The Effect of Phosphorus Concentration on the Intrinsic Rate of Increase. for Salvinia minima. Aaron Jacobs

Size: px
Start display at page:

Download "The Effect of Phosphorus Concentration on the Intrinsic Rate of Increase. for Salvinia minima. Aaron Jacobs"

Transcription

1 The Effect of Phosphorus Concentration on the Intrinsic Rate of Increase for Salvinia minima Aaron Jacobs Partners: Andrew Watts Derek Richards Jen Thaete

2 Introduction: Salvinia minima is an aquatic fern, originally from South America, that has invaded multiple states in the US. They are composed of horizontal shoots that connect multiple plants together and floating leaves. The leaves, also known as fronds, are generally an oval shape and are covered with coarse, white hairs. The hairs main purpose is to act as a water repellent to keep the leaves from sinking when covered with water. Salvinia grows in ponds, lakes and slow moving streams. This invasive species is known to block waterways by covering them with a thick layer, some even 20cm thick, which can block boating and can have a serious impact on the ecosystem of the waterway. The layer of thick vegetation blocks sunlight from deeper plants and organisms and decreases the oxygen concentrations, which limits oxygen for fish and other organisms living in the aquatic habitat. When the masses of plants die, they lower oxygen levels even further. Salvinia are also responsible for clogging hydro power stations as well as irrigation systems 1. Salvinia aren t all bad, they are showing potential as a plant for aquatic phytoremediation. There are few reasons why Salvinia are being more closely examined for phytoremediation. Phytoremediation is the process of using plants as a tool to remove harmful pollutants from the environment 2. Salvinia have a wide habitat range and can survive in temperatures from -3 C to 43 C. They are also capable of outgrowing duckweeds, due to their high reproductive ability. They have a very high growth rate, which is why they are so dangerous in waterways, but this same quality that is viewed as being harmful could potentially be used in a positive way. It also has larger leaves, making it easier to harvest than duckweeds 3. Salvinia also work as a buffer for ph, they have the ability to change a rather acidic environment into a neutral one in an extremely short amount of time. This means that they could be used for 1

3 both the removal of excess and potentially harmful nutrients and the neutralization of ph in waterways. Salvinia also possess another important quality, they store all the nutrients into their leaf tissues, this would make them a great plant to harvest and be used as a potential fertilizer 4. This lab will examine population growth using exponential models, more specifically geometric growth models since we are dealing with discrete time intervals and not a continuous stream of data, as well as logistic growth models to analyze the data. When a population enters a new habitat, that is rich with nutrients and the population density is low, the population will follow a more exponential-like growth. This is due to density independent factors like the excess nutrients, light intensity and the space available to grow. At some point though, a population will be limited by the amount of individuals, these are density dependent variables. Density dependent variables are limitations brought on by the close proximity of the individuals living in a confined and limited environment. When these types of factors are at work, a population will begin to decrease in growth, reaching that population s carrying capacity, and will follow a logistic model curve more closely 5. The purpose of the first part of this experiment is to examine the natural growth rate of Salvinia and use this as a control group for comparison with the second part of the experiment as well as comparing the differences scene when starting with different initial population sizes. The purpose of the second experiment is testing whether adding nutrients, specifically phosphorus, will alter the population s ability to grow compared to the control. I hypothesize that the Salvinia in the plain water, with no added nutrients, will show a lower growth rate, and a lower carrying capacity, than the Salvinia with added nutrients, due to the lack of extra nutrients. Also, the control population of 24 will grow faster than the control population of 12 plants, but both will come to the same carrying capacity in the long run. 2

4 Materials and Methods: The experiment involves five separate plastic containers that hold the populations of Salvinia plants. There are two control populations; both only contain water with no extra phosphorus added. One of the controls started out with 12 Salvinia plants and the other control container initially started with 24 plants. The independent variable in experiment one was the amount of plants initially started with and the dependent variable being the resulting growth rate. The other three containers housed the second part of the experiment; all three of these containers initially started with 24 plants. All of these containers were then placed in a greenhouse, which was kept at 21 C during the day and 18 C at night, to increase growth and to keep the temperature consistent. The main difference between experiment two s setup compared to experiment one, was that experiment two containers had 2mL of phosphorus added to each of them. The independent variable of experiment two was the addition of phosphorus, making the dependent variable the resulting growth rates. 2mL of phosphorus were then added to the experiment two containers once a week after that initial addition. All of experiment two was identical; this was done to give a better pool of data that could be averaged together and compared. After the plants had been added to the containers, the amount of leaves, or fronds, were counted. Counting days occurred on the same day once a week, starting the second week, day 14 of the experiment, until the 28 th day of the experiment, which was the last day of counting. Due to evaporation, the plants needed water added three times a week, also due to the accumulation of algae the containers needed to be cleaned once a week. After data collection, there were various data analysis techniques that were utilized, specifically the geometric growth model and the logistic growth model. The geometric growth model was used because the data was collected at discrete time intervals. The logistic growth model was used since the 3

5 populations are limited by their environment, they will reach a limit of growth, which is known as the carrying capacity. The exponential growth model was also used to find r max values, under the assumption of continuous growth. Lastly, the formula to find the geometric rate of increase was used so that the carrying capacity could be calculated for the various populations 5. Geometric Rate of Increase: λ =!!!!!! Exponential Growth Model:!"!" = r!"#n Logistic Growth Model:!" = r!"!"#n!!!! Results: Figure Population Growth of Salvinia Control Populations Number of Fronds Count(12) Count(24) Time (Days) Figure 1. Scatter plot showing the growth rates of Salvinia control populations. This graph depicts the control population, the blue line representing the container starting with 12 Salvinia plants and the red line representing the container that started with 24 Salvinia plants. 4

6 Figure 2. Ln(N) vs. Time for Control Populations ln(n) y = x y = x Count(12) Count(24) Linear (Count(12)) Linear (Count(24)) Time (Days) Figure 2. Scatter plot showing the natural log versus time for the control populations. This graph was made to use the slopes of the lines in order to find r max. Figure 3. Lambda Values Lambda Values vs. N t for Control Populations y = x y = x Count(12) Count(24) Linear (Count(12)) Linear (Count(24)) Number of Fronds Figure 3. Scatter plot of lambda versus population size for the control populations. This graph s best-fit line equations were used to find carrying capacities of the populations. 5

