Detailed chemistry models for butanols based on ab initio rate coefficients, and comparisons with experimental data

Size: px
Start display at page:

Download "Detailed chemistry models for butanols based on ab initio rate coefficients, and comparisons with experimental data"

Transcription

1 Detailed chemistry models for butanols based on ab initio rate coefficients, and comparisons with experimental data William H. Green, Michael Harper, Mary Schnoor, & Shamel Merchant CEFRC Annual Meeting August 16, 2011

2 Goals/Philosophy of this Work Improve capability to predict performance of proposed new fuels Faster, cheaper than exptlly testing all fuels Butanol as a test case Can we build accurate models quickly? How? Accuracy of predictions? How to validate models? Right answers for the Right Reasons : true rate coefficients, don t force fits

3 Very Big Models: Need to Think Differently So many possible reactions and species! Select ~350 species from ~30,000 considered. Select ~7,000 reactions from ~10 6 considered. Even more for low T ignition chemistry No way to determine all the numbers in the model experimentally and impractical to compute them all accurately. Most experiments do not conclusively determine any number, instead constrain some combination. Fuel performance and experiments are not sensitive to most of these numbers if those numbers are right order of magnitude Different experiments sensitive to different subsets of species and reactions.

4 Our Model Development Process Computer assembles large kinetic model for particular condition(s) using rough estimates of rate coefficients. (open source RMG software) Start from model derived for other conditions, so appending new reactions and species. Automated identification of chemically activated product channels, and computation of k(t,p). If sensitive to k derived from rough estimate, recompute that k using quantum chemistry. Generalize from quantum to improve rate rules. Iterate until not sensitive to rough estimates. Compare with experiment. Big discrepancies? Look for bugs or typos. Match OK? Repeat for different conditions.

5 So far, no adjustment of parameters to match experiments Main Goal: Assess how accurately we can predict chemistry of new fuels and which experiments would be most helpful Too many parameters in butanols model: many different parameter sets could match all the existing experiments Considering making adjustments in future: C0-C4 values from Fundamental Fuels thrust Butanol decomposition rates to match NIST expts Total butanol + OH rate to match Stanford data

6 Many Experimental Data on Butanol Combustion/Oxidation/Pyrolysis Ignition Delays Shock tube Rapid compression machine Flame Speeds spherical and flat flames Speciated Data from: MS sampling in premixed and diffusion flames Flow reactors (pyrolysis & oxidation) Jet-Stirred Reactors Rapid Compression Facility Species time profiles in shock tube Single-pulse shock tube We test our butanols model against all these experiments

7 Pyrolysis of the butanol isomers was conducted by collaborator Van Geem (Ghent) VENT 3 7 T1 6 T T3 T MFC MFC T5 T T7 T : butanol vessel, 2: water vessel, 3: electronic balance, 4: pump, 5: valve, 6: evaporator, 7: mixer, 8: heater, 9: air, 10: pressure regulator, 11: mass flow controller, 12: nitrogen, 13: reactor, 14: nitrogen internal standard, 15: oven, 16: GC for formaldehyde and water, 17: GC for C5+, 18: cyclone, 19: condenser, 20: dehydrator, 21: GC for C4-, 22: data acquisition 7

8 Predicted conversion [=] wt% The kinetic model s predicted conversion agrees very well with the experimental pyrolysis measurements Butanol iso-butanol 2-Butanol tert-butanol Experimental conversion [=] wt% 8

9 Predicted butene yield [=] [=] wt% Predicted benzene yield [=] wt% Predicted ethylene yield [=] wt% The kinetic model also predicts the pyrolysis product distribution well, including benzene and small aromatics Butanol (1-Butene) 25 1-Butanol iso-butanol (iso-butene) 1.8 iso-butanol 1-Butanol 2-Butanol (1-Butene) iso-butanol Butanol 2-Butanol (2-Butene) 20 tert-butanol 2-Butanol tert-butanol 1.4 (iso-butene) tert-butanol H 2 C CH 2 H 3 C CH 2 CH 3 H 3 C CH Experimental butene yield Experimental [=] wt% benzene ethylene yield [=] wt% H 2 C CH 3 9

10 Advanced Light Source allows direct detection of dozens of species including key radicals Photoionization Molecular Beam Mass Spectrometry Flames are analyzed with molecular beam time-of-flight mass spectrometry Photoionization with tunable synchrotron-generated VUV photons allows identification of species by mass by ionization energy Experimental mole fraction profiles are compared with model predictions Expts by Nils Hansen at ALS

11 Advanced Light Source (ALS) Flame Data: Detailed Test of the Model s Predictive Capabilities Hansen, Harper, Green PCCP (submitted) Mole fraction profiles of the major species are predicted accurately A more powerful test is provided by comparing modeled and experimental profiles of intermediate species Profiles have not been shifted Oßwald et al. flame data need to be shifted for better agreement Only a few of the many data traces shown here most show good agreement Oßwald, Güldenberg, Kohse-Höinghaus, Yang, Yuan, Qi, Combust.Flame (2011)158, 2

12 You learn more from discrepancies! C 4 H 4 and C 3 H 3 overpredicted Sensitive to C 4 H 5 Thermochemistry Simulations of the flames studied by ALS are sensitive to the enthalpy of formation of i-c 4 H 5 (CH 2 =CH- C=CH 2 CH 2 -CH=C=CH 2 ). None of the other available experimental data are sensitive to this number. This radical s enthalpy value was incorrect in the MIT database. Correcting to the accepted literature value largely resolved the discrepancy. Now investigating origins of smaller discrepancies

13 Focus on what is important! Most important fuel performance property: ignition delay Gasoline Octane Number Diesel Cetane Number Small changes in fuel make big changes in ignition: sensitive to molecular structure! New engines under development are even more sensitive to ignition Potential for big gains but only if the fuel ignition delay time matches engine requirements

14 Ignition delay / s Ignition delay / s Ignition delay / s Ignition delay / s Model fairly accurate for high-t ignition delays 1-Butanol: 1% fuel, P ~ 1.3 bar 2-Butanol: 1% fuel, P ~ 1.3 bar 10 3 CH 3 H 3 C OH H 3 C 10 3 OH 10 2 = = 1.0 = 0.5 = 0.5 = iso-butanol: % fuel, K / TP ~ 1.3 bar = tert-butanol: % K fuel, / T P ~ 1.3 bar 10 3 HO CH OH H 3 C CH 3 CH 3 CH = = 1.0 = 0.5 = Stanford Data = K / T = K / T

15 As we replace rough estimates with k s from quantum, accuracy gradually improving. Experiments: Stanford US meeting = MIT model 5 months ago

16 Big Discrepancy from Last Year: Model did not predict fast n-butanol ignition <900 K! Model was built automatically at MIT using computer expert system Due to mistake in rate database used by expert system, model wildly mis-estimated barrier for HO 2 + C-H reactions.

