on Thermal Energy Storage in Paraffin-Wax Using Tube Array on a Shell and Tube Heat Exchanger Syukri Himran, ustan Taraka, Anto Duma Digital Open Science Index, Aerospace and

More information

C q T q C T. Heat is absorbed by the system H > 0 endothermic Heat is released by the system H < 0 exothermic

C q T q C T. Heat is absorbed by the system H > 0 endothermic Heat is released by the system H < 0 exothermic PLEASE REORD ALL DATA DIRETLY INTO YOUR LAB NOTEBOOKS Introduction Heating a substance is one of the simplest processes carried out in the chemical laboratory, and is usually accompanied by a rise in the

More information

Lab #9- Calorimetry/Thermochemistry to the Rescue

Lab #9- Calorimetry/Thermochemistry to the Rescue Chesapeake Campus Chemistry 111 Laboratory Lab #9- Calorimetry/Thermochemistry to the Rescue Objectives Determine whether a reaction is endothermic or exothermic. Determine the best ionic compound of to

More information

1.4 Enthalpy. What is chemical energy?

1.4 Enthalpy. What is chemical energy? 1.4 Enthalpy What is chemical energy? Chemical energy is a form of potential energy which is stored in chemical bonds. Chemical bonds are the attractive forces that bind atoms together. As a reaction takes

More information

Broughton High School. Thermal Energy. Physical Science Workbook Chapter 6 Thermal Energy 2016 Mr. Davis

Broughton High School. Thermal Energy. Physical Science Workbook Chapter 6 Thermal Energy 2016 Mr. Davis 1 Thermal Energy Vocabulary for Chapter 6 Thermal Energy Broughton High School Physical Science Vocabulary No.# Term Page # Definition 2 1. Degrees 2. Higher Specific Heat 3. Heat of Vaporization 4. Radiation

More information

Thermochemistry. The study of energy transfers and chemical reactions

Thermochemistry. The study of energy transfers and chemical reactions Thermochemistry The study of energy transfers and chemical reactions Energy Energy is the ability to do work Work = Force x distance SI unit is the Joule (J) 1000 J = 1 kj other unit: calorie (cal) 1000

More information

Chapter 5. Thermochemistry

Chapter 5. Thermochemistry Chapter 5 Thermochemistry Dr. A. Al-Saadi 1 Preview Introduction to thermochemistry: Potential energy and kinetic energy. Chemical energy. Internal energy, work and heat. Exothermic vs. endothermic reactions.

More information

Lecture Presentation. Chapter 6. Thermochemistry. Sherril Soman Grand Valley State University Pearson Education, Inc.

Lecture Presentation. Chapter 6. Thermochemistry. Sherril Soman Grand Valley State University Pearson Education, Inc. Lecture Presentation Chapter 6 Thermochemistry Sherril Soman Grand Valley State University Chemical Hand Warmers Most hand warmers work by using the heat released from the slow oxidation of iron 4 Fe(s)

More information

Chemical Energetics. First Law of thermodynamics: Energy can be neither created nor destroyed but It can be converted from one form to another.

Chemical Energetics. First Law of thermodynamics: Energy can be neither created nor destroyed but It can be converted from one form to another. Chemical Energetics First Law of thermodynamics: Energy can be neither created nor destroyed but It can be converted from one form to another. All chemical reactions are accompanied by some form of energy

More information

CHAPTER 17: THERMOCHEMISTRY. Mrs. Brayfield

CHAPTER 17: THERMOCHEMISTRY. Mrs. Brayfield CHAPTER 17: THERMOCHEMISTRY Mrs. Brayfield REVIEW What is the law of conservation of energy? It states that energy cannot be created or destroyed So the energy of any process is the same THERMOCHEMISTRY

More information

PROGRAM OF PHYSICS. Lecturer: Dr. DO Xuan Hoi Room A

PROGRAM OF PHYSICS. Lecturer: Dr. DO Xuan Hoi Room A PROGRAM OF PHYSICS Lecturer: Dr. DO Xuan Hoi Room A1. 503 E-mail : dxhoi@hcmiu.edu.vn PHYSICS 2 (FLUID MECHANICS AND THERMAL PHYSICS) 02 credits (30 periods) Chapter 1 Fluid Mechanics Chapter 2 Heat, Temperature

More information

High Pressure DSC Differential Scanning Calorimeter

High Pressure DSC Differential Scanning Calorimeter High Pressure DSC Differential Scanning Calorimeter Introduction The Differential Scanning Calorimetry (DSC) is the most popular thermal analysis technique to measure endothermic and exothermic transitions

More information

Measurement of an enthalpy change

Measurement of an enthalpy change Measurement of an enthalpy change Measuring the Enthalpy Change for a Reaction Experimentally Calorimetric method For a reaction in solution we use the following equation energy change = mass of solution

More information

Exp 09: Heat of Reaction

Exp 09: Heat of Reaction Your job is to use a calorimeter to determine the heat of reaction for three different chemical reactions. Each of these reactions is an acid-base neutralization reaction. Before using your calorimeter

More information

Notes: Matter & Change (text Ch. 1 &10)

Notes: Matter & Change (text Ch. 1 &10) Name Per. Notes: Matter & Change (text Ch. 1 &10) NOTE: This set of class notes is not complete. We will be filling in information in class. If you are absent, it is your responsibility to get missing

More information

I. Energy A. Terms and Definitions B. Energy Transfer as Heat C. Energy Transfer as Work D. Internal Energy

I. Energy A. Terms and Definitions B. Energy Transfer as Heat C. Energy Transfer as Work D. Internal Energy Chapter 7 1 Thermochemistry is HOT! I. Energy A. Terms and Definitions B. Energy Transfer as Heat C. Energy Transfer as Work D. Internal Energy II. Chemistry and Energy A. Enthalpy and Enthalpies of Reaction

More information

To calculate heat (q) for a given temperature change: heat (q) = (specific heat) (mass) ( T) where T = T f T i

To calculate heat (q) for a given temperature change: heat (q) = (specific heat) (mass) ( T) where T = T f T i Use your textbook or other resources available to answer the following questions General Information: Thermochemistry Phase Change A change in the physical form/state but not a change in the chemical identity

More information

Comprehensive Handbook of Calorimetry and Thermal Analysis

Comprehensive Handbook of Calorimetry and Thermal Analysis Comprehensive Handbook of Calorimetry and Thermal Analysis Michio Sorai Editor-in-Chief The Japan Society of Calorimetry and Thermal Analysis John Wiley & Sons, Ltd Contents Preface xi Acknowledgements

More information

, can be completely combusted to give carbon dioxide and water. (s) + 6O 2

, can be completely combusted to give carbon dioxide and water. (s) + 6O 2 1 Glucose, C 6 H 12 O 6, can be completely combusted to give carbon dioxide and water. C 6 H 12 O 6 (s) + 6 (g) 6C (g) + 6 O(l) (a) In the body, the conversion of glucose into carbon dioxide and water

More information

Measuring Energy Changes. Introducing Heat Capacity and Specific Heat

Measuring Energy Changes. Introducing Heat Capacity and Specific Heat Measuring Energy Changes Introducing Heat Capacity and Specific Heat Before Today s Discussion Begins Remember the differences between temperature, thermal energy, and heat Temperature is the average kinetic

More information

BENCHMARK REPORT SCIENCE GRADE 6

BENCHMARK REPORT SCIENCE GRADE 6 8 6 MS-PS-. Develop models to describe the atomic composition of simple molecules and extended structures. 6-PS-.a Identify the atomic composition of simple molecules and extended molecular structures

More information