6 The polyatomic molecules (B)

Size: px
Start display at page:

Download "6 The polyatomic molecules (B)"

Transcription

1 6 The polyatomic molecules () 6. lectron-deficient multi-center bonds 6.. oranes and their relatives its seqular equation is : :, : bond : three center two electron β β β β a b a orbital s hybridization sp i. 6 : 3 valence electrons forms - bond ) ( ) ( ) ( - bonding ) (anti ' - bonding ) (anti ) ( (bonding ) 3 3 c c β β > +

2 3 Three center two electron -- bond: ii. 5 9 lectron-deficient multi-center bonds β β β β β β ) ( 3 seqular equation 3 a b a solve β β center-electron bonds

3 hemical bonds in oranes (a) Single bond - - (b) 3center-electron bonds (c) Other polycenter-polyelectron bond lectron-deficient multi-center bonds 6.. For n n+m s open structure (including to nido and arachno) n equals to number of - bonds Its stationary condition: x m-s t n-s y (s-m)/ p sets of styx p isomers The topological structure of 6 0 n n+m (William Lipscomb) Nobel prize,976 s t y x (3 isomers) (40) (33) (40)

4 Structure of oranes lectron-deficient multi-center bonds 6..3 For orohydride ions n n - s closo structure and carboranes n n n+n +m n n - (closo) 4-4 ( tetrahedral) 6-6 (octahedral) 8-8 (dodecahedral) - (icosahedral) lectron-deficient multi-center bonds

5 polyhedra with n vertices loso series -formula n n - Total valence electrons (V) 3n (from ) +n (from ) + (negative charge) 4n+ ach unit uses electrons. ence skeletal or framework electrons (NF4n+-nn+) There is little tendency to add + and form neutral species. The closo species are, in effect, the anions of quite strong acids. Structures are those of the appropriate polyhedra with n vertices.

6 MOs in closo series Wade s rules n+ bonding and nonbonding MOs n- antibonding Notes: - σ orbital and its electrons are not taken into account lectron-deficient multi-center bonds Structure of arboranes,5-3 5,- 4 6,6-4 6, isomers of 0 (with hydrogen omitted) lectron-deficient multi-center bonds

7 Nido series formula n (n+4) Total valence electrons(v) 3n () + n() + 4 (extra and/or negative charges) 4n +4 Framework electrons (NF) n+4 (n+ pairs). The structure of the nido compound is based on the closo polyhedron with one more vertex than the nido compound. Arachno series formula n (n+6) Total valence electrons(v) 4n +6 Framework electrons (NF) n+4 (n+ pairs). The structure of the nido compound is based on the closo polyhedron with two more vertex than the nido compound. lectron-deficient multi-center bonds 6..4 other deficient electron compounds lectron-deficient multi-center bonds oron group Al Ga In Tl 3 0º Al 3 70º.4 Å.94Å Al 3 Gaseity: monomer Solid state: polymer 3 3 3

8 Alkali metals and alkali earth metals [Li( 3 )] 4 Li e 3 e( 3 ) e e 3 3 e e e 3 e e e e dimer trimer polymer 6. hemical bonds in the coordination compounds

9 oordination compounds compounds composed of a metal atom or ion and one or more ligands. Ligands usually donate electrons to the metal Includes organometallic compounds New theories arose to describe bonding. Valence bond, crystal field, and ligand field. O O O O N N O O O O ethylenediaminetetraacetate (DTA 4 ) (hexadentate)

10 6.. oordination polyhedron molecualr Ag(N 3 ) +.N. hybridization type sp Symmetry geometry linear ul 3-3 sp D 3h triangular Ni(O) 4 4 sp 3 T d tetrahedral Ptl 4-4 dsp D 4h square planar Fe(O) dsp 3 d sp D 3h 4v Trigonal bipyramidal square pyramid FeF d sp 3 O h octahedral others 8 D 4h tetragonal 8 0 D 4d Anti-square pyramid icapped square antiprism I h icosahedral 6.. rystal Field Model focuses on the energies of the d orbitals. Assumptions. Ligands are negative point charges.. Metal-ligand bonding is entirely ionic. strong-field (low-spin): large splitting of d orbitals weak-field (high-spin): small splitting of d orbitals

11 rystal-field Theory A. rystal field splitting rystal-field Theory A. rystal field splitting d z d x-y e g crystal field splitting, Δ 3d d xy d xz d yz t g "naked" metal coordination complex

12 A. rystal field splitting. spectrochemical series N > NO > en > N 3 > O > O 4 > O > F >l > r > I strongest bond largest Δ absorbs appears weakest Ni( O) + 6 <R G Ni(N 3 ) + O Ni(en) + 3 G V strongest Ni(N) 4 V Y ROYGV lower weakest bond smallest Δ higher Δ hν ~visible region A. rystal field splitting. charge on metal greater charge larger Δ (ligands held more closely, interact more strongly with d orbitals) absorbs appears Fe( O) + 6 R G Fe( O) 3+ 6 V RO ROYGV lower higher Surface plasma --- UV-Vis spectroscopy

13 II. rystal-field Theory. Magnetic properties e.g., Fe(N 3 ) 6 + (Fe + d 6 ) e g t g low-spin complex (maximum pairing) diamagnetic found experimentally or e g t g high-spin complex (minimum pairing) paramagnetic II. rystal-field Theory. Magnetic properties ompetition between: crystal field splitting (Δ) electron pairing energy (P) when Δ < P high-spin complex when Δ > P low-spin complex Generally: d, d, d 3 : always high-spin d 4, d 6 : high-spin with ligands O low-spin with ligands > O d 5 : high-spin with all ligands except N d 7 -d 0 always low-spin

14 II. rystal-field Theory. Magnetic properties e.g., [r( O) 6 ] 3+ e.g., [Ni(N 3 ) 6 ] + e.g., [Fe( O) 6 ] 3+ vs [Fe(N) 6 ] σ ligands and σ bond 3 4 ategories of central metal valence orbitals: 5 6 σ group: s, p x,p y,p z, d x -y, d z π group: d xy,d xz,d yz

15 6..3 σ ligands and σ bond ϕ4s ± ( σ+ σ + σ3 + σ4 + σ5 + σ6 ) 6 ϕ4px ± ( σ σ4 ) 3 ϕ4py ± ( σ σ5 ) 4 ϕ4pz ± ( σ3 σ6 ) 5 ϕ ± 3 ( σ3+ σ dz 6 σ σ σ4 σ5 ) 3 6 ϕ ± 3dx y ( 4 5 ) σ σ + σ σ

16 nergetic diagram of σ molecular orbitals 6..4 π onding A π-donor ligand donates electrons to the metal center in an interaction that involves a filled ligand orbital and an empty metal orbital. l-, r-, and I- donates p electrons to the metal center A π-acceptor ligand accepts electrons from the metal center in an interaction that involves a filled metal orbital and an empty ligand orbital. O, N, NO, and alkenes accept electrons into their vacant anti-bonding MO s. π-acceptor ligands can stabilize low oxidation state metal complexes.

