Le Châtelier's Principle. Chemical Equilibria & the Application of Le Châtelier s Principle to General Equilibria. Using Le Châtelier's Principle

Size: px
Start display at page:

Download "Le Châtelier's Principle. Chemical Equilibria & the Application of Le Châtelier s Principle to General Equilibria. Using Le Châtelier's Principle"

Transcription

1 Chemical Equilibria & the Application of Le Châtelier s Principle to General Equilibria CHEM 107 T. Hughbanks Le Châtelier's Principle When a change is imposed on a system at equilibrium, the system will react in the direction that reduces the amount of change. Changes include adding or removing material, or changes in pressure or temperature. Using Le Châtelier's Principle CO(g) + 3H 2 (g) CH 4 (g) + H 2 O(g) An equilibrium mixture at 1200 K contains mol CO, mol H 2, mol CH 4 and mol H 2 O, all in a 10.0 L vessel. (What is?) All of the H 2 O is somehow removed, and equilibrium is re-established. What will happen to the amount of CH 4? Set up eqn. for final amount of CH 4. Changes in Temperature The equilibrium constant is not constant with temperature. Le Châtelier s Principle would suggest: Qualitatively, if a reaction is endothermic then the equilibrium constant increases with temperature If a reaction is exothermic then the equilibrium constant decreases with temperature Changes in Pressure Consider the equilibrium (significant at 700 C): CaO(s) + CO 2 (g) CaCO 3 (s) Le Châtelier s Principle would suggest: If the pressure is suddenly increased, say by suddenly compressing the container, more CO 2 would react with CaO to produce more CaCO 3. Many equilibrium reactions occur in solutions. Weak acids & bases, etc. Example: solution of ammonia Write an equilibrium constant for this.

2 = [NH + ][OH ] 4 [NH 3 ][H 2 O] But [H 2 O] is constant, so we can incorporate it into the constant itself. = [NH + ][OH ] 4 = K [NH 3 ] b By convention, tabulated K s are written like this, without including water term. NH 3 produces OH in water and is therefore a base. for a base is called K b. For NH 3, K b = What % of NH 3 is converted to NH 4 + in a 1.0 M solution? Acids - Definition of K a HA(aq) + H 2 O H 3 O + (aq) + A (aq) = [H 3 O+ ][A ] = K [HA] a Once again, the water term is omitted in tabulating the equilibrium constants of acids. An acid, say HA, produces H 3 O + in water. for an acid is called K a. For CH 3 COOH (acetic acid), K a = What is [H 3 O + ] in a 0.1 M solution? Water self-dissociates, even in the absence of added acids or bases: H 2 O + H 2 O H 3 O + (aq) + OH (aq) = [H 3 O + ][OH ] = = K w Again, [H 2 O] is constant, so K w does not include it. In pure water, what are [H 3 O + ] & [OH ]? In all aqueous solutions, equilibrium between H 3 O + & OH is continually re-established: H 2 O + H 2 O H 3 O + (aq) + OH (aq) = [H 3 O + ][OH ] = = K w This is true even with added acids or bases. In a 1.0 M NH 3 solution, what is [H 3 O + ]? ph Scale H 3 O + concentration is conveniently measured using the logarithmic ph scale: ph = -log[h 3 O + ] In pure H 2 O, [H 3 O + ] = 10 7, ph = -log 10 7 = 7 poh is defined similarly: poh = -log[oh - ] What are the ph and poh of a 1.0 M NH 3 solution?

3 ph and poh ph = -log [H 3 O + ] poh = -log [OH - ] In aqueous solutions, [H 3 O + ][OH - ] = This is true even with added acids or bases. -log {[H 3 O + ][OH - ]} = -log {10 14 } -log [H 3 O + ] - log [OH - ] =14 ph + poh = 14 Solubility Equilibrium The process is in equilibrium when rate of ions (or molecules) leaving the solid = rate returning to the solid. That is, when dissolution rate = precipitation rate Solubility Products M p X q (s) M q+ (aq) + X p- (aq) K sp = [M q+ ] p [X p ] q Note that no concentration of the M p X q solid appears in the equilibrium constant. This when the solid salt and dissolved salt are in equilibrium, the solution is saturated. When the solution is saturated, the amount of extra salt does not affect the amount of dissolved M p X q. Solubility Products In a saturated aqueous solution of MgF 2, the concentration of Mg 2+ ions is M. Write the equilibrium constant expression, and compute K sp for MgF 2. Phase Equilibria - Examples H 2 O(l ) H 2 O(g ); CO 2 (s) CO 2 (g) Gas-Liquid Equilibrium K P = P H2 O K P = P CO2 When gases are involved in equilibria, pressures appear in the equilibrium constant. Concentrations of H 2 O(l ) or CO 2 (s) do not appear in these expressions. If at least some H 2 O(l ) or CO 2 (s) are present, the equilibrium vapor pressures of the gases will not depend on the quantity of the condensed phases.

