Influence of flow rate on the droplet generation process in a microfluidic chip

Size: px
Start display at page:

Download "Influence of flow rate on the droplet generation process in a microfluidic chip"

Transcription

1 Influence of flow rate on the droplet generation process in a microfluidic chip Florian Lapierre, Nan Wu, Yonggang Zhu * CSIRO Materials Science and Engineering, PO Box 56, Highett, Melbourne, VIC 3190, Australia ABSTRACT Droplet generation in microfluidics has attracted a great deal of attention due to the potential applications in many areas of science and technology. The understanding of the generation mechanism is still unsatisfactory and proposed models lack generality for different microchips with flow conditions and channel geometries. In this paper, we present new results of droplet generation in a PMMA microchip using flow-focusing technique. The current data are compared with existing published data obtained with similar generation microchip method. The dependence of the droplet size/slug length on the capillary number and ratio of the continuous phase and dispersed phase flow rates is investigated. A model has been proposed which explains well the data from several similar studies. Keywords: water in oil emulsion, droplet generation, microfluidics, flow focusing, capillary number 1. INTRODUCTION The emergence of new technologies using microfluidic devices has given recent momentum to droplet formation studies using micro-channels. The generation of fine emulsions in which aqueous micro-droplets are used as a container for DNA in an organic medium has a great potential in pharmaceutical and bio-chemical applications. [1] Chemical and biochemical reactions have also been successfully performed in microfluidic systems where the generated droplets-size could be controlled to a nano and picolitre scale. [2] Emulsion has been the subject of numerous studies in microfluidic devices. The commonly used geometry to generate fine droplets has been the T-junction type channels. The T-junction device could be designed by different methods as shown by Hung et al. [3] and Nisisako et al. [4] In studies of size controlled droplets, Tice et al. [5, 6] investigated the conditions to form nanoliter-sized droplets as plugs. In particular, they investigated the effect of viscosity on the droplet formation regimes at the junction of a T-channel type system. Flow focused devices have also shown that two streams of the organic phase between which an aqueous phase stream in injected is a reliable way to generate droplets of aqueous in organic with different sizes. Cramer et al. [7] have proved that specially designed capillary flows with co-flowing continuous phases permitted drop formation. They have shown that the tendency of the dispersed phase to generate a liquid jet rises with increasing velocity of the continuous phase along with higher flow rates, viscosity of the disperse phase and lower interfacial tensions. They concluded that interfacial tension force was the only conservative force which drives the droplets to adopt a spherical shape at the formation location. The above discussed concept of flow focusing in which the drop liquid flows as a stream in the middle of a channel and surrounded by the continuous liquid flow has received the attention of many works both numerically and experimentally. Kuksenok et al. [8] have shown numerically that in flow focusing formation of droplets of phase A in phase B or vice versa B in A are the result of morphological instabilities occurring in the microchannel. In a flow focusing system Pulido-de-Torres et al. [9] studied droplet formation in an emulsion of water-sunflower oil and investigated the effect of surfactant on drop size. They identified different droplet generation regimes of mono-dispersed and poly-dispersed emulsions. All cited studies still confirm the importance of the design of the flow focused system, yet optimized geometrical configurations have to be established. The motivation of the present study is to investigate a flow focusing system designed in the form of a specific cross microchannel network for the generation of fine water-in-oil (W/O) droplets which can be employed to control precisely the size of the formed droplets. A particular focus is given to the effects of Smart Nano-Micro Materials and Devices, edited by Saulius Juodkazis, Min Gu, Proc. of SPIE Vol. 8204, 82040H 2011 SPIE CCC code: X/11/$18 doi: / Proc. of SPIE Vol H-1

2 the continuous phase flow conditions on the droplet generation at the specifically designed junction in the microchannel network. 2. EXPERIMENTAL DETAILS 2.1 Configuration and fabrication of the microchips The PMMA microchip uses a flow focusing geometry with channels thatt were rectangular in cross-section. Two aqueous streams were merged before they were forced to flow through a smalll orifice located downstream of the inlet channels. Oil added through two symmetric perpendicular channels exerted pressure and viscous stress on the aqueous fluid and forced the mixture into a narrow thread, which then broke into droplets inside the orifice. The width of the orifice was 50 µm and the depth of all the channels was 70 µm. A large reservoir (10 µm 1 µm 70 µm) was connected downstream of the droplet generator. The microchip was fabricated in a polycarbonate slide with dimensionss of 75 mm 25 mm and a thickness of 2 mm. The microchip was fabricated in the CSIRO Microfabrication Laboratory, Clayton, VIC 3169, Australia. The microfluidic channel pattern was designed using a commercial layout tool and fabricated as a film mask. The mask pattern was exposed into a 70 µm layer of Laminar 5083 resist/stainless steel plate using a collimated UV exposure system. The exposed pattern was developed in 1% Na 2 CO3 solution and the resulting profile was replicated as a Ni shim by a 2 stage process. Firstly, a thin layer of Ni was sputter deposited onto the patterned surface followed by a thicker electrodeposited layer (100 µm) in a Ni sulphamate bath. The nickel shim was subsequently used as a die to hot emboss the pattern of channels into polycarbonate chips. The embossing was performed in a planar hydraulic presss at a temperature of 155ºC. During embossing, the pressure was maintained for two minutes and then released after cooling to ~50ºC. The accesss holes were then drilled through the backside of the polycarbonate plate. Before laminating the capping layer, the PC chip was treated with oxygen plasma for 15 minutes. To access the microchannels in the chip, a nano-ports assembly was carefully glued to each liquid port. A schematic view of the microchip is presented in Figure 1. Figure 1. A schematic illustration of the arrangement of microfluid channels for droplet generation. The nozzle size D is 50 µm. and all channels have a depth of 70 µm. Proc. of SPIE Vol H-2

3 2.2 Experimental details The experiments were carried out in CSIRO Microfluidics Laboratory at Highett, Melbourne VIC 3190, Australia. Mineral oil (Sigma) was used as the continuous phase with the addition of 4% (w/w) Abil EM90 (Gold schmidt GmbH, Germany) and 1% (w/w) Span 80 (Fluka) as surfactants. The dynamic viscosity of the oil phase was mpa.s at 23 C. Deionised water was used as the disperse phase, which has a viscosity of 1 mpa.s. The interfacial tension of the two phases was 5.83 mn/m. A nemesys high pressure pump system (Cetoni, Germany) with four independent pumps was used to pump the fluids from the SGE syringes (Supelco) ranging from 50 µl to 250 μl capacity to the microchip. For the current study, the each aqueous flow rate (Q w ) was fixed at 40 µl/h while the oil flow rate (Q o ) varied from 10 µl/h to 160 µl/h. The resulting capillary number Ca = μ U / σ (here µ and U are the dynamic viscosity and flow velocity of the continuous phase, σ is the interfacial tension) varies from 0.1 to The microchip was connected to the syringes with polytetrafluoroethylene (PTFE) tubing (i.d. 0.30mm, Cole- Parmer). The microchip was placed on a microscope (Nikon Eclipse TE2000-U) stage for visualization and measurement. A high speed video camera (MotionPro X3, Redlake) equipped with a de-magnification lens (Nikon C ) was attached to one microscopic port to record pictures of droplets at 1000 frames per second. A 4 objective (Plan Fluor, Nikon) was used. The droplet size was measured from the pictures taken. 3. RESULTS AND DISCUSSIONS 3.1 Droplet sizes Figure 2 shows a series of images taken from the droplet formation experiments, with each image corresponding to different oil flow rate. The total aqueous flow rate was fixed at 80 µl/h. Figure 2. Images of droplet formation for different oil phase rates. The total aqueous phase was kept at 80 l/h. while the oil phase changed from 10 to 160 l/hour. Proc. of SPIE Vol H-3

