NANOLCMS SOLUTIONS HPLC BASICS

Size: px
Start display at page:

Download "NANOLCMS SOLUTIONS HPLC BASICS"

Transcription

1 NANOLCMS SOLUTIONS HPLC BASICS

2 Main Course Topics This course is designed to provide a basic founda@on to HPLC principles. It includes a wealth of informa@on regarding HPLC instrumenta@on and HPLC columns. Key Components of HPLC HPLC Concepts Cri@cal Volumes Column Theory Column Resolu@on Column Efficiency Peak Capacity Analyte Capacity Column ID, Flow Rates and Capacity

3 What is HPLC? High Performance Liquid Chromatography The acronym HPLC, originally indicated the fact that high pressure was used to generate the flow required for liquid chromatography in packed columns. In the beginning, pumps only had a pressure capability of 500 psi [35 bar]. This was called high pressure liquid chromatography, or HPLC. The early 1970s saw a tremendous leap in technology. These new HPLC instruments could develop up to 6,000 psi [400 bar] of pressure, and incorporated improved injectors, detectors, and columns. HPLC really began to take hold in the mid- to late- 1970s. With con@nued advances in performance during [smaller par@cles, even higher pressure], the acronym HPLC remained the same, but the name was changed to high performance liquid chromatography.

4 Powerful Tool High performance liquid chromatography is now one of the most powerful tools in chemistry. It has the ability to separate, and the compounds that are present in any sample that can be dissolved in a liquid. HPLC can be applied to just about any sample, such as pharmaceu@cals, food, biological, cosme@cs, environmental matrices, forensic samples, and industrial chemicals. Stand- alone HPLC (UV, PDA, Flourescence Detector) LC- MS LC- MALDI LC- NMR LC- ICP- MS

5 Key HPLC Components

6 What is Happening? The HPLC pumps move the mobile phase through the column at a given flow rate. The injector introduces the sample to the fluid path in route to the column. Once the sample reaches the column, it will s@ck to the head of the column. The pumps will con@nue to pump mobile phase through the column. The pumps are typically programmed to change the solvent composi@on through a given period to allow the separa@on to occur (i.e. binary gradient). In some cases, isocra@c separa@on may occur. The sample will then begin to separate into its individual analytes which will elute from the column. Each analyte can then be detected (i.e. UV, MS) or collected for further analysis.

7 What is a Chromatogram? A chromatogram is a representa@on of the separa@on that has chemically chromatographically occurred in the HPLC system. A series of peaks rising from a baseline is drawn on axis. Each peak represents the detector (UV, MS, etc.) response for a different compound. The chromatogram is ploeed by the computer data sta@on for further analysis.

8 What is an of analytes occurs when the mobile phase, either a pure solvent or a mixture, remains the same throughout the run. This technique can only be applied to a simple mixture and/or certain types of analytes.

9 What is a Gradient Separa@on? Gradient separa8on is where the mobile phase composi8on changes during the separa8on. This mode is useful for samples that contain compounds that span a wide range of chromatographic affinity [polarity, charge, size, etc.]. As the separa@on proceeds, the elu@on strength of the mobile phase is increased to elute the more strongly retained sample components. *We recommend using gradient separa@ons for biomolecules and complex mixtures.

10 How is a gradient formed? The speed of each pump is managed by the gradient controller to deliver more or less of each solvent over the course of the separa@on. The two streams are combined in the mixer to create the actual mobile phase composi@on that is delivered to the column At the beginning, the mobile phase contains a higher propor@on of the weaker solvent (Solvent A). the propor@on of the stronger solvent (Solvent B) is increased, according to a

11 Low Pressure vs. High Pressure Mixing in Gradient HPLC Advantages Lower cost Easier to maintain 2,3 or 4 solvents Flows > 1ml/min Disadvantages Requires degassing High mix volumes More gradient delay Poor at low flows Low Pressure Propor@oning High Pressure Mixing Lower mix volumes Easy to troubleshoot Best for HT LC Ideal for low flows More expensive Pumps run 1-100% More maintenance Larger size *We recommend high pressure mixing to ensure proper mixing and flow consistency

12 Types of Solvent Delivery and Degassing No Degassing: Manual Priming, Filtered Solvents but No Degassing Vacuum Degasser: Manual Priming, Filtered Helium Degasser: Auto- Priming, Filtered *We recommend degassing to remove dissolved Oxygen. Dissolved Oxygen would otherwise cause disturbances in nano spray. Helium is slightly more efficient than vacuum but both types provide excellent results.

13 Types of Pumps Single Piston Dual Piston Syringe Pump Add Flow Sensing Add Pressure Sensing HPLC UHPLC *We recommend UHPLC Pumps with flow and pressure sensing for and reproducibility.

14 Types of Mixing Low Pressure High Pressure Tee Frit Cartridge Single- Stage Versus Dual- Stage *We recommend high pressure dual- stage mixing for mixing

15 Types of Valves 2- (for column switching or custom 6- port 10- port Manual toggle Automated toggle (via solware control) Autosampler *We recommend using an autosampler for the most consistent results. Be sure to choose a valve that has the necessary pressure ra@ng, as well as low volumes that are appropriate for your flow range.

16 Things to consider when buying an HPLC Flow Rate Range Flow Accuracy Flow Precision System Dead Volume Pressure Range (fluid path, sample path) Type Size Complexity of the Sample Throughput

17 Volumes in Gradient HPLC Pump A Detector Mixer Column Pump A Injector Cri@cal Volume (Must be as low as possible and well swept) T 0 Volume (Defines the gradient required) Gradient Delay Volume (Impacts throughput and MS DC)

18 Impact of Delay Volumes *Remember to reduce volumes especially in places. Gradient Profile System Non- & Poor Mixing %B Time

19 Extra Column Band Broadening

20 What is an HPLC without a Column? Answer: Useless! Good HPLC + No Column = No Chromatography Good HPLC + Bad Column = Li2le to No Chromatography Good HPLC + Good Column = Good Chromatography You can buy the most expensive HPLC on the market and s@ll have poor chromatography when you just use any column. Why? The key to good chromatography is choosing the proper column and knowing how to use it.

