Supporting Information

Size: px
Start display at page:

Download "Supporting Information"

Transcription

1 Supporting Information Peramivir Phosphonate Derivatives as Influenza Neuraminidase Inhibitors Peng-Cheng Wang a, Jim-Min Fang a,b, *, Keng-Chang Tsai c, Shi-Yun Wang b, Wen-I Huang b, Yin-Chen Tseng b, Yih-Shyun E. Cheng b, Ting-Jen Rachel Cheng b, and Chi-Huey Wong b a Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan. b The Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan. c National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, 112, Taiwan. Corresponding Author J.-M.F.: phone, ; fax, ; , jmfang@ntu.edu.tw. Contents Page number ADMET prediction of peramivir phosphonate derivatives 6a 8c S2 Figure S1. Structures of peramivir 5 and phosphono-peramivir 6a S3 Figure S2. Overlay of the molecular modeling structures in the NA active S4 site. Figures S3 S6. Stability test of phosphonate monoethyl ester 7b. S5 S13 1 H, 13 C and 31 P NMR spectra, HPLC diagram, and X-ray data of compound S14 S21 6a 1 H, 13 C and 31 P NMR spectra, and HPLC diagram of compounds 6b 8c. S22 S37 1 H and 13 C NMR spectra of compound 10a. S38 1 H and 13 C NMR spectra, and X-ray data of compounds 11 and 12. S39 S65 1 H, 13 C, 31 P and 2D NMR spectra of compounds 13 and 13-isomer. S66 S70 1 H, 13 C and 31 P NMR spectra of compounds S71 S93 S1

2 Table S1. ADMET prediction of peramivir phosphonate derivatives 6a 8c. a Cmpd Solubility b BBBP c Absorption d CYP2D6 e Hepatotox. f PPB g a b a b c a b c a b c a Acquired from Discovery Studio 3.5 program (Accelrys, Inc., San Diego, CA) for prediction of absorption, distribution, metabolism, excretion and toxicity (ADMET) properties. b It predicts the level of the solubility of each compound in water at 25 o C: high, ++; medium, +; low, ; very low, 0. c It predicts the level of blood-brain barrier penetration (BBBP) after oral administration of each compound: high penetration, ++; medium, +; low, ; undefined,. d It predicts the human intestinal absorption level of each compound: high, ++; medium, +; low, ; very low, 0. e It predicts cytochrome P450 2D6 enzyme inhibition by each compound: none, 0. f It predicts the occurrence of dose-dependent human hepatotoxicity by each compound: none, 0. g Plasma protein binding (PPB) predicts likelihood that a compound will be bound to carrier proteins in the blood: low,. S2

3 (A) (B) (C) (D) Figure S1. Structures of peramivir 5 and phosphono-peramivir 6a: (A) molecular modeling structure of 5 in the active site of NA (N1 subtype, PDB code: 2HU4) 6, (B) structure of 5 in the 5 NA complex (PDB: 1L7F), 20 (C) molecular modeling of 6a in the active site of NA (N1 subtype, PDB code: 2HU4) 6, (D) X-ray structure of 6a. The root-mean-square deviation (RMSD) is 0.01Å. S3

4 Figure S2. Overlay of the molecular modeling structures in the NA active site (N1 subtype, PDB code: 2HU4) 6 : peramivir 5 (light pink), phosphono-peramivir 6a (blue) and dehydration derivative 7a (yellow), in comparison with the structure of 5 (purple) in the 5 NA complex (PDB: 1L7F). 20 S4

5 S5

6 Figure S3. Stability test of phosphonate monoethyl ester 7b in PBS (1 mm, ph 7.4) at 37 o C by HPLC and MS analyses at intervals of 24, 48, 72 and 96 h. HPLC conditions: HC-C18 column (Merck Chromolith, mm i.d., 2 µm particle size); eluent, MeOH/(0.1%TFA aqueous solution) = 3:7; flow rate, 1 ml/min; detection at 214 nm wavelength. The protonated ion [M + H] + (C 16 H 32 N 4 O 4 P calculated m/z ) and sodiated molecular ion [M + Na] + (C 16 H 31 N 4 NaO 4 P calculated m/z ) were observed in the ESI HRMS spectra. No MS signals for phosphonic acid 7a appeared. S6

7 S7

8 Figure S4. Stability test of phosphonate monoethyl ester 7b in acetate buffer (1 mm, ph 4.0) at 37 o C by HPLC and MS analyses at intervals of 24, 48, 72 and 96 h. HPLC conditions: HC-C18 column (Merck Chromolith, mm i.d., 2 µm particle size); eluent, MeOH/(0.1%TFA aqueous solution) = 3:7; flow rate, 1 ml/min; detection at 214 nm wavelength. The protonated ion [M + H] + (C 16 H 32 N 4 O 4 P calculated m/z ) and sodiated molecular ion [M + Na] + (C 16 H 31 N 4 NaO 4 P calculated m/z ) were observed in the ESI HRMS spectra. No MS signals for phosphonic acid 7a appeared. S8

9 S9

10 Figure S5. Stability test of phosphonate monoethyl ester 7b in HCl buffer (1 mm, ph 2.0) at 37 o C by HPLC and MS analyses at intervals of 24, 48, 72 and 96 h. HPLC conditions: HC-C18 column (Merck Chromolith, mm i.d., 2 µm particle size); eluent, MeOH/(0.1%TFA aqueous solution) = 3:7; flow rate, 1 ml/min; detection at 214 nm wavelength. The protonated ion [M + H] + (C 16 H 32 N 4 O 4 P calculated m/z ) and sodiated molecular ion [M + Na] + (C 16 H 31 N 4 NaO 4 P calculated m/z ) were observed in the ESI HRMS spectra. No MS signals for phosphonic acid 7a appeared. S10

11 S11

12 S12

13 Figure S6. Stability test of phosphonate monoethyl ester 7b in rabbit serum (1 mm) at 37 o C by HPLC and MS analyses at intervals of 24, 48, 72 and 96 h. HPLC conditions: HC-C18 column (Merck Chromolith, mm i.d., 2 µm particle size); eluent, MeOH/(0.1%TFA aqueous solution) = 3:7; flow rate, 1 ml/min; detection at 214 nm wavelength. The protonated ion [M + H] + (C 16 H 32 N 4 O 4 P calculated m/z ) and sodiated molecular ion [M + Na] + (C 16 H 31 N 4 NaO 4 P calculated m/z ) were observed in the ESI HRMS spectra. No MS signals for phosphonic acid 7a appeared. S13

14 1 H NMR spectrum of compound 6a (500 MHz, in D 2 O) 13 C NMR spectrum of compound 6a (100 MHz, in D 2 O) S14

15 31 P NMR spectrum of compound 6a (162 MHz, in D 2 O) HPLC diagram of phosphonic acid 6a. HC-C18 column (Agilent, mm, 5 µm porosity), t R = 5.5 min [MeOH/(0.5%TFA aqueous solution) = 2:3] at a flow rate of 0.5 ml/min. S15

16 ORTEP drawing of phosphonic acid 6a (IC16071, deposit CCDC ); thermal ellipsoids drawn at the 50% probability level. S16

17 Table S2A. Crystal data and structure refinement of phosphonic acid 6a. Identification code ic16071 Empirical formula C15 H37 N4 O8 P Formula weight Temperature 200(2) K Wavelength Å Crystal system Monoclinic Space group C2 Unit cell dimensions a = (5) Å a= 90. b = (4) Å b= (4). c = (8) Å g = 90. Volume (16) Å 3 Z 4 Density (calculated) Mg/m 3 Absorption coefficient mm -1 F(000) 936 Crystal size 0.20 x 0.10 x 0.02 mm 3 Theta range for data collection 5.28 to Index ranges -15<=h<=15, -12<=k<=6, -14<=l<=20 Reflections collected 4359 Independent reflections 2718 [R(int) = ] Completeness to theta = % Absorption correction Semi-empirical from equivalents Max. and min. transmission and Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 2718 / 20 / 296 Goodness-of-fit on F Final R indices [I>2sigma(I)] R1 = , wr2 = R indices (all data) R1 = , wr2 = Absolute structure parameter -0.01(4) Largest diff. peak and hole and e.å -3 S17

18 Table S2B. Atomic coordinates ( 10 4 ) and equivalent isotropic displacement parameters (Å ) of phosphonic acid 6a. U (eq) is defined as one third of the trace of the orthogonalized U ij tensor. x y z U(eq) P(1) 8522(1) 1126(1) 4352(1) 29(1) O(1) 7737(2) 123(3) 4123(2) 42(1) O(2) 8651(2) 1239(4) 5288(2) 38(1) O(3) 9567(2) 885(4) 4026(2) 36(1) O(4) 6718(2) 2926(3) 2953(2) 35(1) O(5) 7083(3) 7072(5) 1763(3) 62(1) N(1) 8500(3) 5842(4) 1939(2) 38(1) N(2) 9194(3) 5880(4) 3673(2) 36(1) N(3) 9796(3) 7962(5) 3775(3) 42(1) N(4) 8131(3) 7541(5) 4030(3) 43(1) C(1) 8014(3) 2689(5) 4042(2) 31(1) C(2) 7810(3) 2794(4) 3125(3) 30(1) C(3) 8403(3) 4007(4) 2881(3) 30(1) C(4) 8437(3) 4835(4) 3651(3) 33(1) C(5) 8661(4) 3849(5) 4302(3) 37(1) C(6) 9028(4) 7103(5) 3829(3) 32(1) C(7) 7975(3) 4630(5) 2098(3) 36(1) C(8) 8019(4) 3703(6) 1390(3) 41(1) C(9) 9122(4) 3373(7) 1182(3) 50(1) C(10) 9180(20) 2240(40) 675(19) 62(5) C(10') 9226(13) 1870(20) 983(18) 69(5) C(11) 7397(5) 4179(7) 651(3) 55(2) C(12) 6230(4) 4200(8) 732(4) 66(2) C(13) 8024(4) 6961(6) 1790(3) 47(1) C(14) 8707(5) 8111(7) 1645(4) 63(2) O(6) 5911(3) 1061(5) 1828(2) 53(1) C(15) 6346(5) 463(8) 1158(4) 67(2) O(7) 6056(3) -260(4) 3187(3) 48(1) O(8) 5668(4) 7238(5) 2895(4) 70(1) S18

19 Table S2C. Bond lengths [Å ] and angles [ ] of phosphonic acid 6a. P(1)-O(1) 1.492(3) P(1)-O(3) 1.522(3) P(1)-O(2) 1.575(3) P(1)-C(1) 1.811(5) O(4)-C(2) 1.442(5) O(5)-C(13) 1.233(7) N(1)-C(13) 1.330(7) N(1)-C(7) 1.461(6) N(2)-C(6) 1.313(7) N(2)-C(4) 1.463(6) N(3)-C(6) 1.347(7) N(4)-C(6) 1.319(6) C(1)-C(5) 1.516(6) C(1)-C(2) 1.550(6) C(2)-C(3) 1.542(6) C(3)-C(7) 1.537(6) C(3)-C(4) 1.549(6) C(4)-C(5) 1.510(7) C(7)-C(8) 1.531(7) C(8)-C(11) 1.523(7) C(8)-C(9) 1.541(7) C(9)-C(10) 1.46(3) C(9)-C(10') 1.60(2) C(11)-C(12) 1.538(8) C(13)-C(14) 1.515(9) O(6)-C(15) 1.432(8) O(1)-P(1)-O(3) 114.2(2) O(1)-P(1)-O(2) 109.8(2) O(3)-P(1)-O(2) (15) O(1)-P(1)-C(1) 108.2(2) O(3)-P(1)-C(1) (19) O(2)-P(1)-C(1) 103.6(2) C(13)-N(1)-C(7) 124.2(4) C(6)-N(2)-C(4) 126.6(4) C(5)-C(1)-C(2) 106.8(3) S19

20 C(5)-C(1)-P(1) 115.9(3) C(2)-C(1)-P(1) 112.7(3) O(4)-C(2)-C(3) 112.1(3) O(4)-C(2)-C(1) 108.2(3) C(3)-C(2)-C(1) 105.2(3) C(7)-C(3)-C(2) 113.9(4) C(7)-C(3)-C(4) 118.1(4) C(2)-C(3)-C(4) 102.6(3) N(2)-C(4)-C(5) 112.3(4) N(2)-C(4)-C(3) 114.5(3) C(5)-C(4)-C(3) 103.0(4) C(4)-C(5)-C(1) 104.3(4) N(2)-C(6)-N(4) 122.9(4) N(2)-C(6)-N(3) 119.3(4) N(4)-C(6)-N(3) 117.8(5) N(1)-C(7)-C(8) 110.8(4) N(1)-C(7)-C(3) 111.5(4) C(8)-C(7)-C(3) 111.8(4) C(11)-C(8)-C(7) 112.8(5) C(11)-C(8)-C(9) 110.2(4) C(7)-C(8)-C(9) 113.3(4) C(10)-C(9)-C(8) 113.4(12) C(10)-C(9)-C(10') 23.7(9) C(8)-C(9)-C(10') 110.9(8) C(8)-C(11)-C(12) 114.4(4) O(5)-C(13)-N(1) 122.8(5) O(5)-C(13)-C(14) 121.1(6) N(1)-C(13)-C(14) 116.2(5) Symmetry transformations used to generate equivalent atoms: S20