7 Figure 4. Population Growth of Salvinia for Experimental Phosphorus Populations Number of Fronds Time (Days) Count(Phosphorus) Count(24) Figure 4. Scatter plot showing the growth rates of Salvinia for the control and experimental populations. This graph shows a red line representing the control container that started with 24 Salvinia plants and a pink line representing the average of the three containers for the experimental phosphorus plant populations. Figure 5. Lambda Values Lambda Values vs. N t for Experimental Phosphorus Populaitons Number of Fronds y = x y = x Count(Phosphorus) Count(24 control Linear (Count(Phosphorus)) Linear (Count(24 control) Figure 5. Scatter plot of lambda versus population size for the control and experimental populations. This graph s best-fit line equations were used to find carrying capacities of the populations. 6

8 Table 1. Carrying Capacities Control Group (12) Control Group (24) Experimental Group (phosphorus) Table 1. Chart representing carrying capacities found. The carrying capacities in this table are color coded with the data they came from, these values were found using the best-fit lines from the lambda vs. population size graphs. Carrying Capacity Calculations Control Group (12) Control Group (24) Experimental Group (Phosphorus) y = x y = x y = x Set y=1 and solve for x Set y=1 and solve for x Set y=1 and solve for x 1 = x = x = x x = 235 x = 335 x = 535 Table 2. Carrying Capacities Using Surface Area Number of Layers Carrying Capacity Table 2. Chart showing the carrying capacities found using surface areas. The carrying capacities in this table are based on the layering behavior of Salvinia. Sample Calculation for Surface Area Carrying Capacities K = Surface Area of Container Surface Surface Area of Salvinia Frond K = 5809mm! 28mm! K = 207 7

9 Discussion: The results showed that Salvinia minima could be a good candidate for phytoremediation. The first component of the results focused on the population growth and how populations of Salvinia react to different initial population sizes as well as the introduction of phosphorus. Figure 1 qualitatively seemed to show that the populations starting at different initial amounts of plants grow at the same rate. This figure also showed that starting with more plants consistently shows a higher amount of plants as time continues. But when this data was more closely looked at it told a different story. Figure 2 showed that the slopes, or r max value, were not the same. This means that the two control populations actually grew at different rates. The results show that the control population that started at 12 grew at a faster rate than the starting at 24 group. This means that my initial hypothesis was wrong, which looking back makes sense. The population that started with 12 plants would have less initial competition and more resources available to each plant, this would allow for a more exponential growth. For more information about the population dynamics of these two groups I found the carrying capacities for the two populations using the best-fit lines from figure 3 and the surface area of the water in the container. Table 2 shows the carrying capacities found for the container using the surface area of the container and seeing how many Salvinia fronds could fit into the space. The main problem with using this method is that it doesn t account for the behavior of the Salvinia; Salvinia has round leaves, which don t fit perfectly together so there are gaps between leaves. Another behavior of Salvinia is that it forms layers under the surface of the water, I tried to account for this by multiplying the carrying capacity for one layer by 2 and 3, this is shown in table 2. A better method for finding the carrying capacity is using the best-fit line from figure 3. The carrying capacity for the control group with 12 initial plants, as shown in table 1, was 235. This 8

10 was compared to the carrying capacity of the control group starting at 24 plants, which was 335. My initial hypothesis was that the carrying capacities would be the same, which should be seen since the amount of space in the long run is equal, being that both groups are in the same size containers. There are a few reasons that could explain this discrepancy. The trials only lasted for 28 days, this is a relatively short amount of time and the populations may not have been allowed to grow for a long enough time. Another explanation is that there was a build up of algae in the containers, this algae could have been acting as competition for the plants causing them to grow at a decelerated pace. Lastly poor counting could have been a reason for the inconsistency, since a thick layer of Salvinia develops, it can become difficult to count the fonds and some may have been over or under counted. The second part of this experiment looked more into an aspect that could show if Salvinia minima would make a good plant for phytoremediation. The second part of the results showed how adding nutrient, specifically phosphorus, would alter the population dynamics of the Salvinia populations when compared to a control group with no added nutrients. Figure 4 showed a how the population growth of the two populations compared to one another. The control group that started with 24 plants showed a much slower rate of growth compared to the experimental population. Initially the two populations showed the same rate of growth, which could have been to a result of a time lag, but after that the added phosphorus populations grew at a much more accelerated rate. This agrees with my hypothesis that the nutrient rich environment would cause an increase in growth rate. This is a good sign that the Salvinia could be a good candidate as a plant to use in the process of phytoremediation. The reason this is a good sign is because the ability to hold nutrients and grow at an accelerated rate shows that Salvinia would be able to take potentially harmful nutrients out of waterways at an accelerated rate and could then 9

11 be harvested as a natural fertilizer due to it s ability to hold nutrients. The results also looked more into the long-term affect of adding phosphorus, by taking the carrying capacities of the two populations into account and comparing them. The best-fit lines from figure 5 were used to determine the carrying capacities as seen in table 1. The carrying capacity for the control group was 335 and the carrying capacity of the experimental group was 535. These results make sense since available space and resources limit carrying capacity, by increasing phosphorus the experimental population was able to grow to a higher carrying capacity than the control group, which agrees with my hypothesis. The sources of error for this part of the experiment are the same as for the first part, with the addition of poor measuring of nutrient. It is possible that not enough or to much nutrient was added to the experimental containers, which could have lead to skewed results. The purpose of this experiment was to determine if the Salvinia minima would make a good plant for phytoremediation in waterways that contain elevated levels of possibly harmful nutrients. The results showed that Salvinia minima could work in this situation, but further research will need to be conducted to support these findings. In future experiments, more plants should be tested since a possible source of error was the very small sample sizes. Phosphorus should be further analyzed and tested, but since Salvinia minima showed such positive results other nutrients should also be examined. It may turn out that Salvinia minima can absorb a large amount of various harmful nutrients, making it a great candidate for phytoremediation. 10