21 in Choosing an HPLC Column Type of Analyte Mode of Efficiency Capacity (Analyte & Peak) of Detector

22 Key Chromatographic Factors is a very important parameter in HPLC HPLC column efficiency measures band broadening Gradient LC of biomolecules more complex than isocra@c LC Peak capacity is a func@on of LC system & column efficiency Op@mum biomolecule separa@ons require aeen@on to details

23

24 Two Major Impacts on Longer Columns Provide Higher Smaller Provide Higher

25 Chromatographic k = Capacity Factor (t R /t 0 ) α = SelecBvity (k 2 '/k 1 ) N = Efficiency (5.54(t R /w 0.5 ) 2 k 2 k 1

26 Column Efficiency N = L / H H = A + B + C A = Variable Paths (d p = particle size and λ = particle size distribution) B = Diffusion (γ = inter-particle, D m = mobile phase and v = flow velocity) C = Mass Transfer (ω = pore size distribution and pore shape)

27 Factors that Impact Efficiency The theoretical plate number N th shows the relation between retention time and peak width and describes column quality and separation power. The plate number is indicative of the efficiency (performance) of a column or chromatographic system. It is defined as the square ratio of the retention time to the peak width. The more theoretical plates the column possesses, the larger the plate number. Factors affecting column efficiency (plate number) Column length Particle size Packing quality Linear velocity (flow) Instrument quality (dead volume) Retention factor

28 H - Van Deempter Equa@on Peak height and peak broadening are governed by kine@c processes in the column such as molecular dispersion, diffusion and slow mass transfer. Iden@cal molecules travel differently in the column due to probability processes. The three processes that contribute to peak broadening described in the van Deemter equa@on are: A- term: eddy diffusion: The column packing consists of par@cles with flow channels in between. Due to the difference in packing and par@cle shape, the speed of the mobile phase in the various flow channels differs and analyte molecules travel along different flow paths through the channnels. B- term: longitudinal diffusion: Molecules traverse the column under influence of the flowing mobile phase. Due to molecular diffusion, slight dispersions of the mean flow rate will be the result. C- term: resistance against mass transfer. A chromatographic system is in dynamic equilibrium. As the mobile phase is moving con@nuously, the system has to restore this equilibrium con@nuously. Since it takes to restore equilibrium (resistance to mass transfer), the concentra@on profiles of sample components between mobile and sta@onary phase are always slightly shiled. This results in addi@onal peak broadening

29 Eddy Diffusion Factors influencing A- term ('eddy' diffusion) ParBcle size d p ParBcle shape (regular or irregular?) ParBcle pore structure / shape Quality of the column packing Wall effects (material, roughness, column diameter)

30 Longitudinal Diffusion Influences on B-term (longitudinal diffusion): Linear velocity of the mobile phase Diffusion coefficient of analyte in the mobile phase D m Mobile phase viscosity γ Temperature Type of analyte (molecular mass)

31 The overall C- term is divided into two separate mass transfer terms: C m - term, describing the contribubons to peak broadening in the mobile phase. Because the linear velocity of the mobile phase is lower closer to the column wall (or the sta@onary phase par@cles) than in the center (or further away from the par@cles), the analyte molecules experience different veloci@es. This results in peak broadening in the mobile phase. This phenomenon is described by the C m term. C s - term, describing the contribubons to peak broadening in the stabonary phase. The C s - term is determined by the amount of sta@onary phase (low is advantageous for the efficiency) and the extent of interac@on of the sample on the phase (represented by the reten@on factor) and the distances the sample molecules have to travel. Influences on C m -term: Particle size d p Linear velocity u of the mobile phase Diffusion coefficient in the mobile phase Porosity of the packing particles Viscosity of the mobile phase Retention factor k Temperature Influences on C S -term: Quality of stationary phase Diffusion coefficient in stationary phase Retention factor k Temperature Particle size Mobile phase velocity

32 H - Van Deempter Plot A plot of the plate height as a func@on of the mobile phase velocity. The H- u curve shows that: The A- term is independent of u and does not contribute to the shape of the H- u curve.. The contribubon of the B- term is negligible at normal opera@ng condi@ons. This is due to the fact that the molecular diffusion coefficient in a liquid medium is very small. The C- term increases linearily with mobile phase velocity and its contribu@on to the H- u curve is therefore considerable.

33 UHPLC In 2004, further advances in and column technology were made to achieve very significant increases in speed, and in liquid chromatography. Columns with smaller [1.7 micron] and with specialized designed to deliver mobile phase at 15,000 psi [1,000 bar] were needed to achieve a new level of performance. A new system had to be holis@cally created to perform ultra- performance liquid chromatography, now known as UHPLC technology. Basic research is being conducted today by scien@sts working with columns containing even smaller 1- micron- diameter par@cles and instrumenta@on capable of performing at 100,000 psi [6,800 bar]. This provides a glimpse of what we may expect in the future.

34 UHPLC vs. HPLC *We recommend using the smallest (sub- 2µ) in your column for the highest and efficiency. As shown, you will not lose any efficiency as the linear velocity is increased across a UHPLC column which equates to higher throughput capabili@es along with high resolu@on.

