Review of Semiconductor Physics. Lecture 3 4 Dr. Tayab Din Memon

Size: px
Start display at page:

Download "Review of Semiconductor Physics. Lecture 3 4 Dr. Tayab Din Memon"

Transcription

1 Review of Semiconductor Physics Lecture 3 4 Dr. Tayab Din Memon 1

2 Electronic Materials The goal of electronic materials is to generate and control the flow of an electrical current. Electronic materials include: 1. Conductors: have low resistance which allows electrical current flow 2. Insulators: have high resistance which suppresses electrical current flow 3. Semiconductors: can allow or suppress electrical current flow 2

3 Conductors Good conductors have low resistance so electrons flow through them with ease. Best element conductors include: Copper, silver, gold, aluminum, & nickel Alloys are also good conductors: Brass & steel Good conductors can also be liquid: Salt water 3

4 Conductor Atomic Structure The atomic structure of good conductors usually includes only one electron in their outer shell. It is called a valence electron. It is easily striped from the atom, producing current flow. Copper Atom 4

5 Insulators Insulators have a high resistance so current does not flow in them. Good insulators include: Glass, ceramic, plastics, & wood Most insulators are compounds of several elements. The atoms are tightly bound to one another so electrons are difficult to strip away for current flow. 5

6 Semiconductors Semiconductors are materials that essentially can be conditioned to act as good conductors, or good insulators, or any thing in between. Common elements such as carbon, silicon, and germanium are semiconductors. Silicon is the best and most widely used semiconductor. 6

7 Model of Semiconductor Physics Two complementary models are used in the discussion of semiconductor physics : Energy-band model Crystal bonding model 7

8 Energy band model 8

9 Energy Band Model The main characteristic of a semiconductor element is that it has four electrons in its outer or valence orbit. 9

10 Bond Model - Crystal Lattice Structure The unique capability of semiconductor atoms is their ability to link together to form a physical structure called a crystal lattice. The atoms link together with one another sharing their outer electrons. These links are called covalent bonds. 2D Crystal Lattice Structure 10

11 3D Crystal Lattice Structure 11

12 At absolute temperature, all electrons are held in these bonds, and therefore none are free to move about the crystal in response to an electric field. 12

13 Semiconductors can be Insulators If the material is pure semiconductor material like silicon, the crystal lattice structure forms an excellent insulator since all the atoms are bound to one another and are not free for current flow. Good insulating semiconductor material is referred to as intrinsic. Since the outer valence electrons of each atom are tightly bound together with one another, the electrons are difficult to dislodge for current flow. Silicon in this form is a great insulator. Semiconductor material is often used as an insulator. 13

14 Doping To make the semiconductor conduct electricity, other atoms called impurities must be added. Impurities are different elements. This process is called doping. 14

15 Semiconductors can be Conductors An impurity, or element like arsenic, has 5 valence electrons. Adding arsenic (doping) will allow four of the arsenic valence electrons to bond with the neighboring silicon atoms. The one electron left over for each arsenic atom becomes available to conduct current flow.

16 Resistance Effects of Doping If you use lots of arsenic atoms for doping, there will be lots of extra electrons so the resistance of the material will be low and current will flow freely. If you use only a few boron atoms, there will be fewer free electrons so the resistance will be high and less current will flow. By controlling the doping amount, virtually any resistance can be achieved. 16

17 Another Way to Dope You can also dope a semiconductor material with an atom such as boron that has only 3 valence electrons. The 3 electrons in the outer orbit do form covalent bonds with its neighboring semiconductor atoms as before. But one electron is missing from the bond. This place where a fourth electron should be is referred to as a hole. The hole assumes a positive charge so it can attract electrons from some other source. Holes become a type of current carrier like the electron to support current flow. 17

18 Types of Semiconductor Materials The silicon doped with extra electrons is called an N type semiconductor. N is for negative, which is the charge of an electron. Silicon doped with material missing electrons that produce locations called holes is called P type semiconductor. P is for positive, which is the charge of a hole. 18

19 Current Flow in N-type Semiconductors The DC voltage source has a positive terminal that attracts the free electrons in the semiconductor and pulls them away from their atoms leaving the atoms charged positively. Electrons from the negative terminal of the supply enter the semiconductor material and are attracted by the positive charge of the atoms missing one of their electrons. Current (electrons) flows from the positive terminal to the negative terminal.

20 Current Flow in P-type Semiconductors Electrons from the negative supply terminal are attracted to the positive holes and fill them. The positive terminal of the supply pulls the electrons from the holes leaving the holes to attract more electrons. Current (electrons) flows from the negative terminal to the positive terminal. Inside the semiconductor current flow is actually by the movement of the holes from positive to negative.

21 Semiconductor Devices Modeling and Simulation 21

22 Semiconductor Devices Semiconductor devices form the foundation of modern electronics, being used in applications extending from computers to satellite communication systems. The most common devices includes: Diodes, Bipolar and field effect transistors, thyristors, triacs, and microwave optoelectronics Silicon is the most commonly used semiconductor material for both discrete and integrated devices 22

23 Modeling of Semiconductor Devices In order to characterize a semiconductor device it is necessary to obtain suitable representation of the electrical and physical processes involved. It is also necessary to develop a description for the processes which cannot be directly observed. This is often achieved by implementing some form of analogy which follows the behavior of the device as closely as possible within the constraints of the defined operating environment. This process is called modeling. 23

24 Modeling of Semiconductor Devices (Cont ) The process of modeling requires the analysis and/or simulation of the semiconductor device. The term analysis in this context is usually taken to mean the method by which the complex problem of characterizing the device is resolved into simpler component parts which allow the required investigation to be achieved in a near exact manner. Simulation may be defined here as the process of imitating the operation of the device by considering the characteristics of a different analogous system, without resorting to direct practical experimentation on the device. 24