12 Reference: 1. Salvinia minima (aquatic plant, fern). (2012, October 4). Retrieved 4 10, 2013, from Global Invasive Species Database: g=en 2. Chaney, R. L. (200, June). Phytoremediation: Using Plants To Clean Up Soils. Agricultural Research magazine. 3. Eugenia J. Olguin, G. S.- G.- P. (2007). Assessment of the Phytoremediaiton Potential of Salvinia minima Baker Compared to Spirodela polyyhiza in High- strength Organic Wastewater. Water, Air, & Soil Pollution, 181, Safaa H. Al- Hamdani, C. B. (2008). Physiological Responses of Salvinia Minima to Different Phosphorus and Nitrogen Concentrations. American Fern Journal, 98, Hass, C.A., D. Burpee, R. Meisel, and A. Ward A Preliminary Study of the Effects of Excess Nutrients and Interspecies Competition on Population Growth of Lemna minor and Salvinia minima In A Laboratory Manual for Biology 220W: Populations and Communities. (Burpee, D. and C. Hass, eds.) Department of Biology, The Pennsylvania State University, University Park, PA. Adapated from Beiswenger, J. M Experiments To Teach Ecology. A Project of the Education Committee of the Ecological Society of America. Ecological Society of America, Tempe, AZ. pp

The effect of phosphorus concentration on the growth of Salvinia minima Chesa Ramacciotti

The effect of phosphorus concentration on the growth of Salvinia minima Chesa Ramacciotti Ramacciotti 1 The effect of phosphorus concentration on the growth of Salvinia minima Chesa Ramacciotti I. Introduction The aquatic plant species Salvinia minima and Lemna minor have been known to absorb

More information

Plant Population Growth Lab

Plant Population Growth Lab Plant Population Growth Lab BIOL 220M Pennsylvania State University Jacob Cohen 4/15/2013 Cohen 1 Introduction: In nature, everything is connected; all natural processes and organisms are intrinsically

More information

Effect of Resource Indulgence on Aquatic Vascular Plants: A Closer Study of Lemna minor

Effect of Resource Indulgence on Aquatic Vascular Plants: A Closer Study of Lemna minor ESSAI Volume 12 Article 30 Spring 2014 Effect of Resource Indulgence on Aquatic Vascular Plants: A Closer Study of Lemna minor Ashley Padavonia College of DuPage Follow this and additional works at: http://dc.cod.edu/essai

More information

Plant Structures and Reproduction

Plant Structures and Reproduction Plant Structures and Reproduction Lesson created by: Taylor Nyberg Date of lesson: TBD Description of the class: 9 th grade Biology Length of lesson: 45 55 minutes Source of the lesson: http://www.accessexcellence.org/ae/atg/data/released/0515-

More information

FND Biology Semester 1 Study Guide. Organ Cell Organism Organ System Molecule Tissue

FND Biology Semester 1 Study Guide. Organ Cell Organism Organ System Molecule Tissue Name: Test Date: FND Biology Semester 1 Study Guide 1) List the levels of organization from smallest to largest. Use the provided word bank. Organ Cell Organism Organ System Molecule Tissue 2) Describe

More information

IGCSE Double Award Extended Coordinated Science

IGCSE Double Award Extended Coordinated Science IGCSE Double Award Extended Coordinated Science Biology 4.2 - Plant Nutrition Photosynthesis You need to know the definition of photosynthesis as: the fundamental process by which plants manufacture carbohydrates

More information

Biology Assessment Unit AS 2

Biology Assessment Unit AS 2 Centre Number 71 Candidate Number ADVANCED SUBSIDIARY (AS) General Certificate of Education January 2013 Biology Assessment Unit AS 2 assessing Organisms and Biodiversity AB121 [AB121] TUESDAY 15 JANUARY,

More information

AP Biology Transpiration and Stomata

AP Biology Transpiration and Stomata AP Biology Transpiration and Stomata Living things must exchange matter with the environment to survive, Example: Gas Exchange in Plants photosynthesis cellular respiration 1. During which hours does a

More information

All living organisms are limited by factors in the environment

All living organisms are limited by factors in the environment All living organisms are limited by factors in the environment Monday, October 30 POPULATION ECOLOGY Monday, October 30 POPULATION ECOLOGY Population Definition Root of the word: The word in another language

More information

11/10/13. How do populations and communities interact and change? Populations. What do you think? Do you agree or disagree? Do you agree or disagree?

11/10/13. How do populations and communities interact and change? Populations. What do you think? Do you agree or disagree? Do you agree or disagree? Chapter Introduction Lesson 1 Populations Lesson 2 Changing Populations Lesson 3 Communities Chapter Wrap-Up How do populations and communities interact and change? What do you think? Before you begin,

More information

Distribution of Hydrilla and Giant Salvinia in Mississippi in 2005

Distribution of Hydrilla and Giant Salvinia in Mississippi in 2005 An Annual Report to the Mississippi Bureau of Plant Industry for 2005 John D. Madsen, Ryan M. Wersal, and Wilfredo Robles GeoResources Institute and Department of Plant and Soil Science Mississippi State

More information

Need to Know. How do you conduct science? What are the characteristics of life?

Need to Know. How do you conduct science? What are the characteristics of life? Science and Biology Need to Know How do you conduct science? What is biology? What are the characteristics of life? Science Science is an organized way of gathering and analyzing evidence about the natural

More information

GHS S.4 BIOLOGY TEST 2 APRIL Answer all the questions in Section A and B. in the spaces provided

GHS S.4 BIOLOGY TEST 2 APRIL Answer all the questions in Section A and B. in the spaces provided GHS S.4 BIOLOGY TEST 2 APRIL 2016 TIME: 1 HOUR Instructions: Answer all the questions in Section A and B. in the spaces provided ANSERS TO SECTION A 1 6 11 16 21 26 2 7 12 17 22 27 3 8 13 18 23 28 4 9

More information

1 29 g, 18% Potato chips 32 g, 23% 2 30 g, 18% Sugar cookies 35 g, 30% 3 28 g, 19% Mouse food 27 g, 18%

1 29 g, 18% Potato chips 32 g, 23% 2 30 g, 18% Sugar cookies 35 g, 30% 3 28 g, 19% Mouse food 27 g, 18% 1. When testing the benefits of a new fertilizer on the growth of tomato plants, the control group should include which of the following? A Tomato plants grown in soil with no fertilizer B Tomato plants

More information

Populations Study Guide (KEY) All the members of a species living in the same place at the same time.

