AP Biology Notes Outline Enduring Understanding 1.D. Big Idea 1: The process of evolution drives the diversity and unity of life.

Size: px
Start display at page:

Download "AP Biology Notes Outline Enduring Understanding 1.D. Big Idea 1: The process of evolution drives the diversity and unity of life."

Transcription

1 AP Biology Notes Outline Enduring Understanding 1.D Big Idea 1: The process of evolution drives the diversity and unity of life. Enduring Understanding 1.D: The origin of living systems is explained by natural processes. Learning Objectives: Essential Knowledge 1.D.1: There are several hypotheses about the natural origin of life on Earth, each with supporting scientific evidence. (1.27) The student is able to describe a scientific hypothesis about the origin of life of Earth. (1.28) The student is able to evaluate scientific questions based on hypotheses about the origin of life on Earth. (1.29) The student is able to describe the reasons for revisions of scientific hypotheses of the origin of life on Earth. (1.30) The student is able to evaluate scientific hypotheses about the origin of life on Earth. (1.31) The student is able to evaluate the accuracy and legitimacy of data to answer scientific questions about the origin of life on Earth. Essential Knowledge 1.D.2: Scientific evidence from many different disciplines supports models of the origin of life. (1.32) The student is able to justify the selection of geological, physical, and chemical data that reveal early Earth conditions. Required Readings: Textbook Ch. 25 Bozeman Instruction Videos: 1.D.1 - #010: Abiogenesis 1.D.2 - #011: The Origin of Life/Scientific Evidence Animated Content Review Videos: Miller-Urey Experiment: Endosymbiosis: Practicing Biology Homework Questions: Questions #31-33 Essential Knowledge 1.D.1: There are several hypotheses about the natural origin of life on Earth, each with supporting scientific evidence. The process of evolution explains the diversity and unity of life. A number of experimental investigations have provided evidence that the conditions in the Earth s history provided an environment capable of generating complex organic molecules and simple celllike structures. For example, the organic soup model, the hypothesized primitive atmosphere contained inorganic precursors from which organic molecules could have been synthesized through natural chemical reactions catalyzed by the input of energy. In turn, these molecules served as monomers (building blocks) for the formation of more complex molecules, including amino acids and nucleotides. Some models suggest that primitive life developed on biogenic surfaces, such as clay, that served as templates and catalysts for the assembly of macromolecules. Under laboratory conditions, complex polymers and self-replicating molecules can spontaneously assemble. It remains an open question whether the first genetic and self-replicating material was DNA or RNA. Conditions on early Earth made the origin of life possible. The earliest evidence of life on Earth comes from fossils of microorganisms that are about 3.5 billion years old. The current theory about how life arose indicates that chemical and physical processes on early Earth may have produced simple cells in a sequence of four main stages: 1. Primitive Earth provided inorganic precursors from which small organic molecules were abiotically synthesized due to the presence of available free energy and the absence of a significant quantity of oxygen. 2. These molecules served as monomers for the formation of more complex molecules, such as nucleic acids and nucleic nucleotides. 3. All these molecules were packaged into protobionts, membrane-containing droplets, whose internal chemistry differed from that of the external environment. 4. The joining of these monomers produced polymers with the ability to replicate, store and transfer information which made inheritance possible. 5. These complex reaction sets could have occurred in solution (organic soup model) or as reactions on solid reactive surfaces. L. Carnes