25 Modeling of Semiconductor Devices (Cont ) Limitations of the model should be indicated In all device modeling work it is essential to appreciate the basis and limitations of the model in question. Role of modeling Modeling has an important role to play in the design, development and understanding of semiconductor devices Modeling process Traditionally the development of solid-state devices has involved a largely empirical design process with many iterations of the fabrications stage being required to achieve the desired specifications. Design rules are usually derived from this trail and error approach, which helps reduce the number of iterations required for future generations of devices. 25

26 Categories of Solid-State Device Models Two broad categories Physical Device Model Equivalent Circuit Model 26

27 Categories of Solid-State Device Models (Cont ) Equivalent circuit models based on the electrical performance of the device, are a popular choice for circuit design application and for circumstances where rapid evaluation is required Advantage of the Equivalent Circuit Model Principle advantage of this technique is easy to implement These models are frequently used in computer aided design (CAD) packages intended for circuit design and ICs where multiple simulation is necessary Limitations of the Equivalent Circuit Model These models are limited in their range of application because it is often difficult to accurately relate the model elements to the physical parameters of the device (geometry, doping etc) and because of the bias, frequency dependence and non-linear behavior of most semiconductor devices. This means that this approach is not suitable for the predicting the characteristics of new devices and for modeling accurately large-signal operation, such as in oscillators or high speed logic circuits 27

28 Categories of Solid-State Device Models (Cont ) Physical Device Models Physical device models are based on the physics of carrier transport, and can provide a greater insight into the detailed operation of the device Advantages of Physical Device Models Physical device models are not limited by the operating conditions and have been used successfully to analyze dc, transient, large-signal and high frequency operation. They may be used to predict the characteristics of new devices within the constraints of information available on the semiconductor material properties. 28

29 Categories of Solid-State Device Models (Cont ) Limitation of Physical Device Models Major limitation of this technique is large memory and computation time; The analysis of physical device models is usually carried out using numerical techniques The derive towards smaller scale devices to achieve faster operating speeds has led to increasingly more complex device structures, where the operating characteristics depart from those predicted by classical models. Physical modeling allows these devices and other new structures to be rigorously characterized before fabrication. 29

30 How Physical Device Models are Solved? Physical device models are solved using: Bulk carrier transport equation, Boltzmann transport models or quantum transport concepts Rigorous Boltzmann and quantum models have generally been restricted to providing detailed insight into carrier transport physics The trend towards sub-micron geometry devices, means that it is essential to consider non-equilibrium transport conditions and develop new models; This has led to increased interest in Boltzmann solution and quantum transport models; 30

31 Physical Device Modeling History Closed form analysis Before the advancement of digital computers, solid-state devices were theoretically characterized using closed-form analytical techniques based on approximation solutions to the carrier transport processes. A well know example of this type of analysis was described by Shockley in his paper on unipolar field effect transistors in 1952 This approach usually proceeds by dividing the device into regions in which simplified linearized approximations are applied, joined by appropriate boundary conditions. This technique offers one two dimensional models 31

32 Physical Device Modeling History Closed Form Analysis Merits and Demerits Advantages of Closed-form analysis technique Closed-form analysis technique has proved effective in characterizing large geometry unipolar devices and has continued to be used in many applications which take advantage of the relative simplicity and ease of programming inherent in this approach Limitations of closed-form analysis techniques It is unsuitable for modeling devices where the transport process is other than largely one-dimensional and where the electric field varies rapidly throughout the device In results, modeling sub-micron devices and many planar devices, such as field-effect transistors (FETs) found in a wide range of discrete and integrated forms can t be modeled using closed-form technique. 32

33 Physical Device Modeling History Numerical simulation techniques development Development of Numerical Simulation Techniques Numerical simulation of semiconductor devices, using physical device models, began in 1964 with one-dimensional steadystate models and has been extended towards 2 3 dimensional numerical simulations to obtain a more realistic representation of planar and three terminal devices. Advantages of two dimensional numerical simulations includes: Current crowding (?) and high level injection in bipolar junction transistors (BJTs) and short and thin channels in FET s to be investigated, which is not possible for one-dimensional models. 33

34 Current Crowding Current crowding (also current crowding effect, or CCE) is a nonhomogeneous distribution of current density through a conductor or semiconductor, especially at the vicinity of the contacts and over the PN junctions. Current crowding is one of the limiting factors of efficiency of light emitting diodes. Materials with low mobility of charge carriers, e.g. AlGaInP, are especially prone to current crowding phenomena. It is a dominant loss mechanism in some LEDs, where the current densities especially around the P-side contacts reach the part of the emission characteristics with lower brightness/current efficiency. [Source : Wikipedia] 34

35 Physical Device Modeling History development of three dimensional simulation Three-dimensional Simulation Initiated to investigate small devices with narrow widths and non-uniformities in the active regions. Small geometry VLSI MOSFET s with channel widths of the order of the gate length cannot be accurately modeled using two-dimensional models and three-dimensional simulations have been used to characterize these devices. These types of models has been used to investigate, fringing field effects (?), breakdown voltage and threshold voltage variations Fringing Fields Leakage flux particularly associated with edge effects in a magnetic circuit [source: 35

36 Physical Device Modeling History Limitations of traditional transport equations The majority of modern low-dimensional semiconductor devices are subject to regions of high electric fields, carrier gradients and current densities which give rise nonequilibrium (hot electron) transport conditions. The traditional transport equations, based on field dependent carrier mobility (often known as drift-diffusion models), do not account for the process by which carriers gain energy from the transport conditions (carrier heating), and are not capable of modeling accurately sub-micron VLSI and other high frequency devices. 36

37 Physical Device Modeling History Development of Monte Carlo Methods Classical modeling techniques based on drift-diffusion equations have been extended to include momentum and energy relaxation effects (the semi-classical approach), and provide a relatively easily evaluate model. Monte Carlo methods have been used extensively to characterize transport processes in short samples of semiconductor material and in simplified device structures. The carrier transport characteristics obtained from Monte Carlo techniques are frequently used in semi-classical models. 37

