Neutral Theory story so far

Size: px
Start display at page:

Download "Neutral Theory story so far"

Transcription

1 Neutral Theory story so far Species abundance distributions appear to show a family of curves. These curves can potentially result from random drift in species abundances

2 Neutral model includes dynamics of the metacommunity Number of individuals in the metacommunity, J M is constant At each time step one random individual dies and is either replaced by an individual of a new species (ie speciation occurs) with a very small probability of ν ( nu the speciation rate) or, the dead individual can be replaced by an offspring of one of the remaining surviving individuals with probability 1-ν Find that the species abundance distribution (SAD) is determined by the compound parameter θ = 2 J M ν

3 When θ is small (small metacommunity size and/or low speciation rate) then rank abundance curve is steep and geometric-like. When θ is high, curve becomes more S-shaped Found that θ is exactly the same as

4 Hang on though, don t species relative abundances fit the Preston log-normal better than the log series???

5 How does Hubbell s model prediction compare with the Preston log-normal?

6 Actual relative abundance expected relative abundance m=0.1 Why fewer rare species in BCI plot than expected in the metacommunity? expected relative abundance m=1.0

7 If Hubbell interpretation of SADs is correct then should be able to show that SAD of the metacommunity is log series Don t know SAD of metacommunity, but can estimate it by sampling across it at different spatial locations. This should reduce effect of localized dispersal Amazonia: RAINFOR plot network has sampled tree species across Peru, Bolivia, Brazil, Colombia, Ecuador, Guianan Shield (ter Steege et al. 2006) >280,000 trees Species ids not completed, but generic ids should show similar patterns to species under neutrality (just take longer to originate and go to extinction)

8 Relative abundance distribution of tree genera in the Amazon (Hubbell et al. 2008) Fisher s alpha = 71. Inset shows Preston style histogram of genera binned into doubling classes of abundance

9 Recent additions to the neutral theory Neutrality means that per capita birth and death rates are equivalent across species - no functional differences among spp. Several new components added to the model since the 2001 monograph Volkov et al. (2005) Addition of density-dependence to the neutral neutral ( symmetric neutral theory ) (density dependence does not violate neutrality so long as applied symmetrically i.e., every species experiences equivalent density dependence when at the same abundance)

10 Fitting density dependence has equivalent effect to fitting m for dispersal limitation from the metacommunity SADs for 6 large forest plots. x axis is doubling abundance classes Both densitydependence and dispersal limitation operate in tree communities. Both can produce observed SAD

11 Is the assumption of symmetric density dependence valid? Saw on Friday that rare species show strong density dependent effects than common species **Hubbell argues that density dependent effects do not regulate populations because they dissipate within a few meters**

12 Ricklefs (2003) Neutral model assumptions about speciation and species lifetimes Hubbell offers two potential modes of speciation Point mutation - a new species arises as a single new individual Fission speciation - randomly bisect the population of a species in two. Akin to speciation by vicariance (eg separation of populations by a mountain, large river etc ) Point mutation model: Difficult to recognize new species formed by mutation - some population growth and differentiation may be needed.

13 Many new species, whose population size is initially 1, will go immediately extinct (lots of spp with very short lifespans) Remember the random drift model rate of species loss? What is the converse of this? Random fission model (not included in original neutral model): Populations of species split with frequency of ν. Average life span of species under this model is too long would take too long for a common species to drift to extinction

14 Under the fission model, reasonable estimates for the metapopulation size, and speciation rate yield too many species Hubbell s (2003) response: The issue is easily resolved if one considers point mutation speciation and random fission speciation as the theoretical extremes of a speciation continuum Proposes a third mechanism of species Peripheral isolate speciation - will yield species with intermediate initial population sizes and therefore intermediate mean lifespans.

15 Conclusion Neutral theory provides a parsimonious explanation for community properties, and has refocused attention on how evolutionary processes at large spatial scales are coupled to local community dynamics. It is controversial in as much as it is considered more than a null model for community organization One of the main goals in producing the neutral theory was to stir the scientific pot vigorously, which in my opinion has been overdue in community ecology for a long time. I am please to say that positive results from this stirring seem to be happening

16 Latitudinal gradients in species richness For the majority of higher taxa, species richness is greatest at the tropics and declines monotonically with latitude (e.g. birds (Dobzhansky 1950, vascular plants Reid and Miller 1989, marine taxa Roy et al. 1998; but see Janzen 1981 for an insect exception) Because this pattern is so widespread it has been suggested that it must have a common explanation The general latitudinal pattern must be related to some climatic factor or combination of factors that change in a consistent manner with latitude but ecologists have failed to find a convincing link between organic diversity and patterns in the physical environment (Ricklefs 1973)

17 Why are tropical forests more diverse? Why do boreal forests contain few rare species?

18 Latitudinal diversity gradients a rocky shore example (Okuda et al. 2004) Hierarchical Sampling Plots Shores Region

19 Species accumulation curves show higher richness at lower latitude Common spp are widely distributed rare spp are restricted to lower latitudes

20 Hypotheses to explain this gradient have been summarized by Brown (1988), Gaston (2000) and others 1. Long-term climatic stability and refugia: The physical environment of the humid tropics is less variable, and subjected to less disturbance than higher latitudes Three components to this argument A) Stability leads to low rates of extinction (Wallace 1876). Why?

21 How well can we characterize ecosystem stability over evolutionary time?? Major environmental change has occurred in temperate and tropical latitudes (e.g., MY of angiosperm or insect evolution) B) Stability fosters speciation Constancy of resource supply allows fine-grained resource partitioning among competitors? or evolution of specialized mutualisms and natural enemies greater density dependent population regulation? C) Temperate latitudes are under-saturated with species. Glaciation caused local extinction of almost all species at high latitudes (with some exceptions)

22 2. Area effect Terborgh (1973) and Rosenzweig (1992) proposed that the greater species richness of the tropics can be explained by the greater area covered by tropical regions. Rosenzweig divided up the globe into tropical, subtropical, temperate, boreal and tundra zones based on latitude (0-26, 26-36, ) Divided each zone into 50,000 km 2 blocks of land area and counted up the number of blocks in each zone. Tropics >3 times as many blocks as zones outside the tropics. Why might area be important??