4 Problem: H 2 O(l ) H 2 O(g ) Given: kj of heat is required to boil away 1.0 mol of water at 1.0 atm. As we know, this happens at 100 C. Q: Estimate the boiling point of water on a planet where the atmospheric pressure is twice that of earth. Summary: Varieties of Equilibrium Constants Gas Phase: K P and K C your text sticks to K C, but K P is the thermodynamic equilibrium constant. Calculations can use either. Heterogeneous (more than one phase in equilibrium): The condensed phases don t appear (they have activity = 1). This is true for solid-gas, liquid-gas, and solubility products. Species in solution: Products over Reactants, but solvents don t appear because their activities are virtually constant. For example, K a s and K b s don t include [H 2 O] in the denominator. Reconsider G In thermodynamics, when we consider a reaction, we calculate G for the forward reaction as follows: G rxn = n G f products n G f reactants = γ G f (C) + δ G f (D) α G f (A) β G f (B) Each of the reactants and products are defined to be in standard states in this eqn. Look more carefully at standard states & consider G when conditions aren t standard. Standard States 298 K, 1 atm. Each gas phase reactant and product considered to be at 1 atm. pressure under standard conditions. (eg., if A & C are gases, P A = P C = 1atm) Example: NH 3 (g) + HCl(g) NH 4 Cl(s) from data in Appendix E (all in kj): G rxn = (-16.45) - (-95.30) = kj This is G for converting 1 mol NH 3 and 1 mol HCl at 1.0 atm. pressure into solid NH 4 Cl at 298 K. Standard States Any reactant or product that exists as an ion or molecule dissolved in solution, the conc. is 1.0 mol/l (1.0 M) for the standard state. Example: NH 3 (g) + H 2 O(l) NH 3 (aq) + H 2 O(l) from data in Appendix E (all in kj): G = 26.5 ( 16.45) = kj This is G for dissolving 1 mol NH 3 gas (at 1.0 atm pressure) into water to form a 1.0 M NH 3 solution all at 298 K. G: Non-standard Conditions When concentrations (or pressures, if gases are involved) are not standard, G is related to G by the equation: G = G + RT lnq where Q is the reaction quotient defined earlier: Q = P γ δ C PD P α Q = [C]γ [D] δ β A P B [A] α [B] β for gases, pressures are used, for solutions, concentrations are used.

5 G = G + RT lnq Q = P γ δ C P D P α β A P B Q = [C]γ [D] δ [A] α [B] β Q is variable (determined by the amount of reactants and products at any time.) Check: standard conditions, Q = 1, G = G At equilibrium, Q = K. But we know that when we are at equilibrium, G = 0. 0 = G + RTlnK G = RTlnK G = - RT lnk, Example Given the following data, calculate K for the reaction: I 2 (g) + H 2 (g) 2 HI(g) From Appendix E: H f (I 2 (g)) = 62.44; H f (HI(g)) = both in kj/mol S (I 2 (g)) = ; S (H 2 (g)) = S (HI(g)) = all in J/mol K I 2 (g) + H 2 (g) 2 HI(g) G = RT lnk K = exp{- G /RT} We need G in order to get K, so... H = 2[ H f (HI(g))] H f (I 2 (g)) H f (H 2 (g)) = 2[26.48] = 9.48 kj S = 2[S (HI(g))] S (I 2 (g)) S (H 2 (g)) = 2[206.59] = J/K G = H T S = 9.48 (298)(.0218) kj G = kj I 2 (g) + H 2 (g) 2 HI(g) G = RT lnk K = exp{- G /RT} We found: G = kj/mol K = exp{ J/(8.314 J/K)(298 K)} K = (no units) I 2 (g) + H 2 (g) 2 HI(g) I 2 (g) + H 2 (g) 2 HI(g) K = But, what is this equal to? The equilibrium constant must be expressed using pressures for gases when obtained directly from thermodynamic data. K P = = (P HI ) 2 /(P I2 ) K P = = (P HI ) 2 /(P I2 ) convert to concentrations, K C? use P = (n/v)rt = [conc.] RT (P HI ) 2 /(P I2 ) = [HI] 2 /[I 2 ][H 2 ] (RT) 2 /(RT)(RT) in this case K P and K C are numerically equal This is not true generally (when n 0)

Chemical Equilibria & the Application of Le Châtelier s Principle to General Equilibria

Chemical Equilibria & the Application of Le Châtelier s Principle to General Equilibria Chemical Equilibria & the Application of Le Châtelier s Principle to General Equilibria CHEM 102! T. Hughbanks! Example of Equilibrium N 2 (g) + 3H 2 (g) 2 NH 3 (g) Reactions can occur, in principle, in

More information

Chapter 15 Equilibrium

Chapter 15 Equilibrium Chapter 15. Chemical Equilibrium 15.1 The Concept of Equilibrium Chemical equilibrium is the point at which the concentrations of all species are constant. A dynamic equilibrium exists when the rates of

More information

Chapter 15. Chemical Equilibrium

Chapter 15. Chemical Equilibrium Chapter 15. Chemical Equilibrium 15.1 The Concept of Equilibrium Consider colorless frozen N 2 O 4. At room temperature, it decomposes to brown NO 2. N 2 O 4 (g) 2NO 2 (g) At some time, the color stops

More information

Chapter 18. Reversible Reactions. A chemical reaction in which the products can react to re-form the reactants is called a reversible reaction.