17 With reasonable k for HO2 + butanol, model predicts ignition delay down to 800 K at 15 atm Model was built automatically at MIT using computer expert system Due to mistake in rate database used by expert system, model wildly mis-estimated barrier for HO 2 + C-H reactions. After correcting that big mistake, current CEFRC model is much closer but still not quite right at low T, high P. Work continues

18 Ignition delay / ms Model not capturing dependence on [O 2 ] below 800 K: probably missing or misestimating some peroxyl chemistry 3.38% n-butanol, P = 15 bar Exptl Data: U.Conn MIT model 10 1 = 0.5 Current = 1.0 Current = 2.0 Current K / T Predictions Sensitive to chemically-activated R+O 2 = QOOH: g-c 4 H 8 OH + O 2 (+M) = CH 3 CH(OOH)CH 2 CHOH

19 Summary: Technical Capability Big comprehensive detailed combustion chemistry models can be built pretty quickly. Current capability: ~500 species, ~10,000 rxns Current database: C,H,O + some Sulfur, Nitrogen Weak in aromatic ring forming/breaking chemistry P-dependence and chemical activation important for high-t, maybe also in peroxyl chemistry. More than 50% of k s in model are significantly P-dependent. Comparison with experiments is only semi-automatic, takes longer than generating the models. Technical issues with solvers for some experimental configurations. Have not yet run the models in engine simulators.

20 Summary: Accuracy Predictions from kinetic models based on quantum chemistry + rate estimates, without any adjustment to match experiment, are fairly accurate for huge range of combustion/oxidation/pyrolysis experiments. Big errors usually due to bugs, typos, holes in database. Big errors appear to be mostly eradicated in butanols case. But probably more big errors lurking in other parts of databases. Experiments and team-mates great for catching errors! As we eliminate the big errors, starting to reach expected factor of 2 small errors due to inaccuracies in rate coefficients and thermo derived from quantum chemistry. May be difficult to significantly improve accuracy but calculations can be great guide for experiments to more precisely determine key parameters. Significantly less accuracy at low T (< 800 K). Peroxyl chemistry very complicated, and maybe not completely understood.

21 Big Picture Kinetic models based on quantum chemistry + rate estimates can be predictive for huge range of combustion/oxidation/pyrolysis experiments. Big models can be built and refined pretty quickly. Experimentalists + Modelers team very effective. Useful for assessing proposed new fuels Should be able to use the models to help guide experiments. We are doing this a little, but not yet routine. Kinetics is starting to become a predictive science, possible to use in predictive design of new fuels and engines.

Combustion Chemistry of a New Biofuel: Butanol

Combustion Chemistry of a New Biofuel: Butanol Combustion Chemistry of a New Biofuel: Butanol William H. Green, D.F. Davidson, F. Egolfopoulos, N. Hansen, M. Harper, R.K. Hanson, S. Klippenstein, C.K. Law, C.J. Sung, D.R. Truhlar, & H. Wang Assessing

More information

Flame Chemistry and Diagnostics

Flame Chemistry and Diagnostics Flame Chemistry and Diagnostics High-Temperature Oxidation of (1) n-butanol and (2) C 4 - Hydrocarbons in Low-Pressure Premixed Flames Nils Hansen, Michael R. Harper, William H. Green Bin Yang, Hai Wang,

More information

Oxidation of C 3 and n-c 4 aldehydes at low temperatures

Oxidation of C 3 and n-c 4 aldehydes at low temperatures Oxidation of C 3 and n-c 4 aldehydes at low temperatures M. Pelucchi*, A. Frassoldati*, E. Ranzi*, T. Faravelli* matteo.pelucchi@polimi.it * CRECK-Department of Chemistry, Materials and Chemical Engineering

More information

Hierarchical approach

Hierarchical approach Chemical mechanisms Examine (i) ways in which mechanisms are constructed, (ii)their dependence on rate and thermodynamic data and (iii) their evaluation using experimental targets Copyright 2011 by Michael

More information

Chemical Structures of Premixed iso-butanol Flames

Chemical Structures of Premixed iso-butanol Flames Paper # 070RK-0060 Topic: Laminar Flames 8 th U. S. National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University of Utah May 19-22, 2013

More information

THE ROLE OF SENSITIVITY ANALYSIS IN MODEL IMPROVEMENT

THE ROLE OF SENSITIVITY ANALYSIS IN MODEL IMPROVEMENT Energy and Resources Research Institute School of something FACULTY OF OTHER Faculty of Engineering THE ROLE OF SENSITIVITY ANALYSIS IN MODEL IMPROVEMENT Alison S. Tomlin Michael Davis, Rex Skodje, Frédérique

More information

COMBUSTION OF THE BUTANOL ISOMERS: REACTION PATHWAYS AT ELEVATED PRESSURES FROM LOW-TO-HIGH TEMPERATURES

COMBUSTION OF THE BUTANOL ISOMERS: REACTION PATHWAYS AT ELEVATED PRESSURES FROM LOW-TO-HIGH TEMPERATURES COMBUSTION OF THE BUTANOL ISOMERS: REACTION PATHWAYS AT ELEVATED PRESSURES FROM LOW-TO-HIGH TEMPERATURES Michael R. Harper, William H. Green* Massachusetts Institute of Technology, Department of Chemical

More information

Topic 6 Chemical mechanisms

Topic 6 Chemical mechanisms Topic 6 Chemical mechanisms Examine ways in which mechanisms are constructed, their dependence on rate and thermodynamic data, their evaluation using experimental targets and the optimization of component