Populations Study Guide (KEY) All the members of a species living in the same place at the same time. Populations Study Guide (KEY) 1. Define Population. All the members of a species living in the same place at the same time. 2. List and explain the three terms that describe population. a. Size. How large

More information

Photosynthesis Questions C. 2. Chloro means- and plast-. Thylakoid. 3. Where does photosynthesis occur? In the c which contains chlorophyll.

Photosynthesis Questions C. 2. Chloro means- and plast-. Thylakoid. 3. Where does photosynthesis occur? In the c which contains chlorophyll. Photosynthesis Name- Date- Per. Station 1 Photosynthesis Questions C 1. Photo means - and synthesis -. 2. Chloro means- and plast-. Thylakoid. 3. Where does photosynthesis occur? In the c which contains

More information

Photosynthesis Questions C. 2. Chloro means- and plast-. Thylakoid. 3. Where does photosynthesis occur? In the c which contains chlorophyll.

Photosynthesis Questions C. 2. Chloro means- and plast-. Thylakoid. 3. Where does photosynthesis occur? In the c which contains chlorophyll. Photosynthesis Name- Date- Per. Station 1 Photosynthesis Questions C 1. Photo means - and synthesis -. 2. Chloro means- and plast-. Thylakoid. 3. Where does photosynthesis occur? In the c which contains

More information

(a) The area of forest lost each year in Madagascar increased between 2009 and 2012.

(a) The area of forest lost each year in Madagascar increased between 2009 and 2012. Q1.The graph below shows the area of forest lost in Madagascar from 2009 to 2012. (a) The area of forest lost each year in Madagascar increased between 2009 and 2012. Determine the total area of forest

More information

Ecology 3/15/2017. Today. Autotrophs. Writing Assignment: What does it mean. Last readings on Chlamydomonas populations

Ecology 3/15/2017. Today. Autotrophs. Writing Assignment: What does it mean. Last readings on Chlamydomonas populations Chlorophyll measured in this assay is an indicator of algae levels University College Campus Bayou Average Spring 2008 Fall 2008 0.07 0.12 0.10 0.04 Spring 2009 0.06 0.05 0.04 0.02 2009 0.05 0.07 0.12

More information

TUNKHANNOCK AREA SCHOOL DISTRICT SCIENCE CURRIULUM GRADE 2

TUNKHANNOCK AREA SCHOOL DISTRICT SCIENCE CURRIULUM GRADE 2 TUNKHANNOCK AREA SCHOOL DISTRICT SCIENCE CURRIULUM GRADE 2 Chapter 4 (How Living Things Grow and Change) 3.1.2.C.2. Explain that living things can only survive if their needs are being met. 3.1.2.A.3.

More information

Surface Water Short Study Guide

Surface Water Short Study Guide Name: Class: Date: Surface Water Short Study Guide Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. The three ways in which a stream carries

More information

Population and Community Dynamics

Population and Community Dynamics Population and Community Dynamics Part 1. Genetic Diversity in Populations Pages 676 to 701 Part 2. Population Growth and Interactions Pages 702 to 745 I) Introduction I) Introduction to understand how

More information

Chapter 6 Population and Community Ecology. Thursday, October 19, 17

Chapter 6 Population and Community Ecology. Thursday, October 19, 17 Chapter 6 Population and Community Ecology Module 18 The Abundance and Distribution of After reading this module you should be able to explain how nature exists at several levels of complexity. discuss

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Still having trouble understanding the material? Check

More information

Giant Salvinia Overview & History Restore America s Estuaries & The Coastal Society 2016 Summit December 15, 2016

Giant Salvinia Overview & History Restore America s Estuaries & The Coastal Society 2016 Summit December 15, 2016 Giant Salvinia Overview & History Restore America s Estuaries & The Coastal Society 2016 Summit December 15, 2016 Jillian Day Aquatic Plant Control Coordinator Inland Fisheries Giant Salvinia Native to

More information

Earth processes are dynamic actions that occur both on

Earth processes are dynamic actions that occur both on 29 Weathering, Erosion, and Deposition R EA D I N G Earth processes are dynamic actions that occur both on the earth s surface and inside the earth. Any process that breaks down earth material, such as

More information

Students will be able to identify vocabulary related to Florida water and wetlands

Students will be able to identify vocabulary related to Florida water and wetlands Pre Visit 1 What s in your Water 6-8 Vocabulary Purpose/Objective Students will be able to identify vocabulary related to Florida water and wetlands Materials Word search copies Pencils Dictionaries Procedure

More information

CO2 Concentration & Photosynthesis. By Ellie Nir, Eliese Ottinger, and Zach Zatuchni

CO2 Concentration & Photosynthesis. By Ellie Nir, Eliese Ottinger, and Zach Zatuchni CO2 Concentration & Photosynthesis By Ellie Nir, Eliese Ottinger, and Zach Zatuchni Question The purpose of this experiment was to examine how the concentration of carbon dioxide affects the rate of photosynthesis

More information

Topic 2 notes Organisms and energy

Topic 2 notes Organisms and energy Topic 2 notes Organisms and energy AEROBIC RESPIRATION All cells in the body need energy - this energy is released in a process known as respiration Cells that are more active need more energy - e.g during

More information

RELEASED. Spring 2013 North Carolina Measures of Student Learning: NC s Common Exams. Grade 6 Science Form A

RELEASED. Spring 2013 North Carolina Measures of Student Learning: NC s Common Exams. Grade 6 Science Form A Released Form Spring 2013 North arolina Measures of Student Learning: N s ommon Exams Grade 6 Science Form RELESE Public Schools of North arolina State oard of Education epartment of Public Instruction

More information

Ecology: The science concerned with the relationships among living things and their environment.