21 Table S2D. Anisotropic displacement parameters (Å ) of phosphonic acid 6a. The anisotropic displacement factor exponent takes the form : 2p 2 [ h 2 a* 2 U h k a* b* U 12 ] U 11 U 22 U 33 U 23 U 13 U 12 P(1) 20(1) 25(1) 42(1) 1(1) -1(1) 1(1) O(1) 33(2) 24(2) 67(2) 1(2) -8(1) 0(1) O(2) 18(1) 47(2) 50(2) 6(2) 4(1) 11(2) O(3) 29(2) 41(2) 39(1) -5(1) -2(1) 3(1) O(4) 20(2) 38(2) 46(2) -2(2) -2(1) -2(1) O(5) 42(2) 48(2) 97(3) 19(2) 14(2) 9(2) N(1) 24(2) 38(2) 52(2) 8(2) -1(2) -1(2) N(2) 21(2) 35(2) 52(2) -5(2) 5(1) 0(2) N(3) 25(2) 31(2) 71(3) -7(2) 9(2) -3(2) N(4) 29(2) 31(2) 69(3) -4(2) 12(2) -6(2) C(1) 24(2) 29(2) 39(2) -1(2) 1(2) 1(2) C(2) 23(2) 26(2) 40(2) 1(2) 2(2) 0(2) C(3) 17(2) 27(2) 44(2) 0(2) 0(2) 0(2) C(4) 25(2) 25(2) 49(2) -2(2) 4(2) -2(2) C(5) 34(2) 33(3) 43(2) -8(2) 1(2) -6(2) C(6) 29(2) 27(2) 40(2) 0(2) 0(2) -1(2) C(7) 25(2) 36(3) 49(2) 9(2) 0(2) -2(2) C(8) 30(2) 49(3) 44(2) 5(2) -2(2) -5(2) C(9) 39(3) 67(4) 43(3) -5(3) 4(2) -3(3) C(10) 49(8) 88(13) 50(10) 3(10) 11(8) 14(9) C(10') 56(6) 74(10) 75(10) -14(7) 6(7) 11(6) C(11) 54(3) 64(4) 45(3) 12(3) -6(2) -12(3) C(12) 40(3) 83(5) 71(4) 11(4) -26(3) -1(3) C(13) 41(3) 42(3) 59(3) 19(3) 8(2) 2(2) C(14) 58(4) 45(4) 84(4) 20(3) -2(3) -1(3) O(6) 46(2) 50(2) 61(2) -5(2) -2(2) -3(2) C(15) 49(3) 71(5) 81(4) -11(4) 4(3) -12(3) O(7) 23(2) 48(3) 72(2) -3(2) -11(2) 2(2) O(8) 81(3) 51(3) 81(3) 0(3) 30(3) -4(3) S21

22 1 H NMR spectrum of compound 6b (400 MHz, in CD 3 OD) 13 C NMR spectrum of compound 6b (100 MHz, in CD 3 OD) S22

23 31 P NMR spectrum of compound 6b (162 MHz, in CD 3 OD) HPLC diagram of phosphonate monoethyl ester 6b. HC-C18 column (Agilent, mm, 5 µm porosity), t R = 12.2 min [MeOH/(0.5%TFA aqueous solution) = 3:7] at a flow rate of 0.5 ml/min. S23

24 1 H NMR spectrum of compound 6c (400 MHz, in CD 3 OD) 13 C NMR spectrum of compound 6c (100 MHz, in CD 3 OD) S24

25 31 P NMR spectrum of compound 6c (162 MHz, in CD 3 OD) HPLC diagram of phosphonate monohexyl ester 6c. HC-C18 column (Merck, mm, 2 µm porosity), t R = 4.7 min [MeOH/(0.1%TFA aqueous solution) = 3:2] at a flow rate of 1.0 ml/min. S25

26 1 H NMR spectrum of compound 7a (400 MHz, in D 2 O) 13 C NMR spectrum of compound 7a (100 MHz, in D 2 O) S26

27 31 P NMR spectrum of compound 7a (162 MHz, in D 2 O) HPLC diagram of phosphonic acid 7a. HC-C18 column (Agilent, mm, 5 µm porosity), t R = 9.8 min [MeOH/(0.5%TFA aqueous solution) = 3:7] at a flow rate of 0.5 ml/min. S27

28 1 H NMR spectrum of compound 7b (400 MHz, in CD 3 OD) 13 C NMR spectrum of compound 7b (100 MHz, in CD 3 OD) S28

29 31 P NMR spectrum of compound 7b (162 MHz, in CD 3 OD) HPLC diagram of phosphonate monoethyl ester 7b. HC-C18 column (Agilent, mm, 5 µm porosity), t R = 12.8 min [MeOH/(0.5%TFA aqueous solution) = 3:7] at a flow rate of 0.5 ml/min. S29

30 1 H NMR spectrum of compound 7c (400 MHz, in CD 3 OD) 13 C NMR spectrum of compound 7c (100 MHz, in CD 3 OD) S30

31 31 P NMR spectrum of compound 7c (162 MHz, in CD 3 OD) HPLC diagram of phosphonate monohexyl ester 7c. HC-C18 column (Merck, mm, 2 µm porosity), t R = 11.4 min [MeOH/(0.1%TFA aqueous solution) = 1:1] at a flow rate of 1.0 ml/min. S31

32 1 H NMR spectrum of compound 8a (400 MHz, in D 2 O) 13 C NMR spectrum of compound 8a (100 MHz, in D 2 O) S32

33 31 P NMR spectrum of compound 8a (162 MHz, in D 2 O) HPLC diagram of phosphonic acid 8a. HC-C18 column (Agilent, mm, 5 µm porosity), t R = 16.9 min [MeOH/(0.5%TFA aqueous solution) = 1:4] at a flow rate of 0.5 ml/min. S33

34 1 H NMR spectrum of compound 8b (400 MHz, in CD 3 OD) 13 C NMR spectrum of compound 8b (100 MHz, in CD 3 OD) S34

35 31 P NMR spectrum of compound 8b (162 MHz, in CD 3 OD) HPLC diagram of phosphonate monoethyl ester 8b. HC-C18 column (Agilent, mm, 5 µm porosity), t R = 11.1 min [MeOH/(0.5%TFA aqueous solution) = 2:3] at a flow rate of 0.5 ml/min. S35

36 1 H NMR spectrum of compound 8c (400 MHz, in CD 3 OD) 13 C NMR spectrum of compound 8c (100 MHz, in CD 3 OD) S36

37 31 P NMR spectrum of compound 8c (162 MHz, in CD 3 OD) HPLC diagram of phosphonate monohexyl ester 8c. HC-C18 column (Merck, mm, 2 µm porosity), t R = 8.6 min [MeOH/(0.1%TFA aqueous solution) = 11:9 to 13:7] at a flow rate of 1.0 ml/min. S37

38 1 H NMR spectrum of compound 10a (400 MHz, in CDCl 3 ) 13 C NMR spectrum of compound 10a (100 MHz, in CDCl 3 ) S38

39 1 H NMR spectrum of compound 11 (400 MHz, in CDCl 3 ) 13 C NMR spectrum of compound 11 (100 MHz, in CDCl 3 ) S39

40 ORTEP drawing of iodo compound 11 (IC15951, deposit CCDC ); thermal ellipsoids drawn at the 30% probability level. S40

41 Table S3A. Crystal data and structure refinement of iodo compound 11. Identification code ic15951 Empirical formula C24 H47 I N2 O4 Si Formula weight Temperature 295(2) K Wavelength Å Crystal system Monoclinic Space group P2(1) Unit cell dimensions a = (8) Å a= 90. b = (15) Å b= (5). c = (7) Å g = 90. Volume (5) Å 3 Z 6 Density (calculated) Mg/m 3 Absorption coefficient mm -1 F(000) 1824 Crystal size 0.20 x 0.15 x 0.10 mm 3 Theta range for data collection 2.87 to Index ranges -17<=h<=15, -27<=k<=28, -18<=l<=20 Reflections collected Independent reflections [R(int) = ] Completeness to theta = % Absorption correction Semi-empirical from equivalents Max. and min. transmission and Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters / 89 / 865 Goodness-of-fit on F Final R indices [I>2sigma(I)] R1 = , wr2 = R indices (all data) R1 = , wr2 = Absolute structure parameter -0.04(3) Largest diff. peak and hole and e.å -3 S41

42 Table S3B. Atomic coordinates ( 10 4 ) and equivalent isotropic displacement parameters (Å ) of iodo compound 11. U (eq) is defined as one third of the trace of the orthogonalized U ij tensor. x y z U(eq) I(1) 1275(1) 7941(1) 3742(1) 192(1) Si(1) 1771(3) 7506(2) 650(2) 105(1) C(6) 1750(20) 6817(7) 1296(13) 248(14) C(7) 2835(12) 7489(13) 12(12) 230(13) C(8) 576(9) 7569(6) -87(7) 122(4) C(9) 483(18) 7042(12) -770(12) 256(13) C(10) -299(11) 7597(13) 366(11) 223(12) C(11) 590(20) 8176(10) -593(15) 280(17) O(1) 1934(5) 8098(3) 1271(3) 87(2) O(2) 4608(13) 10394(7) 2180(11) 226(7) O(3) 884(9) 10272(5) 1993(6) 157(4) O(4) 1932(7) 10637(4) 3141(4) 119(3) N(1) 4015(6) 9413(4) 2345(5) 91(2) N(2) 1995(7) 9701(4) 2808(5) 97(3) C(1) 1136(10) 8191(8) 2448(7) 120(5) C(2) 2130(7) 8124(5) 2165(6) 88(3) C(3) 2657(6) 8721(5) 2465(5) 74(2) C(4) 1822(7) 9166(5) 2242(6) 88(3) C(5) 815(10) 8835(10) 2248(10) 144(6) C(12) 3552(8) 8779(4) 2189(7) 93(3) C(13) 4209(8) 9860(6) 1812(7) 101(3) C(14) 4049(6) 9730(4) 1014(5) 66(2) C(15) 4452(9) 8336(5) 2376(8) 104(3) C(16) 4794(10) 8296(8) 3386(10) 141(6) C(17) 4810(30) 7697(14) 3728(15) 330(20) C(18) 5389(12) 8391(11) 2018(14) 183(8) C(19) 5246(15) 8324(10) 1109(12) 182(8) C(20) 1515(10) 10199(7) 2581(7) 121(5) C(21) 1631(14) 11248(8) 2971(9) 139(5) C(22) 599(19) 11370(10) 2995(15) 199(9) C(23) 1906(15) 11455(9) 2191(10) 169(7) C(24) 2332(14) 11589(7) 3702(10) 155(6) S42

43 I(2) 6413(1) 6957(1) -515(1) 142(1) Si(2) 8322(2) 6660(2) 2578(2) 95(1) O(5) 7364(5) 6272(3) 1996(4) 86(2) O(6) 5987(7) 4403(4) 2317(5) 117(3) O(7) 3425(6) 5605(6) 604(6) 160(5) O(8) 3450(6) 5071(5) -579(6) 145(4) N(3) 6425(6) 4583(4) 1047(5) 89(2) N(4) 4780(7) 5616(6) 145(6) 142(5) C(25) 6369(8) 6725(5) 779(6) 93(3) C(26) 7160(7) 6249(4) 1094(5) 77(3) C(27) 6622(6) 5653(4) 810(5) 69(2) C(28) 5526(7) 5749(5) 834(6) 85(3) C(29) 5387(9) 6439(6) 897(9) 112(4) C(30) 9564(9) 6342(8) 2478(10) 137(5) C(31) 8268(10) 7485(5) 2211(7) 111(4) C(32) 8096(11) 6594(7) 3664(8) 122(4) C(33) 8006(14) 5929(6) 3911(8) 144(6) C(34) 9023(13) 6892(9) 4296(8) 166(7) C(35) 7067(11) 6904(8) 3709(10) 135(5) C(36) 7069(7) 5102(4) 1313(6) 77(2) C(37) 5929(10) 4279(5) 1584(9) 103(3) C(38) 5258(13) 3763(6) 1131(10) 138(5) C(39) 8212(8) 4971(5) 1263(7) 92(3) C(40) 8351(9) 4884(7) 369(6) 105(4) C(41) 9382(14) 4980(15) 272(12) 220(11) C(42) 8632(11) 4478(9) 1848(9) 148(6) C(43) 8520(20) 4432(16) 2681(13) 271(16) C(44) 3873(9) 5419(7) 114(8) 107(4) C(45) 2351(11) 4942(10) -739(11) 148(6) C(46) 2119(16) 4562(12) -45(16) 215(10) C(47) 2198(13) 4562(12) -1499(13) 232(13) C(48) 1782(13) 5493(12) -838(16) 202(9) I(3) 7443(1) 8457(1) 7919(1) 220(1) Si(3) 8162(6) 9507(4) 5213(5) 251(4) C(54) 8546(17) 10232(12) 5745(19) 310(20) C(55) 9369(12) 8922(14) 5565(14) 310(20) C(56) 8169(15) 9517(11) 4132(12) 255(6) C(57) 7193(18) 9964(12) 3859(15) 257(7) S43