38 Physical Device Modeling History Simulation Packages Many simulations based on classical and more recently semi classical semiconductor equations have reached a high level of development and are available commercially and as public domain software. For example MINIMOS, GEMNI, PISCES, CADDET, HFIELD, WATMOS, SEDAN, BIPLE and LUSTRE etc. More recently, interest in developing flexible simulations with a choice of solution algorithms has led to the introduction of new generation software packages for example PSPICE and etc 38

39 Importance of Quantum Transport Theory QTT has been used in semiconductor theory to verify the range of validity of Boltzmann transport models. It has not widely used for device modeling because of the difficulty of implementation. However, quantum transport theory has been more recently used to analyze novel device structures where genuine quantum transport phenomena occur. QTT is also important to understand the operation of the device operating in the optical frequency regime, where it has been shown that Boltzmann transport theory is not valid. 39

40 END OF LECTURES

ITT Technical Institute ET215 Devices I Unit 1

ITT Technical Institute ET215 Devices I Unit 1 ITT Technical Institute ET215 Devices I Unit 1 Chapter 1 Chapter 2, Sections 2.1-2.4 Chapter 1 Basic Concepts of Analog Circuits Recall ET115 & ET145 Ohms Law I = V/R If voltage across a resistor increases

More information

3C3 Analogue Circuits

3C3 Analogue Circuits Department of Electronic & Electrical Engineering Trinity College Dublin, 2014 3C3 Analogue Circuits Prof J K Vij jvij@tcd.ie Lecture 1: Introduction/ Semiconductors & Doping 1 Course Outline (subject

More information

Electro - Principles I

Electro - Principles I Electro - Principles I Page 10-1 Atomic Theory It is necessary to know what goes on at the atomic level of a semiconductor so the characteristics of the semiconductor can be understood. In many cases a

More information

LECTURE 23. MOS transistor. 1 We need a smart switch, i.e., an electronically controlled switch. Lecture Digital Circuits, Logic

LECTURE 23. MOS transistor. 1 We need a smart switch, i.e., an electronically controlled switch. Lecture Digital Circuits, Logic LECTURE 23 Lecture 16-20 Digital Circuits, Logic 1 We need a smart switch, i.e., an electronically controlled switch 2 We need a gain element for example, to make comparators. The device of our dreams

More information

Diodes. EE223 Digital & Analogue Electronics Derek Molloy 2012/2013.

Diodes. EE223 Digital & Analogue Electronics Derek Molloy 2012/2013. Diodes EE223 Digital & Analogue Electronics Derek Molloy 2012/2013 Derek.Molloy@dcu.ie Diodes: A Semiconductor? Conductors Such as copper, aluminium have a cloud of free electrons weak bound valence electrons

More information

Electronic PRINCIPLES

Electronic PRINCIPLES MALVINO & BATES Electronic PRINCIPLES SEVENTH EDITION Chapter 2 Semiconductors Topics Covered in Chapter 2 Conductors Semiconductors Silicon crystals Intrinsic semiconductors Two types of flow Doping a

More information

EE301 Electronics I , Fall

EE301 Electronics I , Fall EE301 Electronics I 2018-2019, Fall 1. Introduction to Microelectronics (1 Week/3 Hrs.) Introduction, Historical Background, Basic Consepts 2. Rewiev of Semiconductors (1 Week/3 Hrs.) Semiconductor materials

More information

ECE 335: Electronic Engineering Lecture 2: Semiconductors

ECE 335: Electronic Engineering Lecture 2: Semiconductors Faculty of Engineering ECE 335: Electronic Engineering Lecture 2: Semiconductors Agenda Intrinsic Semiconductors Extrinsic Semiconductors N-type P-type Carrier Transport Drift Diffusion Semiconductors

More information

ELECTRONIC DEVICES AND CIRCUITS SUMMARY

ELECTRONIC DEVICES AND CIRCUITS SUMMARY ELECTRONIC DEVICES AND CIRCUITS SUMMARY Classification of Materials: Insulator: An insulator is a material that offers a very low level (or negligible) of conductivity when voltage is applied. Eg: Paper,

More information

Introduction to Semiconductor Physics. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Introduction to Semiconductor Physics. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India Introduction to Semiconductor Physics 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/cmp2013 Review of Semiconductor Physics Semiconductor fundamentals

More information

Lecture (02) Introduction to Electronics II, PN Junction and Diodes I

Lecture (02) Introduction to Electronics II, PN Junction and Diodes I Lecture (02) Introduction to Electronics II, PN Junction and Diodes I By: Dr. Ahmed ElShafee ١ Agenda Current in semiconductors/conductors N type, P type semiconductors N Type Semiconductor P Type Semiconductor

More information

Semiconductors. Semiconductors also can collect and generate photons, so they are important in optoelectronic or photonic applications.

Semiconductors. Semiconductors also can collect and generate photons, so they are important in optoelectronic or photonic applications. Semiconductors Semiconducting materials have electrical properties that fall between true conductors, (like metals) which are always highly conducting and insulators (like glass or plastic or common ceramics)

More information

Chapter 1 Overview of Semiconductor Materials and Physics

Chapter 1 Overview of Semiconductor Materials and Physics Chapter 1 Overview of Semiconductor Materials and Physics Professor Paul K. Chu Conductivity / Resistivity of Insulators, Semiconductors, and Conductors Semiconductor Elements Period II III IV V VI 2 B

More information

Electronics EC /2/2012. * In-class exams: 40% 7 th week exam 25% 12 th week exam 15%

Electronics EC /2/2012. * In-class exams: 40% 7 th week exam 25% 12 th week exam 15% Arab Academy for Science, Technology and Maritime Transport Electronics EC 331 Dr. Mohamed Hassan Course Assessment * In-class exams: 40% 7 th week exam 25% 12 th week exam 15% *Tutorial exams and activities:

More information

ELECTRONIC I Lecture 1 Introduction to semiconductor. By Asst. Prof Dr. Jassim K. Hmood