23 Reduced extinction rates? (larger ranges and more potential refuges from disturbance, and large population sizes) Increased rates of allopatric speciation? (more physical barriers to divide populations) Some evidence from comparing diversity on different land masses: If area of mainland sites is a major determinant of diversity then tropical (or temperate) zones with different areas should support different levels of diversity.

24 Frugivores (birds, bats and primates) in different tropical Africa, Amazonia and Australia, (diamonds) and associated angiosperms (circles) from Rosenweig (1992)

25 Area doesn t explain everything Rohde (1992, 1997) Fish data from Eurasia Contrasted vast North temperate USSR = 22.4 x10 6 km 2 South and SE Asia (Pakistan to Indonesia) = 8.9 x 10 6 km 2. Area differences even more striking when consider only freshwater fish habitat But, many more fish spp in south Asia (~2500) than USSR (328). Area is contributory but not driving factor?

26 3. Range distribution. Rather than area being larger, species latitudinal ranges might be smaller in the tropics Stevens (1989) compared latitudinal ranges of North American taxa (trees, marine molluscs, freshwater and coastal fish, reptiles, amphibians, mammals) between 25 o and 80 o N Found that species from high latitudes had wider latitudinal ranges than those from low latitudes - a phenomenon he called Rapoport s rule Why does this generate greater tropical diversity? If temperate and tropical species had similar dispersal abilities then there would be more overspill of tropical species from their preferred habitat inflating species number

27 Mean latitudinal range of N. American marine molluscs with hard body parts (Stevens 1989) Each 5 degree band includes all spp living at that latitude irrespective of the mid-point of their latitudinal range. (Therefore latitudinal means are not statistically independent)

28 Concerns with Rapoport s rule Because of statistical non-independence, some authors advocate plotting ranges only once - at the mid-point of the range for each species. How are ranges bounded? Ranges of terrestrial organisms may be constrained by the availability of land masses constraining latitudinal range. Best support for Rapoport s rule from Neartic and Palaearctic birds. Correlation falls apart at lower latitudes Lots of subsequent analyses from seaweed to woodpeckers fail to support Steven s finding (lots of papers titled Latitudinal ranges of fill in space do not support Rapoport s rule )

29 Range size of new world birds (Blackburn and Gaston 2000) Rapoport s rule unravels past Mexico Bird ranges are bounded in South America by limited area at high latitudes...

30 4. Latitudinal differences in local ecological interactions If the number and intensity of ecological interactions are greater in the tropics then more species may be able to coexist there Competition (selects for greater specialization and closer species packing) Predation (more keystone predator effects facilitates prey coexistence) Mutualisms (more common or more conspicuous in the tropics?) Pathogens/Epidemics Givnish (1999) suggested that high rainfall and low seasonality at low latitudes favours insects and fungi - 2 groups of natural plant enemies that promote high rates of density dependent mortality

31 5. Energy and productivity Species richness at large scales correlates with some measure of productivity: Actual or potential evapotranspiration and/or rainfall and seasonality (e.g. Currie 1991 for N. American trees and Clinebell et al (1995) for tropical trees), or temperature (which scales with elevation) Species-energy hypothesis: more productive environments contain more individuals, and can therefore support more species populations above some minimum size required for persistence (Currie 1991)

32 Karr (1971) Looked specifically at differences in bird diversity for grasslands vs. forests in Illinois and Panama. Higher diversity of tropical bird fauna in scrub and forest habitats but not in grasslands. Higher diversity in tropical habitats attributed to higher total population size, which correlated with smaller bird size and reduced individual energy requirements. Lower energy requirements attributed to higher temperature in tropical areas Greater diversity of food resources also apparent in tropical sites (=fruits and large insects)

33 6. Energy and evolutionary speed Rohde (1992) suggests that rather than trying to explain how productivity affects ecological interactions should view this correlation as one between energy supply and evolutionary speed. Mean age of 13 living bivalve faunas from east coast N. America. Similar data for foraminifera, mammals, brachiopods suggest higher evolutionary rates in the tropics

34 Rohde suggests that greater evolutionary speed might be due to shorter generation times of tropical organisms, and higher mutation rates. However: Even if generation times are faster for tropical organisms - not necessarily correlated with evolutionary rate (slow evolution in short generation opossums; fast evolution in elephants ) Some examples of temperature-dependence in mutation rates (e.g. Drosophila and E. coli - but indirect through shorter generation times).

35 7. Climatic niche diversification Janzen (1967) Why mountain passes are higher in the tropics (revisited by Ghalambor et al. 2006) Kozak and Wiens (2007, 2010) explored whether groups of related species (clades) of salamanders show differences in their climatic distribution for tropical and temperate species Found less overlap for 14 tropical species pairs than 16 temperate pairs

36 Well resolved time-calibrated phylogeny exists for salamanders allowing inferences about the rate of species diversification. - Show more rapid diversification for tropical than temperate lineages More rapid diversification is associated with faster climatic niche evolution Climatic niche evolution in turn depends on geographic isolation of a clade (lack of competing groups of species that already occupy those niches)

37 Distribution of salamander spp in climatic niche space (PC axes) 3 clades: Eastern N. Am Western N. Am Tropical Am PC axes determined by combining data on temperature and rainfall

38 Faster diversification of tropical salamander clade is associated with faster expansion of the climate niches occupied Rate of change in climatic niche space

39 Conclusions: Many plausible explanations for latitudinal diversity gradients Although ecological factors can explain the relative abundance of different guilds and taxa, ecological explanations do not provide an ultimate explanation for variation in the importance or frequency of ecological interactions on a latitudinal gradient Explanations based on evolutionary time or evolutionary rate only recently tested.