44 C(58) 9220(16) 9718(12) 3996(15) 240(6) C(59) 7977(18) 8841(11) 3830(15) 243(6) O(9) 7122(5) 9237(4) 5454(5) 109(2) O(10) 3659(6) 9536(4) 4318(4) 102(2) O(11) 4178(10) 7567(5) 5820(8) 164(5) O(12) 3462(9) 7857(5) 6884(6) 146(3) N(5) 4172(6) 9670(4) 5717(5) 84(2) N(6) 4661(8) 8407(5) 6546(6) 108(3) C(49) 7206(13) 8509(8) 6536(10) 145(6) C(50) 6951(8) 9188(7) 6277(7) 109(4) C(51) 5839(7) 9216(5) 6274(5) 86(3) C(52) 5410(8) 8574(5) 6009(7) 91(3) C(53) 6321(11) 8175(7) 6079(12) 139(5) C(60) 5237(8) 9731(4) 5722(5) 77(3) C(61) 3473(8) 9572(4) 5029(6) 82(3) C(62) 2402(9) 9455(7) 5173(8) 128(5) C(63) 5667(10) 10348(5) 5965(7) 103(3) C(64) 5549(11) 10545(6) 6886(7) 113(4) C(65) 6303(18) 10982(12) 7248(12) 227(12) C(66) 5002(14) 10825(7) 5373(10) 150(5) C(67) 5310(30) 10970(20) 4640(20) 390(30) C(68) 4112(12) 7920(8) 6350(9) 122(4) C(69) 2816(13) 7331(8) 6857(10) 133(5) C(70) 2140(20) 7322(15) 6042(15) 263(15) C(71) 3510(20) 6823(10) 7204(16) 231(12) C(72) 2250(30) 7480(12) 7510(17) 290(20) S44

45 Table S3C. Bond lengths [Å ] and angles [ ] of iodo compound 11. I(1)-C(1) 2.135(13) Si(1)-O(1) 1.641(7) Si(1)-C(8) 1.805(12) Si(1)-C(6) 1.853(17) Si(1)-C(7) 1.922(15) C(8)-C(10) 1.506(19) C(8)-C(11) 1.58(2) C(8)-C(9) 1.60(2) O(1)-C(2) 1.415(11) O(2)-C(13) 1.384(14) O(3)-C(20) 1.153(13) O(4)-C(20) 1.368(15) O(4)-C(21) 1.425(17) N(1)-C(13) 1.372(12) N(1)-C(12) 1.538(11) N(2)-C(20) 1.294(14) N(2)-C(4) 1.488(12) C(1)-C(2) 1.503(16) C(1)-C(5) 1.51(2) C(2)-C(3) 1.535(14) C(3)-C(12) 1.370(13) C(3)-C(4) 1.485(14) C(4)-C(5) 1.541(19) C(12)-C(15) 1.541(15) C(13)-C(14) 1.297(12) C(15)-C(18) 1.492(19) C(15)-C(16) 1.61(2) C(16)-C(17) 1.44(3) C(18)-C(19) 1.45(2) C(21)-C(22) 1.42(3) C(21)-C(23) 1.46(2) C(21)-C(24) 1.55(2) I(2)-C(25) 2.164(10) Si(2)-O(5) 1.674(7) Si(2)-C(32) 1.846(13) Si(2)-C(30) 1.849(14) S45

46 Si(2)-C(31) 1.919(12) O(5)-C(26) 1.429(11) O(6)-C(37) 1.202(13) O(7)-C(44) 1.161(13) O(8)-C(44) 1.385(15) O(8)-C(45) 1.476(17) N(3)-C(37) 1.371(15) N(3)-C(36) 1.453(13) N(4)-C(44) 1.287(14) N(4)-C(28) 1.374(11) C(25)-C(29) 1.510(16) C(25)-C(26) 1.512(14) C(26)-C(27) 1.533(13) C(27)-C(28) 1.497(13) C(27)-C(36) 1.525(13) C(28)-C(29) 1.547(16) C(32)-C(33) 1.54(2) C(32)-C(35) 1.56(2) C(32)-C(34) 1.589(18) C(36)-C(39) 1.583(14) C(37)-C(38) 1.549(18) C(39)-C(42) 1.482(18) C(39)-C(40) 1.505(14) C(40)-C(41) 1.44(2) C(42)-C(43) 1.39(2) C(45)-C(48) 1.43(3) C(45)-C(47) 1.47(2) C(45)-C(46) 1.48(3) I(3)-C(49) 2.194(16) Si(3)-O(9) 1.638(10) Si(3)-C(56) 1.748(17) Si(3)-C(54) 1.848(18) Si(3)-C(55) 2.067(18) C(56)-C(58) 1.54(2) C(56)-C(59) 1.58(2) C(56)-C(57) 1.63(2) O(9)-C(50) 1.398(14) O(10)-C(61) 1.226(12) S46

47 O(11)-C(68) 1.177(16) O(12)-C(68) 1.350(15) O(12)-C(69) 1.450(18) N(5)-C(61) 1.323(12) N(5)-C(60) 1.437(13) N(6)-C(68) 1.311(18) N(6)-C(52) 1.502(15) C(49)-C(53) 1.47(2) C(49)-C(50) 1.58(2) C(50)-C(51) 1.495(15) C(51)-C(52) 1.562(15) C(51)-C(60) 1.571(14) C(52)-C(53) 1.497(16) C(60)-C(63) 1.506(15) C(61)-C(62) 1.526(17) C(63)-C(66) 1.580(19) C(63)-C(64) 1.588(17) C(64)-C(65) 1.44(2) C(66)-C(67) 1.365(18) C(69)-C(70) 1.44(3) C(69)-C(72) 1.46(2) C(69)-C(71) 1.50(3) O(1)-Si(1)-C(8) 109.5(5) O(1)-Si(1)-C(6) 109.3(7) C(8)-Si(1)-C(6) 109.0(10) O(1)-Si(1)-C(7) 108.7(8) C(8)-Si(1)-C(7) 107.9(7) C(6)-Si(1)-C(7) 112.4(12) C(10)-C(8)-C(11) 107.8(16) C(10)-C(8)-C(9) 113.9(14) C(11)-C(8)-C(9) 106.0(14) C(10)-C(8)-Si(1) 111.2(9) C(11)-C(8)-Si(1) 108.1(11) C(9)-C(8)-Si(1) 109.6(11) C(2)-O(1)-Si(1) 129.2(7) C(20)-O(4)-C(21) 119.0(10) C(13)-N(1)-C(12) 132.8(8) S47

48 C(20)-N(2)-C(4) 119.9(8) C(2)-C(1)-C(5) 105.2(11) C(2)-C(1)-I(1) 111.3(10) C(5)-C(1)-I(1) 114.9(9) O(1)-C(2)-C(1) 108.6(8) O(1)-C(2)-C(3) 109.8(8) C(1)-C(2)-C(3) 101.6(9) C(12)-C(3)-C(4) 122.0(9) C(12)-C(3)-C(2) 111.0(8) C(4)-C(3)-C(2) 102.5(7) C(3)-C(4)-N(2) 111.3(7) C(3)-C(4)-C(5) 107.8(11) N(2)-C(4)-C(5) 114.0(9) C(1)-C(5)-C(4) 103.8(11) C(3)-C(12)-N(1) 112.6(8) C(3)-C(12)-C(15) 125.6(9) N(1)-C(12)-C(15) 105.9(8) C(14)-C(13)-N(1) 116.6(10) C(14)-C(13)-O(2) 126.2(12) N(1)-C(13)-O(2) 117.1(11) C(18)-C(15)-C(12) 124.2(13) C(18)-C(15)-C(16) 107.7(12) C(12)-C(15)-C(16) 106.9(9) C(17)-C(16)-C(15) 114.9(14) C(19)-C(18)-C(15) 115.6(15) O(3)-C(20)-N(2) 126.7(13) O(3)-C(20)-O(4) 125.6(13) N(2)-C(20)-O(4) 107.6(9) C(22)-C(21)-O(4) 114.7(17) C(22)-C(21)-C(23) 112.4(16) O(4)-C(21)-C(23) 110.8(13) C(22)-C(21)-C(24) 109.5(15) O(4)-C(21)-C(24) 102.2(11) C(23)-C(21)-C(24) 106.4(17) O(5)-Si(2)-C(32) 103.8(5) O(5)-Si(2)-C(30) 111.3(6) C(32)-Si(2)-C(30) 112.0(7) O(5)-Si(2)-C(31) 109.9(5) S48

49 C(32)-Si(2)-C(31) 111.4(6) C(30)-Si(2)-C(31) 108.4(7) C(26)-O(5)-Si(2) 124.0(6) C(44)-O(8)-C(45) 119.0(9) C(37)-N(3)-C(36) 122.4(9) C(44)-N(4)-C(28) 129.6(11) C(29)-C(25)-C(26) 103.8(9) C(29)-C(25)-I(2) 114.5(7) C(26)-C(25)-I(2) 109.7(7) O(5)-C(26)-C(25) 107.3(8) O(5)-C(26)-C(27) 108.6(7) C(25)-C(26)-C(27) 104.0(7) C(28)-C(27)-C(36) 112.7(8) C(28)-C(27)-C(26) 106.2(7) C(36)-C(27)-C(26) 114.8(7) N(4)-C(28)-C(27) 120.8(9) N(4)-C(28)-C(29) 100.9(9) C(27)-C(28)-C(29) 105.9(9) C(25)-C(29)-C(28) 106.7(9) C(33)-C(32)-C(35) 107.2(12) C(33)-C(32)-C(34) 108.9(12) C(35)-C(32)-C(34) 112.1(13) C(33)-C(32)-Si(2) 111.0(10) C(35)-C(32)-Si(2) 108.9(10) C(34)-C(32)-Si(2) 108.7(9) N(3)-C(36)-C(27) 109.2(7) N(3)-C(36)-C(39) 111.6(8) C(27)-C(36)-C(39) 113.7(8) O(6)-C(37)-N(3) 124.5(12) O(6)-C(37)-C(38) 123.5(12) N(3)-C(37)-C(38) 112.0(11) C(42)-C(39)-C(40) 114.3(11) C(42)-C(39)-C(36) 110.6(10) C(40)-C(39)-C(36) 112.4(8) C(41)-C(40)-C(39) 112.9(11) C(43)-C(42)-C(39) 124.8(17) O(7)-C(44)-N(4) 118.1(13) O(7)-C(44)-O(8) 124.3(11) S49

50 N(4)-C(44)-O(8) 116.9(11) C(48)-C(45)-C(47) 114.5(19) C(48)-C(45)-O(8) 110.4(17) C(47)-C(45)-O(8) 103.0(13) C(48)-C(45)-C(46) 112.4(19) C(47)-C(45)-C(46) 107(2) O(8)-C(45)-C(46) 109.3(15) O(9)-Si(3)-C(56) 114.6(8) O(9)-Si(3)-C(54) 112.3(8) C(56)-Si(3)-C(54) 113.4(13) O(9)-Si(3)-C(55) 111.5(10) C(56)-Si(3)-C(55) 97.0(10) C(54)-Si(3)-C(55) 106.7(12) C(58)-C(56)-C(59) 109.1(16) C(58)-C(56)-C(57) 119.8(19) C(59)-C(56)-C(57) 114.8(17) C(58)-C(56)-Si(3) 109.5(13) C(59)-C(56)-Si(3) 105.2(14) C(57)-C(56)-Si(3) 96.5(13) C(50)-O(9)-Si(3) 124.4(7) C(68)-O(12)-C(69) 121.6(12) C(61)-N(5)-C(60) 124.1(8) C(68)-N(6)-C(52) 118.3(10) C(53)-C(49)-C(50) 103.6(11) C(53)-C(49)-I(3) 115.1(12) C(50)-C(49)-I(3) 107.4(10) O(9)-C(50)-C(51) 110.3(8) O(9)-C(50)-C(49) 104.9(10) C(51)-C(50)-C(49) 101.8(11) C(50)-C(51)-C(52) 106.1(9) C(50)-C(51)-C(60) 115.7(9) C(52)-C(51)-C(60) 112.7(7) C(53)-C(52)-N(6) 116.3(10) C(53)-C(52)-C(51) 105.5(10) N(6)-C(52)-C(51) 108.7(9) C(49)-C(53)-C(52) 107.9(12) N(5)-C(60)-C(63) 114.6(9) N(5)-C(60)-C(51) 109.6(7) S50

51 C(63)-C(60)-C(51) 112.6(8) O(10)-C(61)-N(5) 123.7(10) O(10)-C(61)-C(62) 120.4(9) N(5)-C(61)-C(62) 115.7(10) C(60)-C(63)-C(66) 108.0(10) C(60)-C(63)-C(64) 112.9(9) C(66)-C(63)-C(64) 103.4(11) C(65)-C(64)-C(63) 111.9(13) C(67)-C(66)-C(63) 116.3(18) O(11)-C(68)-N(6) 127.1(13) O(11)-C(68)-O(12) 123.2(16) N(6)-C(68)-O(12) 109.7(14) C(70)-C(69)-O(12) 107.7(15) C(70)-C(69)-C(72) 110(2) O(12)-C(69)-C(72) 101.2(13) C(70)-C(69)-C(71) 124(2) O(12)-C(69)-C(71) 105.4(15) C(72)-C(69)-C(71) 106(2) Symmetry transformations used to generate equivalent atoms: S51