Chapter 18. Reversible Reactions. A chemical reaction in which the products can react to re-form the reactants is called a reversible reaction. Section 1 The Nature of Chemical Equilibrium Reversible Reactions A chemical reaction in which the products can react to re-form the reactants is called a reversible reaction. Section 1 The Nature of Chemical

More information

Chemical Equilibrium. Professor Bice Martincigh. Equilibrium

Chemical Equilibrium. Professor Bice Martincigh. Equilibrium Chemical Equilibrium by Professor Bice Martincigh Equilibrium involves reversible reactions Some reactions appear to go only in one direction are said to go to completion. indicated by All reactions are

More information

Equilibrium and Reaction Rate

Equilibrium and Reaction Rate Equilibrium and Reaction Rate Multiple Choice Questions - Answers 1. Activation energy could be considered as the minimum energy required to do which of these? A. change the orientation of the reactant

More information

15.1 The Concept of Equilibrium

15.1 The Concept of Equilibrium Lecture Presentation Chapter 15 Chemical Yonsei University 15.1 The Concept of N 2 O 4 (g) 2NO 2 (g) 2 Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate. The

More information

Chapter 15 Equilibrium

Chapter 15 Equilibrium Chapter 15. Chemical Equilibrium Common Student Misconceptions Many students need to see how the numerical problems in this chapter are solved. Students confuse the arrows used for resonance ( )and equilibrium

More information

Chapter 19 Chemical Thermodynamics

Chapter 19 Chemical Thermodynamics Chapter 19. Chemical Thermodynamics Sample Exercise 19.2 (p. 819) Elemental mercury is a silver liquid at room temperature. Its normal freezing point is -38.9 o C, and its molar enthalpy of fusion is H

More information

Chapter 15 Chemical Equilibrium

Chapter 15 Chemical Equilibrium Chapter 15 Chemical Chemical 15.1 The Concept of 15.2 The Constant (K) 15.3 Understanding and Working with Constants 15.4 Heterogeneous Equilibria 15.5 Calculating Constants 15.6 Applications of Constants

More information

Entropy, Free Energy, and Equilibrium

Entropy, Free Energy, and Equilibrium Entropy, Free Energy, and Equilibrium Chapter 17 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Spontaneous Physical and Chemical Processes A waterfall runs

More information

Chapter 15. Chemical Equilibrium

Chapter 15. Chemical Equilibrium Chapter 15. Chemical Equilibrium 15.1 The Concept of Equilibrium Consider colorless frozen N 2 O 4. At room temperature, it decomposes to brown NO 2. N 2 O 4 (g) 2NO 2 (g) At some time, the color stops

More information

CHAPTER 7: Chemical Equilibrium

CHAPTER 7: Chemical Equilibrium CHAPTER 7: Chemical Equilibrium Chemical Reactions and Equilibrium Calculating Equilibrium Constants The Reaction Quotient Calculation of Gas-Phase Equilibria The effect of External Stresses: Le Châtelier

More information

Unit 5: Spontaneity of Reaction. You need to bring your textbooks everyday of this unit.

Unit 5: Spontaneity of Reaction. You need to bring your textbooks everyday of this unit. Unit 5: Spontaneity of Reaction You need to bring your textbooks everyday of this unit. THE LAWS OF THERMODYNAMICS 1 st Law of Thermodynamics Energy is conserved ΔE = q + w 2 nd Law of Thermodynamics A

More information

Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16

Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16 Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16 1980 - #7 (a) State the physical significance of entropy. Entropy (S) is a measure of randomness or disorder in a system. (b) From each of

More information

Chem 116 POGIL Worksheet - Week 9 Equilibrium Continued Introduction to Acid-Base Concepts

Chem 116 POGIL Worksheet - Week 9 Equilibrium Continued Introduction to Acid-Base Concepts Chem 116 POGIL Worksheet - Week 9 Equilibrium Continued Introduction to Acid-Base Concepts Why? When a reaction reaches equilibrium we can calculate the concentrations of all species, both reactants and

More information

Chapter 15 Equilibrium

Chapter 15 Equilibrium Chapter 15. Chemical Equilibrium Common Student Misconceptions Many students need to see how the numerical problems in this chapter are solved. Students confuse the arrows used for resonance ( )and equilibrium

More information

Chapter Eighteen. Thermodynamics

Chapter Eighteen. Thermodynamics Chapter Eighteen Thermodynamics 1 Thermodynamics Study of energy changes during observed processes Purpose: To predict spontaneity of a process Spontaneity: Will process go without assistance? Depends

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium What is equilibrium? Expressions for equilibrium constants, K eq ; Calculating K eq using equilibrium concentrations; Factors that affect equilibrium; Le Chatelier s Principle What

More information

Thermodynamics. Thermodynamically favored reactions ( spontaneous ) Enthalpy Entropy Free energy

Thermodynamics. Thermodynamically favored reactions ( spontaneous ) Enthalpy Entropy Free energy Thermodynamics Thermodynamically favored reactions ( spontaneous ) Enthalpy Entropy Free energy 1 Thermodynamically Favored Processes Water flows downhill. Sugar dissolves in coffee. Heat flows from hot

More information

Chapter 16. Thermodynamics. Thermochemistry Review. Calculating H o rxn. Predicting sign for H o rxn. Creative Commons License

Chapter 16. Thermodynamics. Thermochemistry Review. Calculating H o rxn. Predicting sign for H o rxn. Creative Commons License Chapter 16 Thermodynamics GCC CHM152 Creative Commons License Images and tables in this file have been used from the following sources: OpenStax: Creative Commons Attribution License 4.0. ChemWiki (CC

More information

Chapter 17: Spontaneity, Entropy, and Free Energy

Chapter 17: Spontaneity, Entropy, and Free Energy Chapter 17: Spontaneity, Entropy, and Free Energy Review of Chemical Thermodynamics System: the matter of interest Surroundings: everything in the universe which is not part of the system Closed System:

More information

Equilibrium. What is equilibrium? Hebden Unit 2 (page 37 69) Dynamic Equilibrium

Equilibrium. What is equilibrium? Hebden Unit 2 (page 37 69) Dynamic Equilibrium Equilibrium What is equilibrium? Hebden Unit (page 37 69) Dynamic Equilibrium Hebden Unit (page 37 69) Experiments show that most reactions, when carried out in a closed system, do NOT undergo complete

More information

Chapter 9. Chemical Equilibrium

Chapter 9. Chemical Equilibrium Chapter 9. Chemical Equilibrium 9.1 The Nature of Chemical Equilibrium -Approach to Equilibrium [Co(H 2 O) 6 ] 2+ + 4 Cl- [CoCl 4 ] 2- + 6 H 2 O Characteristics of the Equilibrium State example) H 2 O(l)

More information

Chemical Equilibrium Basics

Chemical Equilibrium Basics Chemical Equilibrium Basics Reading: Chapter 16 of Petrucci, Harwood and Herring (8th edition) Problem Set: Chapter 16 questions 25, 27, 31, 33, 35, 43, 71 York University CHEM 1001 3.0 Chemical Equilibrium

More information

OFB Chapter 7 Chemical Equilibrium

OFB Chapter 7 Chemical Equilibrium OFB Chapter 7 Chemical Equilibrium 7-1 Chemical Reactions in Equilibrium 7-2 Calculating Equilibrium Constants 7-3 The Reaction Quotient 7-4 Calculation of Gas-Phase Equilibrium 7-5 The effect of External

More information

CHAPTER-7 EQUILIBRIUM ONE MARK QUESTIONS WITH ANSWERS. CHAPTER WEIGHTAGE: 13

CHAPTER-7 EQUILIBRIUM ONE MARK QUESTIONS WITH ANSWERS. CHAPTER WEIGHTAGE: 13 CHAPTER-7 EQUILIBRIUM ONE MARK QUESTIONS WITH ANSWERS. CHAPTER WEIGHTAGE: 13 1.What is a reversible reaction? Ans. The reaction in which both forward and backward reaction takes place simultaneously is

More information

Thermodynamics. 1. Which of the following processes causes an entropy decrease?

Thermodynamics. 1. Which of the following processes causes an entropy decrease? Thermodynamics 1. Which of the following processes causes an entropy decrease? A. boiling water to form steam B. dissolution of solid KCl in water C. mixing of two gases in one container D. beach erosion

More information

I. Multiple Choice Questions (Type-I) is K p

I. Multiple Choice Questions (Type-I) is K p Unit 7 EQUILIBRIUM I. Multiple Choice Questions (Type-I) 1. We know that the relationship between K c and K p is K p K c (RT) n What would be the value of n for the reaction NH 4 Cl (s) NH 3 (g) + HCl

More information

CHEM N-2 November 2014

CHEM N-2 November 2014 CHEM1612 2014-N-2 November 2014 Explain the following terms or concepts. Le Châtelier s principle 1 Used to predict the effect of a change in the conditions on a reaction at equilibrium, this principle

More information

Chemical Equilibrium. Introduction

Chemical Equilibrium. Introduction Introduction 1.) Equilibria govern diverse phenomena Protein folding, acid rain action on minerals to aqueous reactions 2.) Chemical equilibrium applies to reactions that can occur in both directions:

More information

Chapter Test B. Chapter: Chemical Equilibrium. following equilibrium system? 2CO(g) O 2 (g) ^ 2CO 2 (g)

Chapter Test B. Chapter: Chemical Equilibrium. following equilibrium system? 2CO(g) O 2 (g) ^ 2CO 2 (g) Assessment Chapter Test B Chapter: Chemical Equilibrium PART I In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. What is

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium Equilibrium Constants For a generic chemical reaction, the equilibrium constant is defined as: aa + bb cc + dd (1) The equilibrium constant, K eq, for a chemical reaction indicates

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium THE NATURE OF CHEMICAL EQUILIBRIUM Reversible Reactions In theory, every reaction can continue in two directions, forward and reverse Reversible reaction! chemical reaction in which

More information

Shifting Equilibrium. Section 2. Equilibrium shifts to relieve stress on the system. > Virginia standards. Main Idea. Changes in Pressure

Shifting Equilibrium. Section 2. Equilibrium shifts to relieve stress on the system. > Virginia standards. Main Idea. Changes in Pressure Section 2 Main Ideas Equilibrium shifts to relieve stress on the system. Some ionic reactions seem to go to completion. Common ions often produce precipitates. > Virginia standards CH.3.f The student will

More information

1 A. That the reaction is endothermic when proceeding in the left to right direction as written.

1 A. That the reaction is endothermic when proceeding in the left to right direction as written. 1 Q. If Δ r H is positive, what can you say about the reaction? 1 A. That the reaction is endothermic when proceeding in the left to right direction as written. 2 Q If Δ r H is negative, what can you say

More information

Gas Phase Equilibrium

Gas Phase Equilibrium Gas Phase Equilibrium Chemical Equilibrium Equilibrium Constant K eq Equilibrium constant expression Relationship between K p and K c Heterogeneous Equilibria Meaning of K eq Calculations of K c Solving

More information

Free-energy change ( G) and entropy change ( S)

Free-energy change ( G) and entropy change ( S) Free-energy change ( G) and entropy change ( S) A SPONTANEOUS PROCESS (e.g. diffusion) will proceed on its own without any external influence. A problem with H A reaction that is exothermic will result