Overview. How many species are there? Major patterns of diversity Causes of these patterns Conserving biodiversity

Overview. How many species are there? Major patterns of diversity Causes of these patterns Conserving biodiversity Overview How many species are there? Major patterns of diversity Causes of these patterns Conserving biodiversity Biodiversity The variability among living organisms from all sources, including, inter

More information

Metacommunities Spatial Ecology of Communities

Metacommunities Spatial Ecology of Communities Spatial Ecology of Communities Four perspectives for multiple species Patch dynamics principles of metapopulation models (patchy pops, Levins) Mass effects principles of source-sink and rescue effects

More information

Learning objectives. 3. The most likely candidates explaining latitudinal species diversity

Learning objectives. 3. The most likely candidates explaining latitudinal species diversity Lectures by themes Contents of the course Macroecology 1. Introduction, 2. Patterns and processes of species diversity I 3. Patterns and processes of species diversity II 4. Species range size distributions

More information

Gary G. Mittelbach Michigan State University

Gary G. Mittelbach Michigan State University Community Ecology Gary G. Mittelbach Michigan State University Sinauer Associates, Inc. Publishers Sunderland, Massachusetts U.S.A. Brief Table of Contents 1 Community Ecology s Roots 1 PART I The Big

More information

The tropics are species-rich and: 1. In the middle (mid-domain affect)

The tropics are species-rich and: 1. In the middle (mid-domain affect) The tropics are species-rich and: 1. In the middle (mid-domain affect) Why are the Tropics so biodiverse? 2. Bigger. More area = more species (just the interprovincial Species-Area curve again) 3. Older.

More information

Geography of Evolution

Geography of Evolution Geography of Evolution Biogeography - the study of the geographic distribution of organisms. The current distribution of organisms can be explained by historical events and current climatic patterns. Darwin

More information

Rank-abundance. Geometric series: found in very communities such as the

Rank-abundance. Geometric series: found in very communities such as the Rank-abundance Geometric series: found in very communities such as the Log series: group of species that occur _ time are the most frequent. Useful for calculating a diversity metric (Fisher s alpha) Most

More information

CHAPTER 5. Interactions in the Ecosystem

CHAPTER 5. Interactions in the Ecosystem CHAPTER 5 Interactions in the Ecosystem 1 SECTION 3.3 - THE ECOSYSTEM 2 SECTION 3.3 - THE ECOSYSTEM Levels of Organization Individual one organism from a species. Species a group of organisms so similar

More information

Galapagos Islands 2,700 endemic species! WHY?

Galapagos Islands 2,700 endemic species! WHY? Galapagos Islands Galapagos Islands 2,700 endemic species! WHY? Denali, Alaska Low species diversity. Why? Patterns of Species Diversity Latitudinal Global pattern drivers? Islands (but also mtn. tops,

More information

Chapter 6 Population and Community Ecology

Chapter 6 Population and Community Ecology Chapter 6 Population and Community Ecology Friedland and Relyea Environmental Science for AP, second edition 2015 W.H. Freeman and Company/BFW AP is a trademark registered and/or owned by the College Board,

More information

Living Things and the Environment

Living Things and the Environment Unit 21.1 Living Things and the Environment Section 21.1 Organisms obtain food, water, shelter, and other things it needs to live, grow, and reproduce from its environment. An environment that provides

More information

Chapter 6 Population and Community Ecology. Thursday, October 19, 17

Chapter 6 Population and Community Ecology. Thursday, October 19, 17 Chapter 6 Population and Community Ecology Module 18 The Abundance and Distribution of After reading this module you should be able to explain how nature exists at several levels of complexity. discuss

More information

Zoogeographic Regions. Reflective of the general distribution of energy and richness of food chemistry

Zoogeographic Regions. Reflective of the general distribution of energy and richness of food chemistry Terrestrial Flora & Fauna Part II In short, the animal and vegetable lines, diverging widely above, join below in a loop. 1 Asa Gray Zoogeographic Regions Reflective of the general distribution of energy

More information

Chapter 6 Reading Questions

Chapter 6 Reading Questions Chapter 6 Reading Questions 1. Fill in 5 key events in the re-establishment of the New England forest in the Opening Story: 1. Farmers begin leaving 2. 3. 4. 5. 6. 7. Broadleaf forest reestablished 2.

More information

Name Hour. Section 4-1 The Role of Climate (pages 87-89) What Is Climate? (page 87) 1. How is weather different from climate?

Name Hour. Section 4-1 The Role of Climate (pages 87-89) What Is Climate? (page 87) 1. How is weather different from climate? Name Hour Section 4-1 The Role of Climate (pages 87-89) What Is Climate? (page 87) 1. How is weather different from climate? 2. What factors cause climate? The Greenhouse Effect (page 87) 3. Circle the

More information

The implications of neutral evolution for neutral ecology. Daniel Lawson Bioinformatics and Statistics Scotland Macaulay Institute, Aberdeen

The implications of neutral evolution for neutral ecology. Daniel Lawson Bioinformatics and Statistics Scotland Macaulay Institute, Aberdeen The implications of neutral evolution for neutral ecology Daniel Lawson Bioinformatics and Statistics Scotland Macaulay Institute, Aberdeen How is How is diversity Diversity maintained? maintained? Talk

More information

Metabolic trade-offs promote diversity in a model ecosystem

Metabolic trade-offs promote diversity in a model ecosystem Metabolic trade-offs promote diversity in a model ecosystem Anna Posfai, Thibaud Taillefumier, Ben Weiner, Ned Wingreen Princeton University q-bio Rutgers University, July 25 2017 How can we explain species