52 Table S3D. Anisotropic displacement parameters (Å ) of iodo compound 11. The anisotropic displacement factor exponent takes the form : 2p 2 [ h 2 a* 2 U h k a* b* U 12 ] U 11 U 22 U 33 U 23 U 13 U 12 I(1) 205(1) 285(2) 101(1) -53(1) 66(1) -145(1) Si(1) 109(2) 118(2) 82(2) -22(2) 6(2) 13(2) C(6) 410(40) 109(13) 194(19) -29(12) -30(20) 53(17) C(7) 117(12) 410(40) 171(16) -130(20) 47(11) -5(17) C(8) 110(9) 150(11) 100(8) -43(8) 6(7) -21(8) C(9) 260(20) 340(30) 150(16) -130(20) 2(15) -120(20) C(10) 98(12) 390(40) 163(15) 5(19) -20(11) -60(16) C(11) 310(30) 200(20) 250(30) 110(20) -130(20) -20(20) O(1) 82(4) 118(5) 59(3) -20(3) 6(3) -1(4) O(2) 218(15) 195(14) 254(17) 45(12) 24(12) -30(12) O(3) 177(9) 161(8) 103(6) -21(5) -42(6) 76(7) O(4) 153(7) 118(6) 76(5) 7(4) -2(4) 42(6) N(1) 77(5) 123(7) 69(4) 9(5) 7(4) -16(5) N(2) 106(6) 107(7) 65(4) -16(4) -18(4) 23(5) C(1) 106(9) 165(14) 98(8) -45(8) 42(6) -71(9) C(2) 81(7) 114(8) 69(6) -9(5) 13(4) -7(6) C(3) 44(5) 121(8) 59(5) 8(5) 14(4) -18(5) C(4) 68(6) 114(8) 77(6) -31(5) 1(4) 12(6) C(5) 78(9) 208(19) 143(12) -54(12) 14(7) -15(10) C(12) 79(7) 85(7) 102(7) -25(5) -16(6) 5(6) C(13) 68(7) 110(9) 123(10) -5(8) 17(6) -13(6) C(14) 49(4) 94(6) 54(5) 22(4) 6(3) -11(4) C(15) 99(8) 87(7) 133(10) -13(6) 38(7) 8(6) C(16) 87(8) 169(14) 144(12) -32(11) -25(7) 40(9) C(17) 600(70) 210(30) 124(16) -10(17) -30(30) -50(30) C(18) 92(10) 270(20) 200(20) -15(17) 61(11) -6(12) C(19) 178(17) 240(20) 135(14) 2(13) 45(11) -48(15) C(20) 116(9) 157(12) 71(7) -24(7) -27(7) 60(9) C(21) 166(14) 158(14) 97(9) 12(9) 35(9) 53(11) C(22) 200(20) 190(20) 220(20) -35(16) 89(17) 37(16) C(23) 189(16) 202(17) 124(11) 78(12) 48(11) 48(13) C(24) 198(16) 112(10) 142(12) -29(9) 7(11) 41(10) S52

53 I(2) 177(1) 148(1) 96(1) 25(1) 16(1) 21(1) Si(2) 88(2) 111(2) 82(2) -3(2) 9(1) -17(2) O(5) 88(4) 97(5) 71(4) -3(3) 10(3) -17(3) O(6) 159(7) 119(6) 84(5) 4(4) 52(5) 8(5) O(7) 75(5) 274(14) 137(7) -101(8) 35(5) -16(6) O(8) 58(5) 229(11) 147(8) -71(7) 18(5) -7(5) N(3) 98(6) 100(6) 74(5) -6(4) 26(4) 1(5) N(4) 77(7) 252(14) 87(6) 24(7) -8(5) -46(8) C(25) 87(7) 110(8) 78(6) -6(5) 4(5) 12(6) C(26) 72(6) 89(7) 69(5) 12(5) 11(4) -12(5) C(27) 58(5) 92(7) 62(5) -3(4) 21(4) 6(5) C(28) 74(7) 91(8) 84(6) -14(5) 2(5) 17(5) C(29) 82(8) 137(11) 117(9) -4(7) 20(6) 11(7) C(30) 77(8) 191(15) 147(12) -7(10) 32(7) -12(8) C(31) 141(10) 109(8) 90(7) -2(6) 36(6) -47(8) C(32) 136(11) 140(11) 89(7) -9(7) 21(7) -30(9) C(33) 203(15) 117(10) 99(9) 26(7) 0(9) -49(10) C(34) 195(15) 208(16) 87(8) -6(9) 8(8) -115(14) C(35) 125(11) 144(11) 151(11) -27(10) 63(9) -14(9) C(36) 81(6) 82(6) 68(5) 3(5) 15(4) 17(5) C(37) 116(9) 91(8) 107(9) 3(7) 39(7) 15(7) C(38) 175(14) 111(10) 140(11) -14(8) 58(10) -37(10) C(39) 68(6) 118(8) 89(7) 2(6) 11(5) 23(6) C(40) 89(8) 155(11) 73(6) -6(6) 22(5) 7(7) C(41) 132(15) 390(40) 141(15) -38(17) 45(11) -57(18) C(42) 114(10) 210(16) 117(9) 42(10) 18(8) 67(11) C(43) 280(30) 400(40) 124(12) 60(20) 29(15) 100(30) C(44) 60(7) 167(12) 93(8) -13(8) 17(6) -4(7) C(45) 90(10) 217(18) 132(12) -66(12) 7(8) -15(11) C(46) 165(18) 270(30) 200(20) -20(20) 33(15) -101(19) C(47) 121(12) 360(30) 197(19) -160(20) 2(12) -57(16) C(48) 93(11) 240(20) 250(20) -26(18) -10(13) 20(14) I(3) 181(1) 334(2) 131(1) 73(1) -6(1) 95(1) Si(3) 203(6) 344(9) 244(6) -136(7) 138(5) -150(6) C(54) 200(20) 370(40) 380(40) -260(40) 150(30) -180(30) C(55) 85(11) 600(60) 220(20) 40(30) -27(12) 140(20) C(56) 220(9) 331(12) 250(10) -126(10) 137(9) -130(10) C(57) 215(11) 343(14) 249(12) -95(12) 136(10) -90(11) S53

54 C(58) 199(10) 333(14) 232(11) -99(11) 151(9) -113(11) C(59) 213(11) 315(13) 233(11) -138(11) 121(10) -109(11) O(9) 79(5) 154(7) 97(5) -8(5) 24(4) 1(4) O(10) 103(5) 129(6) 63(4) -13(4) -7(3) 14(4) O(11) 235(12) 133(8) 151(8) -46(7) 103(8) -61(8) O(12) 199(10) 149(8) 109(6) -18(6) 76(6) -38(8) N(5) 77(6) 101(6) 70(5) -15(4) 1(4) 7(4) N(6) 139(8) 107(7) 85(6) -13(5) 36(5) -4(7) C(49) 129(12) 165(14) 146(12) 31(10) 41(9) 88(12) C(50) 63(7) 166(12) 91(7) -15(7) 1(5) 6(7) C(51) 75(7) 127(9) 56(5) 15(5) 11(4) 7(6) C(52) 85(7) 91(7) 98(7) 2(6) 22(5) 3(6) C(53) 92(9) 132(11) 189(14) 20(10) 18(9) 39(9) C(60) 94(7) 93(7) 45(4) 1(4) 11(4) -7(5) C(61) 85(7) 78(6) 73(6) -3(5) -4(5) 25(5) C(62) 87(9) 169(13) 119(9) -37(9) -1(7) 9(8) C(63) 128(9) 94(8) 83(7) 4(6) 13(6) -18(7) C(64) 141(11) 98(8) 93(8) -13(6) 4(7) -16(7) C(65) 240(20) 310(30) 135(14) -91(17) 37(14) -110(20) C(66) 185(15) 104(10) 153(12) 27(9) 12(11) -14(9) C(67) 290(40) 610(80) 270(30) 290(50) 70(30) 110(40) C(68) 165(13) 119(12) 96(8) 6(9) 55(8) -7(11) C(69) 164(13) 130(12) 126(9) 10(9) 78(8) -30(11) C(70) 230(30) 390(40) 167(16) 20(20) 35(13) -130(30) C(71) 360(40) 151(19) 210(20) 28(16) 110(20) -40(20) C(72) 440(50) 240(30) 240(30) -110(20) 220(30) -190(30) S54

55 1 H NMR spectrum of compound 12 (400 MHz, in CD 3 OD) 13 C NMR spectrum of compound 12 (100 MHz, in CD 3 OD) S55

56 ORTEP drawing of epoxide 12 (IC15953, deposit CCDC ); thermal ellipsoids drawn at the 30% probability level. S56

57 Table S4A. Crystal data and structure refinement of epoxide 12. Identification code ic15953 Empirical formula C18 H32.50 N2 O4.25 Formula weight Temperature 295(2) K Wavelength Å Crystal system Orthorhombic Space group P2(1)2(1)2(1) Unit cell dimensions a = (7) Å a= 90. b = (8) Å b= 90. c = (14) Å g = 90. Volume (4) Å 3 Z 8 Density (calculated) Mg/m 3 Absorption coefficient mm -1 F(000) 1508 Crystal size 0.25 x 0.20 x 0.15 mm 3 Theta range for data collection 2.89 to Index ranges -10<=h<=12, -22<=k<=22, -29<=l<=25 Reflections collected Independent reflections 9226 [R(int) = ] Completeness to theta = % Absorption correction Semi-empirical from equivalents Max. and min. transmission and Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 9226 / 21 / 460 Goodness-of-fit on F Final R indices [I>2sigma(I)] R1 = , wr2 = R indices (all data) R1 = , wr2 = Absolute structure parameter -0.5(13) Largest diff. peak and hole and e.å -3 S57

58 Table S4B. Atomic coordinates ( 10 4 ) and equivalent isotropic displacement parameters (Å ) of epoxide 12. U (eq) is defined as one third of the trace of the orthogonalized U ij tensor. x y z U(eq) O(1) 4214(2) 8525(1) 970(1) 75(1) O(2) 3243(3) 7400(1) 798(1) 84(1) O(3) -837(2) 7031(1) 1967(1) 82(1) O(4) 3895(2) 5977(1) 2015(1) 70(1) N(1) 2530(3) 8185(1) 1502(1) 60(1) N(2) 3375(2) 7062(1) 2468(1) 53(1) C(1) 1380(3) 7745(1) 1663(1) 53(1) C(2) 96(3) 8115(2) 1462(2) 72(1) C(3) -902(3) 7836(2) 1875(2) 78(1) C(4) -250(3) 7535(2) 2384(2) 66(1) C(5) 1212(3) 7605(1) 2321(1) 50(1) C(6) 3315(3) 7981(2) 1064(1) 58(1) C(7) 5125(4) 8479(2) 475(2) 75(1) C(8) 5816(5) 9241(3) 496(2) 117(2) C(9) 4374(5) 8403(2) -79(2) 103(1) C(10) 6080(5) 7830(3) 565(2) 124(2) C(11) 1977(3) 6918(1) 2550(1) 53(1) C(12) 4205(3) 6611(1) 2192(1) 54(1) C(13) 5560(3) 6917(2) 2103(2) 68(1) C(14) 1659(3) 6699(2) 3179(1) 67(1) C(15) 2106(5) 7300(2) 3615(2) 96(1) C(16) 1637(6) 7204(3) 4228(2) 133(2) C(17) 2214(4) 5923(2) 3338(2) 87(1) C(18) 1469(5) 5284(2) 3175(4) 163(3) O(5) 7820(2) 6033(1) 3118(1) 70(1) O(6) 7619(3) 4755(1) 3044(1) 87(1) O(7) 9189(4) 3998(2) 951(2) 156(2) O(8) 5900(3) 3506(1) 2106(1) 84(1) N(3) 8248(3) 5485(1) 2291(1) 63(1) N(4) 5642(3) 4688(1) 1771(1) 58(1) C(19) 8502(3) 4890(2) 1870(2) 68(1) C(20) 9979(5) 4852(2) 1704(2) 110(2) S58

59 C(21) 9962(7) 4649(3) 1068(3) 142(2) C(22) 8684(7) 4739(3) 836(2) 124(2) C(23) 7755(4) 5004(2) 1303(1) 76(1) C(24) 7872(3) 5366(2) 2835(1) 58(1) C(25) 7289(4) 6101(2) 3703(1) 81(1) C(26) 8073(6) 5642(3) 4121(2) 137(2) C(27) 7460(6) 6930(3) 3818(2) 122(2) C(28) 5858(5) 5888(4) 3690(2) 132(2) C(29) 6458(4) 4581(2) 1261(1) 64(1) C(30) 5379(3) 4129(2) 2146(1) 59(1) C(31) 4427(4) 4291(2) 2623(2) 73(1) C(32) 5691(5) 4741(2) 701(2) 89(1) C(33) 4577(6) 4174(3) 619(2) 126(2) C(34) 4953(8) 3391(3) 579(3) 173(3) C(35) 5254(7) 5561(2) 641(2) 131(2) C(36) 4865(7) 5788(3) 28(2) 153(3) O(9) 2125(6) 5956(3) 992(3) 99(2) S59