More information

Chemical Kinetics of Combustion Processes

Chemical Kinetics of Combustion Processes 2010 CEFRC Conference Chemical Kinetics of Combustion Processes Hai Wang B. Yang, J. Camacho, S. Lieb, S. Memarzadeh, S.-K. Gao and S. Koumlis University of Southern California Benzene + O( 3 P) Products

More information

Strategies for Using Detailed Kinetics in Engine Simulations

Strategies for Using Detailed Kinetics in Engine Simulations Strategies for Using Detailed Kinetics in Engine Simulations Ellen Meeks ERC Symposium: Fuels for Future IC Engines June 6-7, 2007 Madison, Wisconsin Outline Role of simulation in design Importance of

More information

Experimental and modeling study of the pyrolysis and combustion of dimethoxymethane

Experimental and modeling study of the pyrolysis and combustion of dimethoxymethane Experimental and modeling study of the pyrolysis and combustion of dimethoxymethane Florence Vermeire, Hans-Heinrich Carstensen, Olivier Herbinet, Frédérique Battin-Leclerc, Guy B. Marin and Kevin M. Van

More information

Application of Model Fuels to Engine Simulation

Application of Model Fuels to Engine Simulation Paper #E28 First published in: Topic: Engine 5 th US Combustion Meeting Organized by the Western States Section of the Combustion Institute and Hosted by the University of California at San Diego March

More information

A wide range kinetic modelling study of laminar flame speeds of reference fuels and their mixtures

A wide range kinetic modelling study of laminar flame speeds of reference fuels and their mixtures A wide range kinetic modelling study of laminar flame speeds of reference fuels and their mixtures A. Frassoldati, R. Grana, A. Cuoci, T. Faravelli, E. Ranzi Dipartimento di Chimica, Materiali e Ingegneria

More information

Workshop on Synchrotron Tools for Studies of Combustion and Energy conversion

Workshop on Synchrotron Tools for Studies of Combustion and Energy conversion Workshop on Synchrotron Tools for Studies of Combustion and Energy conversion Program Tuesday, Dec 7, 2010 Time Program Presenter 13.15-13.30 Introduktion / Scope of the meeting Marcus Aldén, LU / Jesper

More information

Chemical Kinetic Reaction Mechanisms

Chemical Kinetic Reaction Mechanisms Chemical Kinetic Reaction Mechanisms Charles Westbrook Lawrence Livermore National Laboratory May 31, 2008 J. Warnatz Memorial Colloquium How do we measure a career? In scientific careers, we look for

More information

EXTINCTION AND AUTOIGNITION OF n-heptane IN COUNTERFLOW CONFIGURATION

EXTINCTION AND AUTOIGNITION OF n-heptane IN COUNTERFLOW CONFIGURATION Proceedings of the Combustion Institute, Volume 8, 000/pp. 09 037 EXTINCTION AND AUTOIGNITION OF n-heptane IN COUNTERFLOW CONFIGURATION R. SEISER, 1 H. PITSCH, 1 K. SESHADRI, 1 W. J. PITZ and H. J. CURRAN

More information

High Pressure Single Pulse Shock Tube (HPST) Experiments

High Pressure Single Pulse Shock Tube (HPST) Experiments High Pressure Single Pulse Shock Tube (HPST) Experiments Kenneth Brezinsky Mechanical Engineering University of Illinois, Chicago 27 AFOSR MURI Kick-Off Meeting Generation of Comprehensive Surrogate Kinetic

More information

Ignition delay-time study of fuel-rich CH 4 /air and CH 4 /additive/air mixtures over a wide temperature range at high pressure

Ignition delay-time study of fuel-rich CH 4 /air and CH 4 /additive/air mixtures over a wide temperature range at high pressure 25 th ICDERS August 2 7, 2015 Leeds, UK Ignition delay-time study of fuel-rich CH 4 /air and CH 4 /additive/air mixtures over a wide temperature range at high pressure Jürgen Herzler, Mustapha Fikri, Oliver

More information

This paper is part of the following report: UNCLASSIFIED

This paper is part of the following report: UNCLASSIFIED UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP023624 TITLE: Ignition Kinetics in Fuels Oxidation DISTRIBUTION: Approved for public release, distribution unlimited This paper

More information

Computer Aided Detailed Mechanism Generation for Large Hydrocarbons: n-decane

Computer Aided Detailed Mechanism Generation for Large Hydrocarbons: n-decane 23 rd ICDERS July 24 29, 2011 Irvine, USA Computer Aided Detailed Mechanism Generation for Large Hydrocarbons: n-decane Martin Hilbig 1, Lars Seidel 1, Xiaoxiao Wang 1, Fabian Mauss 1 and Thomas Zeuch

More information

Chemical Sciences and Engineering Department, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439

Chemical Sciences and Engineering Department, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439 8 th U. S. National Combustion Meeting rganized by the Western States Section of the Combustion Institute and hosted by the University of Utah May 19-22, 2013 A Shock Tube Laser Schlieren Study of Methyl

More information

Fundamental Kinetics Database Utilizing Shock Tube Measurements

Fundamental Kinetics Database Utilizing Shock Tube Measurements Fundamental Kinetics Database Utilizing Shock Tube Measurements Volume 6: Reaction Rate Measurements (January 2009 to January 2014) D. F. Davidson and R. K. Hanson Mechanical Engineering Department Stanford

More information

An Experimental Study of Butene Isomers and 1,3-Butadiene Ignition Delay Times at Elevated Pressures

An Experimental Study of Butene Isomers and 1,3-Butadiene Ignition Delay Times at Elevated Pressures An Experimental Study of Butene Isomers and 1,3-Butadiene Ignition Delay Times at Elevated Pressures Yang Li, 1, Eoin O Connor 1, Chong-Wen Zhou 1, Henry J. Curran 1 1 Combustion Chemistry Centre, National

More information

Accurate Computed Rate Coefficients for the Hydrogen Atom Abstraction Reactions from Methanol and n-butanol by the Hydroperoxyl Radical.