ELECTRONIC I Lecture 1 Introduction to semiconductor. By Asst. Prof Dr. Jassim K. Hmood ELECTRONIC I Lecture 1 Introduction to semiconductor By Asst. Prof Dr. Jassim K. Hmood SOLID-STATE ELECTRONIC MATERIALS Electronic materials generally can be divided into three categories: insulators,

More information

ECE 142: Electronic Circuits Lecture 3: Semiconductors

ECE 142: Electronic Circuits Lecture 3: Semiconductors Faculty of Engineering ECE 142: Electronic Circuits Lecture 3: Semiconductors Agenda Intrinsic Semiconductors Extrinsic Semiconductors N-type P-type Carrier Transport Drift Diffusion Semiconductors A semiconductor

More information

Current mechanisms Exam January 27, 2012

Current mechanisms Exam January 27, 2012 Current mechanisms Exam January 27, 2012 There are four mechanisms that typically cause currents to flow: thermionic emission, diffusion, drift, and tunneling. Explain briefly which kind of current mechanisms

More information

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Lec 6: September 18, 2017 MOS Model You are Here: Transistor Edition! Previously: simple models (0 and 1 st order) " Comfortable

More information

Introduction to Electronics and Semiconductor

Introduction to Electronics and Semiconductor Introduction to Electronics and Semiconductor 1 Chapter Objectives To study and understand basic electronics. To study and understand semiconductor principles. 2 Definition Electronics is the branch of

More information

electronics fundamentals

electronics fundamentals electronics fundamentals circuits, devices, and applications THOMAS L. FLOYD DAVID M. BUCHLA Lesson 1: Diodes and Applications Semiconductors Figure 1-1 The Bohr model of an atom showing electrons in orbits

More information

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Lec 6: September 14, 2015 MOS Model You are Here: Transistor Edition! Previously: simple models (0 and 1 st order) " Comfortable

More information

Introduction to Semiconductor Devices

Introduction to Semiconductor Devices Physics 233 Experiment 48 Introduction to Semiconductor Devices References 1. G.W. Neudeck, The PN Junction Diode, Addison-Wesley MA 1989 2. Background notes (Appendix A) 3. Specification sheet for Diode

More information

3.1 Introduction to Semiconductors. Y. Baghzouz ECE Department UNLV

3.1 Introduction to Semiconductors. Y. Baghzouz ECE Department UNLV 3.1 Introduction to Semiconductors Y. Baghzouz ECE Department UNLV Introduction In this lecture, we will cover the basic aspects of semiconductor materials, and the physical mechanisms which are at the

More information

DO PHYSICS ONLINE ELECTRIC CURRENT FROM IDEAS TO IMPLEMENTATION ATOMS TO TRANSISTORS ELECTRICAL PROPERTIES OF SOLIDS

DO PHYSICS ONLINE ELECTRIC CURRENT FROM IDEAS TO IMPLEMENTATION ATOMS TO TRANSISTORS ELECTRICAL PROPERTIES OF SOLIDS DO PHYSICS ONLINE FROM IDEAS TO IMPLEMENTATION 9.4.3 ATOMS TO TRANSISTORS ELECTRICAL PROPERTIES OF SOLIDS ELECTRIC CURRENT Different substances vary considerably in their electrical properties. It is a

More information

Lecture (02) PN Junctions and Diodes

Lecture (02) PN Junctions and Diodes Lecture (02) PN Junctions and Diodes By: Dr. Ahmed ElShafee ١ I Agenda N type, P type semiconductors N Type Semiconductor P Type Semiconductor PN junction Energy Diagrams of the PN Junction and Depletion

More information

Type of material Numbers of FREE electrons Resitsivity/ resitance Insulator LOW HIGH Semi-Conductor MEDIUM MEDIUM Conductor HIGH LOW

Type of material Numbers of FREE electrons Resitsivity/ resitance Insulator LOW HIGH Semi-Conductor MEDIUM MEDIUM Conductor HIGH LOW 9.4.3 2 (i) Identify that some electrons in solids are shared between atoms and move freely There are three main ways in which matter is held together. They all involve the valence or outer shell electrons.

More information

Semi-Conductors insulators semi-conductors N-type Semi-Conductors P-type Semi-Conductors

Semi-Conductors insulators semi-conductors N-type Semi-Conductors P-type Semi-Conductors Semi-Conductors In the metal materials considered earlier, the coupling of the atoms together to form the material decouples an electron from each atom setting it free to roam around inside the material.

More information

Introduction to Power Semiconductor Devices

Introduction to Power Semiconductor Devices ECE442 Power Semiconductor Devices and Integrated Circuits Introduction to Power Semiconductor Devices Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Power Semiconductor Devices Applications System Ratings

More information

Misan University College of Engineering Electrical Engineering Department. Exam: Final semester Date: 17/6/2017

Misan University College of Engineering Electrical Engineering Department. Exam: Final semester Date: 17/6/2017 Misan University College of Engineering Electrical Engineering Department Subject: Electronic I Class: 1 st stage Exam: Final semester Date: 17/6/2017 Examiner: Dr. Baqer. O. TH. Time: 3 hr. Note: Answer

More information

Introduction to Semiconductor Devices

Introduction to Semiconductor Devices Physics 233 Experiment 48 Introduction to Semiconductor Devices References 1. G.W. Neudeck, The PN Junction Diode, Addison-Wesley MA 1989 2. Background notes (Appendix A) 3. Specification sheet for Diode

More information

Lecture 2. Semiconductor Physics. Sunday 4/10/2015 Semiconductor Physics 1-1

Lecture 2. Semiconductor Physics. Sunday 4/10/2015 Semiconductor Physics 1-1 Lecture 2 Semiconductor Physics Sunday 4/10/2015 Semiconductor Physics 1-1 Outline Intrinsic bond model: electrons and holes Charge carrier generation and recombination Intrinsic semiconductor Doping:

More information

Lecture 0: Introduction

Lecture 0: Introduction Lecture 0: Introduction Introduction q Integrated circuits: many transistors on one chip q Very Large Scale Integration (VLSI): bucketloads! q Complementary Metal Oxide Semiconductor Fast, cheap, low power

More information

Mat E 272 Lecture 25: Electrical properties of materials

Mat E 272 Lecture 25: Electrical properties of materials Mat E 272 Lecture 25: Electrical properties of materials December 6, 2001 Introduction: Calcium and copper are both metals; Ca has a valence of +2 (2 electrons per atom) while Cu has a valence of +1 (1

More information

KATIHAL FİZİĞİ MNT-510

KATIHAL FİZİĞİ MNT-510 KATIHAL FİZİĞİ MNT-510 YARIİLETKENLER Kaynaklar: Katıhal Fiziği, Prof. Dr. Mustafa Dikici, Seçkin Yayıncılık Katıhal Fiziği, Şakir Aydoğan, Nobel Yayıncılık, Physics for Computer Science Students: With

More information

Diodes. anode. cathode. cut-off. Can be approximated by a piecewise-linear-like characteristic. Lecture 9-1

Diodes. anode. cathode. cut-off. Can be approximated by a piecewise-linear-like characteristic. Lecture 9-1 Diodes mplest nonlinear circuit element Basic operation sets the foundation for Bipolar Junction Transistors (BJTs) Also present in Field Effect Transistors (FETs) Ideal diode characteristic anode cathode

More information

! Previously: simple models (0 and 1 st order) " Comfortable with basic functions and circuits. ! This week and next (4 lectures)

! Previously: simple models (0 and 1 st order)  Comfortable with basic functions and circuits. ! This week and next (4 lectures) ESE370: CircuitLevel Modeling, Design, and Optimization for Digital Systems Lec 6: September 18, 2017 MOS Model You are Here: Transistor Edition! Previously: simple models (0 and 1 st order) " Comfortable

More information

Lecture 1. OUTLINE Basic Semiconductor Physics. Reading: Chapter 2.1. Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations

Lecture 1. OUTLINE Basic Semiconductor Physics. Reading: Chapter 2.1. Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations Lecture 1 OUTLINE Basic Semiconductor Physics Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations Reading: Chapter 2.1 EE105 Fall 2007 Lecture 1, Slide 1 What is a Semiconductor? Low

More information

Electronics The basics of semiconductor physics

Electronics The basics of semiconductor physics Electronics The basics of semiconductor physics Prof. Márta Rencz, Gergely Nagy BME DED September 16, 2013 The basic properties of semiconductors Semiconductors conductance is between that of conductors

More information

Electronic Devices & Circuits

Electronic Devices & Circuits Electronic Devices & Circuits For Electronics & Communication Engineering By www.thegateacademy.com Syllabus Syllabus for Electronic Devices Energy Bands in Intrinsic and Extrinsic Silicon, Carrier Transport,

More information

SEMICONDUCTORS. Conductivity lies between conductors and insulators. The flow of charge in a metal results from the

SEMICONDUCTORS. Conductivity lies between conductors and insulators. The flow of charge in a metal results from the SEMICONDUCTORS Conductivity lies between conductors and insulators The flow of charge in a metal results from the movement of electrons Electros are negatively charged particles (q=1.60x10-19 C ) The outermost

More information

Electronic Circuits for Mechatronics ELCT 609 Lecture 2: PN Junctions (1)

Electronic Circuits for Mechatronics ELCT 609 Lecture 2: PN Junctions (1) Electronic Circuits for Mechatronics ELCT 609 Lecture 2: PN Junctions (1) Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 Electronic (Semiconductor) Devices P-N Junctions (Diodes): Physical

More information

EE236 Electronics. Computer and Systems Engineering Department. Faculty of Engineering Alexandria University. Fall 2014

EE236 Electronics. Computer and Systems Engineering Department. Faculty of Engineering Alexandria University. Fall 2014 EE236 Electronics Computer and Systems Engineering Department Faculty of Engineering Alexandria University Fall 2014 Lecturer: Bassem Mokhtar, Ph.D. Assistant Professor Department of Electrical Engineering

More information

EE130: Integrated Circuit Devices

EE130: Integrated Circuit Devices EE130: Integrated Circuit Devices (online at http://webcast.berkeley.edu) Instructor: Prof. Tsu-Jae King (tking@eecs.berkeley.edu) TA s: Marie Eyoum (meyoum@eecs.berkeley.edu) Alvaro Padilla (apadilla@eecs.berkeley.edu)

More information

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today MOS MOS. Capacitor. Idea

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today MOS MOS. Capacitor. Idea ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 9: September 26, 2011 MOS Model Today MOS Structure Basic Idea Semiconductor Physics Metals, insulators Silicon lattice

More information

First-Hand Investigation: Modeling of Semiconductors

First-Hand Investigation: Modeling of Semiconductors perform an investigation to model the behaviour of semiconductors, including the creation of a hole or positive charge on the atom that has lost the electron and the movement of electrons and holes in

More information

EE 5211 Analog Integrated Circuit Design. Hua Tang Fall 2012

EE 5211 Analog Integrated Circuit Design. Hua Tang Fall 2012 EE 5211 Analog Integrated Circuit Design Hua Tang Fall 2012 Today s topic: 1. Introduction to Analog IC 2. IC Manufacturing (Chapter 2) Introduction What is Integrated Circuit (IC) vs discrete circuits?