60 Table S4C. Bond lengths [Å ] and angles [ ] of epoxide 12. O(1)-C(6) 1.345(3) O(1)-C(7) 1.471(4) O(2)-C(6) 1.200(3) O(3)-C(4) 1.439(4) O(3)-C(3) 1.442(4) O(4)-C(12) 1.234(3) N(1)-C(6) 1.335(4) N(1)-C(1) 1.454(4) N(2)-C(12) 1.325(4) N(2)-C(11) 1.458(4) C(1)-C(2) 1.533(4) C(1)-C(5) 1.544(4) C(2)-C(3) 1.477(5) C(3)-C(4) 1.447(5) C(4)-C(5) 1.500(4) C(5)-C(11) 1.536(4) C(7)-C(9) 1.490(5) C(7)-C(10) 1.519(6) C(7)-C(8) 1.521(5) C(11)-C(14) 1.533(4) C(12)-C(13) 1.496(4) C(14)-C(17) 1.528(4) C(14)-C(15) 1.531(5) C(15)-C(16) 1.499(5) C(17)-C(18) 1.412(6) O(5)-C(24) 1.349(4) O(5)-C(25) 1.455(4) O(6)-C(24) 1.211(3) O(7)-C(21) 1.421(6) O(7)-C(22) 1.433(7) O(8)-C(30) 1.226(3) N(3)-C(24) 1.326(4) N(3)-C(19) 1.455(4) N(4)-C(30) 1.340(3) N(4)-C(29) 1.449(4) C(19)-C(23) 1.522(5) S60

61 C(19)-C(20) 1.551(6) C(20)-C(21) 1.506(8) C(21)-C(22) 1.415(9) C(22)-C(23) 1.506(6) C(23)-C(29) 1.521(5) C(25)-C(26) 1.490(6) C(25)-C(27) 1.501(6) C(25)-C(28) 1.504(6) C(29)-C(32) 1.532(5) C(30)-C(31) 1.491(4) C(32)-C(33) 1.525(7) C(32)-C(35) 1.525(5) C(33)-C(34) 1.440(7) C(35)-C(36) 1.520(6) C(6)-O(1)-C(7) 120.9(2) C(4)-O(3)-C(3) 60.3(2) C(6)-N(1)-C(1) 122.0(2) C(12)-N(2)-C(11) 125.3(2) N(1)-C(1)-C(2) 112.3(2) N(1)-C(1)-C(5) 115.2(2) C(2)-C(1)-C(5) 105.7(2) C(3)-C(2)-C(1) 104.4(2) O(3)-C(3)-C(4) 59.8(2) O(3)-C(3)-C(2) 113.2(3) C(4)-C(3)-C(2) 109.2(3) O(3)-C(4)-C(3) 59.9(2) O(3)-C(4)-C(5) 113.5(3) C(3)-C(4)-C(5) 110.3(3) C(4)-C(5)-C(11) 113.8(2) C(4)-C(5)-C(1) 102.6(2) C(11)-C(5)-C(1) 114.0(2) O(2)-C(6)-N(1) 125.4(3) O(2)-C(6)-O(1) 125.0(3) N(1)-C(6)-O(1) 109.6(2) O(1)-C(7)-C(9) 110.1(3) O(1)-C(7)-C(10) 109.8(3) C(9)-C(7)-C(10) 112.1(4) S61

62 O(1)-C(7)-C(8) 102.6(3) C(9)-C(7)-C(8) 110.2(3) C(10)-C(7)-C(8) 111.7(4) N(2)-C(11)-C(14) 111.8(3) N(2)-C(11)-C(5) 108.2(2) C(14)-C(11)-C(5) 114.7(2) O(4)-C(12)-N(2) 123.0(3) O(4)-C(12)-C(13) 121.3(3) N(2)-C(12)-C(13) 115.7(2) C(17)-C(14)-C(15) 111.0(3) C(17)-C(14)-C(11) 112.1(3) C(15)-C(14)-C(11) 112.3(2) C(16)-C(15)-C(14) 116.3(3) C(18)-C(17)-C(14) 117.2(3) C(24)-O(5)-C(25) 122.1(2) C(21)-O(7)-C(22) 59.5(4) C(24)-N(3)-C(19) 124.4(2) C(30)-N(4)-C(29) 122.7(2) N(3)-C(19)-C(23) 112.7(2) N(3)-C(19)-C(20) 111.5(3) C(23)-C(19)-C(20) 106.2(3) C(21)-C(20)-C(19) 103.8(4) C(22)-C(21)-O(7) 60.7(4) C(22)-C(21)-C(20) 110.5(5) O(7)-C(21)-C(20) 112.6(4) C(21)-C(22)-O(7) 59.8(4) C(21)-C(22)-C(23) 110.0(5) O(7)-C(22)-C(23) 112.2(4) C(22)-C(23)-C(29) 110.2(3) C(22)-C(23)-C(19) 104.9(4) C(29)-C(23)-C(19) 115.0(2) O(6)-C(24)-N(3) 125.3(3) O(6)-C(24)-O(5) 125.6(3) N(3)-C(24)-O(5) 109.1(2) O(5)-C(25)-C(26) 110.7(4) O(5)-C(25)-C(27) 101.5(3) C(26)-C(25)-C(27) 111.0(4) O(5)-C(25)-C(28) 108.7(3) S62

63 C(26)-C(25)-C(28) 113.2(4) C(27)-C(25)-C(28) 111.1(4) N(4)-C(29)-C(23) 112.4(2) N(4)-C(29)-C(32) 111.3(3) C(23)-C(29)-C(32) 113.9(3) O(8)-C(30)-N(4) 121.9(3) O(8)-C(30)-C(31) 120.6(2) N(4)-C(30)-C(31) 117.5(2) C(33)-C(32)-C(35) 113.5(5) C(33)-C(32)-C(29) 111.3(3) C(35)-C(32)-C(29) 113.6(3) C(34)-C(33)-C(32) 116.3(5) C(36)-C(35)-C(32) 114.3(3) Symmetry transformations used to generate equivalent atoms: S63

64 Table S4D. Anisotropic displacement parameters (Å ) of epoxide 12. The anisotropic displacement factor exponent takes the form: 2p 2 [ h 2 a* 2 U h k a* b* U 12 ] U 11 U 22 U 33 U 23 U 13 U 12 O(1) 73(2) 87(1) 65(1) -10(1) 24(1) -26(1) O(2) 99(2) 68(1) 85(2) -14(1) 37(1) -10(1) O(3) 63(1) 76(1) 108(2) 24(1) -6(1) -18(1) O(4) 82(2) 48(1) 81(1) -9(1) 9(1) 10(1) N(1) 66(2) 56(1) 58(2) -7(1) 20(1) -16(1) N(2) 48(1) 45(1) 66(2) -5(1) 4(1) 1(1) C(1) 55(2) 46(1) 57(2) 2(1) 10(1) -7(1) C(2) 71(2) 66(2) 78(2) 14(2) -2(2) -6(2) C(3) 54(2) 72(2) 107(3) 25(2) 3(2) 2(2) C(4) 56(2) 66(2) 74(2) 14(2) 14(2) 7(1) C(5) 50(2) 46(1) 55(2) -2(1) 8(1) -1(1) C(6) 61(2) 57(2) 57(2) 4(1) 9(2) -4(1) C(7) 73(2) 91(2) 61(2) 5(2) 23(2) -9(2) C(8) 107(4) 143(4) 100(3) -8(3) 40(3) -56(3) C(9) 117(4) 123(3) 68(2) 14(2) 13(2) -27(3) C(10) 87(3) 165(4) 120(4) 34(3) 32(3) 25(3) C(11) 48(2) 43(1) 68(2) 2(1) 5(1) -3(1) C(12) 61(2) 48(1) 53(2) 7(1) -3(1) 13(1) C(13) 54(2) 74(2) 77(2) 7(2) 7(2) 11(1) C(14) 60(2) 63(2) 78(2) 18(2) 11(2) 0(1) C(15) 134(4) 91(2) 62(2) 4(2) 23(2) -13(2) C(16) 179(6) 156(4) 64(3) 6(3) 23(3) -36(4) C(17) 74(2) 81(2) 107(3) 36(2) -1(2) -2(2) C(18) 76(3) 63(2) 350(9) 33(3) -34(4) -4(2) O(5) 76(2) 77(1) 56(1) 4(1) 4(1) -2(1) O(6) 103(2) 73(1) 86(2) 28(1) 12(2) -8(1) O(7) 153(3) 104(2) 211(4) -72(2) 99(3) -26(2) O(8) 111(2) 59(1) 82(2) 21(1) 29(1) 26(1) N(3) 74(2) 49(1) 65(2) 7(1) 9(1) -6(1) N(4) 76(2) 47(1) 50(1) 5(1) 9(1) 9(1) C(19) 73(2) 53(2) 79(2) 3(1) 21(2) -2(1) C(20) 81(3) 99(3) 148(5) -10(3) 37(3) -2(2) C(21) 135(5) 110(3) 180(6) -55(3) 91(5) -46(3) S64

65 C(22) 148(5) 128(4) 96(3) -27(3) 67(4) -66(4) C(23) 114(3) 54(2) 60(2) 5(1) 27(2) -7(2) C(24) 49(2) 64(2) 61(2) 13(2) 0(2) 0(1) C(25) 73(3) 117(3) 54(2) 2(2) -1(2) -8(2) C(26) 145(5) 196(5) 69(3) 25(3) -29(3) 3(4) C(27) 142(5) 135(4) 88(3) -38(3) 14(3) 4(3) C(28) 83(3) 225(5) 89(3) -18(3) 22(3) -34(4) C(29) 93(2) 52(1) 46(2) 2(1) 11(2) 3(2) C(30) 67(2) 53(2) 56(2) 4(1) 5(2) 5(1) C(31) 70(2) 75(2) 75(2) 7(2) 18(2) 6(2) C(32) 140(4) 78(2) 49(2) 1(2) -1(2) 20(2) C(33) 158(5) 135(4) 84(3) 5(3) -42(3) -10(3) C(34) 235(7) 137(4) 148(5) 37(4) -79(5) -82(5) C(35) 231(7) 101(3) 62(2) 3(2) -16(3) 67(3) C(36) 273(8) 114(3) 72(3) 9(2) -25(4) 76(4) O(9) 97(4) 79(3) 120(4) -3(3) -15(3) -13(3) S65

66 1 H NMR spectrum of compound 13 (400 MHz, in CDCl 3 ) 13 C NMR spectrum of compound 13 (100 MHz, in CDCl 3 ) S66

67 31 P NMR spectrum of compound 13 (162 MHz, in CDCl 3 ) COSY NMR spectrum of compound 13 (400 MHz, in CDCl 3 ) S67

68 NOESY NMR spectrum of compound 13 (400 MHz, in CDCl 3 ) 1 H NMR spectrum of compound 13-isomer (400 MHz, in CDCl 3 ) S68

69 13 C NMR spectrum of compound 13-isomer (100 MHz, in CDCl 3 ) 31 P NMR spectrum of compound 13-isomer (162 MHz, in CDCl 3 ) S69

70 COSY NMR spectrum of compound 13-isomer (400 MHz, in CDCl 3 ) NOESY NMR spectrum of compound 13-isomer (400 MHz, in CDCl 3 ) S70

71 1 H NMR spectrum of compound 14 (400 MHz, in CDCl 3 ) 13 C NMR spectrum of compound 14 (100 MHz, in CDCl 3 ) S71

72 31 P NMR spectrum of compound 14 (162 MHz, in CDCl 3 ) 1 H NMR spectrum of compound 15 (400 MHz, in CDCl 3 ) S72

73 13 C NMR spectrum of compound 15 (100 MHz, in CDCl 3 ) 31 P NMR spectrum of compound 15 (162 MHz, in CDCl 3 ) S73

74 1 H NMR spectrum of compound 16 (400 MHz, in CDCl 3 ) 13 C NMR spectrum of compound 16 (100 MHz, in CDCl 3 ) S74

75 31 P NMR spectrum of compound 16 (162 MHz, in CDCl 3 ) 1 H NMR spectrum of compound 17 (400 MHz, in CDCl 3 ) S75

76 13 C NMR spectrum of compound 17 (100 MHz, in CDCl 3 ) 31 P NMR spectrum of compound 17 (162 MHz, in CDCl 3 ) S76

77 1 H NMR spectrum of compound 18 (400 MHz, in CDCl 3 ) 13 C NMR spectrum of compound 18 (100 MHz, in CDCl 3 ) S77

78 31 P NMR spectrum of compound 18 (162 MHz, in CDCl 3 ) 1 H NMR spectrum of compound 19 (400 MHz, in CDCl 3 ) S78