17 Ni(O) 4 [Ptl 3 ( 4 )] - Ni O π* bond σ bond (d xy, d xz, d yz ) l l l Pt O OMO Pt π bonding orbital O LUMO π anti-bonding orbital d - π conjugation O bond made weakened electron rule A low oxidation state organometallic complex contains π- acceptor ligands and the metal center tends to acquire 8 electrons in its valence shell. Rules: Treat ligands as neutral entities. The number of valence electrons for a zero-valent metal center is equal to the group number. g: r (group 6) in r(o) 6, Fe (group 8) in Fe(O) 5, and Ni (group 0) in Ni(O) 4

18 8-electron rule Many ligands donate more than electron. -electron donor: (in any bonding mode), and terminal l, r, I,R (e.g. Ralkyl or Ph) or RO ; -electron donor: O, PR 3, P(OR) 3, R R (η -alkene), R : (carbene) 3-electron donor: η (allyl radical), R (carbyne), μ- l, μ- r, μ- I, μ- R P ; 4-electron donor: η 4 diene, η 4 4 R 4 (cyclo-butadienes); 5-electron donor: η 5 5 5, μ 3 -l, μ 3 -r, μ 3 -I, μ 3 -R P ; 6-electron donor: η 6 6 6, η Me; - or 3-electron donor: NO xample: Ferrocene 6.3 Prediction of structural features of inorganic iono-covalent compounds with tetrahedral anion complexes

19 %O T and %O [3] and %O [4] 0 ume-rothery s 8 - N rule (930/3) Rule rationalizes observed structural features of (post-transition) main group elements. y forming the correct number of shared bonds with its neighbors each atom succeeds to complete its octet. The number of bonds of an element is 8 - N where N is its column number in the periodic table (only for 4 N 8). lement structures which obey ume- Rothery s 8 - N rule N 4 4 bonds N 5 3 bonds N 6 bonds D, Si, Ge, α-sn P, As, Sb, i S, Se, Te N 7 bond N 8 0 bonds F, l, r, I e, Ne, Ar, Kr, Xe, Rn

20 Generalized 8 - N rule Pearson (964), ulliger & Mooser (965) 8 - V A AA - / (n/m) for m A n V A : Number of valence electrons par anion V A < 8, AA>0, 0 Polyanionic val. comp. V A 8, AA0, 0 Normal valence compound V A > 8, AA0, >0 Polycationic val. comp. AA: Average number of A-A bonds per anion ; Average number of - bonds per cations and/or electrons used for inert-electron pairs on cations

21 Polyanionic valence compound () K 6 Pd + Se 0 : V A 8/0, AA8/5 K 6 Pd[Se 5 ] 4 AA AA 4/3 AA 6/4 AA 8/5 N A/M /( - AA) N A/M : Average number of atoms in a non-cyclic charged anion molecule Polyanionic valence compounds () LaAs : V A 6.5; AA 3/; N A/M 4 La ^[As 4 ] LT, La 4^[As 3 ] ^[As 5 ] T ste 4 : V A 6.5; AA 7/4; N A/M 8 s ^[Te 8 ] Th S 5 : V A 7.6; AA /5 Th ^[S ][S] 3 Sr 5 Si 3 : V A 7.33; AA /3 Sr 5^[S ][S]

22 Polycationic valence compounds gl : V A 9; [g-g]l l 3 : V A 8.33; [-]l 6 SiAs : V A 9; [Si-Si]As 6.4 Transition-metal cluster compounds 6.4. Metal-metal bond L n M-ML n, L n MML n, L n M ML n, so called cluster Re l 8 - Re, d 5 s Re-Re.4Å (.76 Å in Re crystal) l l 3.3 Å Re 3+, d 4, dsp hybridization( σ bond), remain four d and one p orbital σ ( d d ) π ( d π ( d δ ( d z xz yz xy d d d z xz yz xy ) ) ) Quadruple ond 4 σ π δ Analog: Mo (O R) 4 and r (O R) 4 [Rel8] -

23 6.4 Transition-metal cluster compounds 6.4. Metal-metal bond L n M-ML n, L n MML n, L n M ML n, so called cluster (O) 3 Ir Ir(O) 3 Ir (O) Ir 3 (O) 3 Ir 4 (O) 6.4. luster geometry i. Structural polyhedron

24 ii. lectron counting b (8n g) b: bond valence (total number of metal-metal bonds) n: number of metal atoms g: total electrons in valence shell, including all In the case that main group atoms are included: b (8n + 8n g)

25 iii. ond valence and the cluster geometry b (8n g) Tri-nuclear compounds Metal cluster compounds Os 3 (O) 9 (μ 3 -S) g 50 b M-M/pm Os-Os, 8.3 Os Os Os Mn Fe(O) 4 Fe 3 (O) Mn-Fe, 8.5 Fe-Fe, 8.5 Mn Fe Mn Fe Fe Fe Os 3 (O) Os-Os, 8.5 Os [Mo 3 (μ 3 -O)(μ -O) 3 F 9 )] 5- Re 3 (μ -l) 3 (SiMe 3 ) OsOs, 68.0 MoMo, 50. Re Re, 38.7 Os Mo Re Mo Os Mo Re Re

26 Tetranuclear compounds Ir 4 (O) Re 4 (O) 6 - Os 4 (O) 6 g4*9+*60 g4*7+6*+6 g4*9+6*64 b/(8*4-60)6 b/(8*4-6)5 b/(8*4-64)4 Pentanuclear compounds exanuclear compounds

27 Multi-nuclear (N>6) compounds 6.5 arbon clusters and nanotubes. Fullerences 50 l 0

28 . arbon nanotubes 00 nm µm 6.6 ydrogen onding.85å 0.95Å * ydrogen bonding in DNA