4 The slug length (L) was measured from the images using an imaging processing technique. However, even through the droplet formation was carried out at an oil flow rate of 10 µl/h, the slug length was much larger than the nozzle length and thus it is impossible to estimate the length. Only data in the range of l/h are shown in Figure 3. It can be seen that the increase of oil flow reduced the drop size. At small oil flow rates, the aqueous phase formed a slug and the slug length was larger at smaller oil flow rate. Figure 3. Aqueous phase slug length as a functionn of the oil flowrate. The total aqueous phase was kept at 80 µl/h. 3.2 Drop generation mechanism The droplet formation in flow-focusing device is mainly due to the break-up of the dispersedd phase in the carrier fluids by the exerted shear force. The simplified versions of the jet break-up problem were investigated by Rayleigh (1879) [10] (water jet in air), Taylor (1934) [11] and Tomotika (1935) [12] (liquid jet in another viscous fluid). For example, Tomotika took into account the effect of viscosities of both phases and calculated the maximum instabilities of the jet. For a viscosity ratio μ D /μ C of 50 whichh matches the value of current experiments (here the subscripts D and C refer to dispersed and continuous phases, respectively), the instability wavelength is about 5.7 times of the jet diameter. This value was significantly larger than the measured values shown in figures 2 and 3. This is not surprising since the numerical calculations were based on the assumption of small external fluid motions and the domination effect was the viscosity ratio for jet break-up. In general case, the droplet formation is dependent on the flow rates, fluid properties of both phases, interfacial tensionn and nozzle geometry, as summarised in Cristini and Tan. [13] A simple relation was proposed between droplet size and flow rate, which is essentially simplified as, 1 d Ca (1) As pointed out by Zhu and Power [14], such a relation is inappropriate to explain the drop size dependence. As shown in Figure 4, the two sets of data measured in two flow-focusincapillary numbers. At lower numbers, there is a larger departure from the slope. Moreover, there is a large difference in normalised droplet size between the two sets of data. This implies the capillary number alone is not sufficient to explain the dependence of droplet microfluidic devices indicate that the data only follow the scaling law in Eq. (1) at relatively large size. Proc. of SPIE Vol H-4

5 Figure 4 Normalised drop slug length as a function of capillary number. The open square symbols correspond to data collected from the mineral oil/water system (μ D /μ C = 50) while the cross symbols are data from a vegetable oil/water system (μ D /μμ C =1000). More recently, several groups have investigated the influence of the flow rate and the geometrical parameters of the flow-focusing microchip device on the droplet generation. For example, Ward et al. [15] proposed the following model without incorporating directly the capillary number, i..e. L D Q = α( Q d c 0.25 ) (2) where α is a constant dependant of the geometrical parameters and fluid properties. This relation represented well the measured data for capillarity numbers from 0.1 to 1. Tan et al [16] included capillary number explicitly in their equation, i.e. L D Qd 0.2 = α( ) Ca Q c 0.2 (3) The empirically derived constants appeared to provide a good fitting across the whole range of their experimental dataa and predictedd accurately the dispersed phase slug length in their microfluidic device. More recently, Liu and Zhang [17] proposed in a new model to predict the droplet generation in microchannel, i.e., L Q = d ( α + β ) C D Q c Ca m (4) where α, β and m are the fitting parameters depending on the channel geometry. The value of m was suggested to vary from 0.2 to 0.3 and from their numerical modellings m was found to be Figure 5 replotted the two sets of data measured from our microchips. Also plotted in the figures are the published dataa from similar flow-focusing devices. [15, 18, 19] The droplet size or slug length is normalised by the channel width. Equations (2) and (3) did not provide a reasonable fit to the current data and we thus used Equation (4) as the preferred model. A value of 0.2 was chosen for m following the findings from Tan et al. and Liu and Zhang. The current data of Proc. of SPIE Vol H-5

6 (L/D)Ca -m show an approximately linear dependencee on Q D /Q C, with α = 0.2 and β = This linear fitting is also plotted in the figure. It can be seen that the data from published work also follow the fitted model reasonably well. Figure 5 Normalised drop slug length as a function of ratio of flow rates. 4. CONCLUSIONS The droplet generation was investigated in a flow-focusing microfluidic device. Light mineral oil was used as the carrierr phase and DI water was used the dispersed phase. Surfactants weree added to both phases. At a given water flow rate, the slug length from the jet break-up decreases with increasing oil flow rate. The current data shows that the droplet size is dependent on the ratio of the flow rates and capillary, and can be represented by the model, with fitted constants, L Qd 0.2 = ( ) Ca. This model also represented reasonable well the published data measured from different D Qc flow focusing devices. REFERENCES 1. Wu, N., et al., A PMMA microfluidic droplet platform for in vitro protein expression using crude E. coli S30 extract. Lab Chip, (23): p Huebner, A., et al., Microdroplets: A sea of applications? Lab Chip, (8): p Hung, L.-H., et al., Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis. Lab Chip, : p Proc. of SPIE Vol H-6