79 13 C NMR spectrum of compound 19 (100 MHz, in CDCl 3 ) 31 P NMR spectrum of compound 19 (162 MHz, in CDCl 3 ) S79

80 1 H NMR spectrum of compound 20 (400 MHz, in CDCl 3 ) 13 C NMR spectrum of compound 20 (100 MHz, in CDCl 3 ) S80

81 31 P NMR spectrum of compound 20 (162 MHz, in CDCl 3 ) 1 H NMR spectrum of compound 21 (400 MHz, in CDCl 3 ) S81

82 13 C NMR spectrum of compound 21 (100 MHz, in CDCl 3 ) 31 P NMR spectrum of compound 21 (162 MHz, in CDCl 3 ) S82

83 1 H NMR spectrum of compound 22 (400 MHz, in CDCl 3 ) 13 C NMR spectrum of compound 22 (100 MHz, in CDCl 3 ) S83

84 31 P NMR spectrum of compound 22 (162 MHz, in CDCl 3 ) 1 H NMR spectrum of compound 23 (400 MHz, in CDCl 3 ) S84

85 13 C NMR spectrum of compound 23 (100 MHz, in CDCl 3 ) 31 P NMR spectrum of compound 23 (162 MHz, in CDCl 3 ) S85

86 1 H NMR spectrum of compound 24 (400 MHz, in CDCl 3 ) 13 C NMR spectrum of compound 24 (100 MHz, in CDCl 3 ) S86

87 31 P NMR spectrum of compound 24 (162 MHz, in CDCl 3 ) 1 H NMR spectrum of compound 25 (400 MHz, in CDCl 3 ) S87

88 13 C NMR spectrum of compound 25 (100 MHz, in CDCl 3 ) 31 P NMR spectrum of compound 25 (162 MHz, in CDCl 3 ) S88

89 1 H NMR spectrum of compound 26 (400 MHz, in CDCl 3 ) 13 C NMR spectrum of compound 26 (100 MHz, in CDCl 3 ) S89

90 31 P NMR spectrum of compound 26 (162 MHz, in CDCl 3 ) 1 H NMR spectrum of compound 27 (400 MHz, in CDCl 3 ) S90

91 13 C NMR spectrum of compound 27 (100 MHz, in CDCl 3 ) 31 P NMR spectrum of compound 27 (162 MHz, in CDCl 3 ) S91

92 1 H NMR spectrum of compound 28 (400 MHz, in CDCl 3 ) 13 C NMR spectrum of compound 28 (100 MHz, in CDCl 3 ) S92

93 31 P NMR spectrum of compound 28 (162 MHz, in CDCl 3 ) S93

Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues

Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues Kang Yuan, Goonay Yousefalizadeh, Felix Saraci, Tai Peng, Igor Kozin, Kevin G. Stamplecoskie, Suning Wang*

More information

Supporting information

Supporting information Supporting information Sensitizing Tb(III) and Eu(III) Emission with Triarylboron Functionalized 1,3-diketonato Ligands Larissa F. Smith, Barry A. Blight, Hee-Jun Park, and Suning Wang* Department of Chemistry,

More information

Fluorinated Peptide Nucleic Acids with Fluoroacetyl sidechain bearing 5- (F/CF 3 )-Uracil: Synthesis and Cell Uptake Studies. Supporting Information

Fluorinated Peptide Nucleic Acids with Fluoroacetyl sidechain bearing 5- (F/CF 3 )-Uracil: Synthesis and Cell Uptake Studies. Supporting Information Fluorinated Peptide Nucleic Acids with Fluoroacetyl sidechain bearing 5- (F/CF 3 )-Uracil: Synthesis and Cell Uptake Studies Satheesh Ellipilli, Sandeep Palvai and Krishna N Ganesh* Chemical Biology Unit,

More information

Matthias W. Büttner, Jennifer B. Nätscher, Christian Burschka, and Reinhold Tacke *

Matthias W. Büttner, Jennifer B. Nätscher, Christian Burschka, and Reinhold Tacke * Development of a New Building Block for the Synthesis of Silicon-Based Drugs and Odorants: Alternative Synthesis of the Retinoid Agonist Disila-bexarotene Matthias W. Büttner, Jennifer B. Nätscher, Christian

More information

Electronic supplementary information. Strategy to Enhance Solid-State Fluorescence and. Aggregation-Induced Emission Enhancement Effect in Pyrimidine

Electronic supplementary information. Strategy to Enhance Solid-State Fluorescence and. Aggregation-Induced Emission Enhancement Effect in Pyrimidine Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2015 Electronic supplementary information Strategy to Enhance Solid-State Fluorescence and

More information

Iterative Synthetic Strategy for Azaphenalene Alkaloids. Total Synthesis of ( )-9a-epi-Hippocasine

Iterative Synthetic Strategy for Azaphenalene Alkaloids. Total Synthesis of ( )-9a-epi-Hippocasine Supporting Information for: Iterative Synthetic Strategy for Azaphenalene Alkaloids. Total Synthesis of ( )-9a-epi-Hippocasine Sílvia Alujas-Burgos, Cristina Oliveras-González, Ángel Álvarez-Larena, Pau

More information

Supplementary Information

Supplementary Information Supplementary Information J. Braz. Chem. Soc., Vol. 24, No. 10, S1-S17, 2013. Printed in Brazil - 2013 Sociedade Brasileira de Química 0103-5053 $6.00+0.00 SI Structural Analysis and Antitumor Activity

More information

Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes

Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes Supplementary Information Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes Galyna Dubinina, Hideki Furutachi, and David A. Vicic * Department of Chemistry, University of Hawaii,

More information

Structure Report for J. Reibenspies

Structure Report for J. Reibenspies X-ray Diffraction Laboratory Center for Chemical Characterization and Analysis Department of Chemistry Texas A & M University Structure Report for J. Reibenspies Project Name: Sucrose Date: January 29,

More information

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK 73019-5251 Sample: KP-XI-furan-enzymatic alcohol Lab ID: 12042 User:

More information

Pyridyl vs bipyridyl anchoring groups of. porphyrin sensitizers for dye sensitized solar. cells

Pyridyl vs bipyridyl anchoring groups of. porphyrin sensitizers for dye sensitized solar. cells Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Supporting Information for Pyridyl vs bipyridyl anchoring groups of porphyrin sensitizers for

More information

Supporting Information

Supporting Information Supporting Information A Trinitrosyl Iron Complex (a {Fe(NO) 3 } 10 TNIC) Stabilized by an N- Heterocyclic Carbene and the Cationic and Neutral {Fe(NO) 2 } 9/10 Products of Its NO Release Chung-Hung Hsieh

More information

Deep-red and near-infrared xanthene dyes for rapid live cell imaging

Deep-red and near-infrared xanthene dyes for rapid live cell imaging Deep-red and near-infrared xanthene dyes for rapid live cell imaging Guangle Niu,, Weimin Liu,*, Bingjiang Zhou,, Hongyan Xiao, Hongyan Zhang, Jiasheng Wu, Jiechao Ge, and Pengfei Wang Key Laboratory of

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018 Electronic Supplementary Information

More information

Supporting Information for A Janus-type Bis(maloNHC) and its Zwitterionic Gold and Silver Metal Complexes

Supporting Information for A Janus-type Bis(maloNHC) and its Zwitterionic Gold and Silver Metal Complexes Supporting Information for A Janus-type Bis(maloNHC) and its Zwitterionic Gold and Silver Metal Complexes Ashley Carter, Alexander Mason, Michael A. Baker, Donald G. Bettler, Angelo Changas, Colin D. McMillen,

More information

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK 73019-5251 Sample: KP-XI-cinnamyl-chiral alcohol Lab ID: 12040 User:

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 208 Supporting Information Cobalt-Catalyzed Regioselective Syntheses of Indeno[2,-c]pyridines

More information

Supporting information. (+)- and ( )-Ecarlottones, Uncommon Chalconoids. from Fissistigma latifolium with Proapoptotic

Supporting information. (+)- and ( )-Ecarlottones, Uncommon Chalconoids. from Fissistigma latifolium with Proapoptotic Supporting information (+)- and ( )-Ecarlottones, Uncommon Chalconoids from Fissistigma latifolium with Proapoptotic Activity Charlotte Gény, Alma Abou Samra, Pascal Retailleau, Bogdan I. Iorga, Hristo

More information

Development of a New Synthesis for the Large-Scale Preparation of Triple Reuptake Inhibitor (-)-GSK

Development of a New Synthesis for the Large-Scale Preparation of Triple Reuptake Inhibitor (-)-GSK Development of a New Synthesis for the Large-Scale Preparation of Triple Reuptake Inhibitor (-)-GSK1360707 Vassil I. Elitzin, Kimberly A. Harvey, Hyunjung Kim, Matthew Salmons, Matthew J. Sharp*, Elie

More information

Molybdenum(0) Fischer ethoxycarbene complexes: Synthesis, X-ray crystal structures and DFT study

Molybdenum(0) Fischer ethoxycarbene complexes: Synthesis, X-ray crystal structures and DFT study Molybdenum(0) Fischer ethoxycarbene complexes: Synthesis, X-ray crystal structures and DFT study Armand Jansen van Rensburg, a Marilé Landman, a * Petrus H. van Rooyen, a Marrigje M. Conradie b and Jeanet

More information

Super-Resolution Monitoring of Mitochondrial Dynamics upon. Time-Gated Photo-Triggered Release of Nitric Oxide

Super-Resolution Monitoring of Mitochondrial Dynamics upon. Time-Gated Photo-Triggered Release of Nitric Oxide Supporting Information for Super-Resolution Monitoring of Mitochondrial Dynamics upon Time-Gated Photo-Triggered Release of Nitric Oxide Haihong He a, Zhiwei Ye b, Yi Xiao b, *, Wei Yang b, *, Xuhong Qian

More information

Synthesis, Structure and Reactivity of O-Donor Ir(III) Complexes: C-H Activation Studies with Benzene

Synthesis, Structure and Reactivity of O-Donor Ir(III) Complexes: C-H Activation Studies with Benzene Synthesis, Structure and Reactivity of O-Donor Ir(III) Complexes: C-H Activation Studies with Benzene Gaurav Bhalla, Xiang Yang Liu, Jonas Oxgaard, William A. Goddard, III, Roy A. Periana* Loker Hydrocarbon

More information

Supplementary Information

Supplementary Information Supplementary Information Eco-Friendly Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones Catalyzed by FeCl 3 /Al 2 O 3 and Analysis of Large 1 H NMR Diastereotopic Effect Isabel Monreal, a Mariano Sánchez-Castellanos,

More information

Stereoselective Synthesis of (-) Acanthoic Acid

Stereoselective Synthesis of (-) Acanthoic Acid 1 Stereoselective Synthesis of (-) Acanthoic Acid Taotao Ling, Bryan A. Kramer, Michael A. Palladino, and Emmanuel A. Theodorakis* Department of Chemistry and Biochemistry, University of California, San

More information

Seth B. Harkins and Jonas C. Peters

Seth B. Harkins and Jonas C. Peters Amido-bridged Cu 2 N 2 diamond cores that minimize structural reorganization and facilitate reversible redox behavior between a Cu 1 Cu 1 and a Class III delocalized Cu 1.5 Cu 1.5 species. Seth B. Harkins

More information

Supporting Information

Supporting Information Supporting Information Remote Stereoinductive Intramolecular Nitrile Oxide Cycloaddition: Asymmetric Total Synthesis and Structure Revision of ( )-11 -Hydroxycurvularin Hyeonjeong Choe, Thuy Trang Pham,

More information

Supplementary Information. Single Crystal X-Ray Diffraction

Supplementary Information. Single Crystal X-Ray Diffraction Supplementary Information Single Crystal X-Ray Diffraction Single crystal diffraction data were collected on an Oxford Diffraction Gemini R Ultra diffractometer equipped with a Ruby CCD-detector with Mo-K

More information

Cu(I)-MOF: naked-eye colorimetric sensor for humidity and. formaldehyde in single-crystal-to-single-crystal fashion

Cu(I)-MOF: naked-eye colorimetric sensor for humidity and. formaldehyde in single-crystal-to-single-crystal fashion Supporting Information for Cu(I)-MOF: naked-eye colorimetric sensor for humidity and formaldehyde in single-crystal-to-single-crystal fashion Yang Yu, Xiao-Meng Zhang, Jian-Ping Ma, Qi-Kui Liu, Peng Wang,

More information

Stephen F. Nelsen, Asgeir E. Konradsson, Rustem F. Ismagilov, Ilia A. Guzei N N

Stephen F. Nelsen, Asgeir E. Konradsson, Rustem F. Ismagilov, Ilia A. Guzei N N Supporting information for: Crystallographic characterization of the geometry changes upon electron loss from 2-tertbutyl-3-aryl-2,3-diazabicyclo[2.2.2]octanes Stephen F. Nelsen, Asgeir E. Konradsson,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2015 Supporting Information Single-Crystal-to-Single-Crystal Transformation of an Anion Exchangeable

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2016 Supporting Information Over or under: Hydride attack at the metal versus the coordinated

More information

Sulfuric Acid-Catalyzed Conversion of Alkynes to Ketones in an Ionic Liquid Medium under Mild Reaction Conditions