Molecular Orbital Theory (MOT)

Molecular Orbital Theory (MOT) Molecular Orbital Theory (MOT) In this section, There are another approach to the bonding in metal complexes: the use of molecular orbital theory (MOT). In contrast to crystal field theory, the molecular

More information

RDCH 702 Lecture 4: Orbitals and energetics

RDCH 702 Lecture 4: Orbitals and energetics RDCH 702 Lecture 4: Orbitals and energetics Molecular symmetry Bonding and structure Molecular orbital theory Crystal field theory Ligand field theory Provide fundamental understanding of chemistry dictating

More information

Ch. 9 NOTES ~ Chemical Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 9 NOTES ~ Chemical Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Ch. 9 NOTES ~ Chemical Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. I. Review: Comparison of ionic and molecular compounds Molecular compounds Ionic

More information

Coordination Chemistry: Bonding Theories. Molecular Orbital Theory. Chapter 20

Coordination Chemistry: Bonding Theories. Molecular Orbital Theory. Chapter 20 Coordination Chemistry: Bonding Theories Molecular Orbital Theory Chapter 20 Review of the Previous Lecture 1. Discussed magnetism in coordination chemistry and the different classification of compounds

More information

Orbitals and energetics

Orbitals and energetics Orbitals and energetics Bonding and structure Molecular orbital theory Crystal field theory Ligand field theory Provide fundamental understanding of chemistry dictating radionuclide complexes Structure

More information

π donor L L L π acceptor has empty π orbitals on ligand in to which d e- from M can be donated

π donor L L L π acceptor has empty π orbitals on ligand in to which d e- from M can be donated Name KEY D# Chemistry 350 Fall 2005 Exam #4, November 18, 2005 50 minutes CCM 100 points on 4 pages + a useful page 5 1. Consider the molecular orbital diagram shown for M N. (16 pts) a) Indicate the following:

More information

Electronic structure Crystal-field theory Ligand-field theory. Electronic-spectra electronic spectra of atoms

Electronic structure Crystal-field theory Ligand-field theory. Electronic-spectra electronic spectra of atoms Chapter 19 d-metal complexes: electronic structure and spectra Electronic structure 19.1 Crystal-field theory 19.2 Ligand-field theory Electronic-spectra 19.3 electronic spectra of atoms 19.4 electronic

More information

NAME: SECOND EXAMINATION

NAME: SECOND EXAMINATION 1 Chemistry 64 Winter 1994 NAME: SECOND EXAMINATION THIS EXAMINATION IS WORTH 100 POINTS AND CONTAINS 4 (FOUR) QUESTIONS THEY ARE NOT EQUALLY WEIGHTED! YOU SHOULD ATTEMPT ALL QUESTIONS AND ALLOCATE YOUR

More information

B. Electron Deficient (less than an octet) H-Be-H. Be does not need an octet Total of 4 valence electrons

B. Electron Deficient (less than an octet) H-Be-H. Be does not need an octet Total of 4 valence electrons B. Electron Deficient (less than an octet) e.g. BeH 2 H-Be-H Be does not need an octet Total of 4 valence electrons Not the same as unsaturated systems that achieve the 8e - (octet) through the formation

More information

11/9/15. Intermolecular hydrogen bond: Hydrogen bond: Intramolecular hydrogen bond: Induced dipole moment, polarisability

11/9/15. Intermolecular hydrogen bond: Hydrogen bond: Intramolecular hydrogen bond: Induced dipole moment, polarisability Induced dipole moment, polarisability in electric field: Van der Waals forces Intermolecular forces other than covalent bonds or other than electrostatic interactions of ions induced d. moment µ * = α

More information

Bonding in Coordination Compounds. Crystal Field Theory. Bonding in Transition Metal Complexes

Bonding in Coordination Compounds. Crystal Field Theory. Bonding in Transition Metal Complexes Bonding in Transition Metal Complexes 1) Crystal Field Theory (ligand field theory) Crystal Field Theory Treat igands as negative charges (they repel the e- in the d orbitals deals only with d orbitals

More information

Downloaded from

Downloaded from 1 Class XII: Chemistry Chapter 9: Coordination Compounds 1. Difference between coordination compound and double bond: Coordination compound A coordination compound contains a central metal atom or ion

More information

The 18 Electron Rule. References: Gray: chapter 5 OGN: chapter 18

The 18 Electron Rule. References: Gray: chapter 5 OGN: chapter 18 The 18 Electron Rule References: Gray: chapter 5 OGN: chapter 18 Element Groups Alkali metals nert or Noble gases Alkali earths alogens e Li Na Be Mg Transition metals B Al Si N P O S F l Ne Ar K Rb s

More information

Molecular structure and bonding

Molecular structure and bonding Chemistry 481(01) Spring 2017 Instructor: Dr. Upali Siriwardane e-mail: upali@latech.edu Office: CTH 311 Phone 257-4941 Office Hours: M,W 8:00-9:00 & 11:00-12:00 am; Tu,Th, F 9:30-11:30 a.m. April 4, 2017:

More information

CHEM 172 EXAMINATION 2. February 12, Dr. Kimberly M. Broekemeier NAME: l = 2r l = 8 1/2 r l = (4/3 1/2 )r. h = 6.

CHEM 172 EXAMINATION 2. February 12, Dr. Kimberly M. Broekemeier NAME: l = 2r l = 8 1/2 r l = (4/3 1/2 )r. h = 6. EM 17 EXAMINATION February 1, 009 Dr. Kimberly M. Broekemeier NAME: P 1 1 P1 R T T1 ln = - ( - ) l = r l = 8 1/ r l = (4/3 1/ )r onstants: c = 3.00 X 10 8 m/s h = 6.63 X 10-34 J x s R = 0.0806 L x atm/mol

More information

PAPER No. : 11 and Inorganic Chemistry MODULE No.3 : and Structure of metal carbonyls and 18-electron rule applied to them. Paper No and Title

PAPER No. : 11 and Inorganic Chemistry MODULE No.3 : and Structure of metal carbonyls and 18-electron rule applied to them. Paper No and Title Subject Chemistry Paper No and Title Module No and Title Module Tag 11 : Inorganic Chemistry 3 : Structure of metal carbonyls and 18-electron rule applied to them CHE_P11_M3 TABLE OF CONTENTS 1. Learning