35 Why Small Are Beeer Higher ResoluBon Higher Peak Capacity Be2er Chromatography! Allows Higher Throughput Higher Pressure Requires a UHPLC Instrument

36 Peak Capacity vs. Efficiency *UHPLC columns have the highest efficiency and therefore peak capacity

37 Peak Capacity in Gradient HPLC : Time (min) Peak Capacity (PC) = Separation Time / Average Peak Width

38 Impacts on Peak Capacity Peak Asymmetry - Peak Tailing {secondary interactions (silanols) unswept dead volume} - Peak Fronting {column overload (peak load vs column load) strong injection solvent} Column Deterioration - Contamination {secondary interactions (adsorbed protein interaction) column clogging} - Packing Deterioration {phase loss (secondary interaction) bed collapse (voids or channeling)} Extra Column Volume - Injector to Column {total volume unswept dead volume (less critical in gradient LC)} - Column to Detector {total volume unswept dead volume (critical in gradient LC)} Excess System Volume - Gradient Delay Time {column volume system sweep volume (increases as flow rate decreases)} - Re-equilibration Time {column volume (5-10x) system sweep volume (can t equil column before system)}

39 HPLC Flow Ranges 0.5-2mL/min Microbore ~20-500µL/min Capillary ~1-20µL/min Nano ~ nL/min *Lower flow rates provide beeer However, the smaller ID columns at those lower flows have reduced capacity. We recommend balancing your needs for with your needs for analyte and peak capacity for an setup.

40 Column ID vs. and Capacity for Column ID 4.6 Sensitivity LOD(fmol) 4000 Capacity (ug) for Optimum Resolution

41 Column ID, Flow Rate, and Loading Capacity Column ID Flow SensiBvity Load (mm) (µl/min) LOD (fmol) (µg)

42 Analyte Capacity vs. Peak Capacity ug Load Time (min) ug Load Time (min) *Don t overload your column! It will cause poor chromatography, reduc@on in resolu@on and peak capacity. Choose the appropriate ID for your applica@on.

43 Column Length vs. Time & Capacity Length Gradient Rate Gradient Time Column Peak (mm) (%B / min) (Minutes) Volumes Capacity 50 > 5 < < 0.5 >

High Performance Liquid Chromatography

High Performance Liquid Chromatography High Performance Liquid Chromatography What is HPLC? It is a separation technique that involves: Injection of small volume of liquid sample Into a tube packed with a tiny particles (stationary phase).

More information

LECTURE 2. Advanced Separation Science Techniques Present and Future Separation Tools

LECTURE 2. Advanced Separation Science Techniques Present and Future Separation Tools LECTURE 2 Advanced Separation Science Techniques Present and Future Separation Tools Jack Henion, Ph.D. Emeritus Professor, Analytical Toxicology Cornell University Ithaca, NY 14850 Lecture 2, Page 1 Contents

More information

LC Technical Information

LC Technical Information LC Technical Information Method Transfer to Accucore.6 μm Columns Containing solid core particles, which are engineered to a diameter of.6μm and a very narrow particle size distribution; Accucore HPLC

More information

[S016. CHROMATOGRAPHY]

[S016. CHROMATOGRAPHY] Phyto-Analysis Sheet Number : 16 Prof. Dr. Talal Aburjai Page 1 of 9 How to read the chromatogram? Comes from any automated chromatography. The chromatograms show the 0 t (t m ) which indicates the solvent

More information

Chemistry Instrumental Analysis Lecture 31. Chem 4631

Chemistry Instrumental Analysis Lecture 31. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 31 High Performance Liquid Chromatography (HPLC) High Performance Liquid Chromatography (HPLC) High Performance Liquid Chromatography (HPLC) Solvent Delivery

More information

Introduction to Chromatographic Separations (Chapter 1) Many determinations involve separation followed by analysis chromatography electrophoresis

Introduction to Chromatographic Separations (Chapter 1) Many determinations involve separation followed by analysis chromatography electrophoresis Introduction to Chromatographic Separations (Chapter 1) Many determinations involve separation followed by analysis chromatography electrophoresis Chromatography: sample transported by mobile phase electrostatic

More information

Liquid Chromatography

Liquid Chromatography Liquid Chromatography 1. Introduction and Column Packing Material 2. Retention Mechanisms in Liquid Chromatography 3. Method Development 4. Column Preparation 5. General Instrumental aspects 6. Detectors

More information

Introduction to Chromatographic Separations

Introduction to Chromatographic Separations Introduction to Chromatographic Separations Analysis of complex samples usually involves previous separation prior to compound determination. Two main separation methods instrumentation are available:

More information

Fall 2012 Due In Class Friday, Oct. 19. Complete the following on separate paper. Show your work and clearly identify your answers.

Fall 2012 Due In Class Friday, Oct. 19. Complete the following on separate paper. Show your work and clearly identify your answers. CHEM 322 Name Fall 2012 Due In Class Friday, Oct. 19 Complete the following on separate paper. Show your work and clearly identify your answers. General Separations 1. Describe the relative contributions

More information

High Performance Liquid Chromatography

High Performance Liquid Chromatography Updated: 3 November 2014 Print version High Performance Liquid Chromatography David Reckhow CEE 772 #18 1 HPLC System David Reckhow CEE 772 #18 2 Instrument Basics PUMP INJECTION POINT DETECTOR COLUMN

More information

High Performance Liquid Chromatography

High Performance Liquid Chromatography Updated: 3 November 2014 Print version High Performance Liquid Chromatography David Reckhow CEE 772 #18 1 HPLC System David Reckhow CEE 772 #18 2 1 Instrument Basics PUMP INJECTION POINT DETECTOR COLUMN

More information

HPLC Praktikum Skript

HPLC Praktikum Skript HPLC Praktikum Skript Assistants: Gianluca Bartolomeo HCI D330, 3 46 68, bartolomeo@org.chem.ethz.ch Sahar Ghiasikhou HCI E330, 2 29 29, ghiasikhou@org.chem.ethz.ch 1. Introduction In chromatographic techniques,

More information

Biochemistry. Biochemical Techniques HPLC

Biochemistry. Biochemical Techniques HPLC Description of Module Subject Name Paper Name 12 Module Name/Title 13 1. Objectives 1.1. To understand the basic concept and principle of 1.2. To understand the components and techniques of 1.3. To know

More information

Introduction to Chromatography

Introduction to Chromatography Introduction to Chromatography Dr. Sana Mustafa Assistant Professor Department of Chemistry, Federal Urdu University of Arts, Science & Technology, Karachi. What is Chromatography? Derived from the Greek