More information

Spheres of Life. Ecology. Chapter 52. Impact of Ecology as a Science. Ecology. Biotic Factors Competitors Predators / Parasites Food sources

Spheres of Life. Ecology. Chapter 52. Impact of Ecology as a Science. Ecology. Biotic Factors Competitors Predators / Parasites Food sources "Look again at that dot... That's here. That's home. That's us. On it everyone you love, everyone you know, everyone you ever heard of, every human being who ever was, lived out their lives. Ecology Chapter

More information

The Tempo of Macroevolution: Patterns of Diversification and Extinction

The Tempo of Macroevolution: Patterns of Diversification and Extinction The Tempo of Macroevolution: Patterns of Diversification and Extinction During the semester we have been consider various aspects parameters associated with biodiversity. Current usage stems from 1980's

More information

Biosphere Biome Ecosystem Community Population Organism

Biosphere Biome Ecosystem Community Population Organism Ecology ecology - The study of living things and how they relate to their environment Levels of Organization in Ecology organism lowest level one living thing population collection of organisms of the

More information

Chapter 54: Community Ecology

Chapter 54: Community Ecology AP Biology Guided Reading Name Chapter 54: Community Ecology Overview 1. What does community ecology explore? Concept 54.1 Community interactions are classified by whether they help, harm, or have no effect

More information

Bird Species richness per 110x110 km grid square (so, strictly speaking, alpha diversity) -most species live there!

Bird Species richness per 110x110 km grid square (so, strictly speaking, alpha diversity) -most species live there! We "know" there are more species in the tropics Why are the Tropics so biodiverse? And the tropics are special: 1. Oldest known ecological pattern (Humboldt, 1807) 2. Well-known by Darwin and Wallace 3.

More information

Current controversies in Marine Ecology with an emphasis on Coral reef systems. Niche Diversification Hypothesis Assumptions:

Current controversies in Marine Ecology with an emphasis on Coral reef systems. Niche Diversification Hypothesis Assumptions: Current controversies in Marine Ecology with an emphasis on Coral reef systems Open vs closed populations (already Discussed) The extent and importance of larval dispersal Maintenance of Diversity Equilibrial

More information

Bright blue marble floating in space. Biomes & Ecology

Bright blue marble floating in space. Biomes & Ecology Bright blue marble floating in space Biomes & Ecology Chapter 50 Spheres of life Molecules Cells (Tissues Organ Organ systems) Organisms Populations Community all the organisms of all the species that

More information

Georgia Performance Standards for Urban Watch Restoration Field Trips

Georgia Performance Standards for Urban Watch Restoration Field Trips Georgia Performance Standards for Field Trips 6 th grade S6E3. Students will recognize the significant role of water in earth processes. a. Explain that a large portion of the Earth s surface is water,

More information

ORIGINS AND MAINTENANCE OF TROPICAL BIODIVERSITY

ORIGINS AND MAINTENANCE OF TROPICAL BIODIVERSITY ORIGINS AND MAINTENANCE OF TROPICAL BIODIVERSITY Departamento de Botânica, Universidade Federal de Pernambuco, Pernambuco, Brazil Keywords: artic zone, biodiversity patterns, biogeography, geographical,

More information

Current controversies in Marine Ecology with an emphasis on Coral reef systems

Current controversies in Marine Ecology with an emphasis on Coral reef systems Current controversies in Marine Ecology with an emphasis on Coral reef systems Open vs closed populations (already discussed) The extent and importance of larval dispersal Maintenance of Diversity Equilibrial

More information

Conceptually, we define species as evolutionary units :

Conceptually, we define species as evolutionary units : Bio 1M: Speciation 1 How are species defined? S24.1 (2ndEd S26.1) Conceptually, we define species as evolutionary units : Individuals within a species are evolving together Individuals of different species

More information

BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences

BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences Week 14: Roles of competition, predation & disturbance in community structure. Lecture summary: (A) Competition: Pattern vs process.

More information

Biodiversity. I. What is it? Where is it? III. Where did it come from? IV. What is its future?

Biodiversity. I. What is it? Where is it? III. Where did it come from? IV. What is its future? Biodiversity I. What is it? II. Where is it? III. Where did it come from? IV. What is its future? What is Biodiversity? Ecosystem Diversity What is Biodiversity? Species Diversity What is Biodiversity?

More information

EARTH SYSTEM: HISTORY AND NATURAL VARIABILITY Vol. III - Global Biodiversity and its Variation in Space and Time - D. Storch

EARTH SYSTEM: HISTORY AND NATURAL VARIABILITY Vol. III - Global Biodiversity and its Variation in Space and Time - D. Storch GLOBAL BIODIVERSITY AND ITS VARIATION IN SPACE AND TIME D. Storch Charles University, Center for Theoretical Study, Prague, Czech Republic Keywords: species diversity, interspecific interactions, communities,

More information

Chapter 52: An Introduction to Ecology and the Biosphere

Chapter 52: An Introduction to Ecology and the Biosphere AP Biology Guided Reading Name Chapter 52: An Introduction to Ecology and the Biosphere Overview 1. What is ecology? 2. Study Figure 52.2. It shows the different levels of the biological hierarchy studied

More information

Ecosystems and Communities

Ecosystems and Communities Ecosystems and Communities Chapter 4 Section Outline Section 4-1 4 1 The Role of Climate A. What Is Climate? 1. Weather is day to day at a particular time and place 2. Climate is year-to-year averages

More information

Biodiversity: Facts and figures (tables from the report)

Biodiversity: Facts and figures (tables from the report) Vascular plant * Country Number Australia 15,638 Brazil 56,215 China 8,200 Colombia 32,200 Congo, Democratic Republic 11,007 Costa Rica 12,119 Ecuador 19,362 India 18,664 Indonesia 29,375 Madagascar 9,505

More information

The Evolution of Biological Diversity. All living organisms are descended from an ancestor that arose between 3 and 4 billion years ago.