7 4. Nisisako, T., T. Torii, and T. Higuchi, Novel Microreactors for Functional Polymer Beads. Chem. Eng. J., : p Tice, J.D., A.D. Lyon, and R.F. Ismagilov, Effects of Viscosity on Droplet Formation and Mixing in Microfluidic Channels. Anal. Chim. Acta, : p Tice, J.D., et al., Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers. Langmuir, : p Cramer, C., P. Fischer, and E.J. Windhab, Drop formation in a Co-Flowing Ambient Fluid. Chem. Eng. Sci., : p Kuksenok, O., et al., Periodic Droplet Formation in Chemically Patterned Microchannels. Physical Review Letters, (10): p Pulido-de-Torres, C., et al. Controlled Production of Food Emulsion Using Microfluidics. in NSTI Nanotech NSTI Nanotechnology Conference and Trade Show, Boston, MA, United States: Nano Science and Technology Institute, Cambridge, Mass. 10. Rayleigh, L., On the Capillary Phenomena of Jets. Proc. Roy. Soc. Lond., : p Taylor, G.I., The Formation of Emulsions in Definable Fields of Flow. Proc. Roy. Soc. Lond. A, : p Tomotika, S., On the Instability of a Cylindrical Thread of a Viscous Liquid Surrounded by Another Viscous Fluid. Proc. Roy. Soc. Lond. A, CL: p Cristini, V. and Y.-C. Tan, Theory and numerical simulation of droplet dynamics in complex flows - A review. Lab Chip, : p Zhu, Y. and B.E. Power, Lab-on-a-chip in Vitro Compartmentalization Technologies for Protein Studies, in Protein-Protein Interaction, M. Werther and H. Seitz, Editors. 2008, Springer-Verlag: Berlin. p Ward, T., et al., Microfluidic flow focusing: Drop size and scaling in pressure versus flow-rate-driven pumping. Electrophoresis, : p Tan, J., et al., Drop dispenser in a cross-junction microfluidic device: Scaling and mechanism of break-up. Chemical Engineering Journal, (2-3): p Liu, H., Droplet formation in microfluidic cross-junctions. Physics of Fluids, (8): p Stan, C.A., S.K.Y. Tang, and G.M. Whitesides, Independent Control of Drop Size and Velocity in Microfluidic Flow-Focusing Generators Using Variable Temperature and Flow Rate. Analytical Chemistry, (6): p Tan, Y.-C., V. Cristini, and A.P. Lee, Monodispersed microfluidic droplet generation by shear focusing microfluidic device. Sens. Actu. B, : p Proc. of SPIE Vol H-7

Microfluidic flow focusing: Drop size and scaling in pressure versus flow-rate-driven pumping

Microfluidic flow focusing: Drop size and scaling in pressure versus flow-rate-driven pumping 3716 Electrophoresis 2005, 26, 3716 3724 Thomas Ward Magalie Faivre Manouk Abkarian Howard A. Stone Division of Engineering and Applied Sciences, Harvard University Cambridge, Cambridge, MA, USA Microfluidic

More information

Flow Focusing Droplet Generation Using Linear Vibration

Flow Focusing Droplet Generation Using Linear Vibration Flow Focusing Droplet Generation Using Linear Vibration A. Salari, C. Dalton Department of Electrical & Computer Engineering, University of Calgary, Calgary, AB, Canada Abstract: Flow focusing microchannels

More information

Simulation of a 3D Flow-Focusing Capillary-Based Droplet Generator

Simulation of a 3D Flow-Focusing Capillary-Based Droplet Generator Simulation of a 3D Flow-Focusing Capillary-Based Droplet Generator D. Conchouso*, E. Rawashdeh, A. Arevalo, D. Castro, I. G. Foulds King Abdullah University of Science and Technology 4700 KAUST 23955,

More information

IHTC DRAFT MEASUREMENT OF LIQUID FILM THICKNESS IN MICRO TUBE ANNULAR FLOW

IHTC DRAFT MEASUREMENT OF LIQUID FILM THICKNESS IN MICRO TUBE ANNULAR FLOW DRAFT Proceedings of the 14 th International Heat Transfer Conference IHTC14 August 8-13, 2010, Washington D.C., USA IHTC14-23176 MEASUREMENT OF LIQUID FILM THICKNESS IN MICRO TUBE ANNULAR FLOW Hiroshi

More information

Synthesis of Copper Oxide Nanoparticles in Droplet Flow Reactors

Synthesis of Copper Oxide Nanoparticles in Droplet Flow Reactors University of New Hampshire University of New Hampshire Scholars' Repository Honors Theses and Capstones Student Scholarship Spring 2017 Synthesis of Copper Oxide Nanoparticles in Droplet Flow Reactors

More information

Microfluidics 1 Basics, Laminar flow, shear and flow profiles

Microfluidics 1 Basics, Laminar flow, shear and flow profiles MT-0.6081 Microfluidics and BioMEMS Microfluidics 1 Basics, Laminar flow, shear and flow profiles 11.1.2017 Ville Jokinen Outline of the next 3 weeks: Today: Microfluidics 1: Laminar flow, flow profiles,

More information

A Step towards Biosensors Numerical Study of Shear-Thinning Droplet Breakup Dynamics at Microfluidics T-Junction using Level-Set Method

A Step towards Biosensors Numerical Study of Shear-Thinning Droplet Breakup Dynamics at Microfluidics T-Junction using Level-Set Method A Step towards Biosensors Numerical Study of Shear-Thinning Droplet Breakup Dynamics at Microfluidics T-Junction using Level-Set Method Voon-Loong Wong, Kar-Hing Yau, Katerina Loizou, Phei-Li Lau, Richard

More information

Heat-Shock Transformation of Escherichia coli in Nanolitre Droplets Formed in a Capillary-Composited Microfluidic Device

Heat-Shock Transformation of Escherichia coli in Nanolitre Droplets Formed in a Capillary-Composited Microfluidic Device Electronic Supplementary Information (ESI) for Analytical Methods Electronic Supplementary Information Heat-Shock Transformation of Escherichia coli in Nanolitre Droplets Formed in a Capillary-Composited

More information

Formation of Droplets and Bubbles in a Microfluidic T-junction. Scaling and Mechanism of Break-Up. Supplementary Information

Formation of Droplets and Bubbles in a Microfluidic T-junction. Scaling and Mechanism of Break-Up. Supplementary Information Formation of Droplets and Bubbles in a Microfluidic T-junction Scaling and Mechanism of Break-Up Supplementary Information Piotr Garstecki 1,2 *, Michael J. Fuerstman 1, Howard A. Stone 3 and George M.

More information

Supplementary Information. Continuous Transfer of Liquid Metal Droplets Across a Fluid-Fluid Interface Within an Integrated Microfluidic Chip

Supplementary Information. Continuous Transfer of Liquid Metal Droplets Across a Fluid-Fluid Interface Within an Integrated Microfluidic Chip Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is The Royal Society of Chemistry 2015 Supplementary Information Continuous Transfer of Liquid Metal Droplets Across a Fluid-Fluid

More information

Contents. Microfluidics - Jens Ducrée Physics: Laminar and Turbulent Flow 1

Contents. Microfluidics - Jens Ducrée Physics: Laminar and Turbulent Flow 1 Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

More information

A Multiphase Microreactor for Organic Nitration

A Multiphase Microreactor for Organic Nitration A Multiphase Microreactor for Organic Nitration Dr. John R.Burns Dept. Chemical & Process Engineering, University of Newcastle, U.K. Intensifying Multiphase Reactions Using Narrow Channel Flow Key Points

More information

MODELING ON THE BREAKUP OF VISCO-ELASTIC LIQUID FOR EFFERVESCENT ATOMIZATION

MODELING ON THE BREAKUP OF VISCO-ELASTIC LIQUID FOR EFFERVESCENT ATOMIZATION 1446 THERMAL SCIENCE, Year 2012, Vol. 16, No. 5, pp. 1446-1450 MODELING ON THE BREAKUP OF VISCO-ELASTIC LIQUID FOR EFFERVESCENT ATOMIZATION by Li-Juan QIAN * China Jiliang University, Hangzhou, China Short