Accurate Computed Rate Coefficients for the Hydrogen Atom Abstraction Reactions from Methanol and n-butanol by the Hydroperoxyl Radical. Accurate Computed Rate Coefficients for the Hydrogen Atom Abstraction Reactions from Methanol and n-butanol by the Hydroperoxyl Radical John Alecu Second Annual CEFRC Conference August 17, 2011 Acknowledgments

More information

Modeling and Simulation of Plasma-Assisted Ignition and Combustion

Modeling and Simulation of Plasma-Assisted Ignition and Combustion Modeling and Simulation of Plasma-Assisted Ignition and Combustion Vigor Yang and Sharath Nagaraja Georgia Institute of Technology Atlanta, GA AFOSR MURI Fundamental Mechanisms, Predictive Modeling, and

More information

Use of detailed kinetic mechanism for the prediction of autoignitions

Use of detailed kinetic mechanism for the prediction of autoignitions Use of detailed kinetic mechanism for the prediction of autoignitions F. Buda, P.A. Glaude, F. Battin-Leclerc DCPR-CNRS, Nancy, France R. Porter, K.J. Hughes and J.F. Griffiths School of Chemistry, University

More information

Micro flow reactor with prescribed temperature profile

Micro flow reactor with prescribed temperature profile The First International Workshop on Flame Chemistry, July 28-29, 2012, Warsaw, Poland Micro flow reactor with prescribed temperature profile Toward fuel Indexing and kinetics study based on multiple weak

More information

Simplified Chemical Kinetic Models for High-Temperature Oxidation of C 1 to C 12 n-alkanes

Simplified Chemical Kinetic Models for High-Temperature Oxidation of C 1 to C 12 n-alkanes Simplified Chemical Kinetic Models for High-Temperature Oxidation of C 1 to C 1 n-alkanes B. Sirjean, E. Dames, D. A. Sheen, H. Wang * Department of Aerospace and Mechanical Engineering, University of

More information

Fundamental Mechanisms, Predictive Modeling, and Novel Aerospace Applications of Plasma Assisted Combustion

Fundamental Mechanisms, Predictive Modeling, and Novel Aerospace Applications of Plasma Assisted Combustion Fundamental Mechanisms, Predictive Modeling, and Novel Aerospace Applications of Plasma Assisted Combustion Walter R. Lempert, Igor V. Adamovich, J. William Rich, Jeffrey A. Sutton Department of Mechanical

More information

The original publication is available at

The original publication is available at Casimir Togbé, Luc-Sy Tran, Dong Liu, Daniel Felsmann, Patrick Oßwald, Pierre-Alexandre Glaude, Baptiste Sirjean, René Fournet, Frédérique Battin- Leclerc and Katharina Kohse-Höinghaus, Combustion chemistry

More information

Theoretical Gas Phase Chemical Kinetics. Stephen J. Klippenstein

Theoretical Gas Phase Chemical Kinetics. Stephen J. Klippenstein Theoretical Gas Phase Chemical Kinetics Stephen J. Klippenstein Goal Contribute to Improving the Accuracy of Mechanisms Theoretical Kinetics Predictions for Key Reactions Guided by Modeling Efforts Butanol

More information

Combustion Chemistry

Combustion Chemistry Combustion Chemistry Hai Wang Stanford University 2015 Princeton-CEFRC Summer School On Combustion Course Length: 3 hrs June 22 26, 2015 Copyright 2015 by Hai Wang This material is not to be sold, reproduced

More information

Chemical Kinetics of HC Combustion

Chemical Kinetics of HC Combustion Spark Ignition Engine Combustion MAK65E Chemical Kinetics of HC Combustion Prof.Dr. Cem Soruşbay Istanbul Technical University Chemical Kinetics of HC Combustion Introduction Elementary reactions Multi-step

More information

Hydrogen Abstraction/Acetylene Addition Revealed

Hydrogen Abstraction/Acetylene Addition Revealed Hydrogen Abstraction/Acetylene Addition Revealed Dorian S. N. Parker, Ralf I. Kaiser,* Tyler P. Troy, and Musahid Ahmed* University of Hawaii at Manoa, USA Lawrence Berkeley National Laboratory, USA Angew.

More information

Postdoctoral Scholar Hanson Research Group, Mechanical Engineering, Stanford University, CA

Postdoctoral Scholar Hanson Research Group, Mechanical Engineering, Stanford University, CA SHENGKAI WANG EDUCATION Phone: +1 (650) 391-6853 Email: sk.wang@stanford.edu Address: 418 Panama Mall, Rm. 106 Stanford, CA, 94305 Ph.D. in Mechanical Engineering, Stanford University, Stanford, CA 01/2017

More information

First-Principles Kinetic Model for 2-Methyl- Tetrahydrofuran Pyrolysis and Combustion

First-Principles Kinetic Model for 2-Methyl- Tetrahydrofuran Pyrolysis and Combustion First-Principles Kinetic Model for 2-Methyl- Tetrahydrofuran Pyrolysis and Combustion Ruben De Bruycker a, Luc-Sy Tran a,b,*, Hans-Heinrich Carstensen a, Pierre-Alexandre Glaude b, Frédérique Battin-Leclerc

More information

Studies of pyrolysis and oxidation of methyl formate using molecular beam mass spectrometry

Studies of pyrolysis and oxidation of methyl formate using molecular beam mass spectrometry Paper 070RK-0168 0168 Topic: Reaction Kinetics 8 th U. S. National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University of Utah May 19-22,

More information

Direct Soot Formation

Direct Soot Formation Direct Soot Formation Claus Wahl 14 th ET Conference on Combustion Generated Particles August 1 st 4 th, 2010 Deutsches Zentrum für Luft und Raumfahrt. (DLR-Stuttgart) Mailing address DLR-VT Pfaffenwaldring

More information

The original publication is available at

The original publication is available at Friederike Herrmann, Bernhard Jochim, Patrick Oßwald, Liming Cai, Heinz Pitsch and Katharina Kohse-Höinghaus, Experimental and numerical lowtemperature oxidation study of ethanol and dimethyl ether, Combustion