More information

Open Column Chromatography, GC, TLC, and HPLC

Open Column Chromatography, GC, TLC, and HPLC Open Column Chromatography, GC, TLC, and HPLC Murphy, B. (2017). Introduction to Chromatography: Lecture 1. Lecture presented at PHAR 423 Lecture in UIC College of Pharmacy, Chicago. USES OF CHROMATOGRAPHY

More information

Theory and Instrumentation of GC. Chromatographic Parameters

Theory and Instrumentation of GC. Chromatographic Parameters Theory and Instrumentation of GC Chromatographic Parameters i Wherever you see this symbol, it is important to access the on-line course as there is interactive material that cannot be fully shown in this

More information

HPLC COLUMNS WILEY-VCH. Theory, Technology, and Practice. Uwe D. Neue with a contribution from M. Zoubair El Fallah

HPLC COLUMNS WILEY-VCH. Theory, Technology, and Practice. Uwe D. Neue with a contribution from M. Zoubair El Fallah HPLC COLUMNS Theory, Technology, and Practice Uwe D. Neue with a contribution from M. Zoubair El Fallah WILEY-VCH New York Chichester Weinheim Brisbane Singapore Toronto CONTENTS Preface ix 1 Introduction

More information

Analytical Chemistry

Analytical Chemistry Analytical Chemistry Chromatographic Separations KAM021 2016 Dr. A. Jesorka, 6112, aldo@chalmers.se Introduction to Chromatographic Separations Theory of Separations -Chromatography Terms Summary: Chromatography

More information

Gas Chromatography (Chapter 2 and 3 in The essence of chromatography)

Gas Chromatography (Chapter 2 and 3 in The essence of chromatography) Gas Chromatography 1. Introduction. Stationary phases 3. Retention in Gas-Liquid Chromatography 4. Capillary gas-chromatography 5. Sample preparation and injection 6. Detectors (Chapter and 3 in The essence

More information

Instrumental Chemical Analysis

Instrumental Chemical Analysis L2 Page1 Instrumental Chemical Analysis Chromatography (General aspects of chromatography) Dr. Ahmad Najjar Philadelphia University Faculty of Pharmacy Department of Pharmaceutical Sciences 2 nd semester,

More information

HPLC Background Chem 250 F 2008 Page 1 of 24

HPLC Background Chem 250 F 2008 Page 1 of 24 HPLC Background Chem 250 F 2008 Page 1 of 24 Outline: General and descriptive aspects of chromatographic retention and separation: phenomenological k, efficiency, selectivity. Quantitative description

More information

Packed Column for Ultra-Fast Reversed-Phase Liquid Chromatography, TSKgel Super-ODS. Table of Contents

Packed Column for Ultra-Fast Reversed-Phase Liquid Chromatography, TSKgel Super-ODS. Table of Contents No. 089 SEPARATION REPORT Packed Column for Ultra-Fast Reversed-Phase Liquid Chromatography, TSKgel Super-ODS Table of Contents 1. Introduction 1 2. Column Specification 1 3. Features of Packing Materials

More information

High Pressure/Performance Liquid Chromatography (HPLC)

High Pressure/Performance Liquid Chromatography (HPLC) High Pressure/Performance Liquid Chromatography (HPLC) High Performance Liquid Chromatography (HPLC) is a form of column chromatography that pumps a sample mixture or analyte in a solvent (known as the

More information

Method Transfer between HPLC and UHPLC Instruments Equipment-related challenges and solutions

Method Transfer between HPLC and UHPLC Instruments Equipment-related challenges and solutions Method Transfer between HPLC and UHPLC Instruments Equipment-related challenges and solutions Today, ultra-high-performance liquid chromatography (UHPLC) has taken a firm foothold in the analytical laboratory.

More information

M > ACN > > THF

M > ACN > > THF Method Development in HPLC Dr. Amitha Hewavitharana School of Pharmacy University of Queensland Method Development in HPLC References: D A Skoog Principles of instrumental analysis, 3 rd Edition Chapters

More information

HPLC Workshop 16 June 2009 What does this do? Chromatography Theory Review Several chromatographic techniques Even though each method utilizes different techniques to separate compounds, the principles

More information

Chemistry Instrumental Analysis Lecture 27. Chem 4631

Chemistry Instrumental Analysis Lecture 27. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 27 Gas Chromatography Introduction GC covers all chromatographic methods in which the mobile phase is gas. It may involve either a solid stationary phase (GSC)

More information

Chromatographic Analysis

Chromatographic Analysis Chromatographic Analysis Distribution of Analytes between Phases An analyte is in equilibrium between the two phases [S 1 ] [S 2 ] (in phase 1) (in phase 2) AS [S2 ] K 2 A S [S1 ] 1 AS, A 1 S Activity

More information

Impact of Instrument Dispersion on Performance of HPLC Capillary Columns

Impact of Instrument Dispersion on Performance of HPLC Capillary Columns Impact of Instrument Dispersion on Performance of HPLC Capillary Columns Wendy Roe, Richard A. Henry, and Hillel Brandes Supelco, Div. of Sigma-Aldrich Bellefonte, PA 16823 USA T413131 sigma-aldrich.com/analytical

More information

LEARNING OBJECTIVES CHEM 212: SEPARATION SCIENCE CHROMATOGRAPHY UNIT. Thomas Wenzel, Bates College. In-class Problem Set Extraction.

LEARNING OBJECTIVES CHEM 212: SEPARATION SCIENCE CHROMATOGRAPHY UNIT. Thomas Wenzel, Bates College. In-class Problem Set Extraction. LEARNING OBJECTIVES CHEM 212: SEPARATION SCIENCE CHROMATOGRAPHY UNIT Thomas Wenzel, Bates College In-class Problem Set Extraction Problem #1 1. Devise a scheme to be able to isolate organic acids, bases

More information

Chromatography- Separation of mixtures CHEM 212. What is solvent extraction and what is it commonly used for?