More information

Experimental study of ionic liquid-water flow in T- shaped microchannels with different aspect ratios

Experimental study of ionic liquid-water flow in T- shaped microchannels with different aspect ratios Journal of Physics: Conference Series PAPER OPEN ACCESS Experimental study of ionic liquid-water flow in T- shaped microchannels with different aspect ratios To cite this article: A A Yagodnitsyna et al

More information

Supporting Information. Facile design of phase separation for microfluidic. droplet-based liquid phase microextraction as a front end to

Supporting Information. Facile design of phase separation for microfluidic. droplet-based liquid phase microextraction as a front end to Supporting Information Facile design of phase separation for microfluidic droplet-based liquid phase microextraction as a front end to electrothermal vaporization-icpms for the analysis of trace metals

More information

Supporting Information: PDMS Nanocomposites for Heat Transfer Enhancement in. Microfluidic Platforms

Supporting Information: PDMS Nanocomposites for Heat Transfer Enhancement in. Microfluidic Platforms Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is The Royal Society of Chemistry 2014 Supporting Information: PDMS Nanocomposites for Heat Transfer Enhancement in Microfluidic

More information

Simulation of a Pressure Driven Droplet Generator

Simulation of a Pressure Driven Droplet Generator Simulation of a Pressure Driven Droplet Generator V. Mamet* 1, P. Namy 2, N. Berri 1, L. Tatoulian 1, P. Ehouarn 1, V. Briday 1, P. Clémenceau 1 and B. Dupont 1 1 DBV Technologies, 2 SIMTEC *84 rue des

More information

Preparation and Characterization of Oil-in-Water and Water-in-Oil Emulsions. Prepared. For

Preparation and Characterization of Oil-in-Water and Water-in-Oil Emulsions. Prepared. For 1 Preparation and Characterization of Oil-in-Water and Water-in-Oil Emulsions Prepared For Dr. Reza Foudazi, Ph.D. Chemical and Materials Engineering New Mexico State University By Muchu Zhou May 10, 2016

More information

NUMERICAL INVESTIGATION OF THERMOCAPILLARY INDUCED MOTION OF A LIQUID SLUG IN A CAPILLARY TUBE

NUMERICAL INVESTIGATION OF THERMOCAPILLARY INDUCED MOTION OF A LIQUID SLUG IN A CAPILLARY TUBE Proceedings of the Asian Conference on Thermal Sciences 2017, 1st ACTS March 26-30, 2017, Jeju Island, Korea ACTS-P00786 NUMERICAL INVESTIGATION OF THERMOCAPILLARY INDUCED MOTION OF A LIQUID SLUG IN A

More information

Liquid Jet Breakup at Low Weber Number: A Survey

Liquid Jet Breakup at Low Weber Number: A Survey International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 6, Number 6 (2013), pp. 727-732 International Research Publication House http://www.irphouse.com Liquid Jet Breakup at

More information

Particle concentration influences inertial focusing in Multiorifice Flow Fractionation microfluidic devices

Particle concentration influences inertial focusing in Multiorifice Flow Fractionation microfluidic devices Correspondence xavier.casadevall@chem.ethz.ch Disciplines Microfluidics Keywords Multiorifice Flow Fractionation Inertial Microfluidics Type of Observation Standalone Type of Link Standard Data Submitted

More information

New regime of droplet generation in a T-shape microfluidic junction

New regime of droplet generation in a T-shape microfluidic junction New regime of droplet generation in a T-shape microfluidic junction Nathalie Tarchichi, Franck Chollet, Jean-Francois Manceau To cite this version: Nathalie Tarchichi, Franck Chollet, Jean-Francois Manceau.

More information

Experimental Analysis of Wire Sandwiched Micro Heat Pipes

Experimental Analysis of Wire Sandwiched Micro Heat Pipes Experimental Analysis of Wire Sandwiched Micro Heat Pipes Rag, R. L. Department of Mechanical Engineering, John Cox Memorial CSI Institute of Technology, Thiruvananthapuram 695 011, India Abstract Micro

More information

Supporting Information

Supporting Information LoC-SERS Combined with the Standard Addition Method: Toward the Quantification of Nitroxoline in Spiked Human Urine Samples Izabella J. Hidi, 1, 2 Martin Jahn, 1, 2 Karina Weber, 1, 2,4 Thomas Bocklitz,

More information

Concentrated suspensions under flow in microfluidic channel and migration effect

Concentrated suspensions under flow in microfluidic channel and migration effect Mid-Term Review June 16-17 2011 Concentrated suspensions under flow in microfluidic channel and migration effect Florinda SCHEMBRI*, Hugues BODIGUEL, Annie COLIN LOF Laboratory of the Future University

More information

Interfacial Instabilities in a Microfluidic Hele-Shaw Cell: Supplemental

Interfacial Instabilities in a Microfluidic Hele-Shaw Cell: Supplemental Supplementary Material (ESI) for Soft Matter This journal is The Royal Society of Chemistry 2008 Interfacial Instabilities in a Microfluidic Hele-Shaw Cell: Supplemental Michinao Hashimoto 1, Piotr Garstecki

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Supplementary Information Visualization of equilibrium position of colloidal particles at fluid-water

More information

Research strategy for Micro and complex fluids

Research strategy for Micro and complex fluids Research strategy for Micro and complex fluids Introduction Presently there is a strong trend towards miniaturizing equipment for chemical analysis and synthesis. This is made possible by development of

More information

Temperature ( o C)

Temperature ( o C) Viscosity (Pa sec) Supplementary Information 10 8 10 6 10 4 10 2 150 200 250 300 Temperature ( o C) Supplementary Figure 1 Viscosity of fibre components (PC cladding blue; As 2 Se 5 red; CPE black) as

More information

Supplementary Informations Spatial cooperativity in soft glassy flows

Supplementary Informations Spatial cooperativity in soft glassy flows doi:.38/nature76 Supplementary Informations Spatial cooperativity in soft glassy flows J. Goyon, A. Colin, G. Ovarlez, A. Ajdari, L. Bocquet I. SUPPLEMENTARY METHOD. Static properties of the emulsions

More information

EXPERIMENTAL STUDY ON EVAPORATION OF A MOVING LIQUID PLUG INSIDE A HEATED DRY CAPILLARY TUBE

EXPERIMENTAL STUDY ON EVAPORATION OF A MOVING LIQUID PLUG INSIDE A HEATED DRY CAPILLARY TUBE EXPERIMENTAL STUDY ON EVAPORATION OF A MOVING LIQUID PLUG INSIDE A HEATED DRY CAPILLARY TUBE Victor Marty-Jourjon a, Vyas Srinivasan b,c,d, Peeyush P. Kulkarni b,c,d, Sameer Khandekar *,b,c,d a INSA-Lyon,