The Evolution of Biological Diversity. All living organisms are descended from an ancestor that arose between 3 and 4 billion years ago. The Evolution of Biological Diversity All living organisms are descended from an ancestor that arose between 3 and 4 billion years ago. The diversity of life on earth currently includes some 5 to 50 million

More information

GENERAL ECOLOGY STUDY NOTES

GENERAL ECOLOGY STUDY NOTES 1.0 INTRODUCTION GENERAL ECOLOGY STUDY NOTES A community is made up of populations of different organisms living together in a unit environment. The manner in which these organisms relate together for

More information

Ecology Review Page 1

Ecology Review Page 1 Ecology Review Page 1 1 Which of these is a biotic component of your environment? light the availability of water bacteria on the surface of your skin the mineral supplements you consume 2 What are the

More information

Community Structure Temporal Patterns

Community Structure Temporal Patterns Community Structure Temporal Patterns Temporal Patterns Seasonality Phenology study of repeated patterns in time and their relationship to physical aspects of the environment Seasonal changes that are

More information

Weather is the day-to-day condition of Earth s atmosphere.

Weather is the day-to-day condition of Earth s atmosphere. 4.1 Climate Weather and Climate Weather is the day-to-day condition of Earth s atmosphere. Climate refers to average conditions over long periods and is defined by year-after-year patterns of temperature

More information

Community and Population Ecology Populations & Communities Species Diversity Sustainability and Environmental Change Richness and Sustainability

Community and Population Ecology Populations & Communities Species Diversity Sustainability and Environmental Change Richness and Sustainability 1 2 3 4 Community and Population Ecology Chapter 6 Populations & Communities Biosphere> ecosystems> communities> populations> individuals A population is all of the individuals of the same species in a

More information

CHAPTER 52: Ecology. Name: Question Set Define each of the following terms: a. ecology. b. biotic. c. abiotic. d. population. e.

CHAPTER 52: Ecology. Name: Question Set Define each of the following terms: a. ecology. b. biotic. c. abiotic. d. population. e. CHAPTER 52: Ecology 1. Define each of the following terms: a. ecology b. biotic c. abiotic d. population e. community f. ecosystem g. biosphere 2. What is dispersal? 3. What are the important factors that

More information

AP Environmental Science I. Unit 1-2: Biodiversity & Evolution

AP Environmental Science I. Unit 1-2: Biodiversity & Evolution NOTE/STUDY GUIDE: Unit 1-2, Biodiversity & Evolution AP Environmental Science I, Mr. Doc Miller, M.Ed. North Central High School Name: ID#: NORTH CENTRAL HIGH SCHOOL NOTE & STUDY GUIDE AP Environmental

More information

UNIT 5: ECOLOGY Chapter 15: The Biosphere

UNIT 5: ECOLOGY Chapter 15: The Biosphere CORNELL NOTES Directions: You must create a minimum of 5 questions in this column per page (average). Use these to study your notes and prepare for tests and quizzes. Notes will be stamped after each assigned

More information

Exam 3. Principles of Ecology. April 14, Name

Exam 3. Principles of Ecology. April 14, Name Exam 3. Principles of Ecology. April 14, 2010. Name Directions: Perform beyond your abilities. There are 100 possible points (+ 9 extra credit pts) t N t = N o N t = N o e rt N t+1 = N t + r o N t (1-N

More information

EXTINCTION CALCULATING RATES OF ORIGINATION AND EXTINCTION. α = origination rate Ω = extinction rate

EXTINCTION CALCULATING RATES OF ORIGINATION AND EXTINCTION. α = origination rate Ω = extinction rate EXTINCTION CALCULATING RATES OF ORIGINATION AND EXTINCTION α = origination rate Ω = extinction rate 1 SPECIES AND GENERA EXTINCTION CURVES INDICATE THAT MOST SPECIES ONLY PERSIST FOR A FEW MILLION YEARS.

More information

Evolution. Darwin s Voyage

Evolution. Darwin s Voyage Evolution Darwin s Voyage Charles Darwin Explorer on an observation trip to the Galapagos Islands. He set sail on the HMS Beagle in 1858 from England on a 5 year trip. He was a naturalist (a person who

More information

Biomes Section 2. Chapter 6: Biomes Section 2: Forest Biomes DAY ONE

Biomes Section 2. Chapter 6: Biomes Section 2: Forest Biomes DAY ONE Chapter 6: Biomes Section 2: Forest Biomes DAY ONE Of all the biomes in the world, forest biomes are the most widespread and the most diverse. The large trees of forests need a lot of water, so forests

More information

Community Structure. Community An assemblage of all the populations interacting in an area

Community Structure. Community An assemblage of all the populations interacting in an area Community Structure Community An assemblage of all the populations interacting in an area Community Ecology The ecological community is the set of plant and animal species that occupy an area Questions

More information

How does the greenhouse effect maintain the biosphere s temperature range? What are Earth s three main climate zones?