Chromatography- Separation of mixtures CHEM 212. What is solvent extraction and what is it commonly used for? Chromatography- Separation of mixtures CHEM 212 What is solvent extraction and what is it commonly used for? How does solvent extraction work? Write the partitioning coefficient for the following reaction:

More information

Chromatographic Separation

Chromatographic Separation What is? is the ability to separate molecules using partitioning characteristics of molecule to remain in a stationary phase versus a mobile phase. Once a molecule is separated from the mixture, it can

More information

What is Chromatography?

What is Chromatography? What is Chromatography? Chromatography is a physico-chemical process that belongs to fractionation methods same as distillation, crystallization or fractionated extraction. It is believed that the separation

More information

Basic principles of HPLC

Basic principles of HPLC Introduction to the theory of HPLC HPLC (High Performance Liquid Chromatography) depends on interaction of sample analytes with the stationary phase (packing) and the mobile phase to effect a separation.

More information

Liquid storage: Holds the solvent which is going to act as the mobile phase. Pump: Pushes the solvent through to the column at high pressure.

Liquid storage: Holds the solvent which is going to act as the mobile phase. Pump: Pushes the solvent through to the column at high pressure. High performance liquid chromatography (HPLC) is a much more sensitive and useful technique than paper and thin layer chromatography. The instrument used for HPLC is called a high performance liquid chromatograph.

More information

LC III: HPLC. Originally referred to as High-Pressure Liquid Chromatography. Now more commonly called High Performance Liquid Chromatography

LC III: HPLC. Originally referred to as High-Pressure Liquid Chromatography. Now more commonly called High Performance Liquid Chromatography LC III: HPLC What is HPLC? Originally referred to as High-Pressure Liquid Chromatography Now more commonly called High Performance Liquid Chromatography In general: The instrument controlled version of

More information

Chromatography and other Separation Methods

Chromatography and other Separation Methods Chromatography and other Separation Methods Probably the most powerful class of modern analytical methods for analyzing mixture of components---and even for detecting a single component in a complex mixture!

More information

Instrumental Analysis II Course Code: CH3109. Chromatographic &Thermal Methods of Analysis Part 1: General Introduction. Prof. Tarek A.

Instrumental Analysis II Course Code: CH3109. Chromatographic &Thermal Methods of Analysis Part 1: General Introduction. Prof. Tarek A. Instrumental Analysis II Course Code: CH3109 Chromatographic &Thermal Methods of Analysis Part 1: General Introduction Prof. Tarek A. Fayed What is chemical analysis? Qualitative analysis (1) Chemical

More information

Analytical Technologies in Biotechnology Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee

Analytical Technologies in Biotechnology Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee Analytical Technologies in Biotechnology Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee Module - 3 Chromatographic methods Lecture - 2 Basic Concepts in Chromatography

More information

ION CHROMATOGRAPHY SYSTEM S 150

ION CHROMATOGRAPHY SYSTEM S 150 ION CHROMATOGRAPHY SYSTEM S 150 WATER ANALYSIS ENVIRONMENTAL ANALYSIS ANION & CATION ANALYSIS ION CHROMATOGRAPHY IIon Chromatography is an analytical separation technique based on ionic interactions. Dissolved

More information

Remember - Ions are more soluble in water than in organic solvents. - Neutrals are more soluble in organic solvents than in water.

Remember - Ions are more soluble in water than in organic solvents. - Neutrals are more soluble in organic solvents than in water. IN-CLASS PROBLEMS SEPARATION SCIENCE CROMATOGRAPHY UNIT Thomas Wenzel, Bates College In-class Problem Set - Extraction 1. Devise a way to separate the materials in the following sample by performing an

More information

Chapter 26: An Introduction to Chromatographic Separations

Chapter 26: An Introduction to Chromatographic Separations Chapter 26: An Introduction to Chromatographic Separations Column Chromatography Migration Rates Distribution Contstants Retention Times Selectivity Factor Zone Broadening & Column Efficiency Optimizing

More information

Chapter content. Reference

Chapter content. Reference Chapter 7 HPLC Instrumental Analysis Rezaul Karim Environmental Science and Technology Jessore University of Science and Technology Chapter content Liquid Chromatography (LC); Scope; Principles Instrumentation;

More information

Bringing uhplc Performance to the Separation of Peptides

Bringing uhplc Performance to the Separation of Peptides P e p t i d e E S - C 1 8 U H P L C C o l u m n s Bringing uhplc Performance to the Separation of Peptides Compatible with UHPLC and conventional HPLC equipment. Sumpfstr. 3, CH-6300 Zug; Fax: 041 748

More information

Principles of Gas- Chromatography (GC)

Principles of Gas- Chromatography (GC) Principles of Gas- Chromatography (GC) Mohammed N. Sabir January 2017 10-Jan-17 1 GC is a chromatographic technique utilizes gas as the mobile phase which is usually an inert gas (Hydrogen, Helium, Nitrogen

More information

Easy Method Transfer from HPLC to RSLC with the Dionex Method Speed-Up Calculator

Easy Method Transfer from HPLC to RSLC with the Dionex Method Speed-Up Calculator Technical Note 75 Easy Method Transfer from HPLC to RSLC with the Dionex Method Speed-Up Calculator Introduction The goal of every chromatographic optimization is a method that sufficiently resolves all

More information

2. a) R N and L N so R L or L R 2.

2. a) R N and L N so R L or L R 2. 1. Use the formulae on the Some Key Equations and Definitions for Chromatography sheet. a) 0.74 (remember that w b = 1.70 x w ½ ) b) 5 c) 0.893 (α always refers to two adjacent peaks) d) 1.0x10 3 e) 0.1

More information

Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS

Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS 1. List two advantages of temperature programming in GC. a) Allows separation of solutes with widely varying retention factors in a reasonable

More information

Separation Methods Based on Distributions in Discrete Stages (02/04/15)

Separation Methods Based on Distributions in Discrete Stages (02/04/15) Separation Methods Based on Distributions in Discrete Stages (02/04/15) 1. Chemical Separations: The Big Picture Classification and comparison of methods 2. Fundamentals of Distribution Separations 3.