More information

SAFEKINEX BL

SAFEKINEX BL SAFEKINEX project Delft University of Technology Julianalaan 136 2628 BL Delft The Netherlands Tel: +31 15 278 43 92 Fax: +31 15 278 44 52 E-mail: Pekalski@tnw.tudelft.nl http://www.dct.tudelft.nl/part/explosion/

More information

A wide range kinetic modeling study of alkene oxidation

A wide range kinetic modeling study of alkene oxidation A wide range kinetic modeling study of alkene oxidation M. Mehl 1, T. Faravelli 1, E. Ranzi 1, A. Ciajolo 2, A. D'Anna 3, A. Tregrossi 2 1. CMIC-Politecnico di Milano ITALY 2. Istituto Ricerche sulla Combustione

More information

Combustion and Flame. The oxidation of a gasoline surrogate in the negative temperature coefficient region

Combustion and Flame. The oxidation of a gasoline surrogate in the negative temperature coefficient region Combustion and Flame 156 (2009) 549 564 Contents lists available at ScienceDirect Combustion and Flame www.elsevier.com/locate/combustflame The oxidation of a gasoline surrogate in the negative temperature

More information

LCT. Detailed Crude Oil Analysis: Processes for the future

LCT. Detailed Crude Oil Analysis: Processes for the future LCT Processes for the future Detailed Crude Oil Analysis: GCGC, Field Ionization Mass Spectrometry and Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Join Forces Prof. Kevin Van Geem Kevin

More information

Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published version when available. Title Experimental and kinetic modeling study of the shock tube ignition

More information

2009 MURI Topic #11: Chemical Energy Enhancement by Nonequilibrium Plasma Species

2009 MURI Topic #11: Chemical Energy Enhancement by Nonequilibrium Plasma Species 2009 MURI Topic #11: Chemical Energy Enhancement by Nonequilibrium Plasma Species Fundamental Mechanisms, Predictive Modeling, and Novel Aerospace Applications of Plasma Assisted Combustion Program Overview

More information

EFFECTS OF ETHANOL ADDITION ON SOOT PARTICLES DYNAMIC EVOLUTION IN ETHYLENE/AIR LAMINAR PREMIXED FLAME

EFFECTS OF ETHANOL ADDITION ON SOOT PARTICLES DYNAMIC EVOLUTION IN ETHYLENE/AIR LAMINAR PREMIXED FLAME THERMAL SCIENCE: Year 08, Vol., No., pp. 9-50 9 EFFECTS OF ETHANOL ADDITION ON SOOT PARTICLES DYNAMIC EVOLUTION IN ETHYLENE/AIR LAMINAR PREMIXED FLAME Introduction by Mingrui WEI a,b, Song LI a,b, Jinping

More information

Chemical Kinetics of Combustion

Chemical Kinetics of Combustion Chemical Kinetics of Combustion Philippe Dagaut CNRS-INSIS ICARE 1c, Avenue de la Recherche Scientifique - Orléans- France Introduction Experimental facilities for modeling validation Kinetic Modeling

More information

Estimation of Rate Parameters in Low Temperature Oxidation of Alkanes

Estimation of Rate Parameters in Low Temperature Oxidation of Alkanes 1 Research Report Estimation of Rate Parameters in Low Temperature Oxidation of Alkanes Shinji Kojima Abstract Rate parameters for nine types of reactions, which are supposed to be important in the low

More information

Understanding Chemical Reactions through Computer Modeling. Tyler R. Josephson University of Delaware 4/21/16

Understanding Chemical Reactions through Computer Modeling. Tyler R. Josephson University of Delaware 4/21/16 Understanding Chemical Reactions through Computer Modeling Tyler R. Josephson University of Delaware 4/21/16 A little about me B.S. in Chem E from U of M, 2011 Currently, Ph.D. student at University of

More information

Analysis of Flame Structure by Molecular-Beam Mass Spectrometry Using Electron-Impact and Synchrotron-Photon Ionization

Analysis of Flame Structure by Molecular-Beam Mass Spectrometry Using Electron-Impact and Synchrotron-Photon Ionization Combustion, Explosion, and Shock Waves, Vol. 42, No. 6, pp. 672 677, 2006 Analysis of Flame Structure by Molecular-Beam Mass Spectrometry Using Electron-Impact and Synchrotron-Photon Ionization Ph. R.

More information

DARS Digital Analysis of Reactive Systems

DARS Digital Analysis of Reactive Systems DARS Digital Analysis of Reactive Systems Introduction DARS is a complex chemical reaction analysis system, developed by DigAnaRS. Our latest version, DARS V2.0, was released in September 2008 and new

More information

Multiple benzene-formation paths in a fuel-rich cyclohexane flame

Multiple benzene-formation paths in a fuel-rich cyclohexane flame University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln US Department of Energy Publications U.S. Department of Energy 2011 Multiple benzene-formation paths in a fuel-rich cyclohexane

More information

THERMOCHEMICAL INSTABILITY OF HIGHLY DILUTED METHANE MILD COMBUSTION

THERMOCHEMICAL INSTABILITY OF HIGHLY DILUTED METHANE MILD COMBUSTION THERMOCHEMICAL INSTABILITY OF HIGHLY DILUTED METHANE MILD COMBUSTION G. Bagheri*, E. Ranzi*, M. Lubrano Lavadera**, M. Pelucchi*, P. Sabia**, A. Parente***, M. de Joannon**, T. Faravelli* tiziano.faravelli@polimi.it

More information

NUMERICAL INVESTIGATION OF IGNITION DELAY TIMES IN A PSR OF GASOLINE FUEL

NUMERICAL INVESTIGATION OF IGNITION DELAY TIMES IN A PSR OF GASOLINE FUEL NUMERICAL INVESTIGATION OF IGNITION DELAY TIMES IN A PSR OF GASOLINE FUEL F. S. Marra*, L. Acampora**, E. Martelli*** marra@irc.cnr.it *Istituto di Ricerche sulla Combustione CNR, Napoli, ITALY *Università

More information

Kinetics of the Reactions of H and CH 3 Radicals with nbutane: An Experimental Design Study using Reaction Network Analysis