More information

! Previously: simple models (0 and 1 st order) " Comfortable with basic functions and circuits. ! This week and next (4 lectures)

! Previously: simple models (0 and 1 st order)  Comfortable with basic functions and circuits. ! This week and next (4 lectures) ESE370: CircuitLevel Modeling, Design, and Optimization for Digital Systems Lec 6: September 14, 2015 MOS Model You are Here: Transistor Edition! Previously: simple models (0 and 1 st order) " Comfortable

More information

ESE 372 / Spring 2013 / Lecture 5 Metal Oxide Semiconductor Field Effect Transistor

ESE 372 / Spring 2013 / Lecture 5 Metal Oxide Semiconductor Field Effect Transistor Metal Oxide Semiconductor Field Effect Transistor V G V G 1 Metal Oxide Semiconductor Field Effect Transistor We will need to understand how this current flows through Si What is electric current? 2 Back

More information

David J. Starling Penn State Hazleton PHYS 214

David J. Starling Penn State Hazleton PHYS 214 Being virtually killed by a virtual laser in a virtual space is just as effective as the real thing, because you are as dead as you think you are. -Douglas Adams, Mostly Harmless David J. Starling Penn

More information

EE 446/646 Photovoltaic Devices I. Y. Baghzouz

EE 446/646 Photovoltaic Devices I. Y. Baghzouz EE 446/646 Photovoltaic Devices I Y. Baghzouz What is Photovoltaics? First used in about 1890, the word has two parts: photo, derived from the Greek word for light, volt, relating to electricity pioneer

More information

Engineering 2000 Chapter 8 Semiconductors. ENG2000: R.I. Hornsey Semi: 1

Engineering 2000 Chapter 8 Semiconductors. ENG2000: R.I. Hornsey Semi: 1 Engineering 2000 Chapter 8 Semiconductors ENG2000: R.I. Hornsey Semi: 1 Overview We need to know the electrical properties of Si To do this, we must also draw on some of the physical properties and we

More information

16EC401 BASIC ELECTRONIC DEVICES UNIT I PN JUNCTION DIODE. Energy Band Diagram of Conductor, Insulator and Semiconductor:

16EC401 BASIC ELECTRONIC DEVICES UNIT I PN JUNCTION DIODE. Energy Band Diagram of Conductor, Insulator and Semiconductor: 16EC401 BASIC ELECTRONIC DEVICES UNIT I PN JUNCTION DIODE Energy bands in Intrinsic and Extrinsic silicon: Energy Band Diagram of Conductor, Insulator and Semiconductor: 1 2 Carrier transport: Any motion

More information

Lecture 0. EE206 Electronics I

Lecture 0. EE206 Electronics I Lecture 0 Course Overview EE206 Electronics I Course description: Theory, characteristics and operation of diodes, bipolar junction transistors and MOSFET transistors. When: Tue Thu 10:30-12:20 (Lectures)

More information

A semiconductor is an almost insulating material, in which by contamination (doping) positive or negative charge carriers can be introduced.

A semiconductor is an almost insulating material, in which by contamination (doping) positive or negative charge carriers can be introduced. Semiconductor A semiconductor is an almost insulating material, in which by contamination (doping) positive or negative charge carriers can be introduced. Page 2 Semiconductor materials Page 3 Energy levels

More information

Resistance (R) Temperature (T)

Resistance (R) Temperature (T) CHAPTER 1 Physical Properties of Elements and Semiconductors 1.1 Introduction Semiconductors constitute a large class of substances which have resistivities lying between those of insulators and conductors.

More information

Semiconductor Detectors

Semiconductor Detectors Semiconductor Detectors Summary of Last Lecture Band structure in Solids: Conduction band Conduction band thermal conductivity: E g > 5 ev Valence band Insulator Charge carrier in conductor: e - Charge

More information

Unit IV Semiconductors Engineering Physics

Unit IV Semiconductors Engineering Physics Introduction A semiconductor is a material that has a resistivity lies between that of a conductor and an insulator. The conductivity of a semiconductor material can be varied under an external electrical

More information

FREQUENTLY ASKED QUESTIONS February 21, 2017

FREQUENTLY ASKED QUESTIONS February 21, 2017 FREQUENTLY ASKED QUESTIONS February 21, 2017 Content Questions How do you place a single arsenic atom with the ratio 1 in 100 million? Sounds difficult to get evenly spread throughout. Yes, techniques

More information

Digital Electronics Part II - Circuits

Digital Electronics Part II - Circuits Digital Electronics Part - Circuits Dr.. J. Wassell Gates from Transistors ntroduction Logic circuits are non-linear, consequently we will introduce a graphical technique for analysing such circuits The

More information

Concept of Core IENGINEERS- CONSULTANTS LECTURE NOTES SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU. Page 1

Concept of Core IENGINEERS- CONSULTANTS LECTURE NOTES SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU. Page 1 Concept of Core Conductivity of conductor and semiconductor can also be explained by concept of Core. Core: Core is a part of an atom other than its valence electrons. Core consists of all inner shells

More information

Atoms? All matters on earth made of atoms (made up of elements or combination of elements).

Atoms? All matters on earth made of atoms (made up of elements or combination of elements). Chapter 1 Atoms? All matters on earth made of atoms (made up of elements or combination of elements). Atomic Structure Atom is the smallest particle of an element that can exist in a stable or independent

More information

12/10/09. Chapter 18: Electrical Properties. View of an Integrated Circuit. Electrical Conduction ISSUES TO ADDRESS...

12/10/09. Chapter 18: Electrical Properties. View of an Integrated Circuit. Electrical Conduction ISSUES TO ADDRESS... Chapter 18: Electrical Properties ISSUES TO ADDRESS... How are electrical conductance and resistance characterized? What are the physical phenomena that distinguish? For metals, how is affected by and

More information

Semiconductor Devices and Circuits Fall Midterm Exam. Instructor: Dr. Dietmar Knipp, Professor of Electrical Engineering. Name: Mat. -Nr.