Sulfuric Acid-Catalyzed Conversion of Alkynes to Ketones in an Ionic Liquid Medium under Mild Reaction Conditions Sulfuric Acid-Catalyzed Conversion of Alkynes to Ketones in an Ionic Liquid Medium under Mild Reaction Conditions Wing-Leung Wong, Kam-Piu Ho, Lawrence Yoon Suk Lee, Kin-Ming Lam, Zhong-Yuan Zhou, Tak

More information

Direct observation of key intermediates by negative-ion electrospray ionization mass spectrometry in palladium-catalyzed cross-coupling

Direct observation of key intermediates by negative-ion electrospray ionization mass spectrometry in palladium-catalyzed cross-coupling Direct observation of key intermediates by negative-ion electrospray ionization mass spectrometry in palladium-catalyzed cross-coupling Krista L. Vikse, a Matthew A. Henderson, a Allen G. Oliver b and

More information

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information Experimental Supporting Information for Experimental and DFT Studies Explain Solvent Control of C-H Activation and Product Selectivity in the Rh(III)-Catalyzed Formation of eutral and Cationic Heterocycles

More information

Fluorous Metal Organic Frameworks with Superior Adsorption and Hydrophobic Properties toward Oil Spill Cleanup and Hydrocarbon Storage

Fluorous Metal Organic Frameworks with Superior Adsorption and Hydrophobic Properties toward Oil Spill Cleanup and Hydrocarbon Storage SUPPORTING INFORMATION Fluorous Metal Organic Frameworks with Superior Adsorption and Hydrophobic Properties toward Oil Spill Cleanup and Hydrocarbon Storage Chi Yang, a Ushasree Kaipa, a Qian Zhang Mather,

More information

Supporting Information. Preparative Scale Synthesis of Vedejs Chiral DMAP Catalysts

Supporting Information. Preparative Scale Synthesis of Vedejs Chiral DMAP Catalysts S1 Preparative Scale Synthesis of Vedejs Chiral DMAP Catalysts Artis Kinens, Simonas Balkaitis and Edgars Suna * Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia University

More information

1, The crystal data of TAHD and TAND S2-S3. 2, The thermal analysis of HTAHD, TAHD, HTAND and. 3, The AFM images of TAHD and TAND S6

1, The crystal data of TAHD and TAND S2-S3. 2, The thermal analysis of HTAHD, TAHD, HTAND and. 3, The AFM images of TAHD and TAND S6 Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2015 Supplementary information N-heteroheptacenequinone and N-heterononacenequinone:

More information

Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra*

Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra* Supporting Information Ferrocenyl BODIPYs: Synthesis, Structure and Properties Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra* Department of Chemistry, Indian Institute of Technology

More information

Supporting Infromation

Supporting Infromation Supporting Infromation Aromatic Triazole Foldamers Induced by C H X (X = F, Cl) Intramolecular Hydrogen Bonding Jie Shang,, Nolan M. Gallagher, Fusheng Bie,, Qiaolian Li,, Yanke Che, Ying Wang,*,, and

More information

Enantioselective Conjugate Addition of 3-Fluoro-Oxindoles to. Vinyl Sulfone: An Organocatalytic Access to Chiral. 3-Fluoro-3-Substituted Oxindoles

Enantioselective Conjugate Addition of 3-Fluoro-Oxindoles to. Vinyl Sulfone: An Organocatalytic Access to Chiral. 3-Fluoro-3-Substituted Oxindoles Enantioselective Conjugate Addition of 3-Fluoro-Oxindoles to Vinyl Sulfone: An Organocatalytic Access to Chiral 3-Fluoro-3-Substituted Oxindoles Xiaowei Dou and Yixin Lu * Department of Chemistry & Medicinal

More information

Supporting Information

Supporting Information Supporting Information One-Pot Access to Benzo[a]carbazoles via Palladium(II)-Catalyzed Hetero- and Carboannulations Moumita Jash, Bimolendu Das, and Chinmay Chowdhury* Organic & dicinal Chemistry Division,

More information

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY APPENDIX F Crystallographic Data for TBA Tb(DO2A)(F-DPA) CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY Date 11 January 2010 Crystal Structure Analysis of: MLC23

More information

Synthetic, Structural, and Mechanistic Aspects of an Amine Activation Process Mediated at a Zwitterionic Pd(II) Center

Synthetic, Structural, and Mechanistic Aspects of an Amine Activation Process Mediated at a Zwitterionic Pd(II) Center Synthetic, Structural, and Mechanistic Aspects of an Amine Activation Process Mediated at a Zwitterionic Pd(II) Center Supporting Information Connie C. Lu and Jonas C. Peters* Division of Chemistry and

More information

Red-light activated photocorms of Mn(I) species bearing electron deficient 2,2'-azopyridines.

Red-light activated photocorms of Mn(I) species bearing electron deficient 2,2'-azopyridines. Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2016 Supporting information for Red-light activated photocorms of Mn(I) species bearing electron

More information

Synthesis, Characterization and Reactivities of Molybdenum and Tungsten PONOP Pincer Complexes

Synthesis, Characterization and Reactivities of Molybdenum and Tungsten PONOP Pincer Complexes Synthesis, Characterization and Reactivities of Molybdenum and Tungsten PONOP Pincer Complexes Ruth Castro-Rodrigo, Sumit Chakraborty, Lloyd Munjanja, William W. Brennessel, and William D. Jones* Department

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017 Template-directed synthesis

More information

APPENDIX E. Crystallographic Data for TBA Eu(DO2A)(DPA) Temperature Dependence

APPENDIX E. Crystallographic Data for TBA Eu(DO2A)(DPA) Temperature Dependence APPENDIX E Crystallographic Data for TBA Eu(DO2A)(DPA) Temperature Dependence Temperature Designation CCDC Page 100 K MLC18 761599 E2 200 K MLC17 762705 E17 300 K MLC19 763335 E31 E2 CALIFORNIA INSTITUTE

More information

Sigma Bond Metathesis with Pentamethylcyclopentadienyl Ligands in Sterically. Thomas J. Mueller, Joseph W. Ziller, and William J.

Sigma Bond Metathesis with Pentamethylcyclopentadienyl Ligands in Sterically. Thomas J. Mueller, Joseph W. Ziller, and William J. Sigma Bond Metathesis with Pentamethylcyclopentadienyl Ligands in Sterically Crowded (C 5 Me 5 ) 3 M Complexes Thomas J. Mueller, Joseph W. Ziller, and William J. Evans * Department of Chemistry, University

More information

Supporting Information

Supporting Information Supporting Information Synthesis of H-Indazoles from Imidates and Nitrosobenzenes via Synergistic Rhodium/Copper Catalysis Qiang Wang and Xingwei Li* Dalian Institute of Chemical Physics, Chinese Academy

More information

Use of mixed Li/K metal TMP amide (LiNK chemistry) for the synthesis of [2.2]metacyclophanes

Use of mixed Li/K metal TMP amide (LiNK chemistry) for the synthesis of [2.2]metacyclophanes Supporting Information for Use of mixed Li/K metal TMP amide (LiNK chemistry) for the synthesis of [2.2]metacyclophanes Marco Blangetti, Patricia Fleming and Donal F. O Shea* Centre for Synthesis and Chemical

More information

Supporting Information

Supporting Information Supporting Information Rhodomollanol A, a Highly Oxygenated Diterpenoid with a 5/7/5/5 Tetracyclic Carbon Skeleton from the Leaves of Rhododendron molle Junfei Zhou, Guanqun Zhan, Hanqi Zhang, Qihua Zhang,

More information

Crystal and molecular structure of cis-dichlorobis(triphenylphosphite)

Crystal and molecular structure of cis-dichlorobis(triphenylphosphite) Molecules 2001, 6, 777-783 molecules ISSN 1420-3049 http://www.mdpi.org Crystal and molecular structure of cis-dichlorobis(triphenylphosphite) Platinum(II) Seyyed Javad Sabounchei * and Ali Naghipour Chemistry.

More information

A Total Synthesis of Paeoveitol

A Total Synthesis of Paeoveitol A Total Synthesis of Paeoveitol Lun Xu, Fengyi Liu, Li-Wen Xu, Ziwei Gao, Yu-Ming Zhao* Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi

More information

Supporting Information

Supporting Information Supporting Information Methanetrisamidines in Coordination Chemistry - Syntheses, Structures and CH-NH Tautomerism Benjamin Gutschank, Stephan Schulz,* Dieter Bläser and Christoph Wölper Crystallographic

More information

Supporting Information:

Supporting Information: Supporting Information: An rganocatalytic Asymmetric Sequential Allylic Alkylation/Cyclization of Morita-Baylis-Hillman Carbonates and 3-Hydroxyoxindoles Qi-Lin Wang a,b, Lin Peng a, Fei-Ying Wang a, Ming-Liang

More information

Decomposition of Ruthenium Olefin Metathesis. Catalysts

Decomposition of Ruthenium Olefin Metathesis. Catalysts Supporting Information for: Decomposition of Ruthenium Olefin Metathesis Catalysts Soon Hyeok Hong, Anna G. Wenzel, Tina T. Salguero, Michael W. Day and Robert H. Grubbs* The Arnold and Mabel Beckman Laboratory

More information

Copper Mediated Fluorination of Aryl Iodides

Copper Mediated Fluorination of Aryl Iodides Copper Mediated Fluorination of Aryl Iodides Patrick S. Fier and John F. Hartwig* Department of Chemistry, University of California, Berkeley, California 94720, United States. Supporting Information Table

More information

Supporting Information

Supporting Information Submitted to Cryst. Growth Des. Version 1 of August 22, 2007 Supporting Information Engineering Hydrogen-Bonded Molecular Crystals Built from 1,3,5-Substituted Derivatives of Benzene: 6,6',6''-(1,3,5-Phenylene)tris-1,3,5-triazine-2,4-diamines

More information

Organocatalytic asymmetric synthesis of 3,3-disubstituted oxindoles featuring two heteroatoms at C3 position

Organocatalytic asymmetric synthesis of 3,3-disubstituted oxindoles featuring two heteroatoms at C3 position Organocatalytic asymmetric synthesis of 3,3-disubstituted oxindoles featuring two heteroatoms at C3 position Feng Zhou, Xing-Ping Zeng, Chao Wang, Xiao-Li Zhao, and Jian Zhou* [a] Shanghai Key Laboratory

More information

High-performance Single-crystal Field Effect Transistors of Pyreno[4,5-a]coronene

High-performance Single-crystal Field Effect Transistors of Pyreno[4,5-a]coronene Electronic Supplementary Information High-performance Single-crystal Field Effect Transistors of Pyreno[4,5-a]coronene Experimental details Synthesis of pyreno[4,5-a]coronene: In 1960 E. Clar et.al 1 and

More information

Regioselective Synthesis of the Tricyclic Core of Lateriflorone

Regioselective Synthesis of the Tricyclic Core of Lateriflorone Regioselective Synthesis of the Tricyclic Core of Lateriflorone Eric J. Tisdale, Hongmei Li, Binh G. Vong, Sun Hee Kim, Emmanuel A. Theodorakis* Department of Chemistry and Biochemistry, University of

More information

Remote Asymmetric Induction in an Intramolecular Ionic Diels-Alder Reaction: Application to the Total Synthesis of (+)-Dihydrocompactin

Remote Asymmetric Induction in an Intramolecular Ionic Diels-Alder Reaction: Application to the Total Synthesis of (+)-Dihydrocompactin Page S16 Remote Asymmetric Induction in an Intramolecular Ionic Diels-Alder Reaction: Application to the Total Synthesis of (+)-Dihydrocompactin Tarek Sammakia,* Deidre M. Johns, Ganghyeok Kim, and Martin

More information

Anti-Inflammatory Isoquinoline with Bis-seco-aporphine Skeleton from Dactylicapnos scandens

Anti-Inflammatory Isoquinoline with Bis-seco-aporphine Skeleton from Dactylicapnos scandens Anti-Inflammatory Isoquinoline with Bis-seco-aporphine Skeleton from Dactylicapnos scandens Bei Wang,,, Zi-Feng Yang,, Yun-Li Zhao, Ya-Ping Liu, Jun Deng, Wan-Yi Huang, Xiao-Nian Li, Xin-Hua Wang *, and

More information

Organic Framework containing a thiazolidine-based spacer

Organic Framework containing a thiazolidine-based spacer Synthesis, characterization and CO 2 uptake of a chiral Co(II) Metal- Organic Framework containing a thiazolidine-based spacer Andrea Rossin,* a Barbara Di Credico, a Giuliano Giambastiani, a Maurizio

More information

Electronic Supplementary Information for: Gram-scale Synthesis of a Bench-Stable 5,5 -Unsubstituted Terpyrrole

Electronic Supplementary Information for: Gram-scale Synthesis of a Bench-Stable 5,5 -Unsubstituted Terpyrrole Electronic Supplementary Information for: Gram-scale Synthesis of a Bench-Stable 5,5 -Unsubstituted Terpyrrole James T. Brewster II, a Hadiqa Zafar, a Matthew McVeigh, a Christopher D. Wight, a Gonzalo