Kinetics of the Reactions of H and CH 3 Radicals with nbutane: An Experimental Design Study using Reaction Network Analysis Paper # 070RK-0277 Topic: Reaction Kinetics 8 th U. S. National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University of Utah May 19-22, 2013

More information

Modeling ion and electron profiles in methane-oxygen counterflow diffusion flames

Modeling ion and electron profiles in methane-oxygen counterflow diffusion flames Abstract 8 th U. S. National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University of Utah May 19-22, 2013 Modeling ion and electron profiles

More information

Kinetic modelling of Biofuels: Pyrolysis and Auto-Ignition of Aldehydes

Kinetic modelling of Biofuels: Pyrolysis and Auto-Ignition of Aldehydes 871 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 37, 2014 Guest Editors: Eliseo Ranzi, Katharina Kohse- Höinghaus Copyright 2014, AIDIC Servizi S.r.l., ISBN 978-88-95608-28-0; ISSN 2283-9216

More information

DARS overview, IISc Bangalore 18/03/2014

DARS overview, IISc Bangalore 18/03/2014 www.cd-adapco.com CH2O Temperatur e Air C2H4 Air DARS overview, IISc Bangalore 18/03/2014 Outline Introduction Modeling reactions in CFD CFD to DARS Introduction to DARS DARS capabilities and applications

More information

Catalysis Lectures W.H. Green 5.68J/10.652J Spring Handouts: Norskov et al., J. Catalysis Imbihl and Ertl, Chem. Rev. (partial) Homework

Catalysis Lectures W.H. Green 5.68J/10.652J Spring Handouts: Norskov et al., J. Catalysis Imbihl and Ertl, Chem. Rev. (partial) Homework Catalysis Lectures W.H. Green 5.68J/10.652J Spring 2003 Handouts: Norskov et al., J. Catalysis Imbihl and Ertl, Chem. Rev. (partial) Homework Major points: 1) Why reactions have barriers, and how catalysts

More information

On the Chemical Kinetics of n-butanol: Ignition and Speciation Studies

On the Chemical Kinetics of n-butanol: Ignition and Speciation Studies pubs.acs.org/jpca On the Chemical Kinetics of n-butanol: Ignition and Speciation Studies Darshan M.A. Karwat,*, Scott W. Wagnon, Paul D. Teini, and Margaret S. Wooldridge, Department of Aerospace Engineering

More information

Current progress in DARS model development for CFD

Current progress in DARS model development for CFD Current progress in DARS model development for CFD Harry Lehtiniemi STAR Global Conference 2012 Netherlands 20 March 2012 Application areas Automotive DICI SI PPC Fuel industry Conventional fuels Natural

More information

Numerical Investigation of Ignition Delay in Methane-Air Mixtures using Conditional Moment Closure

Numerical Investigation of Ignition Delay in Methane-Air Mixtures using Conditional Moment Closure 21 st ICDERS July 23-27, 27 Poitiers, France Numerical Investigation of Ignition Delay in Methane-Air Mixtures using Conditional Moment Closure Ahmad S. El Sayed, Cécile B. Devaud Department of Mechanical

More information

A First Course on Kinetics and Reaction Engineering Example 1.2

A First Course on Kinetics and Reaction Engineering Example 1.2 Example 1.2 Problem Purpose This example shows how to determine when it is permissible to choose a basis for your calculations. It also illustrates how to use reaction progress variables and the initial

More information

C. Saggese, N. E. Sanchez, A. Callejas, A. Millera, R. Bilbao, M. U. Alzueta, A. Frassoldati, A. Cuoci, T. Faravelli, E. Ranzi

C. Saggese, N. E. Sanchez, A. Callejas, A. Millera, R. Bilbao, M. U. Alzueta, A. Frassoldati, A. Cuoci, T. Faravelli, E. Ranzi Dipartimento di Chimica, Materiali e Ingegneria Chimica G. Natta Politecnico di Milano in collaboration with: A Kinetic Modeling Study of Polycyclic Aromatic Hydrocarbons (PAHs) and Soot Formation in Acetylene

More information

FIRST PRINCIPLES BASED MICROKINETIC MODELING OF METHYL BUTANOATE PYROLYSIS

FIRST PRINCIPLES BASED MICROKINETIC MODELING OF METHYL BUTANOATE PYROLYSIS FIRST PRINCIPLES BASED MICROKINETIC MODELING OF METHYL BUTANOATE PYROLYSIS P. D. Paraskevas 1,2*, F. Vermeire 1, M. R. Djokic 1, M. K. Sabbe 1, M.-F. Reyniers 1, N. Papayannakos 2, K. M. Van Geem 1, G.

More information

Low-Temperature Chemical Kinetic and Speciation Studies of n-heptane

Low-Temperature Chemical Kinetic and Speciation Studies of n-heptane 8 th U. S. National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University of Utah May 19-22, 2013 Low-Temperature Chemical Kinetic and Speciation

More information

An Aromatics and cc 5 H 5-8 Model with Improved Transport for Flat Flames, Flow Reactors and Shock Tubes.

An Aromatics and cc 5 H 5-8 Model with Improved Transport for Flat Flames, Flow Reactors and Shock Tubes. 8 th US National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University of Utah May 19-22, 2013 An Aromatics and cc 5 H 5-8 Model with Improved

More information

A comparison between two different Flamelet reduced order manifolds for non-premixed turbulent flames

A comparison between two different Flamelet reduced order manifolds for non-premixed turbulent flames 8 th U. S. National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University of Utah May 19-22, 2013 A comparison between two different Flamelet

More information

of Plasma Assisted Combustion

of Plasma Assisted Combustion Fundamental Mechanisms, Predictive Modeling, and Novel Aerospace Applications of Plasma Assisted Combustion Overview of OSU research plan Walter Lempert, Igor Adamovich, J. William Rich, and Jeffrey Sutton

More information

COMBUSTION DYNAMICS IN A RIJKE TUBE (PULSED COMBUSTOR) Learning Objectives

COMBUSTION DYNAMICS IN A RIJKE TUBE (PULSED COMBUSTOR) Learning Objectives COMBUSTION DYNAMICS IN A RIJKE TUBE (PULSED COMBUSTOR) Rijke Tube Lab - 1 Learning Objectives 1. Familiarization with the characteristics of resonant systems, frequencies and mode shapes 2. Introduction

More information

Polymer plants continue to seek ways to increase production and efficiency without compromising safety.