More information

Chapter 6 Molecular Structure

Chapter 6 Molecular Structure hapter 6 Molecular Structure 1. Draw the Lewis structure of each of the following ions, showing all nonzero formal charges. Indicate whether each ion is linear or bent. If the ion is bent, what is the

More information

Chapter 9: Chemical Bonding I: Lewis Theory. Lewis Theory: An Overview

Chapter 9: Chemical Bonding I: Lewis Theory. Lewis Theory: An Overview Chapter 9: Chemical Bonding I: Lewis Theory Dr. Chris Kozak Memorial University of ewfoundland, Canada Lewis Theory: An verview Valence e - play a fundamental role in chemical bonding. e - transfer leads

More information

Electronic structure / bonding in d-block complexes

Electronic structure / bonding in d-block complexes LN05-1 Electronic structure / bonding in d-block complexes Many, many properties of transition metal complexes (coordination number, structure, colour, magnetism, reactivity) are very sensitive to the

More information

Chapter 20 d-metal complexes: electronic structures and properties

Chapter 20 d-metal complexes: electronic structures and properties CHEM 511 Chapter 20 page 1 of 21 Chapter 20 d-metal complexes: electronic structures and properties Recall the shape of the d-orbitals... Electronic structure Crystal Field Theory: an electrostatic approach

More information

Chemistry 121: Topic 4 - Chemical Bonding Topic 4: Chemical Bonding

Chemistry 121: Topic 4 - Chemical Bonding Topic 4: Chemical Bonding Topic 4: Chemical Bonding 4.0 Ionic and covalent bonds; Properties of covalent and ionic compounds 4.1 Lewis structures, the octet rule. 4.2 Molecular geometry: the VSEPR approach. Molecular polarity.

More information

Bonding/Lewis Dots Lecture Page 1 of 12 Date. Bonding. What is Coulomb's Law? Energy Profile: Covalent Bonds. Electronegativity and Linus Pauling

Bonding/Lewis Dots Lecture Page 1 of 12 Date. Bonding. What is Coulomb's Law? Energy Profile: Covalent Bonds. Electronegativity and Linus Pauling Bonding/Lewis Dots Lecture Page 1 of 12 Date Bonding What is Coulomb's Law? Energy Profile: Covalent Bonds Electronegativity and Linus Pauling 2.1 H 1.0 Li 0.9 Na 0.8 K 0.8 Rb 0.7 Cs 0.7 Fr 1.5 Be 1.2

More information

FINAL EXAMINATION 12/17/93.

FINAL EXAMINATION 12/17/93. INORGANIC CHEMISTRY 413/571 FINAL EXAMINATION 12/17/93. DR. J. SHERIDAN Write all answers in the answer book. WRITE NEATLY. This will help me to understand your answers and maybe get you a few more points!

More information

CBSE Class-12 Chemistry Quick Revision Notes Chapter-09: Co-ordination Compounds

CBSE Class-12 Chemistry Quick Revision Notes Chapter-09: Co-ordination Compounds CBSE Class-12 Chemistry Quick Revision Notes Chapter-09: Co-ordination Compounds Co-ordination compounds: a) A coordination compound contains a central metal atom or ion surrounded by number of oppositely

More information

CHAPTER 8 BONDING: GENERAL CONCEPTS Ionic solids are held together by strong electrostatic forces that are omnidirectional.

CHAPTER 8 BONDING: GENERAL CONCEPTS Ionic solids are held together by strong electrostatic forces that are omnidirectional. CAPTER 8 BDIG: GEERAL CCEPTS 1 CAPTER 8 BDIG: GEERAL CCEPTS Questions 15. a. This diagram represents a polar covalent bond as in. In a polar covalent bond, there is an electron rich region (indicated by

More information

Crystal Field Theory

Crystal Field Theory Crystal Field Theory It is not a bonding theory Method of explaining some physical properties that occur in transition metal complexes. Involves a simple electrostatic argument which can yield reasonable

More information

Bonding in Transition Metal Compounds Oxidation States and Bonding

Bonding in Transition Metal Compounds Oxidation States and Bonding Bonding in Transition Metal ompounds Oxidation States and Bonding! Transition metals tend to have configurations (n 1)d x ns 2 or (n 1)d x ns 1, Pd having 4d 10 5s 0. K All lose ns electrons first, before

More information

Molecular Geometry and Bonding Theories. Chapter 9

Molecular Geometry and Bonding Theories. Chapter 9 Molecular Geometry and Bonding Theories Chapter 9 Molecular Shapes CCl 4 Lewis structures give atomic connectivity; The shape of a molecule is determined by its bond angles VSEPR Model Valence Shell Electron

More information

Chapter 10: Modern Atomic Theory and the Periodic Table. How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation

Chapter 10: Modern Atomic Theory and the Periodic Table. How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation Chapter 10: Modern Atomic Theory and the Periodic Table How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation Electromagnetic (EM) radiation is a form of energy that exhibits

More information

Chemistry of the Main Group Elements: Boron through the Pnictogens

Chemistry of the Main Group Elements: Boron through the Pnictogens Chemistry of the Main Group Elements: Boron through the Pnictogens Sections 8.5-8.7 and 15.4.1 Friday, November 6, 2015 Group IIIA (13): B, Al, Ga, In, and Tl Diverse group of elements with three valence

More information

Chapter 8. Molecular Shapes. Valence Shell Electron Pair Repulsion Theory (VSEPR) What Determines the Shape of a Molecule?

Chapter 8. Molecular Shapes. Valence Shell Electron Pair Repulsion Theory (VSEPR) What Determines the Shape of a Molecule? PowerPoint to accompany Molecular Shapes Chapter 8 Molecular Geometry and Bonding Theories Figure 8.2 The shape of a molecule plays an important role in its reactivity. By noting the number of bonding

More information

Atomic Structure & Interatomic Bonding

Atomic Structure & Interatomic Bonding Atomic Structure & Interatomic Bonding Chapter Outline Review of Atomic Structure Atomic Bonding Atomic Structure Atoms are the smallest structural units of all solids, liquids & gases. Atom: The smallest

More information

Chapter 3: Elements and Compounds. 3.1 Elements

Chapter 3: Elements and Compounds. 3.1 Elements Chapter 3: Elements and Compounds 3.1 Elements An element is a fundamental substance that cannot be broken down by chemical or physical methods to simpler substances. The 118 known elements are nature