How does the greenhouse effect maintain the biosphere s temperature range? What are Earth s three main climate zones? Section 4 1 The Role of Climate (pages 87 89) Key Concepts How does the greenhouse effect maintain the biosphere s temperature range? What are Earth s three main climate zones? What Is Climate? (page 87)

More information

Community phylogenetics review/quiz

Community phylogenetics review/quiz Community phylogenetics review/quiz A. This pattern represents and is a consequent of. Most likely to observe this at phylogenetic scales. B. This pattern represents and is a consequent of. Most likely

More information

Biogeography. An ecological and evolutionary approach SEVENTH EDITION. C. Barry Cox MA, PhD, DSc and Peter D. Moore PhD

Biogeography. An ecological and evolutionary approach SEVENTH EDITION. C. Barry Cox MA, PhD, DSc and Peter D. Moore PhD Biogeography An ecological and evolutionary approach C. Barry Cox MA, PhD, DSc and Peter D. Moore PhD Division of Life Sciences, King's College London, Fmnklin-Wilkins Building, Stamford Street, London

More information

What Is Climate? (page 87) The Greenhouse Effect (page 87) Section 4-1 The Role of Climate (pages 87-89) Chapter 4 Ecosystems and Communities

What Is Climate? (page 87) The Greenhouse Effect (page 87) Section 4-1 The Role of Climate (pages 87-89) Chapter 4 Ecosystems and Communities Chapter 4 Ecosystems and Communities Section 4-1 The Role of Climate (pages 87-89) This section explains how the greenhouse effect maintains the biosphere's temperature range. It also describes Earth's

More information

Population Ecology. Text Readings. Questions to Answer in the Chapter. Chapter Reading:

Population Ecology. Text Readings. Questions to Answer in the Chapter. Chapter Reading: Population Ecology Text Readings Chapter Reading: Chapter # 26 in Audesirk, Audesirk and Byers: Population Growth and Regulation Pg. # 513-534. Questions to Answer in the Chapter How Does Population Size

More information

Latitudinal gradients in species diversity From Wikipedia, the free encyclopedia. The pattern

Latitudinal gradients in species diversity From Wikipedia, the free encyclopedia. The pattern Latitudinal gradients in species diversity From Wikipedia, the free encyclopedia The pattern The increase in species richness or biodiversity that occurs from the poles to the tropics, often referred to

More information

Section 8. North American Biomes. What Do You See? Think About It. Investigate. Learning Outcomes

Section 8. North American Biomes. What Do You See? Think About It. Investigate. Learning Outcomes Section 8 North American Biomes What Do You See? Learning Outcomes In this section, you will Define the major biomes of North America and identify your community s biome. Understand that organisms on land

More information

Community Interactions. Community An assemblage of all the populations interacting in an area

Community Interactions. Community An assemblage of all the populations interacting in an area Community Interactions Community An assemblage of all the populations interacting in an area Populations are affected by: Available living space habitat Resource Availability niche Species interactions

More information

Chapter 8: Biogeography. Biotic Provinces. Biotic Provinces. Biotic Provinces 10/4/2012

Chapter 8: Biogeography. Biotic Provinces. Biotic Provinces. Biotic Provinces 10/4/2012 Chapter 8: Biogeography Why were introductions of new species into Europe so popular long ago? In 1749 Linneaus sent a colleague to NA to collect plants Desired for use in decorative gardens Climate similar

More information

Biomes There are 2 types: Terrestrial Biomes (on land) Aquatic Biomes (in the water)

Biomes There are 2 types: Terrestrial Biomes (on land) Aquatic Biomes (in the water) Biomes There are 2 types: Terrestrial Biomes (on land) Aquatic Biomes (in the water) Terrestrial Biomes Grassland, Desert, and Tundra Biomes: Savanna Temperate grassland Chaparral Desert Tundra Chapter

More information

Development Team. Department of Zoology, University of Delhi. Department of Zoology, University of Delhi

Development Team. Department of Zoology, University of Delhi. Department of Zoology, University of Delhi Paper No. : 12 Module : 18 diversity index, abundance, species richness, vertical and horizontal Development Team Principal Investigator: Co-Principal Investigator: Paper Coordinator: Content Writer: Content

More information

Alligator mississippiensis.

Alligator mississippiensis. Alligator mississippiensis http://www.birdsasart.com/bn201.htm Core Case Study: Why Should We Care about the American Alligator? Largest reptile in North America 1930s: Hunters and poachers Importance

More information

PSSA Science Review. Organisms and the Environment. Organisms and the Environment

PSSA Science Review. Organisms and the Environment. Organisms and the Environment PSSA Science Review Organisms and the Environment Organisms and the Environment 1. Natural Selection 2. Heredity 3. Ecological Relationships and Systems 4. Change and the Environment 5. Humans and the

More information

Mass Extinctions &Their Consequences

Mass Extinctions &Their Consequences Mass Extinctions &Their Consequences Microevolution and macroevolution Microevolution: evolution occurring within populations p Adaptive and neutral changes in allele frequencies Macroevolution: evolution

More information

Mass Extinctions &Their Consequences

Mass Extinctions &Their Consequences Mass Extinctions &Their Consequences Taxonomic diversity of skeletonized marine animal families during the Phanerozoic Spindle diagram of family diversification/extinction PNAS 1994. 91:6758-6763. Background

More information

Chapter 8. Biogeographic Processes. Upon completion of this chapter the student will be able to:

Chapter 8. Biogeographic Processes. Upon completion of this chapter the student will be able to: Chapter 8 Biogeographic Processes Chapter Objectives Upon completion of this chapter the student will be able to: 1. Define the terms ecosystem, habitat, ecological niche, and community. 2. Outline how

More information

Ecosystem change: an example Ecosystem change: an example

Ecosystem change: an example Ecosystem change: an example 5/13/13 Community = An assemblage of populations (species) in a particular area or habitat. Here is part of a community in the grassland of the Serengetti. Trophic downgrading of planet Earth: What escapes

More information

Ecology - the study of how living things interact with each other and their environment

Ecology - the study of how living things interact with each other and their environment Ecology Ecology - the study of how living things interact with each other and their environment Biotic Factors - the living parts of a habitat Abiotic Factors - the non-living parts of a habitat examples:

More information

D. Adaptive Radiation

D. Adaptive Radiation D. Adaptive Radiation One species new species: A new species: B new species: C new species: D Typically occurs when populations of a single species... invade a variety of new habitats, evolve under different

More information

In 1749 Linneaus sent a colleague to North America to collect plants

In 1749 Linneaus sent a colleague to North America to collect plants In 1749 Linneaus sent a colleague to North America to collect plants Desired for use in decorative gardens Climate similar to Eastern NA and China but very different vegetation Why were these introduction

More information

-The study of the interactions between the different species in an area

-The study of the interactions between the different species in an area Community Ecology -The study of the interactions between the different species in an area Interspecific Interactions -Interaction between different species -May be positive, negative, or neutral and include

More information

Biomes of the World What is a Biome?