More information

LIQUID FILM THICKNESS OF OSCILLATING FLOW IN A MICRO TUBE

LIQUID FILM THICKNESS OF OSCILLATING FLOW IN A MICRO TUBE Proceedings of the ASME/JSME 2011 8th Thermal Engineering Joint Conference AJTEC2011 March 13-17, 2011, Honolulu, Hawaii, USA AJTEC2011-44190 LIQUID FILM THICKNESS OF OSCILLATING FLOW IN A MICRO TUBE Youngbae

More information

FLOW VISUALIZATION OF FERROMAGNETIC NANO- PARTICLES ON MICROCHANNEL FLOW USING DARK FIELD MICROSCOPY

FLOW VISUALIZATION OF FERROMAGNETIC NANO- PARTICLES ON MICROCHANNEL FLOW USING DARK FIELD MICROSCOPY ISTP-16,, PRAGUE 16 TH INTERNATIONAL SYMPOSIUM ON TRANSPORT PHENOMENA FLOW VISUALIZATION OF FERROMAGNETIC NANO- PARTICLES ON MICROCHANNEL FLOW USING DARK FIELD MICROSCOPY Hiroshige Kikura*, Junichiro Matsushita

More information

NSC E

NSC E NSC 892218E006071 1 Preparation of NSC Project Reports microfluidic channels are fabricated on quartz substrates and then used to imprint microstructures into Polymethylmethacrylate (PMMA) substrates using

More information

Controlling of immiscible liquids fluid in a capillary reactor - from continuous to segmented flow

Controlling of immiscible liquids fluid in a capillary reactor - from continuous to segmented flow Journal of Physics: Conference Series PAPER OPEN ACCESS Controlling of immiscible liquids fluid in a capillary reactor - from continuous to segmented flow To cite this article: L B Matyushkin et al 2016

More information

Paper ID ICLASS EXPERIMENTS ON BREAKUP OF WATER-IN-DIESEL COMPOUND JETS

Paper ID ICLASS EXPERIMENTS ON BREAKUP OF WATER-IN-DIESEL COMPOUND JETS ICLASS-2006 Aug.27-Sept.1, 2006, Kyoto, Japan Paper ID ICLASS06-047 EXPERIMENTS ON BREAKUP OF WATER-IN-DIESEL COMPOUND JETS Sheng-Lin Chiu 1, Rong-Horng Chen 2, Jen-Yung Pu 1 and Ta-Hui Lin 1,* 1 Department

More information

Interface Location of Capillary Driven Flow in Circular Micro Channel Using by COMSOL

Interface Location of Capillary Driven Flow in Circular Micro Channel Using by COMSOL Interface Location of Capillary Driven Flow in Circular Micro Channel Using by COMSOL ARSHYA BAMSHAD 1, MOHAMMAD H. SABOUR 2, ALIREZA NIKFARJAM 3 Faculty of New Sciences & Technologies University of Tehran

More information

Two Fluids Mixing in a Micromixer with Helical Channel and Grooved Surfaces

Two Fluids Mixing in a Micromixer with Helical Channel and Grooved Surfaces Two Fluids Mixing in a Micromixer with Helical Channel and Grooved Surfaces Ya-Hui Hu and Kao-Hui Lin Abstract Micromixer is essential in many of the microfluidic systems targeted for use in biochemistry

More information

10.52 Mechanics of Fluids Spring 2006 Problem Set 3

10.52 Mechanics of Fluids Spring 2006 Problem Set 3 10.52 Mechanics of Fluids Spring 2006 Problem Set 3 Problem 1 Mass transfer studies involving the transport of a solute from a gas to a liquid often involve the use of a laminar jet of liquid. The situation

More information

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped gold substrate. (a) Spin coating of hydrogen silsesquioxane (HSQ) resist onto the silicon substrate with a thickness

More information

Using Microfluidic Device to Study Rheological Properties of Heavy Oil

Using Microfluidic Device to Study Rheological Properties of Heavy Oil Using Microfluidic Device to Study Rheological Properties of Heavy Oil Kiarash Keshmiri a, Saeed Mozaffari a, b, Plamen Tchoukov a, Haibo Huang c, Neda Nazemifard a, * a Department of Chemical and Materials

More information

Experimental and Numerical Investigation of Two- Phase Flow through Enlarging Singularity

Experimental and Numerical Investigation of Two- Phase Flow through Enlarging Singularity Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 212 Experimental and Numerical Investigation of Two- Phase Flow through Enlarging

More information

Filtering Microfluidic Bubble Trains at a Symmetric Junction. Electronic Supplementary Information

Filtering Microfluidic Bubble Trains at a Symmetric Junction. Electronic Supplementary Information Filtering Microfluidic Bubble Trains at a Symmetric Junction. Electronic Supplementary Information Pravien Parthiban Department of Chemical and Biomolecular Engineering, National University of Singapore,

More information

Supporting Information. Drop Cargo Transfer via Uni-Directional Lubricant Spreading on Peristome-Mimetic Surface

Supporting Information. Drop Cargo Transfer via Uni-Directional Lubricant Spreading on Peristome-Mimetic Surface Supporting Information Drop Cargo Transfer via Uni-Directional Lubricant Spreading on Peristome-Mimetic Surface Cunlong Yu, Longhao Zhang, Yunfei Ru, Ning Li, Chuxin Li, Can Gao, Zhichao Dong*, and Lei

More information

DROPLET FORMATION AND ENTRAINMENT IN LIQUID-GAS MICROFLUIDIC SYSTEMS

DROPLET FORMATION AND ENTRAINMENT IN LIQUID-GAS MICROFLUIDIC SYSTEMS DROPLET FORMATION AND ENTRAINMENT IN LIQUID-GAS MICROFLUIDIC SYSTEMS A Thesis Presented By Pooyan Tirandazi to The Department of Mechanical and Industrial Engineering in partial fulfillment of the requirements

More information

Anindya Aparajita, Ashok K. Satapathy* 1.