Ecology: The science concerned with the relationships among living things and their environment. ECOSYSTEM VOCABULARY IN PACKET Ecology: The science concerned with the relationships among living things and their environment. Ecosystem: A community that includes all the living and nonliving things

More information

GRADE 6 SCIENCE REVISED 2014

GRADE 6 SCIENCE REVISED 2014 QUARTER 1 Developing and Using Models Develop and use a model to describe phenomena. (MS-LS1-2) Develop a model to describe unobservable mechanisms. (MS-LS1-7) Planning and Carrying Out Investigations

More information

Photosynthesis: How do plants get engery? Teacher Version

Photosynthesis: How do plants get engery? Teacher Version Photosynthesis: How do plants get engery? Teacher Version In this lab, students explore the process of photosynthesis in spinach leaves. As oxygen is produced, the density of the leaves change and they

More information

Michigan Curriculum Framework

Michigan Curriculum Framework Elementary Reference Content Standards Wetlands (with teacher Rainforest (with teacher 1. All students will apply an understanding of cells to the functioning of multicellular organisms; and explain how

More information

2. Which of the following is an organism that is made of only one cell? A. a larva B. an oyster C. an amoeba D. a mold

2. Which of the following is an organism that is made of only one cell? A. a larva B. an oyster C. an amoeba D. a mold 1. I am the barrier between the inside and the outside of the cell. I allow food, oxygen, and other needed materials to enter the cell. I am a part of animal and plant cells. A. cell membrane B. cell wall

More information

WEEK 2 EXP. 9 EVALUATION OF METHODS FOR DETECTING AMMONIUM: ION SELECTIVE ELECTRODES AND SPECTROSCOPY

WEEK 2 EXP. 9 EVALUATION OF METHODS FOR DETECTING AMMONIUM: ION SELECTIVE ELECTRODES AND SPECTROSCOPY University of Puget Sound Department of Chemistry Chem 230 WEEK 2 EXP. 9 EVALUATION OF METHODS FOR DETECTING AMMONIUM: ION SELECTIVE ELECTRODES AND SPECTROSCOPY INTRODUCTION Nitrogen is an essential nutrient

More information

A Level. A Level Biology. AQA, OCR, Edexcel. Photosynthesis, Respiration Succession and Nutrient Cycle Questions. Name: Total Marks: Page 1

A Level. A Level Biology. AQA, OCR, Edexcel. Photosynthesis, Respiration Succession and Nutrient Cycle Questions. Name: Total Marks: Page 1 AQA, OCR, Edexcel A Level A Level Biology Photosynthesis, Respiration Succession and Nutrient Cycle Questions Name: Total Marks: Page 1 Q1. The diagram shows the energy flow through a freshwater ecosystem.

More information

Unit 5 Lesson 3 Measuring ph. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 5 Lesson 3 Measuring ph. Copyright Houghton Mifflin Harcourt Publishing Company What s Your Number? What is the ph scale? The ph of a solution is a measure of how acidic or basic a solution is. A solution that has a ph value of exactly 7 is neutral neither acidic nor basic. A solution

More information

Chapter 6 Reading Questions

Chapter 6 Reading Questions Chapter 6 Reading Questions 1. Fill in 5 key events in the re-establishment of the New England forest in the Opening Story: 1. Farmers begin leaving 2. 3. 4. 5. 6. 7. Broadleaf forest reestablished 2.

More information

screw clip air bubble Transpiration itself is not measured directly by a potometer....

screw clip air bubble Transpiration itself is not measured directly by a potometer.... 1. Transpiration is the loss of water from plants by evaporation. The diagram below shows a potometer, an apparatus used to estimate transpiration rates. water reservoir leafy shoot screw clip air bubble

More information

2nd 9 Weeks Common Assessment Review

2nd 9 Weeks Common Assessment Review Name: Period: Test Date: 12/15/15 2nd 9 Weeks Common Assessment Review 1. According to the Enhanced Fujita Scale, at what wind speed will trees be uprooted during a tornado? a. 111 135 mph b. 136 165 mph

More information

Photosynthesis Revision 1

Photosynthesis Revision 1 Photosynthesis Revision 73 minutes 73 marks Page of 35 Q. This question is about photosynthesis. (a) Plants make glucose during photosynthesis. Some of the glucose is changed into insoluble starch. What

More information

Living Things and the Environment

Living Things and the Environment Unit 21.1 Living Things and the Environment Section 21.1 Organisms obtain food, water, shelter, and other things it needs to live, grow, and reproduce from its environment. An environment that provides

More information

Plant/Ecosystems Webquest Log on to

Plant/Ecosystems Webquest Log on to Name Period Plant/Ecosystems Webquest Log on to www.discoveryeducation.com Username Password Click on My Content Click on the folder Ecosystem Click on A Biome to Call Home 1. Read Intro Define biome-

More information

UNIVERSITY OF YORK BIOLOGY. Animal and Plant Biology Part II

UNIVERSITY OF YORK BIOLOGY. Animal and Plant Biology Part II Examination Candidate Number: Desk Number: UNIVERSITY OF YORK BSc Stage 1 Degree Examinations 2017-18 Department: BIOLOGY Title of Exam: Animal and Plant Biology Part II Time allowed: 2 hours Total marks

More information

Carbon Assimilation and Its Variation among Plant Communities

Carbon Assimilation and Its Variation among Plant Communities Carbon Assimilation and Its Variation among Plant Communities Introduction By, Susan Boersma, Andrew Wiersma Institution: Calvin College Faculty Advisor: David Dornbos Currently, global warming remains

More information

Topic 10: Transpiration, transport and support in plants

Topic 10: Transpiration, transport and support in plants Topic 10: Transpiration, transport and support in plants 1. Transpiration is A. the loss of water vapour from the surfaces of plants due to evaporation B. the gain of water vapour from the surfaces of

More information

6 th Grade Life Science Strand 3: Characteristics and Interactions of Living Organisms

6 th Grade Life Science Strand 3: Characteristics and Interactions of Living Organisms Middle School Life Science Standards There are 15 standards that encompass the proposed middle school life science standards. The new standards are listed 4 times to match the four times life science is

More information

Ecological Succession

Ecological Succession Ecological Succession Primary succession will ALWAYS be on areas where there is NO SOIL a) bare rock from a retreating glacier, b) newly cooled lava; c) abandoned lot with an impervious surface (parking

More information

Chapter 6 Population and Community Ecology

Chapter 6 Population and Community Ecology Chapter 6 Population and Community Ecology Friedland and Relyea Environmental Science for AP, second edition 2015 W.H. Freeman and Company/BFW AP is a trademark registered and/or owned by the College Board,