More information

Coordination Chemistry: Bonding Theories. Crystal Field Theory. Chapter 20

Coordination Chemistry: Bonding Theories. Crystal Field Theory. Chapter 20 Coordination Chemistry: Bonding Theories Crystal Field Theory Chapter 0 Review of the Previous Lecture 1. We discussed different types of isomerism in coordination chemistry Structural or constitutional

More information

Carbon-based molecules are held together by covalent bonds between atoms

Carbon-based molecules are held together by covalent bonds between atoms hapter 1: hemical bonding and structure in organic compounds arbon-based molecules are held together by covalent bonds between atoms omposition: Mainly nonmetals; especially,, O, N, S, P and the halogens

More information

Transition Metals and Complex Ion Chemistry

Transition Metals and Complex Ion Chemistry Transition Metals and mplex Ion Chemistry Definitions mplex ion - a metal ion with Lewis bases attached to it through coordinate covalent bonds. A mplex (or ordination compound) is a compound consisting

More information

Practice Final # Jim and Tim s Excellent Adventure s in Final Exam Preparation. Practice Final

Practice Final # Jim and Tim s Excellent Adventure s in Final Exam Preparation. Practice Final Jim and Tim s Excellent Adventure s in Final Exam Preparation Practice Final 1 2013 1. What type of orbital is designated by the quantum numbers n = 3, l = 1, and m l = 0? A. 4p B. 1f C. 3s D. 3p E. 3d

More information

Review questions CHAPTER 5. Practice exercises 5.1 F F 5.3

Review questions CHAPTER 5. Practice exercises 5.1 F F 5.3 CHAPTER 5 Practice exercises 5.1 S 5.3 5.5 Ethane is symmetrical, so does not have a dipole moment. However, ethanol has a polar H group at one end and so has a dipole moment. 5.7 xygen has the valence

More information

Quiz 5 R = lit-atm/mol-k 1 (25) R = J/mol-K 2 (25) 3 (25) c = X 10 8 m/s 4 (25)

Quiz 5 R = lit-atm/mol-k 1 (25) R = J/mol-K 2 (25) 3 (25) c = X 10 8 m/s 4 (25) ADVANCED INORGANIC CHEMISTRY QUIZ 5 and FINAL December 18, 2012 INSTRUCTIONS: PRINT YOUR NAME > NAME. QUIZ 5 : Work 4 of 1-5 (The lowest problem will be dropped) FINAL: #6 (10 points ) Work 6 of 7 to 14

More information

Covalent Bonding & Molecular Structure

Covalent Bonding & Molecular Structure ovalent Bonding & Molecular Structure I. Electronic onfiguration and e! sharing. A. The Periodic Table s shape helps you understand outer- (and inner-) shell e! configuration. Which e! were of greatest

More information

Chapter 24. Transition Metals and Coordination Compounds. Lecture Presentation. Sherril Soman Grand Valley State University

Chapter 24. Transition Metals and Coordination Compounds. Lecture Presentation. Sherril Soman Grand Valley State University Lecture Presentation Chapter 24 Transition Metals and Coordination Compounds Sherril Soman Grand Valley State University Gemstones The colors of rubies and emeralds are both due to the presence of Cr 3+

More information

PART CHAPTER2. Atomic Bonding

PART CHAPTER2. Atomic Bonding PART O N E APTER2 Atomic Bonding The scanning tunneling microscope (Section 4.7) allows the imaging of individual atoms bonded to a material surface. In this case, the microscope was also used to manipulate

More information

Course 201N 1 st Semester Inorganic Chemistry Instructor: Jitendra K. Bera

Course 201N 1 st Semester Inorganic Chemistry Instructor: Jitendra K. Bera andout-8 ourse 201N 1 st Semester 2006-2007 Inorganic hemistry Instructor: Jitendra K. Bera ontents 3. Organometallic hemistry yclopentadienyl, Alkyl and Alkene yclopentadienyl p The cyclopentadienyl ligand

More information

CHEM 3013 ORGANIC CHEMISTRY I LECTURE NOTES

CHEM 3013 ORGANIC CHEMISTRY I LECTURE NOTES M 3013 OAI MIST I LTU OTS 1 APT 1 1. Atomic orbitals a. eisenberg Uncertainty Principle The exact position of an electron cannot be specified; only the probability that it occupies a certain position of

More information

SHAPES OF MOLECULES (VSEPR MODEL)

SHAPES OF MOLECULES (VSEPR MODEL) 1 SAPES MLEULES (VSEPR MDEL) Valence Shell Electron-Pair Repulsion model - Electron pairs surrounding atom spread out as to minimize repulsion. - Electron pairs can be bonding pairs (including multiple

More information

Chapter 25 Transition Metals and Coordination Compounds Part 2

Chapter 25 Transition Metals and Coordination Compounds Part 2 Chapter 25 Transition Metals and Coordination Compounds Part 2 Bonding in Coordination Compounds Valence Bond Theory Coordinate covalent bond is between: completely filled atomic orbital and an empty atomic

More information

Chapter 9. Chemical Bonding II: Molecular Geometry and Bonding Theories

Chapter 9. Chemical Bonding II: Molecular Geometry and Bonding Theories Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories Topics Molecular Geometry Molecular Geometry and Polarity Valence Bond Theory Hybridization of Atomic Orbitals Hybridization in Molecules

More information

INSTRUCTIONS: 7. Relax and do well.

INSTRUCTIONS: 7. Relax and do well. EM 1314 Name Exam III TA Name John III. Gelder November 16, 1992 Lab Section INSTRUTIONS: 1. This examination consists of a total of 7 different pages. The last page includes a periodic table and some

More information

The Periodic Table. Periodic Properties. Can you explain this graph? Valence Electrons. Valence Electrons. Paramagnetism

The Periodic Table. Periodic Properties. Can you explain this graph? Valence Electrons. Valence Electrons. Paramagnetism Periodic Properties Atomic & Ionic Radius Energy Electron Affinity We want to understand the variations in these properties in terms of electron configurations. The Periodic Table Elements in a column

More information

Chapters 8 and 9. Octet Rule Breakers Shapes

Chapters 8 and 9. Octet Rule Breakers Shapes Chapters 8 and 9 Octet Rule Breakers Shapes Bond Energies Bond Energy (review): The energy needed to break one mole of covalent bonds in the gas phase Breaking bonds consumes energy; forming bonds releases