Semiconductor Devices and Circuits Fall Midterm Exam. Instructor: Dr. Dietmar Knipp, Professor of Electrical Engineering. Name: Mat. -Nr. Semiconductor Devices and Circuits Fall 2003 Midterm Exam Instructor: Dr. Dietmar Knipp, Professor of Electrical Engineering Name: Mat. -Nr.: Guidelines: Duration of the Midterm: 1 hour The exam is a closed

More information

CLASS 1 & 2 REVISION ON SEMICONDUCTOR PHYSICS. Reference: Electronic Devices by Floyd

CLASS 1 & 2 REVISION ON SEMICONDUCTOR PHYSICS. Reference: Electronic Devices by Floyd CLASS 1 & 2 REVISION ON SEMICONDUCTOR PHYSICS Reference: Electronic Devices by Floyd 1 ELECTRONIC DEVICES Diodes, transistors and integrated circuits (IC) are typical devices in electronic circuits. All

More information

Review of Semiconductor Fundamentals

Review of Semiconductor Fundamentals ECE 541/ME 541 Microelectronic Fabrication Techniques Review of Semiconductor Fundamentals Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Page 1 Semiconductor A semiconductor is an almost insulating material,

More information

SRI VIDYA COLLEGE OF ENGINEERING AND TECHNOLOGY VIRUDHUNAGAR Department of Electronics and Communication Engineering

SRI VIDYA COLLEGE OF ENGINEERING AND TECHNOLOGY VIRUDHUNAGAR Department of Electronics and Communication Engineering SRI VIDYA COLLEGE OF ENGINEERING AND TECHNOLOGY VIRUDHUNAGAR Department of Electronics and Communication Engineering Class/Sem:I ECE/II Question Bank for EC6201-ELECTRONIC DEVICES 1.What do u meant by

More information

ISSUES TO ADDRESS...

ISSUES TO ADDRESS... Chapter 12: Electrical Properties School of Mechanical Engineering Choi, Hae-Jin Materials Science - Prof. Choi, Hae-Jin Chapter 12-1 ISSUES TO ADDRESS... How are electrical conductance and resistance

More information

ECE 250 Electronic Devices 1. Electronic Device Modeling

ECE 250 Electronic Devices 1. Electronic Device Modeling ECE 250 Electronic Devices 1 ECE 250 Electronic Device Modeling ECE 250 Electronic Devices 2 Introduction to Semiconductor Physics You should really take a semiconductor device physics course. We can only

More information

Lecture 12: MOS Capacitors, transistors. Context

Lecture 12: MOS Capacitors, transistors. Context Lecture 12: MOS Capacitors, transistors Context In the last lecture, we discussed PN diodes, and the depletion layer into semiconductor surfaces. Small signal models In this lecture, we will apply those

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 23, 2018 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2018 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor

More information

A SEMICONDUCTOR DIODE. P-N Junction

A SEMICONDUCTOR DIODE. P-N Junction A SEMICONDUCTOR DIODE P-N Junction Analog Electronics Pujianto Department of Physics Edu. State University of Yogyakarta A Semiconductor Devices A Semiconductor devices can be defined as a unit which consists,

More information

EE 3329 Electronic Devices Syllabus ( Extended Play )

EE 3329 Electronic Devices Syllabus ( Extended Play ) EE 3329 - Electronic Devices Syllabus EE 3329 Electronic Devices Syllabus ( Extended Play ) The University of Texas at El Paso The following concepts can be part of the syllabus for the Electronic Devices

More information

Processing of Semiconducting Materials Prof. Pallab Banerji Department of Material Science Indian Institute of Technology, Kharagpur

Processing of Semiconducting Materials Prof. Pallab Banerji Department of Material Science Indian Institute of Technology, Kharagpur Processing of Semiconducting Materials Prof. Pallab Banerji Department of Material Science Indian Institute of Technology, Kharagpur Lecture - 4 Doping in Semiconductors Good morning. Let us start with

More information

EXTRINSIC SEMICONDUCTOR

EXTRINSIC SEMICONDUCTOR EXTRINSIC SEMICONDUCTOR In an extrinsic semiconducting material, the charge carriers originate from impurity atoms added to the original material is called impurity [or] extrinsic semiconductor. This Semiconductor

More information

From Last Time Important new Quantum Mechanical Concepts. Atoms and Molecules. Today. Symmetry. Simple molecules.

From Last Time Important new Quantum Mechanical Concepts. Atoms and Molecules. Today. Symmetry. Simple molecules. Today From Last Time Important new Quantum Mechanical Concepts Indistinguishability: Symmetries of the wavefunction: Symmetric and Antisymmetric Pauli exclusion principle: only one fermion per state Spin

More information

EC/EE DIGITAL ELECTRONICS

EC/EE DIGITAL ELECTRONICS EC/EE 214(R-15) Total No. of Questions :09] [Total No. of Pages : 02 II/IV B.Tech. DEGREE EXAMINATIONS, DECEMBER- 2016 First Semester EC/EE DIGITAL ELECTRONICS Time: Three Hours 1. a) Define Encoder Answer

More information

MOSFET: Introduction

MOSFET: Introduction E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major

More information

Semiconductor Physical Electronics

Semiconductor Physical Electronics Semiconductor Physical Electronics Sheng S. Li Department of Electrical Engineering University of Florida Gainesville, Florida Plenum Press New York and London Contents CHAPTER 1. Classification of Solids

More information

R. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition. Figures for Chapter 6

R. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition. Figures for Chapter 6 R. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition Figures for Chapter 6 Free electron Conduction band Hole W g W C Forbidden Band or Bandgap W V Electron energy Hole Valence

More information

Semiconductor Device Physics

Semiconductor Device Physics 1 Semiconductor Device Physics Lecture 1 http://zitompul.wordpress.com 2 0 1 3 2 Semiconductor Device Physics Textbook: Semiconductor Device Fundamentals, Robert F. Pierret, International Edition, Addison

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 29, 2019 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2019 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor

More information

Introduction to Transistors. Semiconductors Diodes Transistors

Introduction to Transistors. Semiconductors Diodes Transistors Introduction to Transistors Semiconductors Diodes Transistors 1 Semiconductors Typical semiconductors, like silicon and germanium, have four valence electrons which form atomic bonds with neighboring atoms