More information

B L U E V A L L E Y D I S T R I C T C U R R I C U L U M Science 7 th grade

B L U E V A L L E Y D I S T R I C T C U R R I C U L U M Science 7 th grade B L U E V A L L E Y D I S T R I C T C U R R I C U L U M Science 7 th grade ORGANIZING THEME/TOPIC UNIT 1: CELLS Structure and Function of Cells MS-LS1-1. Conduct an investigation to provide evidence that

More information

COMPUTER METHODS AND MODELING IN GEOLOGY THE GLOBAL PHOSPHORUS CYCLE

COMPUTER METHODS AND MODELING IN GEOLOGY THE GLOBAL PHOSPHORUS CYCLE COMPUTER METHODS AND MODELING IN GEOLOGY THE GLOBAL PHOSPHORUS CYCLE Phosphorous (P) is an essential nutrient for life. It is found in the RNA and DNA of all organisms, as well as in the adenosine triphosphate

More information

Briggs Lake Water Quality Report 2014

Briggs Lake Water Quality Report 2014 Briggs Lake Water Quality Report 2014 Seasonal Report for Briggs Lake Green Oak Township, Livingston Co. T1N, R6E, Sec. 3,4 74 Surface Acres 414 Hadley Street Holly, MI 48442 Main Phone: 248-634-8388 Northern

More information

Chemistry Review. Structure of an Atom. The six most abundant elements of life. Types of chemical bonds. U n i t 2 - B i o c h e m i s t r y

Chemistry Review. Structure of an Atom. The six most abundant elements of life. Types of chemical bonds. U n i t 2 - B i o c h e m i s t r y Chemistry Review Structure of an Atom are organized into shells or levels around the nucleus. Atoms are most stable when their outer or valence shell is. The six most abundant elements of life Types of

More information

Nutrient Cycling in Land Vegetation and Soils

Nutrient Cycling in Land Vegetation and Soils Nutrient Cycling in Land Vegetation and Soils OCN 401 - Biogeochemical Systems 13 September 2012 Reading: Schlesinger, Chapter 6 Outline 1. The annual Intrasystem Nutrient Cycle 2. Mass balance of the

More information

Chapter 7: Environmental Systems and Ecosystem Ecology

Chapter 7: Environmental Systems and Ecosystem Ecology Chapter 7: Environmental Systems and Ecosystem Ecology Vocabulary words to know: Hypoxia Negative feedback Dynamic equilibrium Emergent properties Lithosphere Biosphere Gross primary production Nutrients

More information

1. Transpiration may be defined as the loss of water vapour by diffusion from a plant to its environment.

1. Transpiration may be defined as the loss of water vapour by diffusion from a plant to its environment. 1. Transpiration may be defined as the loss of water vapour by diffusion from a plant to its environment. The diagram below shows apparatus that can be used to estimate transpiration rates of a leafy shoot.

More information

Chapter Chemical Elements Matter solid, liquid, and gas elements atoms. atomic symbol protons, neutrons, electrons. atomic mass atomic number

Chapter Chemical Elements Matter solid, liquid, and gas elements atoms. atomic symbol protons, neutrons, electrons. atomic mass atomic number Chapter 2 2.1 Chemical Elements 1. Matter is defined as anything that takes up space and has mass. 2. Matter exists in three states: solid, liquid, and gas. A. Elements 1. All matter (both living and non-living)

More information

GIS and Coastal Nutrients Luke Cole

GIS and Coastal Nutrients Luke Cole GIS and Coastal Nutrients Luke Cole Human population density has been widely utilized as a valid predictor of terrestrial nitrogen loads into marine systems. As 50% of the world s population lives within

More information

Scientific Method. Section 1. Observation includes making measurements and collecting data. Main Idea

Scientific Method. Section 1. Observation includes making measurements and collecting data. Main Idea Scientific Method Section 1 2B, 2C, 2D Key Terms scientific method system hypothesis model theory s Observation includes making measurements and collecting data. Sometimes progress in science comes about

More information

Ch.5 Evolution and Community Ecology How do organisms become so well suited to their environment? Evolution and Natural Selection

Ch.5 Evolution and Community Ecology How do organisms become so well suited to their environment? Evolution and Natural Selection Ch.5 Evolution and Community Ecology How do organisms become so well suited to their environment? Evolution and Natural Selection Gene: A sequence of DNA that codes for a particular trait Gene pool: All

More information

POSITION STEPS OF PEA. Soil Layer. Sand Layer. Charcoal Layer. Rock Layer

POSITION STEPS OF PEA. Soil Layer. Sand Layer. Charcoal Layer. Rock Layer Aim & Introduction Hypothesis POSITION STEPS OF PEA Soil Layer Charcoal Layer Sand Layer Rock Layer Day 1 - Wednesday 18th Today is my first day in my new home, I m being joined by 2 other peas named Peter

More information

1.1 Draw one line from each adaptation of the fennec fox to the advantage of the. To reflect the sun s rays

1.1 Draw one line from each adaptation of the fennec fox to the advantage of the. To reflect the sun s rays 4-7 Ecology Trilogy.0 Figure shows a fennec fox. Figure Fennec foxes live in the desert. Drew Avery Creative Commons 2.0. Draw one line from each adaptation of the fennec fox to the advantage of the adaptation.

More information

Aquatic Ancestors of Land Plants

Aquatic Ancestors of Land Plants Aquatic Ancestors of Land Plants Distinguishing Characteristics: Photosynthetic Live in aqueous environments (ie. In or near water) Lack internal tubes to move water and materials from one part of the

More information

Math 2930 Worksheet Introduction to Differential Equations

Math 2930 Worksheet Introduction to Differential Equations Math 2930 Worksheet Introduction to Differential Equations Week 1 August 24, 2017 Question 1. Is the function y = 1 + t a solution to the differential equation How about the function y = 1 + 2t? How about

More information

Importance. The Reaction of Life : The conversion of the sun s energy into a form man and other living creatures can use.

Importance. The Reaction of Life : The conversion of the sun s energy into a form man and other living creatures can use. PLANT PROCESSES Photosynthesis Importance The Reaction of Life : The conversion of the sun s energy into a form man and other living creatures can use. Photo light Synthesis to put together 3 Important

More information

4. Which effect does a decrease in sunlight have on a pond ecosystem? 1. Why do large trees have a difficult time living in a tundra?