More information

Covalent Bonding. Chapter 8. Diatomic elements. Covalent bonding. Molecular compounds. 1 and 7

Covalent Bonding. Chapter 8. Diatomic elements. Covalent bonding. Molecular compounds. 1 and 7 hapter 8 ovalent bonding ovalent Bonding A metal and a nonmetal transfer An ionic bond Two metals just mix and don t react An alloy What do two nonmetals do? Neither one will give away an electron So they

More information

Chm December 2008

Chm December 2008 Inorganic Exam 3 Chm 451 4 December 2008 Name: Instructions. Always show your work where required for full credit. 1. (15 pts) True/False a T F Ionization energy decreases as one moves down from Li to

More information

Chemistry 1A, Spring 2007 Midterm Exam 2 March 5, 2007 (90 min, closed book)

Chemistry 1A, Spring 2007 Midterm Exam 2 March 5, 2007 (90 min, closed book) Chemistry 1A, Spring 2007 Midterm Exam 2 March 5, 2007 (90 min, closed book) Name: KEY SID: TA Name: 1.) Write your name on every page of this exam. 2.) This exam has 40 multiple choice questions. Fill

More information

: Bond Order = 1.5 CHAPTER 5. Practice Questions

: Bond Order = 1.5 CHAPTER 5. Practice Questions CAPTER 5 Practice Questions 5.1 5.3 S 5.5 Ethane is symmetrical, so does not have a dipole moment. owever, ethanol has a polar group at one end and so has a dipole moment. 5.7 xygen has the valence electron

More information

Atomic Structure. Atomic weight = m protons + m neutrons Atomic number (Z) = # of protons Isotope corresponds to # of neutrons

Atomic Structure. Atomic weight = m protons + m neutrons Atomic number (Z) = # of protons Isotope corresponds to # of neutrons Atomic Structure Neutrons: neutral Protons: positive charge (1.6x10 19 C, 1.67x10 27 kg) Electrons: negative charge (1.6x10 19 C, 9.11x10 31 kg) Atomic weight = m protons + m neutrons Atomic number (Z)

More information

... but using electron configurations to describe how aluminum bromide forms is a bit cumbersome! Can we simplify the picture a bit?

... but using electron configurations to describe how aluminum bromide forms is a bit cumbersome! Can we simplify the picture a bit? 193... but using electron configurations to describe how aluminum bromide forms is a bit cumbersome! Can we simplify the picture a bit? LEWIS NOTATION / ELECTRON-DOT NOTATION - Lewis notation represents

More information

1. (4 pts) Give the electron configuration for these species. You may use core notation.

1. (4 pts) Give the electron configuration for these species. You may use core notation. EXAM ONE PART ONE CHM 451 (INORGANIC CHEMISTRY) DR. MATTSON 18 SEPTEMBER 2013 NAME: Instructions: This exam has two parts. In Part One, only a pencil and molecular models may be used. When you have completed

More information

Drawing Lewis Structures

Drawing Lewis Structures Chapter 2 - Basic Concepts: molecules Bonding models: Valence-Bond Theory (VB) and Molecular Orbital Theory (MO) Lewis acids and bases When both of the electrons in the covalent bond formed by a Lewis

More information

PAPER No.11: Inorganic Chemistry-III MODULE No.29: Metal- metal bonds and their evidences

PAPER No.11: Inorganic Chemistry-III MODULE No.29: Metal- metal bonds and their evidences 1 Subject Chemistry Paper No and Title Module No and Title Module Tag 11: Inorganic Chemistry-III (Metal π-complexes and Metal Clusters) 29: Metal-metal bonds and their evidences CHE_P11_M29 2 TABLE OF

More information

Chapter 9 Molecular Geometry and Bonding Theories

Chapter 9 Molecular Geometry and Bonding Theories Lecture Presentation Chapter 9 Geometry James F. Kirby Quinnipiac University Hamden, CT Shapes Lewis Structures show bonding and lone pairs, but do not denote shape. However, we use Lewis Structures to

More information

Chapter 10 Practice Problems

Chapter 10 Practice Problems Chapter 10 Practice Problems Q 10.1 0-1 -1-1 S +2 +2 S S +2 0-1 -1-1 0 C in S - 6 6 1 2 1 2 C in S = 6 4 1 4 0 2 C S 6 0 1 8 2 2 Q 10.2 Correct Answer: B Two oxygen atoms will have a formal charge of 1

More information

Review Outline Chemistry 1B, Fall 2012

Review Outline Chemistry 1B, Fall 2012 Review Outline Chemistry 1B, Fall 2012 -------------------------------------- Chapter 12 -------------------------------------- I. Experiments and findings related to origin of quantum mechanics A. Planck:

More information

CHEMISTRY - MCMURRY 7E CH.7 - COVALENT BONDING AND ELECTRON DOT STRUCTURES

CHEMISTRY - MCMURRY 7E CH.7 - COVALENT BONDING AND ELECTRON DOT STRUCTURES !! www.clutchprep.com CONCEPT: ELECTRONIC GEOMETRY When drawing a compound you have to take into account two different systems of geometrical shape. The simpler system known as electronic geometry or shape

More information

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2 The Delocalized Approach to Bonding: The localized models for bonding we have examined (Lewis and VBT) assume that all electrons are restricted to specific bonds between atoms or in lone pairs. In contrast,

More information

Modified from: Larry Scheffler Lincoln High School IB Chemistry 1-2.1

Modified from: Larry Scheffler Lincoln High School IB Chemistry 1-2.1 Modified from: Larry Scheffler Lincoln High School IB Chemistry 1-2.1 The development of the periodic table brought a system of order to what was otherwise an collection of thousands of pieces of information.

More information

ORBITAL DIAGRAM - A graphical representation of the quantum number "map" of electrons around an atom.