More information

Chemistry 3200 High Performance Liquid Chromatography: Quantitative Determination of Headache Tablets

Chemistry 3200 High Performance Liquid Chromatography: Quantitative Determination of Headache Tablets Chemistry 3200 High Performance Liquid Chromatography: Quantitative Determination of Headache Tablets Liquid chromatography was developed by Tswett in early 1900 s and was shown to be a powerful separation

More information

HPLC. High Performance Liquid Chromatography (HPLC) Harris Chapter 25

HPLC. High Performance Liquid Chromatography (HPLC) Harris Chapter 25 High Performance Liquid Chromatography (HPLC) Harris Chapter 25 12/1/2005 Chem 253 - Chapter 25 1 HPLC Separation of nonvolatile or thermally unstable compounds. If the analyte/sample can be found to be

More information

Pure Chromatography Consumables Pure flexibility. Pure specialization. Pure convenience.

Pure Chromatography Consumables Pure flexibility. Pure specialization. Pure convenience. Pure Chromatography Consumables Pure flexibility. Pure specialization. Pure convenience. Pure Consumables More focus on your application The Pure consumable portfolio offers an unrivaled range of products

More information

Determination of Caffeine by HPLC

Determination of Caffeine by HPLC Determination of Caffeine by HPLC Introduction It was a long history before real high performance liquid chromatography (HPLC) had evolved. The very first indication of a chromatographic separation was

More information

for Acclaim Mixed-Mode HILIC-1 Column

for Acclaim Mixed-Mode HILIC-1 Column for Acclaim Mixed-Mode HILIC-1 Column Product Manual for ACCLAIM Mixed-Mode HILIC-1 Page 1 of 17 Product Manual for ACCLAIM Mixed-Mode HILIC-1 Column 5µm, 4.6 x 250mm, P/N 066844 5µm, 4.6 x 150mm, P/N

More information

Speeding up 2D chromatography (HPLCxSEC) at it s limits. ..fast, faster ups broken...

Speeding up 2D chromatography (HPLCxSEC) at it s limits. ..fast, faster ups broken... 30 th September 2014, Frankfurt Speeding up 2D chromatography (HPLCxSEC) at it s limits...fast, faster ups broken... Dr. Bastiaan Staal International Symposium on GPC/SEC and Related Techniques How it

More information

CHAPTER 6 GAS CHROMATOGRAPHY

CHAPTER 6 GAS CHROMATOGRAPHY CHAPTER 6 GAS CHROMATOGRAPHY Expected Outcomes Explain the principles of gas chromatography Able to state the function of each components of GC instrumentation Able to state the applications of GC 6.1

More information

Introduction to Capillary GC. Page 1. Agilent Restricted February 2, 2011

Introduction to Capillary GC. Page 1. Agilent Restricted February 2, 2011 ?? Kβ? Page 1 Typical GC System Gas supply Injector Detector Data handling GAS Column Oven Page 2 CARRIER GAS Carries the solutes down the column Selection and velocity influences efficiency and retention

More information

High Resolution Fast LC

High Resolution Fast LC High Resolution Fast LC Easier Than You Think Rita Steed LC Columns Application Engineer May 9, 2013 What is High Resolution Fast LC? Maintain Resolution with Faster Run Time Increased Resolution with

More information

CHROMATOGRAPHY. The term "chromatography" is derived from the original use of this method for separating yellow and green plant pigments.

CHROMATOGRAPHY. The term chromatography is derived from the original use of this method for separating yellow and green plant pigments. CHROMATOGRAPHY The term "chromatography" is derived from the original use of this method for separating yellow and green plant pigments. THEORY OF CHROMATOGRAPHY: Separation of two sample components in

More information

Basic chromatographic parameters and optimization in LC

Basic chromatographic parameters and optimization in LC AM0925 Assignment Basic chromatographic parameters and optimization in LC Introduction This is a computer exercise where you will apply a simulator of reversed phase LC to study the influence of chromatographic

More information

Chemistry Gas Chromatography: Separation of Volatile Organics

Chemistry Gas Chromatography: Separation of Volatile Organics Chemistry 3200 Gas chromatography (GC) is an instrumental method for separating volatile compounds in a mixture. A small sample of the mixture is injected onto one end of a column housed in an oven. The

More information

Chromatography. Gas Chromatography

Chromatography. Gas Chromatography Chromatography Chromatography is essentially the separation of a mixture into its component parts for qualitative and quantitative analysis. The basis of separation is the partitioning of the analyte mixture

More information

An Introduction to Chromatographic Separations

An Introduction to Chromatographic Separations An Introduction to Chromatographic Separations Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh 11451

More information

2] The plate height in chromatography is best described as 2

2] The plate height in chromatography is best described as 2 9 Chromatography. General Topics 1] Explain the three major components of the van Deemter equation. Sketch a clearly labeled diagram describing each effect. What is the salient point of the van Deemter

More information

Quality control analytical methods- Switch from HPLC to UPLC

Quality control analytical methods- Switch from HPLC to UPLC Quality control analytical methods- Switch from HPLC to UPLC Dr. Y. Padmavathi M.pharm,Ph.D. Outline of Talk Analytical techniques in QC Introduction to HPLC UPLC - Principles - Advantages of UPLC - Considerations

More information

CHAPTER 1. Introduction, Chromatography Theory, and Instrument Calibration

CHAPTER 1. Introduction, Chromatography Theory, and Instrument Calibration 1 1 1 1 1 1 CHAPTER 1 Introduction, Chromatography Theory, and Instrument Calibration 1.1 Introduction Analytical chemists have few tools as powerful as chromatography to measure distinct analytes in complex

More information

Separations---Chromatography and Electrophoresis

Separations---Chromatography and Electrophoresis Separations---Chromatography and Electrophoresis Chromatography--one of most diverse and important analytical methods-- Used initially primarily to purify species With advent of sensitive detectors---now

More information

Chromatographic Methods: Basics, Advanced HPLC Methods

Chromatographic Methods: Basics, Advanced HPLC Methods Chromatographic Methods: Basics, Advanced HPLC Methods Hendrik Küpper, Advanced Course on Bioinorganic Chemistry & Biophysics of Plants, summer semester 2018 Chromatography: Basics Chromatography a physical