4. Which effect does a decrease in sunlight have on a pond ecosystem? 1. Why do large trees have a difficult time living in a tundra? North arolina Testing Program 1. Why do large trees have a difficult time living in a tundra? 4. Which effect does a decrease in sunlight have on a pond ecosystem? tundra is too hot for trees to grow large.

More information

4. Which effect does a decrease in sunlight have on a pond ecosystem? 1. Why do large trees have a difficult time living in a tundra?

4. Which effect does a decrease in sunlight have on a pond ecosystem? 1. Why do large trees have a difficult time living in a tundra? North arolina Testing Program 1. Why do large trees have a difficult time living in a tundra? 4. Which effect does a decrease in sunlight have on a pond ecosystem? tundra is too hot for trees to grow large.

More information

Ecology Test Biology Honors

Ecology Test Biology Honors Do Not Write On Test Ecology Test Biology Honors Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The study of the interaction of living organisms with

More information

Acid Rain. Computer OBJECTIVES

Acid Rain. Computer OBJECTIVES Acid Rain Computer 18 Acid rain is a topic of much concern in today s world. As carbon dioxide gas, CO 2, dissolves in water droplets of unpolluted air, the following reaction occurs: CO 2 + H 2 O H 2

More information

BIO B.4 Ecology You should be able to: Keystone Vocabulary:

BIO B.4 Ecology You should be able to: Keystone Vocabulary: Name Period BIO B.4 Ecology You should be able to: 1. Describe ecological levels of organization in the biosphere 2. Describe interactions and relationships in an ecosystem.. Keystone Vocabulary: Ecology:

More information

Biology 11 Unit 1: Fundamentals. Lesson 1: Ecology

Biology 11 Unit 1: Fundamentals. Lesson 1: Ecology Biology 11 Unit 1: Fundamentals Lesson 1: Ecology Objectives In this section you will be learning about: ecosystem structure energy flow through an ecosystem photosynthesis and cellular respiration factors

More information

CHAPTER 5 WARM UPS. Mrs. Hilliard

CHAPTER 5 WARM UPS. Mrs. Hilliard CHAPTER 5 WARM UPS Mrs. Hilliard CHAPTER 5 VOCABULARY 1. Photosynthesis 2. Cellular respiration 3. Producer 4. Consumer 5. Decomposer 6. Food chain 7. Food web 8. Trophic level 9. Carbon cycle 10. Nitrogen-fixing

More information

1. Ecosystems are made up of both living and non-living things. True False. 2. Ecosystems can be very large or very small.

1. Ecosystems are made up of both living and non-living things. True False. 2. Ecosystems can be very large or very small. 1 Pre-Test Directions: Answer each of the following either true or false. 1. Ecosystems are made up of both living and non-living things. True False 2. Ecosystems can be very large or very small. True

More information

DATE: NAME: CLASS: Chapter 2 Review (Alternative Format) CHAPTER 2 BLM 2-9

DATE: NAME: CLASS: Chapter 2 Review (Alternative Format) CHAPTER 2 BLM 2-9 Goal To review the concepts from Chapter 2. Reviewing Key Terms Fill in the blanks using a word from the list below. organs shoot differentiation gall epidermis root system meristem 1. The protects the

More information

AP BIOLOGY CHAPTERS 1-3 WORKSHEET

AP BIOLOGY CHAPTERS 1-3 WORKSHEET Name Date AP BIOLOGY CHAPTERS 1-3 WORKSHEET MULTIPLE CHOICE. 33 pts. Place the letter of the choice that best completes the statement or answers the question in the blank. 1. Which of the following sequences

More information

CHAPTER 52 Study Questions (An Introduction to Ecology and the Biosphere)

CHAPTER 52 Study Questions (An Introduction to Ecology and the Biosphere) WLHS / AP Bio / Monson Name CHAPTER 52 Study Questions (An Introduction to Ecology and the Biosphere) 52.1: Earth s climate varies by latitude and season and is changing rapidly (p. 1144-1150) 1) Distinguish

More information

Biologists Study the Interactions of Life

Biologists Study the Interactions of Life What is Biology? Biologists Study the Interactions of Life Living things do not live in isolation. They interact with their environment and depend on other living/non-living things for survival. Biologists

More information

Materials Per Class Per Bench. 50 ml beakers 6 1. Hole punch 6 1. Forceps 6 1. Timers or a clock with second hand 6 1

Materials Per Class Per Bench. 50 ml beakers 6 1. Hole punch 6 1. Forceps 6 1. Timers or a clock with second hand 6 1 Photosynthesis Materials Per Class Per Bench 1% solution of sodium bicarbonate (NaHCO 3 ) (by adding approximately 1g sodium bicarbonate to 100 ml DI water). Light sources, 60 watt bulb or higher 3 or

More information

Unit 2 Ecology Study Guide. Niche Autotrophs Heterotrophs Decomposers Demography Dispersion

Unit 2 Ecology Study Guide. Niche Autotrophs Heterotrophs Decomposers Demography Dispersion Vocabulary to know: Ecology Ecosystem Abiotic Factors Biotic Factors Communities Population Unit 2 Ecology Study Guide Niche Autotrophs Heterotrophs Decomposers Demography Dispersion Growth Rate Carrying

More information

Earth Science Summer Assignment. I. hypothesized that more people go to the grocery store on Saturday night than on any other night of the week

Earth Science Summer Assignment. I. hypothesized that more people go to the grocery store on Saturday night than on any other night of the week Earth Science Summer Assignment 1. Nancy noticed that the grocery store near her house is busier on different nights of the week. Nancy wrote down the following steps outlining her investigation on the

More information

Organism Interactions in Ecosystems

Organism Interactions in Ecosystems Organism Interactions in Ecosystems Have you ever grown a plant or taken care of a pet? If so, you know they have certain needs such as water or warmth. Plants need sunlight to grow. Animals need food

More information

University of California at Santa Cruz Jack Baskin School of Engineering EE-80J: Renewable Energy Sources Greenhouse Effect Pre Questionnaire

University of California at Santa Cruz Jack Baskin School of Engineering EE-80J: Renewable Energy Sources Greenhouse Effect Pre Questionnaire University of California at Santa Cruz Jack Baskin School of Engineering EE-80J: Renewable Energy Sources Greenhouse Effect Pre Questionnaire Student s name Student ID Grade / TO BE COMPLETED AND TURNED