ORBITAL DIAGRAM - A graphical representation of the quantum number map of electrons around an atom. 178 (MAGNETIC) SPIN QUANTUM NUMBER: "spin down" or "spin up" - An ORBITAL (region with fixed "n", "l" and "ml" values) can hold TWO electrons. ORBITAL DIAGRAM - A graphical representation of the quantum

More information

Crystal Field Theory

Crystal Field Theory 6/4/011 Crystal Field Theory It is not a bonding theory Method of explaining some physical properties that occur in transition metal complexes. Involves a simple electrostatic argument which can yield

More information

PAPER No.11 : Inorganic Chemistry-II MODULE No.1 : Π-acceptor ligand, metal carbonyls, bonding modes of CO, classification of metal carbonyls

PAPER No.11 : Inorganic Chemistry-II MODULE No.1 : Π-acceptor ligand, metal carbonyls, bonding modes of CO, classification of metal carbonyls Subject Paper No and Title Module No and Title Module Tag 11: INORGANIC CHEMISTRY-III (METAL π- COMPLEXES AND METAL CLUSTERS) 1: π-acidity, Metal carbonyls, their classification and general features CHE_P11_M1

More information

Chapter 13 Conjugated Unsaturated Systems

Chapter 13 Conjugated Unsaturated Systems Conjugated Unsaturated Systems 13.1 Introduction Allyl radical C 2 C C 2 C C C Allyl cation C 2 C C 2 C C C 1,3-Butadiene C 2 C C C 2 C C C C Molecules with delocalized π bonds are called conjugated unsaturated

More information

Bonding in Molecules Covalent Bonding

Bonding in Molecules Covalent Bonding Bonding in Molecules Covalent Bonding The term covalent implies sharing of electrons between atoms. Valence electrons and valence shell orbitals - nly valence electrons are used for bonding: ns, np, nd

More information

Name Date Class STUDY GUIDE FOR CONTENT MASTERY. covalent bond molecule sigma bond exothermic pi bond

Name Date Class STUDY GUIDE FOR CONTENT MASTERY. covalent bond molecule sigma bond exothermic pi bond Covalent Bonding Section 9.1 The Covalent Bond In your textbook, read about the nature of covalent bonds. Use each of the terms below just once to complete the passage. covalent bond molecule sigma bond

More information

Coordination chemistry and organometallics

Coordination chemistry and organometallics Coordination chemistry and organometallics Double salt and Complex salt A salt that keeps its identity only in solid state is called a double salt. In solution they dissociate into component ions. E.g.:

More information

Chapter 5. Molecular Orbitals

Chapter 5. Molecular Orbitals Chapter 5. Molecular Orbitals MO from s, p, d, orbitals: - Fig.5.1, 5.2, 5.3 Homonuclear diatomic molecules: - Fig. 5.7 - Para- vs. Diamagnetic Heteronuclear diatomic molecules: - Fig. 5.14 - ex. CO Hybrid

More information

Bonding in Organic Compounds

Bonding in Organic Compounds Bonding in rganic ompounds hapter 1 1 Bonding in rganic ompounds APTER SUMMARY rganic chemistry is the study of compounds of carbon This is a separate branch of chemistry because of the large numbers of

More information

Section 12: Lewis Structures

Section 12: Lewis Structures Section 12: Lewis Structures The following maps the videos in this section to the Texas Essential Knowledge and Skills for Science TAC 112.35(c). 12.01 Electronegativity Chemistry (5)(C) 12.02 Electron

More information

MANY ELECTRON ATOMS Chapter 15

MANY ELECTRON ATOMS Chapter 15 MANY ELECTRON ATOMS Chapter 15 Electron-Electron Repulsions (15.5-15.9) The hydrogen atom Schrödinger equation is exactly solvable yielding the wavefunctions and orbitals of chemistry. Howev er, the Schrödinger

More information

If you put an electron into the t 2g, like that for Ti 3+, then you stabilize the barycenter of the d orbitals by 0.4 D o.

If you put an electron into the t 2g, like that for Ti 3+, then you stabilize the barycenter of the d orbitals by 0.4 D o. Crystal Field Stabilization Energy Week 2-1 Octahedral Symmetry (O h ) If you put an electron into the t 2g, like that for Ti 3+, then you stabilize the barycenter of the d orbitals by 0.4 D o. Each additional

More information

- A CHEMICAL BOND is a strong attractive force between the atoms in a compound. attractive forces between oppositely charged ions

- A CHEMICAL BOND is a strong attractive force between the atoms in a compound. attractive forces between oppositely charged ions 191 CHEMICAL BONDS - A CHEMICAL BOND is a strong attractive force between the atoms in a compound. 3 TYPES OF CHEMICAL BOND Ionic bonds attractive forces between oppositely charged ions sodium chloride

More information

CHEMISTRY - ZUMDAHL 2E CH.4 - MOLECULAR STRUCTURE AND ORBITALS.

CHEMISTRY - ZUMDAHL 2E CH.4 - MOLECULAR STRUCTURE AND ORBITALS. !! www.clutchprep.com CONCEPT: ELECTRONIC GEOMETRY When drawing a compound you have to take into account two different systems of geometrical shape. The simpler system known as electronic geometry or shape

More information

Chapter 10 Chemical Bonding II

Chapter 10 Chemical Bonding II Chapter 10 Chemical Bonding II Valence Bond Theory Valence Bond Theory: A quantum mechanical model which shows how electron pairs are shared in a covalent bond. Bond forms between two atoms when the following

More information

Chapter 11 Answers. Practice Examples

Chapter 11 Answers. Practice Examples hapter Answers Practice Examples a. There are three half-filled p orbitals on, and one half-filled 5p orbital on I. Each halffilled p orbital from will overlap with one half-filled 5p orbital of an I.

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9. Molecular Geometry and Bonding Theories 9.1 Molecular Shapes Lewis structures give atomic connectivity: they tell us which atoms are physically connected to which atoms. The shape of a molecule

More information

Chemistry 3211 Coordination Chemistry Part 3 Ligand Field and Molecular Orbital Theory

Chemistry 3211 Coordination Chemistry Part 3 Ligand Field and Molecular Orbital Theory Chemistry 3211 Coordination Chemistry Part 3 Ligand Field and Molecular Orbital Theory Electronic Structure of Six and Four-Coordinate Complexes Using Crystal Field Theory, we can generate energy level

More information

All chemical bonding is based on the following relationships of electrostatics: 2. Each period on the periodic table

All chemical bonding is based on the following relationships of electrostatics: 2. Each period on the periodic table UNIT VIII ATOMS AND THE PERIODIC TABLE 25 E. Chemical Bonding 1. An ELECTROSTATIC FORCE is All chemical bonding is based on the following relationships of electrostatics: The greater the distance between

More information

11, Inorganic Chemistry III (Metal π-complexes and Metal Clusters) Module 32: Polynuclear metal carbonyls and their structure

11, Inorganic Chemistry III (Metal π-complexes and Metal Clusters) Module 32: Polynuclear metal carbonyls and their structure 1 Subject Paper No and Title Module No and Title Module Tag Chemistry 11, Inorganic Chemistry III (Metal π-complexes and Module 32: Polynuclear metal carbonyls and their structure CHE_P11_M32 2 TABLE OF

More information

Inorganic Chemistry 411/511 Final Exam Name 115 minutes; 200 points total Show your work for partial credit.