More information

Thermodynamics: Free Energy and Entropy. Suggested Reading: Chapter 19

Thermodynamics: Free Energy and Entropy. Suggested Reading: Chapter 19 Thermodynamics: Free Energy and Entropy Suggested Reading: Chapter 19 System and Surroundings System: An object or collection of objects being studied. Surroundings: Everything outside of the system. the

More information

Chapter Test A. Chapter: Chemical Equilibrium

Chapter Test A. Chapter: Chemical Equilibrium Assessment Chapter Test A Chapter: Chemical Equilibrium In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. A 15.0 ml volume

More information

ENTHALPY, ENTROPY AND FREE ENERGY CHANGES

ENTHALPY, ENTROPY AND FREE ENERGY CHANGES ENTHALPY, ENTROPY AND FREE ENERGY CHANGES Refer to the following figures for Exercises 1-6. The lines on the vertical axis represent the allowed energies. Assume constant spacing between levels to determine

More information

CHEMICAL EQUILIBRIUM Chapter 13

CHEMICAL EQUILIBRIUM Chapter 13 1 CHEMICAL EQUILIBRIUM Chapter 13 Pb 2+ (aq) + 2 Cl (aq) PbCl 2 (s) 1 Objectives Briefly review what we know of equilibrium Define the Equilibrium Constant (K eq ) and Reaction Quotient (Q) Determining

More information

C h a p t e r 13. Chemical Equilibrium

C h a p t e r 13. Chemical Equilibrium C h a p t e r 13 Chemical Equilibrium Chemical equilibrium is achieved when: the rates of the forward and reverse reactions are equal and the concentrations of the reactants and products remain constant

More information

Name period AP Unit 8: equilibrium

Name period AP Unit 8: equilibrium Name period AP Unit 8: equilibrium 1. What is equilibrium? Rate of the forward reaction equals the rate of the reverse reaction 2. How can you tell when equilibrium has been reached? The concentrations

More information

Thermodynamics is the study of the relationship between heat and other forms of energy that are involved in a chemical reaction.

Thermodynamics is the study of the relationship between heat and other forms of energy that are involved in a chemical reaction. Ch 18 Thermodynamics and Equilibrium Thermodynamics is the study of the relationship between heat and other forms of energy that are involved in a chemical reaction. Internal Energy (U) Internal energy

More information

Chemical Equilibrium. Many reactions are, i.e. they can occur in either direction. A + B AB or AB A + B

Chemical Equilibrium. Many reactions are, i.e. they can occur in either direction. A + B AB or AB A + B Chemical Equilibrium Many reactions are, i.e. they can occur in either direction. A + B AB or AB A + B The point reached in a reversible reaction where the rate of the forward reaction (product formation,

More information

Chapter 15 Chemical Equilibrium

Chapter 15 Chemical Equilibrium Equilibrium To be in equilibrium is to be in a state of balance: Chapter 15 Chemical Equilibrium - Static Equilibrium (nothing happens; e.g. a tug of war). - Dynamic Equilibrium (lots of things happen,

More information

Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase

Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase changes Apply the second law of thermodynamics to chemical

More information

Disorder and Entropy. Disorder and Entropy

Disorder and Entropy. Disorder and Entropy Disorder and Entropy Suppose I have 10 particles that can be in one of two states either the blue state or the red state. How many different ways can we arrange those particles among the states? All particles

More information

REACTION EQUILIBRIUM

REACTION EQUILIBRIUM REACTION EQUILIBRIUM A. REVERSIBLE REACTIONS 1. In most spontaneous reactions the formation of products is greatly favoured over the reactants and the reaction proceeds to completion (one direction). In

More information

Ch 10 Practice Problems

Ch 10 Practice Problems Ch 10 Practice Problems 1. Which of the following result(s) in an increase in the entropy of the system? I. (See diagram.) II. Br 2(g) Br 2(l) III. NaBr(s) Na + (aq) + Br (aq) IV. O 2(298 K) O 2(373 K)

More information

Dynamic Equilibrium Illustrated

Dynamic Equilibrium Illustrated שו וי מ שק ל Equilibrium Reactants Products In an equilibrium, the forward and reverse processes continue to occur but at equal rates! The reactant and product concentrations remain constant We are usually

More information

Chemical equilibrium. As you read ask yourself

Chemical equilibrium. As you read ask yourself Chemical equilibrium Reading: Chapter 15 (omit 15.7) As you read ask yourself What is meant by chemical equilibrium? How does the equilibrium constant expression depend on the nature of the species (liquids,

More information

Chem chemical reactions can go forward as well as in the reverse direction. concentrations of reactants and products become constant over time

Chem chemical reactions can go forward as well as in the reverse direction. concentrations of reactants and products become constant over time Chemical equilibrium Reading: Chapter 15 (omit 15.7) As you read ask yourself What is meant by chemical equilibrium? How does the equilibrium constant expression depend on the nature of the species (liquids,

More information

Thermodynamic Fun. Quick Review System vs. Surroundings 6/17/2014. In thermochemistry, the universe is divided into two parts:

Thermodynamic Fun. Quick Review System vs. Surroundings 6/17/2014. In thermochemistry, the universe is divided into two parts: Thermodynamic Fun Quick Review System vs. Surroundings In thermochemistry, the universe is divided into two parts: The tem: The physical process or chemical reaction in which we are interested. We can

More information

Chemical Equilibrium. Chapter

Chemical Equilibrium. Chapter Chemical Equilibrium Chapter 14 14.1-14.5 Equilibrium Equilibrium is a state in which there are no observable changes as time goes by. Chemical equilibrium is achieved when: 1.) the rates of the forward

More information

CHAPTER 16 REVIEW. Reaction Energy. SHORT ANSWER Answer the following questions in the space provided.