More information

2 sentences. Why your first answer was wrong Why your new answer is correct

2 sentences. Why your first answer was wrong Why your new answer is correct 2 sentences Why your first answer was wrong Why your new answer is correct Which biochemical process is outlined in the diagram? A. Anaerobic Respiration B. Aerobic Respiration C. Photosynthesis D. Transpiration

More information

25-3 Plant Adaptations Slide 2 of 29

25-3 Plant Adaptations Slide 2 of 29 2 of 29 Aquatic Plants How are plants adapted to different environments? 3 of 29 Aquatic Plants Aquatic Plants To take in sufficient oxygen, many aquatic plants have tissues with large air-filled spaces

More information

AP ENVIRONMENTAL SCIENCE 2013 SCORING GUIDELINES [14 pt space] Question 1

AP ENVIRONMENTAL SCIENCE 2013 SCORING GUIDELINES [14 pt space] Question 1 AP ENVIRONMENTAL SCIENCE 2013 SCORING GUIDELINES [14 pt space] Question 1 (a) Identify TWO human activities that alter the natural flow of sediments into Gulf Coast ecosystems. Explain how each of the

More information

8.L Which example shows a relationship between a living thing and a nonliving thing?

8.L Which example shows a relationship between a living thing and a nonliving thing? Name: Date: 1. Which example shows a relationship between a living thing and a nonliving thing?. n insect is food for a salmon. B. Water carries a rock downstream.. tree removes a gas from the air. D.

More information

CBA Practice Exam - Ecology

CBA Practice Exam - Ecology CBA Practice Exam - Ecology For the following two questions, use the diagram below: 1. (TEKS 11B) The organisms in the illustration are all part of a pond community. What would likely happen to the fish

More information

Mycorrhizal Fungi. Symbiotic relationship with plants -- form sheath around fine roots and extend hyphae into soil and sometimes into root cells

Mycorrhizal Fungi. Symbiotic relationship with plants -- form sheath around fine roots and extend hyphae into soil and sometimes into root cells Mycorrhizal Fungi Symbiotic relationship with plants -- form sheath around fine roots and extend hyphae into soil and sometimes into root cells Mycorrhizae transfer nutrients to roots (important in infertile

More information

2017 Pre-AP Biology Semester I Exam study Guide

2017 Pre-AP Biology Semester I Exam study Guide 2017 Pre-AP Biology Semester I Exam study Guide 1 st Law of Thermodynamics: The 1 st Law states that energy can be transferred or transformed but not State the 2 nd Law of Thermodynamics: The 2 nd Law

More information

Background. A Transformation from Traditional College Algebra to Freudenthal College Algebra. Background. Traditional

Background. A Transformation from Traditional College Algebra to Freudenthal College Algebra. Background. Traditional A Transformation from Traditional College Algebra to Freudenthal College Algebra Monica Geist, Ph.D. Front Range Community College monica.geist@frontrange.edu Background Started teaching College Algebra

More information

Biosphere Biome Ecosystem Community Population Organism

Biosphere Biome Ecosystem Community Population Organism Ecology ecology - The study of living things and how they relate to their environment Levels of Organization in Ecology organism lowest level one living thing population collection of organisms of the

More information

Lesson Overview. Niches and Community Interactions. Lesson Overview. 4.2 Niches and Community Interactions

Lesson Overview. Niches and Community Interactions. Lesson Overview. 4.2 Niches and Community Interactions Lesson Overview 4.2 Niches and Community Interactions The Niche What is a niche? A niche is the range of physical and biological conditions in which a species lives and the way the species obtains what

More information

Pansy Parts & Stop Photosynthesis 4 th Grade Sarah Fortner & Lucille Duncan

Pansy Parts & Stop Photosynthesis 4 th Grade Sarah Fortner & Lucille Duncan References: Pansy Parts & Stop Photosynthesis 4 th Grade Sarah Fortner & Lucille Duncan http://www.computing.ee.unsw.edu.au/~solar/classrooms/photosynth1.htm Benchmarks & Objective: Stop Photosynthesis

More information

EXP. 9 EVALUATION OF METHODS FOR DETECTING AMMONIUM: ION SELECTIVE ELECTRODES AND SPECTROSCOPY

EXP. 9 EVALUATION OF METHODS FOR DETECTING AMMONIUM: ION SELECTIVE ELECTRODES AND SPECTROSCOPY University of Puget Sound Department of Chemistry Chem 230 EXP. 9 EVALUATION OF METHODS FOR DETECTING AMMONIUM: ION SELECTIVE ELECTRODES AND SPECTROSCOPY INTRODUCTION Nitrogen is an essential nutrient

More information

Biogeochemical cycles

Biogeochemical cycles Lecture -2: Biogeochemical cycles ENV 107: Introduction to Environmental Science Dr. A.K.M. Saiful Islam Case Study: Lake Washington The city of Seattle, USA lies between two major bodies of water- saltwater

More information

5 th Grade Ecosystems Mini Assessment Name # Date. Name # Date

5 th Grade Ecosystems Mini Assessment Name # Date. Name # Date An ecosystem is a community of organisms and their interaction with their environment. (abiotic, biotic, niche, habitat, population, community)- 1. Which effect does a decrease in sunlight have on a pond

More information

Chapter What is a Plant? Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall

Chapter What is a Plant? Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall Chapter 22.1 Biology What is a Plant? 1 of 33 Objectives 1. Describe the basic characteristics of life. 2. Describe what plants need to survive. 3. Describe the life cycle of plants. 4. Describe how the

More information

Survival of the Sweetest

Survival of the Sweetest Biology Survival of the Sweetest A Tasty Tale of Natural Selection and Community Dynamics MATERIALS AND RESOURCES EACH GROUP teacher-provided materials 2 dice TEACHER bags, brown paper, small 3 bags Skittles,

More information

Cell Respiration/Photosynthesis

Cell Respiration/Photosynthesis ell Respiration/Photosynthesis Name: ate: 1. The equation below represents a summary of a biological process. carbon dioxide + water glucose + water + oxygen This process is completed in 3. Which process

More information