Biomes of the World What is a Biome? Biomes of the World What is a Biome? A large, relatively distinct terrestrial region with characteristic Climate Soil Plants Animals Interacting landscapes 1 Terrestrial Biomes Using Precipitation And

More information

Community Ecology Bio 147/247 Species Richness 3: Diversity& Abundance Deeper Meanings of Biodiversity Speci es and Functional Groups

Community Ecology Bio 147/247 Species Richness 3: Diversity& Abundance Deeper Meanings of Biodiversity Speci es and Functional Groups Community Ecology Bio 147/247 Species Richness 3: Diversity& Abundance Deeper Meanings of Biodiversity Speci es and Functional Groups The main Qs for today are: 1. How many species are there in a community?

More information

BIOS 3010: Ecology Lecture 20: Community Structure & Predation: 2. The effect of grazing herbivores: 3. The effect of grazing herbivores:

BIOS 3010: Ecology Lecture 20: Community Structure & Predation: 2. The effect of grazing herbivores: 3. The effect of grazing herbivores: BIOS 3010: Ecology Lecture 20: Community Structure & Predation: Lecture summary: Effects of grazing herbivores. Effects of predators. Effects of parasites & disease. Variation in time. Disturbance & community

More information

3.1 Distribution of Organisms in the Biosphere Date:

3.1 Distribution of Organisms in the Biosphere Date: 3.1 Distribution of Organisms in the Biosphere Date: Warm up: Study Notes/Questions The distribution of living things is limited by in different areas of Earth. The distribution of life in the biosphere

More information

2008 ECOLOGY (B&C) Training Handout by Karen Lancour Ecology Event: Ecology Content Principles of Ecology (about 50%) Forests and Deserts (about 50%)

2008 ECOLOGY (B&C) Training Handout by Karen Lancour Ecology Event: Ecology Content Principles of Ecology (about 50%) Forests and Deserts (about 50%) 2008 ECOLOGY (B&C) Training Handout by Karen Lancour Ecology Event: Ecology Content Principles of Ecology (about 50%) Forests and Deserts (about 50%) Process skills - in data, graph and diagram analysis

More information

Understanding Populations Section 1. Chapter 8 Understanding Populations Section1, How Populations Change in Size DAY ONE

Understanding Populations Section 1. Chapter 8 Understanding Populations Section1, How Populations Change in Size DAY ONE Chapter 8 Understanding Populations Section1, How Populations Change in Size DAY ONE What Is a Population? A population is a group of organisms of the same species that live in a specific geographical

More information

NOTES: CH 4 Ecosystems & Communities

NOTES: CH 4 Ecosystems & Communities NOTES: CH 4 Ecosystems & Communities 4.1 - Weather & Climate: WEATHER = day-to-day conditions of Earth s atmosphere CLIMATE= refers to average conditions over long periods; defined by year-afteryear patterns

More information

Introduction. Ecology is the scientific study of the interactions between organisms and their environment.

Introduction. Ecology is the scientific study of the interactions between organisms and their environment. Introduction Ecology is the scientific study of the interactions between organisms and their environment. 1. The interactions between organisms and their environments determine the distribution and abundance

More information

Speciation. Today s OUTLINE: Mechanisms of Speciation. Mechanisms of Speciation. Geographic Models of speciation. (1) Mechanisms of Speciation

Speciation. Today s OUTLINE: Mechanisms of Speciation. Mechanisms of Speciation. Geographic Models of speciation. (1) Mechanisms of Speciation Speciation Today s OUTLINE: (1) Geographic Mechanisms of Speciation (What circumstances lead to the formation of new species?) (2) Species Concepts (How are Species Defined?) Mechanisms of Speciation Last

More information

World Geography Chapter 3

World Geography Chapter 3 World Geography Chapter 3 Section 1 A. Introduction a. Weather b. Climate c. Both weather and climate are influenced by i. direct sunlight. ii. iii. iv. the features of the earth s surface. B. The Greenhouse

More information

Unfortunately, there are many definitions Biological Species: species defined by Morphological Species (Morphospecies): characterizes species by

Unfortunately, there are many definitions Biological Species: species defined by Morphological Species (Morphospecies): characterizes species by 1 2 3 4 5 6 Lecture 3: Chapter 27 -- Speciation Macroevolution Macroevolution and Speciation Microevolution Changes in the gene pool over successive generations; deals with alleles and genes Macroevolution

More information

How does the physical environment influence communities and ecosystems? Hoodoos in Cappadocia, Turkey

How does the physical environment influence communities and ecosystems? Hoodoos in Cappadocia, Turkey Biomes of the World How does the physical environment influence communities and ecosystems? Hoodoos in Cappadocia, Turkey ecosystems are shaped by: abiotic factors climate/weather space Rainfall Soil air

More information

REVIEW OF PHYLOGENY AND EUKARYOTIC ORIGINS (QUIZ MON)

REVIEW OF PHYLOGENY AND EUKARYOTIC ORIGINS (QUIZ MON) REVIEW OF PHYLOGENY AND EUKARYOTIC ORIGINS (QUIZ MON) Why is biodiversity important? What are phylogeny and systematics? What does it mean for a phylogenetic tree to be rooted? What is a dichotomous key?