Anindya Aparajita, Ashok K. Satapathy* 1. μflu12-2012/24 NUMERICAL ANALYSIS OF HEAT TRANSFER CHARACTERISTICS OF COMBINED ELECTROOSMOTIC AND PRESSURE-DRIVEN FULLY DEVELOPED FLOW OF POWER LAW NANOFLUIDS IN MICROCHANNELS Anindya Aparajita, Ashok

More information

Introduction to Micro/Nanofluidics. Date: 2015/03/13. Dr. Yi-Chung Tung. Outline

Introduction to Micro/Nanofluidics. Date: 2015/03/13. Dr. Yi-Chung Tung. Outline Introduction to Micro/Nanofluidics Date: 2015/03/13 Dr. Yi-Chung Tung Outline Introduction to Microfluidics Basic Fluid Mechanics Concepts Equivalent Fluidic Circuit Model Conclusion What is Microfluidics

More information

Visualizing the bi-directional electron transfer in a Schottky junction consisted of single CdS nanoparticles and a planar gold film

Visualizing the bi-directional electron transfer in a Schottky junction consisted of single CdS nanoparticles and a planar gold film Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Visualizing the bi-directional electron transfer in

More information

FLOW ASSURANCE: DROP COALESCENCE IN THE PRESENCE OF SURFACTANTS

FLOW ASSURANCE: DROP COALESCENCE IN THE PRESENCE OF SURFACTANTS FLOW ASSURANCE: DROP COALESCENCE IN THE PRESENCE OF SURFACTANTS Vishrut Garg and Osman A. Basaran Davidson School of Chemical Engineering Purdue University With special thanks to: Krish Sambath (now at

More information

Measurements of Dispersions (turbulent diffusion) Rates and Breaking up of Oil Droplets in Turbulent Flows

Measurements of Dispersions (turbulent diffusion) Rates and Breaking up of Oil Droplets in Turbulent Flows Measurements of Dispersions (turbulent diffusion) Rates and Breaking up of Oil Droplets in Turbulent Flows Balaji Gopalan PI: Dr Joseph Katz Where do we come in? Turbulent diffusion of slightly buoyant

More information

Physics 3 Summer 1990 Lab 7 - Hydrodynamics

Physics 3 Summer 1990 Lab 7 - Hydrodynamics Physics 3 Summer 1990 Lab 7 - Hydrodynamics Theory Consider an ideal liquid, one which is incompressible and which has no internal friction, flowing through pipe of varying cross section as shown in figure

More information

Computational Fluid Dynamical Simulations of Droplet Flow and Merger in Microfluidic Channels

Computational Fluid Dynamical Simulations of Droplet Flow and Merger in Microfluidic Channels Computational Fluid Dynamical Simulations of Droplet Flow and Merger in Microfluidic Channels Katrina J. Donovan 1, Shelly Gulati 2, Xize Niu 3, Bradley M. Stone 1 and Andrew J. demello 4 1. Department

More information

Monodisperse w/w/w double emulsion induced by

Monodisperse w/w/w double emulsion induced by Monodisperse w/w/w double emulsion induced by phase separation Yang Song, Ho Cheung Shum* Department of Mechanical Engineering, the University of Hong Kong, Pokfulam Road, Hong Kong *Corresponding address:

More information

CFD STUDY OF MASS TRANSFER IN SPACER FILLED MEMBRANE MODULE

CFD STUDY OF MASS TRANSFER IN SPACER FILLED MEMBRANE MODULE GANIT J. Bangladesh Math. Soc. (ISSN 1606-3694) 31 (2011) 33-41 CFD STUDY OF MASS TRANSFER IN SPACER FILLED MEMBRANE MODULE Sharmina Hussain Department of Mathematics and Natural Science BRAC University,

More information

The Effects of Operating Parameters on Micro-Droplet Formation in a Piezoelectric Inkjet Printhead Using a Double Pulse Voltage Pattern

The Effects of Operating Parameters on Micro-Droplet Formation in a Piezoelectric Inkjet Printhead Using a Double Pulse Voltage Pattern Materials Transactions, Vol. 47, No. 2 (2006) pp. 375 to 382 #2006 The Japan Institute of Metals The Effects of Operating Parameters on Micro-Droplet Formation in a Piezoelectric Inkjet Printhead Using

More information

Electroviscous Effects in Low Reynolds Number Flow through a Microfluidic Contraction with Rectangular Cross-Section

Electroviscous Effects in Low Reynolds Number Flow through a Microfluidic Contraction with Rectangular Cross-Section PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY VOLUME 3 JULY 28 ISSN 37-6884 Electroviscous Effects in Low Reynolds Number Flow through a Microfluidic Contraction with Rectangular

More information

Lecture Topic B

Lecture Topic B Lecture 08.11.2010 Topic B Surface Engineering Au, Cu, Ag Al2O3 HS-R (OH)3-P-O-R SiO2 X3Si-O-R Tailored Surface Chemistry Micro-contact printing Polymer stamp (PDMS) Siliconmicrostructure or PMMA resist

More information

Forced generation of simple and double emulsions in all-aqueous system

Forced generation of simple and double emulsions in all-aqueous system Forced generation of simple and double emulsions in all-aqueous system Alban Sauret,, a) and Ho Cheung Shum ) Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong ) Institut

More information

Innovation in. Motionless Mixers

Innovation in. Motionless Mixers Innovation in Motionless Mixers Ross Motionless Mixers PIONEERING TECHNOLOGY. INCOMPARABLE QUALITY. WORLDWIDE LEADERSHIP. Serving all the process industries in virtually every industrialized country around

More information

Lecture 18: Microfluidic MEMS, Applications

Lecture 18: Microfluidic MEMS, Applications MECH 466 Microelectromechanical Systems University of Victoria Dept. of Mechanical Engineering Lecture 18: Microfluidic MEMS, Applications 1 Overview Microfluidic Electrokinetic Flow Basic Microfluidic

More information

Experimental Study of Energy Efficiency of a Single Microtube

Experimental Study of Energy Efficiency of a Single Microtube Journal of Applied Fluid Mechanics, Vol. 9, Special Issue 2, pp. 253-258, 2016. Selected papers from the XIIth Franco - Quebec Inter-University Symposium on Thermal Systems -2015 Available online at www.jafmonline.net,

More information

NPTEL. Instability and Patterning of Thin Polymer Films - Video course. Chemical Engineering.

NPTEL. Instability and Patterning of Thin Polymer Films - Video course. Chemical Engineering. NPTEL Syllabus Instability and Patterning of Thin Polymer Films - Video course COURSE OUTLINE T h i s course will expose students to the science of sub-micron, meso and nanoscale patterning of surfaces

More information

Computational Analysis for Mixing of Fluids Flowing through Micro- Channels of Different Geometries

Computational Analysis for Mixing of Fluids Flowing through Micro- Channels of Different Geometries 5 th International & 26 th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) December 12 th 14 th, 2014, IIT Guwahati, Assam, India Computational Analysis for Mixing of Fluids

More information

Visualization of flow pattern over or around immersed objects in open channel flow.

Visualization of flow pattern over or around immersed objects in open channel flow. EXPERIMENT SEVEN: FLOW VISUALIZATION AND ANALYSIS I OBJECTIVE OF THE EXPERIMENT: Visualization of flow pattern over or around immersed objects in open channel flow. II THEORY AND EQUATION: Open channel:

More information

Go With the Flow Microfluidics and Microreactors: An Organic Chemist s New Round-Bottomed Flask

Go With the Flow Microfluidics and Microreactors: An Organic Chemist s New Round-Bottomed Flask Go With the Flow Microfluidics and Microreactors: An Organic Chemist s New Round-Bottomed Flask Russell C. Smith Denmark Research Group Meeting 5/13/2008 Outline Introduction Design of Microreactors Methods

More information

PROCEEDINGS OF SPIE. Sorting and measurement of single gold nanoparticles in an optofluidic chip

PROCEEDINGS OF SPIE. Sorting and measurement of single gold nanoparticles in an optofluidic chip PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie Sorting and measurement of single gold nanoparticles in an optofluidic chip Y. Z. Shi, S. Xiong, Y. Zhang, L. K. Chin, J. H. Wu,

More information

Cruz, J., Hooshmand Zadeh, S., Wu, Z., Hjort, K. (2016) Inertial focusing of microparticles and its limitations. In: (pp. 1-6).