2 There is scientific evidence that Earth and the other planets of the solar system formed about 4.6 billion years ago. The first atmosphere was probably thick with water vapor; along with various compounds released by volcanic eruptions, including nitrogen and oxides, carbon dioxide, methane, ammonia, hydrogen, and hydrogen sulfide. As Earth cooled, the water vapor condensed into the oceans, and much of the hydrogen quickly escaped into space. In the 1920s, Russian and British chemists Oparin and Haldane hypothesized that Earth s early atmosphere was a reducing (electronadding) environment, in which organic compounds could have formed from simple molecules. They suggested that the early oceans were a solution of organic molecules, a primitive soup from which life arose. The presence of small organic molecules, such as amino acids, is not sufficient for the emergence of life as we know it. Every cell has an assortment of macromolecules including enzymes and other proteins and nucleic acids that are essential for self-replication. Experiments suggest that such molecules could have formed in early Earth. Some models suggest that primitive life developed on biogenic surfaces, such as clay, that served as templates and catalysts for assembly of macromolecules. By dripping solutions of amino acids into hot sand, clay, or rock, researchers have been able to produce amino acid polymers. The polymers formed spontaneously, without the help of enzymes or ribosomes. It is possible that such polymers may have acted as weak catalysts for a variety of reactions on early Earth. The necessary conditions for replication and metabolism early in life s history may have been met by protobionts. Protobionts are aggregates of abiotically produced molecules surrounded by a membrane or membrane-like structure. Protobionts may exhibit some properties of life, such as simple reproduction and metabolism, as well as the maintenance of an internal chemical environment different from that of their surroundings. Experiments demonstrate that protobionts could have formed spontaneously from abiotically produced organic compounds. Two key properties of life are accurate replication and metabolism. Neither property can exist without the other. DNA replication requires elaborate enzymatic machinery, along with supplies of nucleotides provided by the cell s metabolism. Miller-Urey type experiments have yielded some of the nitrogenous bases of DNA and RNA, but have not produced anything like nucleotides. If the building blocks of nucleic acids were not a part of the early organic soup, self-replicating molecules and a metabolism-like source for building blocks must have happened together. How did that happen? Diagram A: This liposome is giving birth to smaller liposomes. Diagram B: If enzymes in this case phosphatase and amylase are included in the solution from which the droplets self-assemble, some liposomes can carry out simple metabolic reactions and export the products. LIPOSOME: small membrane-bounded droplets According to the RNA World hypothesis, the first genetic material was most likely RNA, not DNA. RNA molecules called ribozymes have been found to catalyze many different reactions: for example, ribozymes can make complementary copies of short stretches of their own sequence or other short pieces of RNA. Early protobionts with self-replicating, catalytic RNA would have been more effective at using resources and would have increased in number through natural selection. The early genetic material might have formed an RNA world. Once RNA sequences that carried genetic information appeared in protobionts, many further changes would have been possible. RNA could have provided the template on which DNA nucleotides were assembled. Since DNA is much more stable than RNA, it can be replicated more accurately. Accurate replication was a necessity as genomes grew larger through gene duplication and other processes. After DNA appeared, perhaps RNA molecules began to take on their present-day roles as intermediates in the translation of genetic programs. The stage would have now been set for a blossoming of diverse life forms a change we see well documented in the fossil record.

3 Essential Knowledge 1.D.2: Scientific evidence from many different disciplines supports models of the origin of life. Fossils in all parts of the world tell a similar, surprising story: past organisms were very different from those now alive. The sweeping changes in life on Earth revealed by fossils illustrate macroevolution, the pattern of evolution over large time scales. Specific examples of macroevolutionary change include the origin of key biochemical processes such as photosynthesis, the emergence of the first terrestrial vertebrates, and the long-term impact of a mass extinction on the diversity of life. Taken together, such changes provide a grand view of the evolutionary history of life on Earth. The Earth formed approximately 4.6 billion years ago, and the environment was too hostile for life until 3.9 billion years ago. The earliest fossil evidence for life dates to 3.5 billion years ago. Taken together, this evidence provides a plausible range of dates when the origin of life could have occurred. The fossil record is the sequence in which fossils appear in the layers of sedimentary rock that constitute Earth s surface. The fossil record reveals changes in the history of life on earth. Fossils can also document how new groups of organisms arose from previously existing ones. Sedimentary rocks are deposited into layers called strata and are the richest source of fossils. Few individuals have fossilized, and even fewer have been discovered. The fossil record is biased in favor of species that existed for a long time; were abundant and widespread, and had parts capable of fossilizing. Key events in life s history include the origins of single-celled and multi-celled organisms and the colonization of land. The study of fossils has helped geologists to establish a geologic record of Earth s history. Each era represents a distinct age in the history of Earth and its life. The boundaries between the eras correspond to major extinction evens seen in the fossil record, when many forms of life disappeared and were replaced by forms that evolved from the survivors. Life on Earth began about 3.5 billion years ago. At that point in the development of the Earth, the atmosphere was very different from what it is today. As opposed to the current atmosphere, which is mostly nitrogen and oxygen, the early Earth atmosphere contained mostly hydrogen, water, ammonia, and methane. In experiments, scientists have showed that the electrical discharges of lightning, radioactivity, and ultraviolet light caused the elements in the early Earth atmosphere to form the basic molecules of biological chemistry, such as nucleotides, simple proteins, and ATP. It seems likely, then, that the Earth was covered in a hot, thin soup of water and organic materials. Over time, the molecules became more complex and began to collaborate to run metabolic processes. Eventually, the first cells came into being. These cells were heterotrophs, which could not produce their own food and instead fed on the organic material from the primordial soup. (These heterotrophs give this theory its name.) The anaerobic metabolic processes of the heterotrophs released carbon dioxide into the atmosphere, which allowed for the evolution of photosynthetic autotrophs, which could use light and CO 2 to produce their own food. The autotrophs released oxygen into the atmosphere. For most of the original anaerobic heterotrophs, oxygen proved poisonous. The few heterotrophs that survived the change in environment generally evolved the capacity to carry out aerobic respiration. Over the subsequent billions of years, the aerobic autotrophs and heterotrophs became the dominant life-forms on the planet and evolved into all of the diversity of life now visible on Earth.