More information

Performance characteristics of the Agilent 1290 Infinity Quaternary Pump

Performance characteristics of the Agilent 1290 Infinity Quaternary Pump Performance characteristics of the Agilent 129 Infinity Quaternary Pump Technical Overview Author A.G.Huesgen Agilent Technologies, Inc. Waldbronn, Germany Abstract This Technical Overview presents Proof

More information

PRINCIPLES AND APPLICATION OF CHROMATOGRAPHY. Dr. P. Jayachandra Reddy Mpharm PhD Principal & professor KTPC

PRINCIPLES AND APPLICATION OF CHROMATOGRAPHY. Dr. P. Jayachandra Reddy Mpharm PhD Principal & professor KTPC PRINCIPLES AND APPLICATION OF CHROMATOGRAPHY Dr. P. Jayachandra Reddy Mpharm PhD Principal & professor KTPC CHROMATOGRAPHY Laboratory technique for the Separation of mixtures Chroma -"color" and graphein

More information

Course goals: Course goals: Lecture 1 A brief introduction to chromatography. AM Quality parameters and optimization in Chromatography

Course goals: Course goals: Lecture 1 A brief introduction to chromatography. AM Quality parameters and optimization in Chromatography Emqal module: M0925 - Quality parameters and optimization in is a separation technique used for quantification of mixtures of analytes Svein.mjos@kj.uib.no Exercises and lectures can be found at www.chrombox.org/emq

More information

penta-hilic UHPLC COLUMNS

penta-hilic UHPLC COLUMNS penta-hilic UHPLC COLUMNS penta-hilic Highly retentive, proprietary penta-hydroxy-ligand Excellent peak shape for polar compounds with a variety of functional groups: acids, bases, zwitterions strong and

More information

The Secrets of Rapid HPLC Method Development. Choosing Columns for Rapid Method Development and Short Analysis Times

The Secrets of Rapid HPLC Method Development. Choosing Columns for Rapid Method Development and Short Analysis Times The Secrets of Rapid HPLC Method Development Choosing Columns for Rapid Method Development and Short Analysis Times Rapid Analysis Is More Than Run Time It is developing a method to meet a goal and developing

More information

Minimizing Solvent Impact on Purification of Nitrogencontaining

Minimizing Solvent Impact on Purification of Nitrogencontaining Minimizing Solvent Impact on Purification of Nitrogencontaining Compounds J. Liu and P. C. Rahn Biotage Discovery Chemistry Group US 1725 Discovery Drive Charlottesville, VA 22911 USA 1 Abstract This paper

More information

HPLC Preparative Scaleup of Calcium Channel Blocker Pharmaceuticals Application

HPLC Preparative Scaleup of Calcium Channel Blocker Pharmaceuticals Application HPLC Preparative Scaleup of Calcium Channel Blocker Pharmaceuticals Application Pharmaceuticals Author Cliff Woodward and Ronald Majors Agilent Technologies, Inc. 2850 Centerville Road Wilmington, DE 19808

More information

LC Column Troubleshooting. Do you have an equivalent column for my LC column?

LC Column Troubleshooting. Do you have an equivalent column for my LC column? LC Column Troubleshooting Do you have an equivalent column for my LC column? LC columns from different suppliers may have very different retention properties even if the bonding is the same. Although there

More information

Chapter 26. An Introduction to Chromatographic Separations. Chromatography

Chapter 26. An Introduction to Chromatographic Separations. Chromatography Chapter 26 An Introduction to Chromatographic Separations Chromatography 1 Chromatography-Model as Extraction Chromatography-Model as Extraction 2 Chromatography Planar Chromatography-Types paper chromatography

More information

Supercritical Fluid Chromatography

Supercritical Fluid Chromatography Supercritical Fluid Chromatography What is a supercritical fluid? Supercritical fluid is a state of matter that is intermediate between a gas and liquid in its properties. This state formed when a gas

More information

LC and LC/MS Column Selection Flow Chart

LC and LC/MS Column Selection Flow Chart LC and LC/MS Column Selection Flow Chart To use the column selection diagram below, simply follow the path for your analyte and mobile phase. At the far right, follow your final column selection to the

More information

Luminescence transitions. Fluorescence spectroscopy

Luminescence transitions. Fluorescence spectroscopy Luminescence transitions Fluorescence spectroscopy Advantages: High sensitivity (single molecule detection!) Measuring increment in signal against a dark (zero) background Emission is proportional to excitation

More information

Prep 150 LC System: Considerations for Analytical to Preparative Scaling

Prep 150 LC System: Considerations for Analytical to Preparative Scaling Andrew Aubin and Jo-Ann Jablonski Waters Corporation, Milford, MA, USA APPLICATION BENEFITS The Prep 150 LC System is an affordable, highly reliable system for preparative chromatography and is suitable

More information

GPC/SEC Practical Tips and Tricks. Thomas Dent Applications Scientist Agilent Technologies. October, 2011 Gulf Coast Conference

GPC/SEC Practical Tips and Tricks. Thomas Dent Applications Scientist Agilent Technologies. October, 2011 Gulf Coast Conference GPC/SEC Practical Tips and Tricks Thomas Dent Applications Scientist Agilent Technologies October, 2011 Gulf Coast Conference 1 Section 1: Introduction Goals Brief introduction to GPC/SEC Highlight considerations

More information

Determination of Polymer Modifier in Asphalt

Determination of Polymer Modifier in Asphalt Standard Method of Test for Determination of Polymer Modifier in Asphalt AASHTO Designation: T xxx-xx (2005) 1. SCOPE 1.1. This method of test is used to determine the polymer content of an asphalt sample.

More information

Abstract: An minimalist overview of chromatography for the person who would conduct chromatographic experiments, but not design experiments.