CHAPTER 16 REVIEW. Reaction Energy. SHORT ANSWER Answer the following questions in the space provided. CHAPTER 16 REVIEW Reaction Energy SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. For elements in their standard state, the value of H 0 f is 0. 2. The formation and decomposition

More information

The Equilibrium State. Chapter 13 - Chemical Equilibrium. The Equilibrium State. Equilibrium is Dynamic! 5/29/2012

The Equilibrium State. Chapter 13 - Chemical Equilibrium. The Equilibrium State. Equilibrium is Dynamic! 5/29/2012 Chapter 13 - Chemical Equilibrium The Equilibrium State Not all chemical reactions go to completion; instead they attain a state of equilibrium. When you hear equilibrium, what do you think of? Example:

More information

CHEMICAL EQUILIBRIUM. Chapter 15

CHEMICAL EQUILIBRIUM. Chapter 15 Chapter 15 P a g e 1 CHEMICAL EQUILIBRIUM Examples of Dynamic Equilibrium Vapor above a liquid is in equilibrium with the liquid phase. rate of evaporation = rate of condensation Saturated solutions rate

More information

Chemical Equilibria. OCR Chemistry A H432

Chemical Equilibria. OCR Chemistry A H432 Chemical Equilibria Chemical equilibrium is a dynamic equilibrium. Features of a dynamic equilibrium, which can only be established in a closed system (nothing added or removed): - rates of forward and

More information

Second Law of Thermodynamics

Second Law of Thermodynamics Second Law of Thermodynamics First Law: the total energy of the universe is a constant Second Law: The entropy of the universe increases in a spontaneous process, and remains unchanged in a process at

More information

Equilibrium Practice Problems page 1

Equilibrium Practice Problems page 1 Equilibrium Practice Problems page 1 1988 D NH 4 HS(s) NH 3 (g) + H 2 S(g) ΔHº = +93 kilojoules The equilibrium above is established by placing solid NH 4 HS in an evacuated container at 25ºC. At equilibrium,

More information

EQUILIBRIA. e Q = a D B

EQUILIBRIA. e Q = a D B I. Basis of Equilibrium. A. Q and equilibrium. EQUILIBRIA 1. Consider the general reaction bb + cc dd + ee a. Αs time elapses, [B] and [C] decrease causing the rate of the forward reaction to decrease.

More information

Chemical Equilibrium. A state of no net change in reactant & product concentrations. There is a lot of activity at the molecular level.

Chemical Equilibrium. A state of no net change in reactant & product concentrations. There is a lot of activity at the molecular level. Chemical Equilibrium A state of no net change in reactant & product concentrations. BUT There is a lot of activity at the molecular level. 1 Kinetics Equilibrium For an elementary step in the mechanism:

More information

15/04/2018 EQUILIBRIUM- GENERAL CONCEPTS

15/04/2018 EQUILIBRIUM- GENERAL CONCEPTS 15/04/018 EQUILIBRIUM- GENERAL CONCEPTS When a system is at equilibrium, the forward and reverse reactions are proceeding at the same rate. The concentrations of all species remain constant over time,

More information

c) Explain the observations in terms of the DYNAMIC NATURE of the equilibrium system.

c) Explain the observations in terms of the DYNAMIC NATURE of the equilibrium system. Chemical Equilibrium - Part A: 1. At 25 o C and 101.3 kpa one mole of hydrogen gas and one mol of chlorine gas are reacted in a stoppered reaction vessel. After a certain time, three gases are detected

More information

CH 302 Spring 2008 Worksheet 4 Answer Key Practice Exam 1

CH 302 Spring 2008 Worksheet 4 Answer Key Practice Exam 1 CH 302 Spring 2008 Worksheet 4 Answer Key Practice Exam 1 1. Predict the signs of ΔH and ΔS for the sublimation of CO 2. a. ΔH > 0, ΔS > 0 b. ΔH > 0, ΔS < 0 c. ΔH < 0, ΔS > 0 d. ΔH < 0, ΔS < 0 Answer:

More information

Homework 03. Chemical Equilibria

Homework 03. Chemical Equilibria HW03 - Chemical Equilibria! This is a preview of the published version of the quiz Started: Feb 14 at 9:1am Quiz Instruc!ons Homework 03 Chemical Equilibria Question 1 When the chemical reaction A + B

More information

Free Energy and Spontaneity

Free Energy and Spontaneity Free Energy and Spontaneity CHEM 107 T. Hughbanks Free Energy One more state function... We know S universe > 0 for a spontaneous change, but... We are still looking for a state function of the system

More information

K P VERSUS K C PROPERTIES OF THE EQUILIBRIUM CONSTANT

K P VERSUS K C PROPERTIES OF THE EQUILIBRIUM CONSTANT K P VERSUS K C 1. What are the units of K p and K c for each of the following? a) 2H 2 S(g) 2H 2 (g) + S 2 (g) b) 4NH 3 (g) + 3O 2 (g) 2N 2 (g) + 6H 2 O(g) 2. What are the units of K p and K c for each

More information

Chapter 6: Chemical Equilibrium

Chapter 6: Chemical Equilibrium Chapter 6: Chemical Equilibrium 6.1 The Equilibrium Condition 6.2 The Equilibrium Constant 6.3 Equilibrium Expressions Involving Pressures 6.4 The Concept of Activity 6.5 Heterogeneous Equilibria 6.6 Applications

More information

Chapter 16 - Spontaneity, Entropy, and Free Energy

Chapter 16 - Spontaneity, Entropy, and Free Energy Chapter 16 - Spontaneity, Entropy, and Free Energy 1 st Law of Thermodynamics - energy can be neither created nor destroyed. Although total energy is constant, the various forms of energy can be interchanged

More information

1. a. The rates of the forward and reverse reactions are equal at equilibrium.