Polymer plants continue to seek ways to increase production and efficiency without compromising safety. Polyethylene Polypropylene APPLICATION NOTE NOTE Polymer plants continue to seek ways to increase production and efficiency without compromising safety. Process gas analysis is integral to the control

More information

The comprehensive modelling of n-heptane / iso-octane oxidation by a skeletal mechanism using the Chemistry Guided Reduction approach

The comprehensive modelling of n-heptane / iso-octane oxidation by a skeletal mechanism using the Chemistry Guided Reduction approach The comprehensive modelling of n-heptane / iso-octane oxidation by a skeletal mechanism using the Chemistry Guided Reduction approach L. Seidel 1, F. Bruhn 1, S. S. Ahmed 1, G. Moréac 2, T. Zeuch 3*, and

More information

Combustion Chemistry William H. Green MIT Dept. of Chemical Engineering 2014 Princeton-CEFRC Summer School on Combustion

Combustion Chemistry William H. Green MIT Dept. of Chemical Engineering 2014 Princeton-CEFRC Summer School on Combustion Combustion Chemistry William H. Green MIT Dept. of Chemical Engineering 2014 Princeton-CEFRC Summer School on Combustion Course Length: 15 hrs June 2014 Copyright 2014 by William H. Green This material

More information

What we will learn about now

What we will learn about now Chapter 4: Gases What we will learn about now We will learn how volume, pressure, temperature are related. You probably know much of this qualitatively, but we ll learn it quantitatively as well with the

More information

A comprehensive experimental and modeling study of iso-pentanol combustion

A comprehensive experimental and modeling study of iso-pentanol combustion 8 th U. S. National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University of Utah May 19-22, 2013 A comprehensive experimental and modeling

More information

Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane

Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane The MIT Faculty has made this article openly available. Please share how this

More information

LOW TEMPERATURE MODEL FOR PREMIXED METHANE FLAME COMBUSTION

LOW TEMPERATURE MODEL FOR PREMIXED METHANE FLAME COMBUSTION ISTP-16, 2005, PRAGUE 16TH INTERNATIONAL SYMPOSIUM ON TRANSPORT PHENOMENA LOW TEMPERATURE MODEL FOR PREMIXED METHANE FLAME MBUSTION M. Forman, J.B.W.Kok,M. Jicha Department of Thermodynamics and Environmental

More information

INTRODUCTION TO CATALYTIC COMBUSTION

INTRODUCTION TO CATALYTIC COMBUSTION INTRODUCTION TO CATALYTIC COMBUSTION R.E. Hayes Professor of Chemical Engineering Department of Chemical and Materials Engineering University of Alberta, Canada and S.T. Kolaczkowski Professor of Chemical

More information

INTERNAL COMBUSTION ENGINE (SKMV 3413)

INTERNAL COMBUSTION ENGINE (SKMV 3413) INTERNAL COMBUSTION ENGINE (SKMV 3413) Dr. Mohd Farid bin Muhamad Said Room : Block P21, Level 1, Automotive Development Centre (ADC) Tel : 07-5535449 Email: mfarid@fkm.utm.my THERMOCHEMISTRY IC engine

More information

Fuel, Air, and Combustion Thermodynamics

Fuel, Air, and Combustion Thermodynamics Chapter 3 Fuel, Air, and Combustion Thermodynamics 3.1) What is the molecular weight, enthalpy (kj/kg), and entropy (kj/kg K) of a gas mixture at P = 1000 kpa and T = 500 K, if the mixture contains the

More information

Chapter 1 Introduction and Basic Concepts

Chapter 1 Introduction and Basic Concepts Chapter 1 Introduction and Basic Concepts 1-1 Thermodynamics and Energy Application Areas of Thermodynamics 1-2 Importance of Dimensions and Units Some SI and English Units Dimensional Homogeneity Unity

More information

Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published version when available. Title Author(s) Publication Date Publication Information An updated experimental

More information

SIFT-MS SELECTED ION FLOW TUBE MASS SPECTROMETRY TECHNOLOGY OVERVIEW

SIFT-MS SELECTED ION FLOW TUBE MASS SPECTROMETRY TECHNOLOGY OVERVIEW SIFT-MS SELECTED ION FLOW TUBE MASS SPECTROMETRY TECHNOLOGY OVERVIEW NEXT GENERATION MASS SPECTROMETRY CONTENTS: 3 How SIFT-MS works 4 Soft chemical ionisation 5 Quantification in real-time 6 Utilising

More information

Cellular structure of detonation wave in hydrogen-methane-air mixtures

Cellular structure of detonation wave in hydrogen-methane-air mixtures Open Access Journal Journal of Power Technologies 91 (3) (2011) 130 135 journal homepage:papers.itc.pw.edu.pl Cellular structure of detonation wave in hydrogen-methane-air mixtures Rafał Porowski, Andrzej

More information

Theoretical Studies of Reaction Mechanisms Relevant to Hydrocarbon Growth in Titan s Atmosphere

Theoretical Studies of Reaction Mechanisms Relevant to Hydrocarbon Growth in Titan s Atmosphere Theoretical Studies of Reaction Mechanisms Relevant to Hydrocarbon Growth in Titan s Atmosphere Alexander M. Mebel, Adeel Jamal, Alexander Landera, and Ralf I. Kaiser Department of Chemistry and Biochemistry,

More information

Laminar Premixed Flames: Flame Structure

Laminar Premixed Flames: Flame Structure Laminar Premixed Flames: Flame Structure Combustion Summer School 2018 Prof. Dr.-Ing. Heinz Pitsch Course Overview Part I: Fundamentals and Laminar Flames Introduction Fundamentals and mass balances of

More information

Kinetic Modeling of Methyl Formate Oxidation

Kinetic Modeling of Methyl Formate Oxidation 7 th US National Technical Meeting of the Combustion Institute Hosted by the Georgia Institute of Technology, Atlanta, GA March 20 23, 2011 Kinetic Modeling of Methyl Formate Oxidation Richard H. West