4 The earliest living organisms were prokaryotes. About 2.7 billion years ago, oxygen began to accumulate in Earth s atmosphere as a result of photosynthesis. Eukaryotes appeared about 2.1 billion years ago. Multicellular eukaryotes evolved about 1.2 billion years ago. The colonization of land occurred about 500 million years ago, when plants, fungi, and animals began to appear on Earth. The earliest evidence of life (3.5 billion years ago) comes from fossilized stromatolites. These are layered rocks that form when certain prokaryotes bind thin films of sediment together. Early prokaryotes were Earth s sole inhabitants from about 3.5 to 2.1 billion years ago. These prokaryotes transformed life on our planet. Photosynthesis and the Oxygen Revolution Most atmospheric oxygen gas is of biological origin, produced during the water-splitting steps of photosynthesis. When oxygenic photosynthesis first evolved, the free O 2 produced probably dissolved in the surrounding water until it reached a high enough concentration to react with dissolved iron. This would have caused the iron to precipitate as iron oxide, which accumulated as sediments. Once all of the dissolved iron had precipitated, additional O 2 dissolved in the water until the seas and lakes became saturated. After this, O 2 began to gas out of the water and enter the atmosphere. This gas out change left its mark in the rusting of iron-rich terrestrial rocs. These sediments were compressed into banded iron formations, red layers of rock containing iron oxide that are a source of iron today. The oxygen revolution had an enormous impact on life. In certain chemical forms, oxygen attacks chemical bonds and can inhibit enzymes and damage cells. As a result the rising concentrations of atmospheric O 2 probably doomed many prokaryotic groups. Some species survived in anaerobic habitats, where we find their descendants living today. Among other survivors, diverse adaptations to the changing atmosphere evolved, including cellular respiration, which uses O 2 in the process of harvesting the energy stored in organic molecules. Endosymbiosis and the First Eukaryotic Life Forms The oldest fossils of eukaryotic cells date back 2.1 billion years. The hypothesis of endosymbiosis proposes that mitochondria and plastids (chloroplasts and related organelles) were formerly small prokaryotes living within larger host cells An endosymbiont is a cell that lives within a host cell. Model for origin of eukaryotes (A) endomembrane system of eukaryotes may have evolved from specialized infoldings of plasma membrane of ancestral prokaryotes (B) chloroplasts are descendants of photosynthetic prokaryotes, probably cyanobacteria - proposed ancestors of mitochondria were endosymbiotic bacteria that were aerobic heterotrophs - may have first gained entry into larger cells as undigested prey or internal parasites Be a good skeptic! Where s the evidence? The endosymbiotic hypothesis proposes that mitochondria and plastids (chloroplasts) were formerly small prokaryotes that began living within larger cells. Evidence for this hypothesis includes: Both organelles have enzymes and transport systems homologous to those found in the plasma membranes of living prokaryotes. Both replicate by a splitting process similar to prokaryotes. Both contain a single, circular DNA molecule, not associated with histone proteins. Both have their own ribosomes which translate their DNA into proteins.