1. a. The rates of the forward and reverse reactions are equal at equilibrium. CHATER THIRTEEN CHEMICAL EQUILIBRIUM For Review 1. a. The rates of the forward and reverse reactions are equal at equilibrium. b. There is no net change in the composition (as long as temperature is constant).

More information

4. [7 points] Which of the following reagents would decrease the solubility of AgCl(s)? NaOH HCl NH 3 NaCN

4. [7 points] Which of the following reagents would decrease the solubility of AgCl(s)? NaOH HCl NH 3 NaCN 1. [7 points] It takes 0.098 g of silver iodate, AgIO 3, to make 1.00-L of a saturated solution saturated at 25 C. What is the value of the solubility product, K sp? a. 3.5 10 4 b. 1.2 10 7 c. 9.8 10 2

More information

CH302 Spring 2009 Practice Exam 1 (a fairly easy exam to test basic concepts)

CH302 Spring 2009 Practice Exam 1 (a fairly easy exam to test basic concepts) CH302 Spring 2009 Practice Exam 1 (a fairly easy exam to test basic concepts) 1) Complete the following statement: We can expect vapor pressure when the molecules of a liquid are held together by intermolecular

More information

Chemical Equilibrium. Chapter 8

Chemical Equilibrium. Chapter 8 Chemical Equilibrium Chapter 8 Equilibrium is a state in which there are no observable changes as time goes by. Chemical equilibrium is achieved when: the rates of the forward and reverse reactions are

More information

Chemical Equilibrium: Ch Dynamic Equilibrium. Dynamic Equilibrium. Three Approaches to Equilibrium The Equilibrium Constant Expression

Chemical Equilibrium: Ch Dynamic Equilibrium. Dynamic Equilibrium. Three Approaches to Equilibrium The Equilibrium Constant Expression Chemical Equilibrium: Ch. 15 15-1 Dynamic Equilibrium 15- The Equilibrium Constant Expression 15- Relationships Involving Equilibrium Constants 15-4 The Magnitude of an Equilibrium Constant 15-5 The Reaction

More information

Chemistry 123: Physical and Organic Chemistry Topic 4: Gaseous Equilibrium

Chemistry 123: Physical and Organic Chemistry Topic 4: Gaseous Equilibrium Topic 4: Introduction, Topic 4: Gaseous Equilibrium Text: Chapter 6 & 15 4.0 Brief review of Kinetic theory of gasses (Chapter 6) 4.1 Concept of dynamic equilibrium 4.2 General form & properties of equilbrium

More information

A.P. Chemistry. Unit #11. Chemical Equilibrium

A.P. Chemistry. Unit #11. Chemical Equilibrium A.P. Chemistry Unit #11 Chemical Equilibrium I. Chemical Equilibrium the point in a reaction at which the concentrations of products and reactants remain constant Dynamic Equilibrium the equilibrium condition

More information

Chapter Outline. The Dynamics of Chemical Equilibrium

Chapter Outline. The Dynamics of Chemical Equilibrium Chapter Outline 14.1 The Dynamics of Chemical Equilibrium 14.2 Writing Equilibrium Constant Expressions 14.3 Relationships between K c and K p Values 14.4 Manipulating Equilibrium Constant Expressions

More information

AP Chapter 14: Chemical Equilibrium & Ksp

AP Chapter 14: Chemical Equilibrium & Ksp AP Chapter 14: Chemical Equilibrium & Ksp Warm-Ups (Show your work for credit) Name Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. AP Chapter 14: Chemical Equilibrium & Ksp 2 Warm-Ups

More information

CHEM Dr. Babb s Sections Exam #4 Review Sheet

CHEM Dr. Babb s Sections Exam #4 Review Sheet CHEM 116 - Dr. Babb s Sections Exam #4 Review Sheet 158. Explain using the HC 2 H 3 O 2 /NaC 2 H 3 O 2 buffer system how a buffer maintains a relatively constant ph when small quantity of acid (HCl) or

More information

Chemistry 201. Working with K. NC State University. Lecture 11

Chemistry 201. Working with K. NC State University. Lecture 11 Chemistry 201 Lecture 11 Working with K NC State University Working With K What is the relationship between pressure and concentration in K? How does one calculate K or components of K? How does one calculate

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium Many reactions are reversible, i.e. they can occur in either direction. A + B AB or AB A + B The point reached in a reversible reaction where the rate of the forward reaction (product

More information

Thermodynamics. Chem 36 Spring The study of energy changes which accompany physical and chemical processes

Thermodynamics. Chem 36 Spring The study of energy changes which accompany physical and chemical processes Thermodynamics Chem 36 Spring 2002 Thermodynamics The study of energy changes which accompany physical and chemical processes Why do we care? -will a reaction proceed spontaneously? -if so, to what extent?