More information

Supplementary Materials for

Supplementary Materials for www.advances.sciencemag.org/cgi/content/full/1/5/e1500304/dc1 Supplementary Materials for Isolation of bis(copper) key intermediates in Cu-catalyzed azide-alkyne click reaction This PDF file includes:

More information

Gulaim A. Seisenbaeva,, Geoffrey Daniel, Jean-Marie Nedelec,, Vadim G. Kessler,*, Supplementary materials

Gulaim A. Seisenbaeva,, Geoffrey Daniel, Jean-Marie Nedelec,, Vadim G. Kessler,*, Supplementary materials Gulaim A. Seisenbaeva,, Geoffrey Daniel, Jean-Marie Nedelec,, Vadim G. Kessler,*, Department of Chemistry, Biocenter, Swedish University of Agricultural Sciences (SLU), Box 7015, SE-75007, Uppsala, Sweden,

More information

Supplementary File. Modification of Boc-protected CAN508 via acylation and Suzuki-Miyaura Coupling

Supplementary File. Modification of Boc-protected CAN508 via acylation and Suzuki-Miyaura Coupling Supplementary File Modification of Boc-protected CA508 via acylation and Suzuki-Miyaura Coupling Martin Pisár, Eva Schütznerová 2, Filip Hančík, Igor Popa 3, Zdeněk Trávníček 3 and Petr Cankař, * Department

More information

CHAPTER 6 CRYSTAL STRUCTURE OF A DEHYDROACETIC ACID SUBSTITUTED SCHIFF BASE DERIVATIVE

CHAPTER 6 CRYSTAL STRUCTURE OF A DEHYDROACETIC ACID SUBSTITUTED SCHIFF BASE DERIVATIVE 139 CHAPTER 6 CRYSTAL STRUCTURE OF A DEHYDROACETIC ACID SUBSTITUTED SCHIFF BASE DERIVATIVE 6.1 INTRODUCTION This chapter describes the crystal and molecular structure of a dehydroacetic acid substituted

More information

Supplementary Information for:

Supplementary Information for: Supplementary Information for: Emission behaviors of unsymmetrical 1,3-diaryl-β-diketones: A model perfectly disclosing the effect of molecular conformation on luminescence of organic solids Xiao Cheng,

More information

Iridium Complexes Bearing a PNP Ligand, Favoring Facile C(sp 3 )- H Bond Cleavage

Iridium Complexes Bearing a PNP Ligand, Favoring Facile C(sp 3 )- H Bond Cleavage Iridium Complexes Bearing a PNP Ligand, Favoring Facile C(sp 3 )- H Bond Cleavage Kapil S. Lokare,* a Robert J. Nielsen, *b Muhammed Yousufuddin, c William A. Goddard III, b and Roy A. Periana*,a a Scripps

More information

Supporting Information. Table of Contents

Supporting Information. Table of Contents Supporting Information Selective Anion Exchange and Tunable Luminescent Behaviors of Metal-Organic Framework Based Supramolecular Isomers Biplab Manna, Shweta Singh, Avishek Karmakar, Aamod V.Desai and

More information

Supporting Information

Supporting Information Supporting Information Divergent Reactivity of gem-difluoro-enolates towards Nitrogen Electrophiles: Unorthodox Nitroso Aldol Reaction for Rapid Synthesis of -Ketoamides Mallu Kesava Reddy, Isai Ramakrishna,

More information

ANNEXE 1 : SPECTRES DE RÉSONANCE MAGNÉTIQUE NUCLÉAIRE DES PROTONS

ANNEXE 1 : SPECTRES DE RÉSONANCE MAGNÉTIQUE NUCLÉAIRE DES PROTONS ANNEXE 1 : SPECTRES DE RÉSNANCE MAGNÉTIQUE NUCLÉAIRE DES PRTNS 126 [N-(But-3-ényl)méthylamino]acétate d éthyle (1) N C 2 Et 127 Chlorure de N-but-3-ényl-N-(carboxyméthyl)méthylammonium (2) Cl - H N + H

More information

Juan Manuel Herrera, Enrique Colacio, Corine Mathonière, Duane Choquesillo-Lazarte, and Michael D. Ward. Supporting information

Juan Manuel Herrera, Enrique Colacio, Corine Mathonière, Duane Choquesillo-Lazarte, and Michael D. Ward. Supporting information Cyanide-bridged tetradecanuclear Ru II 3M II 11 clusters (M II = Zn II and Cu II ) based on the high connectivity building block [Ru 3 (HAT)(CN) 12 ] 6+ : structural and photophysical properties Juan Manuel

More information

Ethylene Trimerization Catalysts Based on Chromium Complexes with a. Nitrogen-Bridged Diphosphine Ligand Having ortho-methoxyaryl or

Ethylene Trimerization Catalysts Based on Chromium Complexes with a. Nitrogen-Bridged Diphosphine Ligand Having ortho-methoxyaryl or Ethylene Trimerization Catalysts Based on Chromium Complexes with a Nitrogen-Bridged Diphosphine Ligand Having ortho-methoxyaryl or ortho-thiomethoxy Substituents: Well Defined Catalyst Precursors and

More information

Electronic Supplementary Information for Catalytic Asymmetric Hydrophosphonylation of Ynones

Electronic Supplementary Information for Catalytic Asymmetric Hydrophosphonylation of Ynones Electronic Supplementary Information for Catalytic Asymmetric Hydrophosphonylation of Ynones Daisuke Uraguchi, Takaki Ito, Shinji Nakamura, and Takashi oi* Department of Applied Chemistry, Graduate School

More information

A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases. Supporting Information

A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases. Supporting Information A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases Jingming Zhang, a Haohan Wu, a Thomas J. Emge, a and Jing Li* a a Department of Chemistry and Chemical Biology,

More information

oligomerization to polymerization of 1-hexene catalyzed by an NHC-zirconium complex

oligomerization to polymerization of 1-hexene catalyzed by an NHC-zirconium complex Mechanistic insights on the controlled switch from oligomerization to polymerization of 1-hexene catalyzed by an NHC-zirconium complex Emmanuelle Despagnet-Ayoub, *,a,b Michael K. Takase, c Lawrence M.

More information

Eur. J. Inorg. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2013 ISSN SUPPORTING INFORMATION

Eur. J. Inorg. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2013 ISSN SUPPORTING INFORMATION Eur. J. Inorg. Chem. 2013 WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2013 ISSN 1099 0682 SUPPORTING INFORMATION DOI: 10.1002/ejic.201300309 Title: Hydrogen Evolution Catalyzed by Aluminum-Bridged

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2007 69451 Weinheim, Germany Crystal-to-Crystal Transformation between Three Cu(I) Coordination Polymers and Structural Evidence for Luminescence Thermochromism Tae Ho

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2018 Electronic Supplementary Information (ESI) Enhanced Fluorescence of Phthalimide

More information

Supporting Information for XXXXXXX

Supporting Information for XXXXXXX Supporting Information for XXXXXXX The First Imidazolium-Substituted Metal Alkylidene Giovanni Occhipinti, a Hans-René Bjørsvik, a Karl Wilhelm Törnroos, a Alois Fürstner, b and Vidar R. Jensen a, * a

More information

4.1 1-acryloyl-3-methyl-2,6-bis(3,4,5-trimethoxy phenyl)piperidine-4-one (1)

4.1 1-acryloyl-3-methyl-2,6-bis(3,4,5-trimethoxy phenyl)piperidine-4-one (1) 4 Piperidine derivatives 4.1 1-acryloyl-3-methyl-2,6-bis(3,4,5-trimethoxy phenyl)piperidine-4-one (1) 4.1.1 Synthesis To a well stirred solution of 3-methyl-2,6-bis(3,4,5-trimethoxyphenyl)piperi dine-4-one

More information

Optically Triggered Stepwise Double Proton Transfer in an Intramolecular Proton Relay: A Case Study of 1,8-Dihydroxy-2-naphthaldehyde (DHNA)

Optically Triggered Stepwise Double Proton Transfer in an Intramolecular Proton Relay: A Case Study of 1,8-Dihydroxy-2-naphthaldehyde (DHNA) Supporting Information Optically Triggered Stepwise Double Proton Transfer in an Intramolecular Proton Relay: A Case Study of 1,8-Dihydroxy-2-naphthaldehyde (DHNA) Chia-Yu Peng,, Jiun-Yi Shen,, Yi-Ting

More information

Electronic Supporting Information For. Accessing Heterobiaryls through Transition Metal-Free C-H Functionalization. Content

Electronic Supporting Information For. Accessing Heterobiaryls through Transition Metal-Free C-H Functionalization. Content Electronic Supporting Information For Accessing Heterobiaryls through Transition Metal-Free C-H Functionalization Ananya Banik, Rupankar Paira*,, Bikash Kumar Shaw, Gonela Vijaykumar and Swadhin K. Mandal*,

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION The First Enantioselective Total Synthesis of ( )-trans-dihydronarciclasine Gábor Varró, László Hegedűs, András Simon, Attila Balogh, Alajos Grün, Ibolya Leveles,, Beáta G. Vértessy,,

More information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007 Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 Asymmetric Friedel-Crafts Alkylations of Indoles with Ethyl Glyoxylate Catalyzed by (S)-BIL-Ti (IV) Complex: Direct

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2017 Supporting Information Regioselective 6-endo-dig Iodocyclization: An accessible

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2014. Supporting Information for Advanced Optical Materials, DOI: 10.1002/adom.201400078 Staggered Face-to-Face Molecular Stacking as

More information

Aggregation-induced emission enhancement based on 11,11,12,12,-tetracyano-9,10-anthraquinodimethane

Aggregation-induced emission enhancement based on 11,11,12,12,-tetracyano-9,10-anthraquinodimethane Electronic Supplementary Information (ESI) Aggregation-induced emission enhancement based on 11,11,12,12,-tetracyano-9,10-anthraquinodimethane Jie Liu, ab Qing Meng, a Xiaotao Zhang, a Xiuqiang Lu, a Ping

More information

Marcosende, Vigo, Spain. Fax: ; Tel: ; E mail:

Marcosende, Vigo, Spain. Fax: ; Tel: ; E mail: Supplementary Information β-cyclodextrin-resveratrol inclusion complex and the role of geometrical and electronic effects on its electronic induced circular dichroism Eduardo Troche Pesqueira, a Ignacio

More information

Supporting Information. Organocatalytic Synthesis of 4-Aryl-1,2,3,4-tetrahydropyridines from. Morita-Baylis-Hillman Carbonates through a One-Pot

Supporting Information. Organocatalytic Synthesis of 4-Aryl-1,2,3,4-tetrahydropyridines from. Morita-Baylis-Hillman Carbonates through a One-Pot Supporting Information Organocatalytic Synthesis of 4-Aryl-1,2,3,4-tetrahydropyridines from Morita-Baylis-Hillman Carbonates through a One-Pot Three-Component Cyclization Jian Wei, Yuntong Li, Cheng Tao,

More information

New Journal of Chemistry. Synthesis and mechanism of novel fluorescent coumarindihydropyrimidinone. multicomponent reaction.

New Journal of Chemistry. Synthesis and mechanism of novel fluorescent coumarindihydropyrimidinone. multicomponent reaction. Electronic Supplementary Material (ESI) for ew Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre ational de la Recherche Scientifique 2015 ew Journal of Chemistry Synthesis

More information

Proton grease: an acid catalyzed acceleration of a molecular rotor

Proton grease: an acid catalyzed acceleration of a molecular rotor Journal of American Chemical Society Supplementary Information for Proton grease: an acid catalyzed acceleration of a molecular rotor Authors: Brent E. Dial, a Perry J. Pellechia, a Mark D. Smith a and

More information

Supporting Information

Supporting Information Supporting Information A Molecular Chameleon: Reversible ph- and Cation- Induced Control of the Optical Properties of Phthalocyanine-Based Complexes in the Visible and Near-Infrared Spectral Ranges Evgeniya

More information

Supporting Information. for

Supporting Information. for Supporting Information for "Inverse-Electron-Demand" Ligand Substitution in Palladium(0) Olefin Complexes Shannon S. Stahl,* Joseph L. Thorman, Namal de Silva, Ilia A. Guzei, and Robert W. Clark Department

More information

Nickel-Mediated Stepwise Transformation of CO to Acetaldehyde and Ethanol

Nickel-Mediated Stepwise Transformation of CO to Acetaldehyde and Ethanol Nickel-Mediated Stepwise Transformation of CO to Acetaldehyde and Ethanol Ailing Zhang, Sakthi Raje, Jianguo Liu, Xiaoyan Li, Raja Angamuthu, Chen-Ho Tung, and Wenguang Wang* School of Chemistry and Chemical

More information

Supporting Information

Supporting Information Supporting Information Non-Heme Diiron Model Complexes Can Mediate Direct NO Reduction: Mechanistic Insight Into Flavodiiron NO Reductases Hai T. Dong, a Corey J. White, a Bo Zhang, b Carsten Krebs, b

More information

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex.

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex. Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex. Emmanuelle Despagnet-Ayoub, Michael K. Takase, Jay A. Labinger and John E. Bercaw Contents 1. Experimental

More information