Abstract: An minimalist overview of chromatography for the person who would conduct chromatographic experiments, but not design experiments. Chromatography Primer Abstract: An minimalist overview of chromatography for the person who would conduct chromatographic experiments, but not design experiments. At its heart, chromatography is a technique

More information

MODERN HPLC FOR PRACTICING SCIENTISTS

MODERN HPLC FOR PRACTICING SCIENTISTS MODERN HPLC FOR PRACTICING SCIENTISTS Michael W. Dong Synomics Pharmaceutical Services, LLC Wareham, Massachusetts WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Preface xv 1 Introduction 1

More information

Chemistry Instrumental Analysis Lecture 37. Chem 4631

Chemistry Instrumental Analysis Lecture 37. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 37 Most analytes separated by HPLC are thermally stable and non-volatile (liquids) (unlike in GC) so not ionized easily by EI or CI techniques. MS must be at

More information

Separation Sciences. 1. Introduction: Fundamentals of Distribution Equilibrium. 2. Gas Chromatography (Chapter 2 & 3)

Separation Sciences. 1. Introduction: Fundamentals of Distribution Equilibrium. 2. Gas Chromatography (Chapter 2 & 3) Separation Sciences 1. Introduction: Fundamentals of Distribution Equilibrium 2. Gas Chromatography (Chapter 2 & 3) 3. Liquid Chromatography (Chapter 4 & 5) 4. Other Analytical Separations (Chapter 6-8)

More information

High Speed 2D-HPLC Through the Use of Ultra-Fast High Temperature HPLC as the Second Dimension

High Speed 2D-HPLC Through the Use of Ultra-Fast High Temperature HPLC as the Second Dimension High Speed 2D-HPLC Through the Use of Ultra-Fast High Temperature HPLC as the Second Dimension Minnesota Chromatography Forum Spring Symposium Dwight Stoll and Peter W. Carr Department of Chemistry University

More information

"Theory and Practice of High Speed Chromatography for Bioanalysis" Stuart Coleman March 20, 2007

Theory and Practice of High Speed Chromatography for Bioanalysis Stuart Coleman March 20, 2007 "Theory and Practice of High Speed Chromatography for Bioanalysis" Stuart Coleman March 20, 2007 General Observations about HPLC Separations A good separation is necessary for good bioanalytical quantitation.

More information

SGE is excited to launch a new HPLC product line under the ProteCol brand.

SGE is excited to launch a new HPLC product line under the ProteCol brand. The Role of Pore Size in Reversed Phase HPLC SGE is excited to launch a new HPLC product line under the ProteCol brand. Fundamental to the new ProteCol line of columns is the continued focus on inert column

More information

2501 High Performance Liquid Chromatography

2501 High Performance Liquid Chromatography 2501 High Performance Liquid Chromatography High Performance Liquid Chromatography Scheme Chp25:: 1 High Performance Liquid Chromatography Components of HPLC High Performance Liquid Chromatography Scheme

More information

Luna 2.5 µm C18(2)-HST. Advantages of 2.5 µm for increasing the speed of analysis while maintaining high efficiency

Luna 2.5 µm C18(2)-HST. Advantages of 2.5 µm for increasing the speed of analysis while maintaining high efficiency Luna 2.5 µm C18(2)-HST Advantages of 2.5 µm for increasing the speed of analysis while maintaining high efficiency Table of Contents Part 1 Theory 1.1 Abstract...3 1.2 Introduction...3 Part 2 Set Up 2.1

More information

HPLC. GRATE Chromatography Lab Course. Dr. Johannes Ranke. September 2003

HPLC. GRATE Chromatography Lab Course. Dr. Johannes Ranke. September 2003 HPLC GRATE Chromatography Lab Course Dr. Johannes Ranke Organisation The groups Start at 9:00 am End at 18:00 pm at the latest Friday, 19th we will finish at 2:00 pm Thursday, 11th: Lecture at 08:15 am

More information

Information given in these slides are, either in part or all, recollection from the followings:

Information given in these slides are, either in part or all, recollection from the followings: Information given in these slides are, either in part or all, recollection from the followings: http://bionmr.unl.edu/courses/chem421-821/lectures/chapter-2... http://faculty.atu.edu/abhuiyan/course/chem

More information

Chemistry Instrumental Analysis Lecture 28. Chem 4631

Chemistry Instrumental Analysis Lecture 28. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 28 High Performance Liquid Chromatography () Instrumentation Normal Phase Chromatography Normal Phase - a polar stationary phase with a less polar mobile phase.

More information

LC800. Smart HPLC. Until now UHPLC From now Smart HPLC

LC800. Smart HPLC. Until now UHPLC From now Smart HPLC LC800 Smart HPLC Until now UHPLC From now Smart HPLC Smart HPLC Leads to Ultimate Performance Patent Pending S LC800 is a completely new and unique concept, designed for maximum performance in high resolution

More information

New 5-micron HALO-5 columns based on Fused- Core particle technology boost the performance of HPLC. Compared to other HPLC columns, HALO-5 columns

New 5-micron HALO-5 columns based on Fused- Core particle technology boost the performance of HPLC. Compared to other HPLC columns, HALO-5 columns New 5-micron HALO-5 columns based on Fused- Core particle technology boost the performance of HPLC. Compared to other HPLC columns, HALO-5 columns have: the highest plate number versus any other 5-micron

More information

Volatile organic compounds (VOCs):

Volatile organic compounds (VOCs): Volatile organic compounds (VOCs): Organic chemicals with a high vapour pressure at room temperature. High vapour pressure results from a low boiling point. The World Health Organization (WHO) defined

More information

Introduction. Chapter 1. Learning Objectives

Introduction. Chapter 1. Learning Objectives Chapter 1 Introduction Learning Objectives To understand the need to interface liquid chromatography and mass spectrometry. To understand the requirements of an interface between liquid chromatography

More information

Chemistry Instrumental Analysis Lecture 26. Chem 4631

Chemistry Instrumental Analysis Lecture 26. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 26 Rate Theory Focuses on the contributions of various kinetic factors to zone or band broadening. Column Dispensivity, H, is assumed to be the sum of the individual

More information