Cruz, J., Hooshmand Zadeh, S., Wu, Z., Hjort, K. (2016) Inertial focusing of microparticles and its limitations. In: (pp. 1-6). http://www.diva-portal.org This is the published version of a paper presented at MME 2016, 27th Micromechanics and Microsystems Europe workshop, August 28-30th 2016, Cork, Irland. Citation for the original

More information

An introduction to particle size characterisation by DCS:

An introduction to particle size characterisation by DCS: An introduction to particle size characterisation by DCS: Do you know the real size of your nano particles? By Dr Hiran Vegad, Analytik Ltd Introduction Differential centrifugal sedimentation (DCS) is

More information

ELECTROSPRAY: NOVEL FABRICATION METHOD FOR BIODEGRADABLE POLYMERIC NANOPARTICLES FOR FURTHER APPLICATIONS IN DRUG DELIVERY SYSTEMS

ELECTROSPRAY: NOVEL FABRICATION METHOD FOR BIODEGRADABLE POLYMERIC NANOPARTICLES FOR FURTHER APPLICATIONS IN DRUG DELIVERY SYSTEMS ELECTROSPRAY: NOVEL FABRICATION METHOD FOR BIODEGRADABLE POLYMERIC NANOPARTICLES FOR FURTHER APPLICATIONS IN DRUG DELIVERY SYSTEMS Ali Zarrabi a, Manouchehr Vossoughi b a Institute for Nanscience & Nanotechnology,

More information

Continuous Microfluidic Synthesis of PLGA Microparticles by Droplet Method

Continuous Microfluidic Synthesis of PLGA Microparticles by Droplet Method Microfluidic Synthesis PLGA Microparticles by Droplet Method - App. Note Continuous Microfluidic Synthesis of PLGA Microparticles by Droplet Method Dolomite s API encapsulation system for PLGA 20 µm to

More information

Generation of emulsion droplets and micro-bubbles in microfluidic devices. Thesis by Jiaming Zhang. In Partial Fulfillment of the Requirements

Generation of emulsion droplets and micro-bubbles in microfluidic devices. Thesis by Jiaming Zhang. In Partial Fulfillment of the Requirements Generation of emulsion droplets and micro-bubbles in microfluidic devices Thesis by Jiaming Zhang In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy King Abdullah University

More information

Time of Flight Sensor with a Flow Parallel Wire

Time of Flight Sensor with a Flow Parallel Wire Micromachines 2012, 3, 325-330; doi:10.3390/mi3020325 Article OPEN ACCESS micromachines ISSN 2072-666X www.mdpi.com/journal/micromachines Time of Flight Sensor with a Flow Parallel Wire Christof Gerhardy

More information

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m 1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)

More information

Cells in double emulsions for FACS sorting

Cells in double emulsions for FACS sorting Cells in double emulsions for FACS sorting Capturing individual cells in 30 m double emulsions, suitable for FACS sorting Application Note Page Summary 2 Introduction 2 Materials and methods 3 Results

More information

Syringe-pump-induced fluctuation in all-aqueous microfluidic system implications for flow rate accuracy

Syringe-pump-induced fluctuation in all-aqueous microfluidic system implications for flow rate accuracy Syringe-pump-induced fluctuation in all-aqueous microfluidic system implications for flow rate accuracy Zida Li, a Sze Yi Mak, a, Alban Sauret b and Ho Cheung Shum a Received Xth XXXXXXXXXX 20XX, Accepted

More information

Plasmonic Hot Hole Generation by Interband Transition in Gold-Polyaniline

Plasmonic Hot Hole Generation by Interband Transition in Gold-Polyaniline Supplementary Information Plasmonic Hot Hole Generation by Interband Transition in Gold-Polyaniline Tapan Barman, Amreen A. Hussain, Bikash Sharma, Arup R. Pal* Plasma Nanotech Lab, Physical Sciences Division,

More information

PRODUCTION OF L-PLA MICROPARTICLES BELOW AND ABOVE THE MIXTURE CRITICAL PRESSURE OF THE SYSTEM DCM-CO 2

PRODUCTION OF L-PLA MICROPARTICLES BELOW AND ABOVE THE MIXTURE CRITICAL PRESSURE OF THE SYSTEM DCM-CO 2 PRODUCTION OF L-PLA MICROPARTICLES BELOW AND ABOVE THE MIXTURE CRITICAL PRESSURE OF THE SYSTEM DCM-CO 2 Y. Pérez * (a), H. Pellikaan (b), F. E. Wubbolts (a), G. J. Witkamp (a), P. J. Jansens (a) (a) Laboratory

More information

Motion of a droplet through microfluidic ratchets

Motion of a droplet through microfluidic ratchets Motion of a droplet through microfluidic ratchets Author Liu, Jing, Yap, Yit Fatt, Nguyen, Nam-Trung Published 2009 Journal Title Physical Review E - Statistical, Nonlinear, and Soft Matter Physics DOI

More information

Impacts of Electroosmosis Forces on Surface-Tension- Driven Micro-Pumps

Impacts of Electroosmosis Forces on Surface-Tension- Driven Micro-Pumps Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering (MCM 2015) Barcelona, Spain July 20-21, 2015 Paper No. 290 Impacts of Electroosmosis Forces on Surface-Tension- Driven

More information

Module 3: "Thin Film Hydrodynamics" Lecture 12: "" The Lecture Contains: Linear Stability Analysis. Some well known instabilities. Objectives_template

Module 3: Thin Film Hydrodynamics Lecture 12:  The Lecture Contains: Linear Stability Analysis. Some well known instabilities. Objectives_template The Lecture Contains: Linear Stability Analysis Some well known instabilities file:///e /courses/colloid_interface_science/lecture12/12_1.htm[6/16/2012 1:39:16 PM] Linear Stability Analysis This analysis

More information

CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer

CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer You are assigned to design a fallingcylinder viscometer to measure the viscosity of Newtonian liquids. A schematic

More information

Measurement of Liquid Film Thickness in Micro Square Channel

Measurement of Liquid Film Thickness in Micro Square Channel Measurement of Liquid Film Thickness in Micro Square Channel Youngbae Han and Naoki Shikazono Department of Mechanical Engineering, The University of Tokyo Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656, Japan