Inorganic Chemistry 411/511 Final Exam Name 115 minutes; 200 points total Show your work for partial credit. Inorganic Chemistry 411/511 Final Exam Name 115 minutes; 200 points total Show your work for partial credit. 1 1. Draw the molecular geometry and indicate any deviations from ideal VSEPR coordination angles.

More information

AP Chemistry- Practice Bonding Questions for Exam

AP Chemistry- Practice Bonding Questions for Exam AP Chemistry- Practice Bonding Questions for Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is a correct Lewis structure for

More information

Lecture Notes D: Molecular Orbital Theory

Lecture Notes D: Molecular Orbital Theory Lecture Notes D: Molecular Orbital Theory Orbital plotting applet: http://www.mpcfaculty.net/mark_bishop/hybrid_frame.htm Images below from: http://employees.oneonta.edu/viningwj/chem111/hybrids%20and%20pi%20bonding.jpg

More information

M11/4/CHEMI/SPM/ENG/TZ2/XX CHEMISTRY STANDARD LEVEL PAPER 1. Monday 9 May 2011 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

M11/4/CHEMI/SPM/ENG/TZ2/XX CHEMISTRY STANDARD LEVEL PAPER 1. Monday 9 May 2011 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES M11/4/CHEMI/SPM/ENG/TZ/XX 116116 CHEMISTRY STANDARD LEVEL PAPER 1 Monday 9 May 011 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES Do not open this examination paper until instructed to do so. Answer

More information

1. There are paired and unpaired electrons in the Lewis symbol for a phosphorus atom. a. 4, 2 b. 2, 4 c. 2, 3 d. 4, 3 e. 0, 3

1. There are paired and unpaired electrons in the Lewis symbol for a phosphorus atom. a. 4, 2 b. 2, 4 c. 2, 3 d. 4, 3 e. 0, 3 Name: Score: 0 / 42 points (0%) [2 open ended questions not graded] C8&9Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. There are paired and unpaired

More information

Covalent Bonding Introduction, 2. Chapter 7 Covalent Bonding. Figure 7.1 The Hydrogen Molecule. Outline. Covalent Bonding Introduction, 1. Figure 7.

Covalent Bonding Introduction, 2. Chapter 7 Covalent Bonding. Figure 7.1 The Hydrogen Molecule. Outline. Covalent Bonding Introduction, 1. Figure 7. Covalent Bonding Introduction, 2 William L. Masterton Cecile N. Hurley http://academic.cengage.com/chemistry/masterton Chapter 7 Covalent Bonding Electron density Electrons are located between nuclei Electrostatic

More information

16. NO 3, 5 + 3(6) + 1 = 24 e. 22. HCN, = 10 valence electrons

16. NO 3, 5 + 3(6) + 1 = 24 e. 22. HCN, = 10 valence electrons Solution to Chapts 9 & 10 Problems: 16. N 3, 5 + 3(6) + 1 = 24 e 22. HCN, 1 + 4 + 5 = 10 valence electrons Assuming N is hybridized, both C and N atoms are sp hybridized. The C H bond is formed from overlap

More information

Chemistry Higher level Paper 1

Chemistry Higher level Paper 1 M15/4/EMI/PM/ENG/TZ1/XX hemistry igher level Paper 1 Thursday 14 May 2015 (afternoon) 1 hour Instructions to candidates Do not open this examination paper until instructed to do so. Answer all the questions.

More information

Drawing Good Lewis Structures. Molecular Shape

Drawing Good Lewis Structures. Molecular Shape 3//05 Drawing Good Lewis Structures. # valence e in atoms (± charge) must = # e in structure ; always. determine connectivity: least EN usually central; avoid small rings; always terminal ( e ); work out

More information

Hybridization and Molecular Orbital (MO) Theory

Hybridization and Molecular Orbital (MO) Theory ybridization and Molecular Orbital (MO) Theory Chapter 10 istorical Models G.N.Lewis and I. Langmuir (~1920) laid out foundations Ionic species were formed by electron transfer Covalent molecules arise

More information

Inorganic Chemistry with Doc M. Day 18. Transition Metals Complexes IV: Ligand Field Theory continued

Inorganic Chemistry with Doc M. Day 18. Transition Metals Complexes IV: Ligand Field Theory continued Inorganic Chemistry with Doc M. Day 18. Transition Metals Complexes IV: Ligand Field Theory continued Topics: 1. The three scenarios 2. Scenario 3: π-back bonding 1. The three scenarios for the MO energy

More information

The Electronic Structure of Atoms

The Electronic Structure of Atoms The Electronic Structure of Atoms Classical Hydrogen-like atoms: Atomic Scale: 10-10 m or 1 Å + - Proton mass : Electron mass 1836 : 1 Problems with classical interpretation: - Should not be stable (electron

More information

2 electrons 2s 2 2p 6. 8 electrons (octet rule) 3s 2 3p 6 3d 10

2 electrons 2s 2 2p 6. 8 electrons (octet rule) 3s 2 3p 6 3d 10 Main Group and Transition Metal Chemistry: Reading: Moore chapter 22, sections 22.1, 22.6 Questions for Review and Thought: 14, 16, 24, 26, 30, 34, 36, 42, 48, 50, 58, 60. Key ncepts and Skills: definition

More information

A Simple Model for Chemical Bonds

A Simple Model for Chemical Bonds A Simple Model for hemical Bonds Multiple hoice 1. Modern organic chemistry a. is the study of carbon-containing compounds. b. is the study of compounds from living organisms. c. deals exclusively with

More information

Name Date Class MOLECULAR COMPOUNDS. Distinguish molecular compounds from ionic compounds Identify the information a molecular formula provides

Name Date Class MOLECULAR COMPOUNDS. Distinguish molecular compounds from ionic compounds Identify the information a molecular formula provides 8.1 MOLECULAR COMPOUNDS Section Review Objectives Distinguish molecular compounds from ionic compounds Identify the information a molecular formula provides Vocabulary covalent bond molecule diatomic molecule

More information