More information

EFFECT OF N-BUTANOL ADDITION ON SOOT FORMATION OF N- HEPTANE IN A MICRO FLOW REACTOR WITH A CONTROLLED TEMPERATURE PROFILE

EFFECT OF N-BUTANOL ADDITION ON SOOT FORMATION OF N- HEPTANE IN A MICRO FLOW REACTOR WITH A CONTROLLED TEMPERATURE PROFILE EFFECT OF N-BUTANOL ADDITION ON SOOT FORMATION OF N- HEPTANE IN A MICRO FLOW REACTOR WITH A CONTROLLED TEMPERATURE PROFILE Mohd Hafidzal Bin Mohd Hanafi 1, Hisashi Nakamura 1, Takuya Tezuka 1 and Kaoru

More information

Confirmation of paper submission

Confirmation of paper submission Prof. Tiziano Faravelli Dipartimento di Chimica, Materiali e Ingegneria Chimica Politecnico di Milano Piazza L. da Vinci, 32 20133 Milano (Italy) 28. Mai 14 Confirmation of paper submission Name: Email:

More information

COMBUSTION CHEMISTRY COMBUSTION AND FUELS

COMBUSTION CHEMISTRY COMBUSTION AND FUELS COMBUSTION CHEMISTRY CHEMICAL REACTION AND THE RATE OF REACTION General chemical reaction αa + βb = γc + δd A and B are substracts and C and are products, α, β, γ and δ are stoichiometric coefficients.

More information

Supersonic Combustion Simulation of Cavity-Stabilized Hydrocarbon Flames using Ethylene Reduced Kinetic Mechanism

Supersonic Combustion Simulation of Cavity-Stabilized Hydrocarbon Flames using Ethylene Reduced Kinetic Mechanism 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit 9-12 July 2006, Sacramento, California AIAA 2006-5092 Supersonic Combustion Simulation of Cavity-Stabilized Hydrocarbon Flames using Ethylene

More information

2D Methyl Radical Measurement in a Methane/Air Flame at Atmospheric. Pressure. Abstract

2D Methyl Radical Measurement in a Methane/Air Flame at Atmospheric. Pressure. Abstract 2D Methyl Radical Measurement in a Methane/Air Flame at Atmospheric Pressure Yue Wu, Zhili Zhang Mechanical, Aerospace and Biomedical Engineering Department, University of Tennessee, Knoxville, TN 37996,

More information

Combustion: Flame Theory and Heat Produced. Arthur Anconetani Oscar Castillo Everett Henderson

Combustion: Flame Theory and Heat Produced. Arthur Anconetani Oscar Castillo Everett Henderson Combustion: Flame Theory and Heat Produced Arthur Anconetani Oscar Castillo Everett Henderson What is a Flame?! Reaction Zone! Thermo/Chemical characteristics Types of Flame! Premixed! Diffusion! Both

More information

Fuel 93 (2012) Contents lists available at SciVerse ScienceDirect. Fuel. journal homepage:

Fuel 93 (2012) Contents lists available at SciVerse ScienceDirect. Fuel. journal homepage: Fuel 93 (2012) 339 350 Contents lists available at SciVerse ScienceDirect Fuel journal homepage: www.elsevier.com/locate/fuel Evaluation of chemical-kinetics models for n-heptane combustion using a multidimensional

More information

C 6 H H 2 C 6 H 12. n C6H12 n hydrogen n benzene. n C6H6 n H2 100 C 6 H 6 n 2 n C6H H 2. n 1

C 6 H H 2 C 6 H 12. n C6H12 n hydrogen n benzene. n C6H6 n H2 100 C 6 H 6 n 2 n C6H H 2. n 1 1. Cyclohexane (C 6 H 12 ) can be made by the reaction of benzene (C 6 H 6 ) and hydrogen gas. The products from the reactor are sent to a separator where the cyclohexane and some of the unreacted hydrogen

More information

Chemical Kinetics of Ethanol Oxidation. Tonawanda, NY 14150, USA. Princeton University Princeton, NJ 08544, USA

Chemical Kinetics of Ethanol Oxidation. Tonawanda, NY 14150, USA. Princeton University Princeton, NJ 08544, USA Chemical Kinetics of Ethanol xidation Juan Li 1, Andrei Kazakov 2, Frederick L. Dryer 2* 1 Praxair, Inc. Tonawanda, NY 1415, USA 2 Department of Mechanical and Aerospace Engineering Princeton University

More information

ORGANIC ORGANIC CHEMISTRY CHEMISTRY ORGANIC ORGANIC CHEMISTRY CHEMISTRY

ORGANIC ORGANIC CHEMISTRY CHEMISTRY ORGANIC ORGANIC CHEMISTRY CHEMISTRY Name this compound (IUPC required): 2,dimethylpropane or dimethylpropane (it is clear that both methyl groups are on second carbon atom as only 3 carbon atoms exist in longest chain propane). When asked

More information

The nature of fire. Combustion physics 410

The nature of fire. Combustion physics 410 409 Combustion physics How a Master s project in combustion diagnostics led to a new division at the Department of Physics and together with other divisions at LTH formed the Thulin Laboratory. The nature

More information

Experimental Study of 2D-Instabilities of Hydrogen Flames in Flat Layers

Experimental Study of 2D-Instabilities of Hydrogen Flames in Flat Layers 25 th ICDERS August 2 7, 2015 Leeds, UK Experimental Study of 2D-Instabilities of Hydrogen Flames in Flat Layers M. Kuznetsov 1 *, J. Grune 2, S. Tengah 1, J. Yanez 1 1 Intitute for Energy and Nuclear

More information

Reactions of Atomic Carbon with Butene Isomers: Implications for Molecular Growth in Carbon-Rich Environments

Reactions of Atomic Carbon with Butene Isomers: Implications for Molecular Growth in Carbon-Rich Environments Reactions of Atomic Carbon with Butene Isomers: Implications for Molecular Growth in Carbon-Rich Environments Jérémy Bourgalais, Michael Spencer, David L. Osborn, Fabien Goulay, Sébastien Le Picard To

More information