More information

CONTRIBUTION TO EXTRUDATE SWELL FROM THE VELOCITY FACTOR IN NON- ISOTHERMAL EXTRUSION

CONTRIBUTION TO EXTRUDATE SWELL FROM THE VELOCITY FACTOR IN NON- ISOTHERMAL EXTRUSION Second International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 6-8 December 1999 CONTRIBUTION TO EXTRUDATE SWELL FROM THE VELOCITY FACTOR IN NON- ISOTHERMAL EXTRUSION

More information

Particle Focusing in Microchannel with Multi-Parallel Channels or Porous Orifice

Particle Focusing in Microchannel with Multi-Parallel Channels or Porous Orifice International Journal of Mechanical Engineering and Applications 2018; 6(3): 46-54 http://www.sciencepublishinggroup.com/j/ijmea doi: 10.11648/j.ijmea.20180603.11 ISSN: 2330-023X (Print); ISSN: 2330-0248

More information

KEYNOTE PAPER LIQUID FILM THICKNESS IN MICRO CHANNEL SLUG FLOW

KEYNOTE PAPER LIQUID FILM THICKNESS IN MICRO CHANNEL SLUG FLOW Proceedings of of the the ASME Seventh 009 International 7th International ASME Conference on on Nanochannels, Microchannels and and Minichannels ICNMM009 June June -4, -4, 009, 009, Pohang, Pohang, South

More information

R09. d water surface. Prove that the depth of pressure is equal to p +.

R09. d water surface. Prove that the depth of pressure is equal to p +. Code No:A109210105 R09 SET-1 B.Tech II Year - I Semester Examinations, December 2011 FLUID MECHANICS (CIVIL ENGINEERING) Time: 3 hours Max. Marks: 75 Answer any five questions All questions carry equal

More information

arxiv: v1 [physics.flu-dyn] 5 Oct 2013

arxiv: v1 [physics.flu-dyn] 5 Oct 2013 Fluctuation-induced dynamics of multiphase liquid jets with ultra-low interfacial tension Alban Sauret, ab Constantinos Spandagos, ac and Ho Cheung Shum a Received 7th May 212, Accepted 3th May 212 DOI:

More information

Experimental Study of Flow Characteristic at Horizontal Mini Channel

Experimental Study of Flow Characteristic at Horizontal Mini Channel Experimental Study of Flow Characteristic at Horizontal Mini Channel Othman Ashafai Othman Atpoly 1, Budi Santoso 2, Dwi Aries 2, Ammar Mufrih 2, Latif Ngudi Wibawanto 2 1 P. G. Student, Post Graduate

More information

Micro/nano and precision manufacturing technologies and applications

Micro/nano and precision manufacturing technologies and applications The 4th China-American Frontiers of Engineering Symposium Micro/nano and precision manufacturing technologies and applications Dazhi Wang School of Mechanical Engineering Dalian University of Technology

More information

EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER

EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER 1.1 AIM: To determine the co-efficient of discharge of the orifice meter 1.2 EQUIPMENTS REQUIRED: Orifice meter test rig, Stopwatch 1.3 PREPARATION 1.3.1

More information

CONVECTION HEAT TRANSFER

CONVECTION HEAT TRANSFER CONVECTION HEAT TRANSFER THIRD EDITION Adrian Bejan J. A. Jones Professor of Mechanical Engineering Duke University Durham, North Carolina WILEY JOHN WILEY & SONS, INC. CONTENTS Preface Preface to the

More information

Relative Viscosity of Non-Newtonian Concentrated Emulsions of Noncolloidal Droplets

Relative Viscosity of Non-Newtonian Concentrated Emulsions of Noncolloidal Droplets Ind. Eng. Chem. Res. 2000, 39, 4933-4943 4933 Relative Viscosity of Non-Newtonian Concentrated Emulsions of Noncolloidal Droplets Rajinder Pal* Department of Chemical Engineering, University of Waterloo,

More information

ENMA490 Capstone: Design of Microfluidics Mixer

ENMA490 Capstone: Design of Microfluidics Mixer ENMA490 Capstone: Design of Microfluidics Mixer By: Elyse Canosa, Josh Davis, Colin Heikes, Gao Li, Pavel Kotlyarskiy, Christina Senagore, Maeling Tapp, Alvin Wilson Outline Motivation for Microfluidic

More information

Continuous Microfluidic Synthesis of PLGA Nanoparticles by Micromixing

Continuous Microfluidic Synthesis of PLGA Nanoparticles by Micromixing Continuous Microfluidic Synthesis of PLGA Nanoparticles by Micromixing Dolomite s Nanoparticle Generation System Application Note Page Summary 2 Polymer Nanoparticles 3 Mechanism Micromixing Solvent Diffusion

More information

Droplet Pattern Formation and Translation in New Microfluidic Flow-Focusing Devices

Droplet Pattern Formation and Translation in New Microfluidic Flow-Focusing Devices CHINESE JOURNAL OF CHEMICAL PHYSICS VOLUME 27, NUMBER 6 DECEMBER 27, 2014 ARTICLE Droplet Pattern Formation and Translation in New Microfluidic Flow-Focusing Devices Hua-guo Xu a, Hao-jun Liang a,b a.

More information

Microfluidics 2 Surface tension, contact angle, capillary flow

Microfluidics 2 Surface tension, contact angle, capillary flow MT-0.6081 Microfluidics and BioMEMS Microfluidics 2 Surface tension, contact angle, capillary flow 28.1.2017 Ville Jokinen Surface tension & Surface energy Work required to create new surface = surface

More information

Single and collective fiber dynamics in micro-flows. Anke Lindner, PMMH-ESPCI, Paris, France

Single and collective fiber dynamics in micro-flows. Anke Lindner, PMMH-ESPCI, Paris, France Single and collective fiber dynamics in micro-flows Anke Lindner, PMMH-ESPCI, Paris, France COST conference, Porto, 2016 Fibers in interaction with viscous flows Industrial applications Paper industry

More information

CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE

CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE In this chapter, the governing equations for the proposed numerical model with discretisation methods are presented. Spiral

More information

Analysis of Frictional Pressure Drop based on Flow Regimes of Oil-water Flow in Pipeline

Analysis of Frictional Pressure Drop based on Flow Regimes of Oil-water Flow in Pipeline Journal of Scientific & Industrial Research Vol. 74, March 2015, pp. 180-184 Analysis of Frictional Pressure Drop based on Flow Regimes of Oil-water Flow in Pipeline K R Naidu 1, T K Mandal 2 and S K Majumder

More information

Behavior of microdroplets in diffuser/nozzle structures

Behavior of microdroplets in diffuser/nozzle structures Behavior of microdroplets in diffuser/nozzle structures Author Liu, Jing, Yap, Yit Fatt, Nguyen, Nam-Trung Published 2009 Journal Title Microfluidics and Nanofluidics DOI https://doi.org/10.1007/s10404-008-0358-5

More information