More information

Chemical Equilibrium - Chapter 15

Chemical Equilibrium - Chapter 15 Chemical Equilibrium - Chapter 15 1. Dynamic Equilibrium a A + b B c C + d D At Equilibrium: Reaction is proceeding in both directions at the same rate. There is no net change in concentrations of reactants

More information

Equilibrium & Reaction Rate

Equilibrium & Reaction Rate Equilibrium & Reaction Rate 1. One of the important reactions in coal gasification is the catalytic methanation reaction: CO(g) + H (g) H O(g) + CH 4 (g) H 06 kj a) Predict the direction in which this

More information

Chapter 19 Chemical Thermodynamics Entropy and free energy

Chapter 19 Chemical Thermodynamics Entropy and free energy Chapter 19 Chemical Thermodynamics Entropy and free energy Learning goals and key skills: Understand the meaning of spontaneous process, reversible process, irreversible process, and isothermal process.

More information

CHEM Dr. Babb s Sections Lecture Problem Sheets

CHEM Dr. Babb s Sections Lecture Problem Sheets CHEM 116 - Dr. Babb s Sections Lecture Problem Sheets Kinetics: Integrated Form of Rate Law 61. Give the integrated form of a zeroth order reaction. Define the half-life and find the halflife for a general

More information

EQUILIBRIUM. Opposing reactions proceed at equal rates Concs. of reactants & products do not change over time

EQUILIBRIUM. Opposing reactions proceed at equal rates Concs. of reactants & products do not change over time EQUILIBRIUM Opposing reactions proceed at equal rates Concs. of reactants & products do not change over time Examples: vapor pressure above liquid saturated solution Now: equilibrium of chemical reactions

More information

Chemical Equilibria 2

Chemical Equilibria 2 Chemical Equilibria 2 Reading: Ch 14 sections 6-9 Homework: Chapter 14: 27*, 29*, 31, 33, 41, 43, 45, 51*, 55, 61*, 63, 67*, 69* * = important homework question Review A chemical equilibrium and its respective

More information

Revision Notes on Chemical and Ionic Equilibrium

Revision Notes on Chemical and Ionic Equilibrium Revision Notes on Chemical and Ionic Equilibrium Equilibrium Equilibrium is the state of a process in which the properties like temperature, pressure, and concentration etc of the system do not show any

More information

Chapters 10 and 11 Practice MC

Chapters 10 and 11 Practice MC Chapters 10 and 11 Practice MC Multiple Choice Identify the choice that best completes the statement or answers the question. d 1. Which of the following best describes the rates of chemical reaction?

More information

CHEM 102 Final Mock Exam

CHEM 102 Final Mock Exam CHEM 102 Final Mock Exam 1. A system releases 300 J of heat and does 650 J of work on the surroundings. What is the change in internal energy of the system? a. -950 J b. 350 J c. 950 J d. -350 J 2. Which

More information

Chapter Fifteen. Chemical Equilibrium

Chapter Fifteen. Chemical Equilibrium Chapter Fifteen Chemical Equilibrium 1 The Concept of Equilibrium Dynamic Equilibrium Opposing processes occur at equal rates Forward and reverses reaction proceed at equal rates No outward change is observed

More information

6. Which expression correctly describes the equilibrium constant for the following reaction? 4NH 3 (g) + 5O 2 (g) 4NO(g) + 6H 2 O(g)

6. Which expression correctly describes the equilibrium constant for the following reaction? 4NH 3 (g) + 5O 2 (g) 4NO(g) + 6H 2 O(g) 1. Which of the following can we predict from an equilibrium constant for a reaction? 1. The extent of a reaction 2. Whether the reaction is fast or slow 3. Whether a reaction is exothermic or endothermic

More information

Chemistry Grade : 11 Term-3/Final Exam Revision Sheet

Chemistry Grade : 11 Term-3/Final Exam Revision Sheet Chemistry Grade : 11 Term-3/Final Exam Revision Sheet Exam Date: Tuesday 12/6/2018 CCS:Chem.6a,6b,6c,6d,6e,6f,7a,7b,7d,7c,7e,7f,1g Chapter(12):Solutions Sections:1,2,3 Textbook pages 378 to 408 Chapter(16):Reaction

More information

AP Chemistry Chapter 16 Assignment. Part I Multiple Choice

AP Chemistry Chapter 16 Assignment. Part I Multiple Choice Page 1 of 7 AP Chemistry Chapter 16 Assignment Part I Multiple Choice 1984 47. CH 4 (g) + 2 O 2 (g) CO 2 (g) + 2 H 2 O(l) H = 889.1 kj H f H 2 O(l) = 285.8 kj mol 1 H f CO 2 (g) = 393.3 kj mol 1 What is

More information

Equilibrium. Slide 1 / 27. Slide 2 / 27. Slide 3 / 27. PART A: Introduction and Ice Tables EQUILIBRIUM

Equilibrium. Slide 1 / 27. Slide 2 / 27. Slide 3 / 27. PART A: Introduction and Ice Tables EQUILIBRIUM New Jersey Center for Teaching and Learning Slide 1 / 27 Progressive Science Initiative This material is made freely available at www.njctl.org and is intended for the non-commercial use of students and

More information

ph + poh = 14 G = G (products) G (reactants) G = H T S (T in Kelvin)

ph + poh = 14 G = G (products) G (reactants) G = H T S (T in Kelvin) JASPERSE CHEM 210 PRACTICE TEST 3 VERSION 2 Ch. 17: Additional Aqueous Equilibria Ch. 18: Thermodynamics: Directionality of Chemical Reactions Key Equations: For weak acids alone in water: [H + ] = K a

More information