More information

INFORMATION ABOUT THE COURSE

INFORMATION ABOUT THE COURSE KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 INFORMATION ABOUT THE COURSE KOM2751 Analog Electronics KOM2751 Analog Electronics :: Dr. Muharrem Mercimek ::

More information

Chem 481 Lecture Material 3/20/09

Chem 481 Lecture Material 3/20/09 Chem 481 Lecture Material 3/20/09 Radiation Detection and Measurement Semiconductor Detectors The electrons in a sample of silicon are each bound to specific silicon atoms (occupy the valence band). If

More information

PN Junction

PN Junction P Junction 2017-05-04 Definition Power Electronics = semiconductor switches are used Analogue amplifier = high power loss 250 200 u x 150 100 u Udc i 50 0 0 50 100 150 200 250 300 350 400 i,u dc i,u u

More information

Semiconductor Devices, Fall Gunnar Malm, Associate Professor Integrated Devices and Circuits, Kista Campus

Semiconductor Devices, Fall Gunnar Malm, Associate Professor Integrated Devices and Circuits, Kista Campus Semiconductor Devices, Fall 2014 Gunnar Malm, Associate Professor Integrated Devices and Circuits, Kista Campus gunta@kth.se, 08-790 4332 Semiconductor procesing at KTH Electrum Laboratory Stepper Lithography

More information

The photovoltaic effect occurs in semiconductors where there are distinct valence and

The photovoltaic effect occurs in semiconductors where there are distinct valence and How a Photovoltaic Cell Works The photovoltaic effect occurs in semiconductors where there are distinct valence and conduction bands. (There are energies at which electrons can not exist within the solid)

More information

Quiz #1 Practice Problem Set

Quiz #1 Practice Problem Set Name: Student Number: ELEC 3908 Physical Electronics Quiz #1 Practice Problem Set? Minutes January 22, 2016 - No aids except a non-programmable calculator - All questions must be answered - All questions

More information

Device 3D. 3D Device Simulator. Nano Scale Devices. Fin FET

Device 3D. 3D Device Simulator. Nano Scale Devices. Fin FET Device 3D 3D Device Simulator Device 3D is a physics based 3D device simulator for any device type and includes material properties for the commonly used semiconductor materials in use today. The physical

More information

Determination of properties in semiconductor materials by applying Matlab

Determination of properties in semiconductor materials by applying Matlab Determination of properties in semiconductor materials by applying Matlab Carlos Figueroa. 1, Raúl Riera A. 2 1 Departamento de Ingeniería Industrial. Universidad de Sonora A.P. 5-088, Hermosillo, Sonora.

More information

SOLID STATE ELECTRONICS DIGITAL ELECTRONICS SOFT CONDENSED MATTER PHYSICS

SOLID STATE ELECTRONICS DIGITAL ELECTRONICS SOFT CONDENSED MATTER PHYSICS SOLID STATE ELECTRONICS DIGITAL ELECTRONICS SOFT CONDENSED MATTER PHYSICS The energy band occupied by the valence electrons is called valence band and is the highest filled band. Bnd occupied by the electrons

More information

ECE 442. Spring, Lecture -2

ECE 442. Spring, Lecture -2 ECE 442 Power Semiconductor Devices and Integrated circuits Spring, 2006 University of Illinois at Chicago Lecture -2 Semiconductor physics band structures and charge carriers 1. What are the types of

More information

CLASS 12th. Semiconductors

CLASS 12th. Semiconductors CLASS 12th Semiconductors 01. Distinction Between Metals, Insulators and Semi-Conductors Metals are good conductors of electricity, insulators do not conduct electricity, while the semiconductors have

More information

Conductivity and Semi-Conductors

Conductivity and Semi-Conductors Conductivity and Semi-Conductors J = current density = I/A E = Electric field intensity = V/l where l is the distance between two points Metals: Semiconductors: Many Polymers and Glasses 1 Electrical Conduction

More information

Contents CONTENTS. Page 2 of 47

Contents CONTENTS. Page 2 of 47 J. A. Hargreaves Lockerbie Academy June 2015 Contents CONTENTS Contents... 2 CHAPTER 7 CONDUCTORS, SEMICONDUCTORS AND INSULATORS... 4 Summary of Content... 4 Summary of this chapter- notes from column

More information

Sheng S. Li. Semiconductor Physical Electronics. Second Edition. With 230 Figures. 4) Springer

Sheng S. Li. Semiconductor Physical Electronics. Second Edition. With 230 Figures. 4) Springer Sheng S. Li Semiconductor Physical Electronics Second Edition With 230 Figures 4) Springer Contents Preface 1. Classification of Solids and Crystal Structure 1 1.1 Introduction 1 1.2 The Bravais Lattice

More information

EECS143 Microfabrication Technology

EECS143 Microfabrication Technology EECS143 Microfabrication Technology Professor Ali Javey Introduction to Materials Lecture 1 Evolution of Devices Yesterday s Transistor (1947) Today s Transistor (2006) Why Semiconductors? Conductors e.g

More information

Semiconductors (Chất1bán1dẫn)

Semiconductors (Chất1bán1dẫn) To describe the properties of n-type and p-type semiconductors and how a pn jun formed To study a diode and the characteristics of diode 1-1 Atomic Structure Atomic1Structure An atom is the smallest particle

More information

3.7 Physical Operation of Diodes

3.7 Physical Operation of Diodes 10/4/2005 3_7 Physical Operation of Diodes blank.doc 1/2 3.7 Physical Operation of Diodes Reading Assignment: pp. 190200, 203205 A. Semiconductor Materials Q: So, what exactly is a junction diode made

More information

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

! CMOS Process Enhancements. ! Semiconductor Physics.  Band gaps.  Field Effects. ! MOS Physics.  Cut-off.  Depletion. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 3, 018 MOS Transistor Theory, MOS Model Lecture Outline! CMOS Process Enhancements! Semiconductor Physics " Band gaps " Field Effects!

More information