More information

Greenhouse Effect & Global Warming

Greenhouse Effect & Global Warming Chemical Cycles: Greenhouse Effect: Cause and effect Chemical Cycles: CO 2 and O 2 Chemical Fluxes: CO 2 and O 2 Proxies for climate change: Isotopes Greenhouse Effect & Global Warming Global Warming World

More information

environment Biotic Abiotic

environment Biotic Abiotic 1 Ecology is the study of the living world and the interactions among organisms and where they live; it is the study of interactions between living (animals, plants) and nonliving (earth, air, sun water)

More information

Topic outline: Review: evolution and natural selection. Evolution 1. Geologic processes 2. Climate change 3. Catastrophes. Niche.

Topic outline: Review: evolution and natural selection. Evolution 1. Geologic processes 2. Climate change 3. Catastrophes. Niche. Topic outline: Review: evolution and natural selection Evolution 1. Geologic processes 2. Climate change 3. Catastrophes Niche Speciation Extinction Biodiversity Genetic engineering http://www.cengage.com/cgi-wadsworth/course_products_wp.pl?fid=m20b&product_isbn_issn=9780495015987&discipline_number=22

More information

Name: Date: Period: APGR 40: Population Ecology and Distribution of Organisms

Name: Date: Period: APGR 40: Population Ecology and Distribution of Organisms Overview 1. What is ecology? APGR 40: Population Ecology and Distribution of Organisms 2. Study Figure 40.2 in your text. It shows the different levels of the biological hierarchy studied by ecologists.

More information

What standard are we focusing on today?

What standard are we focusing on today? What standard are we focusing on today? Standard H.B.6 The student will demonstrate an understanding that ecosystems are complex, interactive systems that include both biological communities and physical

More information

Population Ecology and the Distribution of Organisms. Essential Knowledge Objectives 2.D.1 (a-c), 4.A.5 (c), 4.A.6 (e)

Population Ecology and the Distribution of Organisms. Essential Knowledge Objectives 2.D.1 (a-c), 4.A.5 (c), 4.A.6 (e) Population Ecology and the Distribution of Organisms Essential Knowledge Objectives 2.D.1 (a-c), 4.A.5 (c), 4.A.6 (e) Ecology The scientific study of the interactions between organisms and the environment

More information

Ch20_Ecology, community & ecosystems

Ch20_Ecology, community & ecosystems Community Ecology Populations of different species living in the same place NICHE The sum of all the different use of abiotic resources in the habitat by s given species what the organism does what is

More information

Chapter 54: Community Ecology

Chapter 54: Community Ecology Name Period Concept 54.1 Community interactions are classified by whether they help, harm, or have no effect on the species involved. 1. What is a community? List six organisms that would be found in your

More information

Speciation. Today s OUTLINE: Mechanisms of Speciation. Mechanisms of Speciation. Geographic Models of speciation. (1) Mechanisms of Speciation

Speciation. Today s OUTLINE: Mechanisms of Speciation. Mechanisms of Speciation. Geographic Models of speciation. (1) Mechanisms of Speciation Speciation Today s OUTLINE: (1) Geographic Mechanisms of Speciation (What circumstances lead to the formation of new species?) (2) Species Concepts (How are Species Defined?) Mechanisms of Speciation Last

More information

ISLAND BIOGEOGRAPHY Lab 7

ISLAND BIOGEOGRAPHY Lab 7 Reminders! Bring memory stick Read papers for Discussion Key Concepts Biogeography/Island biogeography Convergent evolution Dynamic equilibrium Student Learning Outcomes After Lab 7 students will be able

More information

Define Ecology. study of the interactions that take place among organisms and their environment

Define Ecology. study of the interactions that take place among organisms and their environment Ecology Define Ecology Define Ecology study of the interactions that take place among organisms and their environment Describe each of the following terms: Biosphere Biotic Abiotic Describe each of the

More information

Plant of the Day Isoetes andicola

Plant of the Day Isoetes andicola Plant of the Day Isoetes andicola Endemic to central and southern Peru Found in scattered populations above 4000 m Restricted to the edges of bogs and lakes Leaves lack stomata and so CO 2 is obtained,

More information

D. Correct! Allelopathy is a form of interference competition in plants. Therefore this answer is correct.

D. Correct! Allelopathy is a form of interference competition in plants. Therefore this answer is correct. Ecology Problem Drill 18: Competition in Ecology Question No. 1 of 10 Question 1. The concept of allelopathy focuses on which of the following: (A) Carrying capacity (B) Limiting resource (C) Law of the

More information

Test of neutral theory predic3ons for the BCI tree community informed by regional abundance data

Test of neutral theory predic3ons for the BCI tree community informed by regional abundance data Test of neutral theory predic3ons for the BCI tree community informed by regional abundance data Anne%e Ostling Cody Weinberger Devin Riley Ecology and Evolu:onary Biology University of Michigan 1 Outline

More information

Organism Interactions in Ecosystems

Organism Interactions in Ecosystems Organism Interactions in Ecosystems Have you ever grown a plant or taken care of a pet? If so, you know they have certain needs such as water or warmth. Plants need sunlight to grow. Animals need food

More information

GLOBAL CLIMATES FOCUS

GLOBAL CLIMATES FOCUS which you will learn more about in Chapter 6. Refer to the climate map and chart on pages 28-29 as you read the rest of this chapter. FOCUS GLOBAL CLIMATES What are the major influences on climate? Where

More information

BIOMES. Copyright Cmassengale

BIOMES. Copyright Cmassengale BIOMES Biogeography - study of where organisms live Continental drift - slow motion of continents Dispersal of organisms Movement of organisms from 1 place to another Dispersal is usually caused by wind,

More information

14.1 Habitat And Niche

14.1 Habitat And Niche 14.1 Habitat And Niche A habitat differs from a niche. Habitat physical area in which an organism lives Niche each species plays a specific role in an ecosystem niche includes the species habitat, feeding

More information