5 The Origin of Multicellularity The evolution of eukaryotic cells allowed for a greater range of unicellular forms. A second wave of diversification occurred when multicellularity evolved and gave rise to algae, plants, fungi, and animals. Comparisons of DNA sequences date the common ancestor of multicellular eukaryotes to 1.5 billion years ago. The oldest known fossils of multicellular eukaryotes are of small algae that lived about 1.2 billion years ago. Molecular and genetic evidence from extant and extinct organisms indicates that all organisms on Earth share a common ancestral origin of life. - Common molecular building blocks (carbohydrates, lipids, proteins, nucleic acids) - Common genetic code (DNA or RNA) The Rise and Fall of Dominant Groups Anaerobic prokaryotes originated, flourished, and then declined as the oxygen content of the atmosphere rose. Billions of years later, the first tetrapods emerged from the sea, giving rise to amphibians that went on to dominate life on land for 100 millions years until other tetrapods (dinosaurs and later, mammals) replaced them as the dominant terrestrial vertebrates. These and other major changes in life on Earth have been influenced by large-scale processes such as continental drift, mass extinctions, and adaptive radiations. The rise and fall of dominant groups reflect continental drift, mass extinctions, and adaptive radiations. Continental Drift Continental drift alters habitats in which organisms live and promotes allopatric speciation on a grand scale: 1. CD alters habitats in which organisms live which can drive many species to extinction and provide new opportunities for groups of organisms that survive the crisis. 2. CD facilitates climate change which can cause organisms to adapt, move to new locations, or become extinct. 3. CD promotes allopatric speciation when continents break apart, regions that were connected become geographically isolated. This geographic isolation provides a barrier to gene flow between organisms that may have once been a single species. As they drift further apart, each continent becomes an evolutionary arena. 4. Continental drift can explain puzzles about the geographic distribution of species: Australia flora and fauna contrast sharply with those of the rest of the world. Marsupial mammals fill ecological roles in Australia analogous to those filled by eutherians (placental mammals) on other continents. Marsupials probably originated in what is now Asia and N. America and reached Australia via S. America and Antarctica while the continents were still joined. The break up set Australia afloat like a great ark of marsupials. In other areas, eutherians diversified. Major Changes in Body Form The fossil record tells us what the great changes in the history of life have been and when they occurred. Our understanding of continental drift, mass extinction, and adaptive radiation provides a picture of how those changes came about. We now must seek to understand the intrinsic biological mechanisms that underlie changes seen in the fossil record. For this, we focus on genetic mechanisms of change, paying particular attention to genes that influence development. Evolutionary novelty can arise when structures that originally played one role gradually acquire a different one. Structures that evolve in one context but become co-opted for another function are referred to as exaptations. For example, it is possible that feathers of modern birds were co-opted for flight after functioning in some other capacity, such as thermoregulation. Evo-Devo Evo-devo is a field of study in which evolutionary biology and developmental biology converge. This field is illuminating how slight genetic divergences can be magnified into major morphological differences between species.

6 Heterochrony Heterochrony is an evolutionary change in the rate or timing of developmental events. Change relative rates of growth even slightly can change the adult form of an organisms substantially, thus contributing to the potential for evolutionary change. Homeotic/HOX Genes: Homeotic genes are master regulatory genes that determine the location and organization of body parts. Hox genes are one class of homeotic genes. Changes in Hox genes and in the genes that regulate them can have a profound effect on morphology, thus contributing to the potential for evolutionary change. Evolution is like tinkering it is a process in which new forms arise by the slight modification of existing forms: Most novel biological structures evolve in many stages from previously existing structures. Natural selection can only improve a structure in the context of its current utility.

7 Evidence Supporting Natural Models for the Origin of Life Chemical experiments have shown that it is possible to form complex organic molecules from inorganic molecules in the absence of life. In the 1920s, Russian and British chemists Oparin and Haldane hypothesized that Earth s early atmosphere was a reducing (electron-adding) environment, in which organic compounds could have formed from simple molecules. They suggested that the early oceans were a solution of organic molecules, a primitive soup from which life arose. In 1953, Stanley Miller and Harold Urey tested the Oparin- Haldane hypothesis by creating laboratory conditions comparable to those that scientists at the time thought existed on early Earth. Their apparatus/model yielded a variety of amino acids found in organisms today, along with other organic compounds. However, it is unclear as to whether or not the atmosphere of young Earth contained enough methane and ammonia to be reducing and growing evidence suggests that the early atmosphere was primarily nitrogen and CO 2 and organic molecules have NOT been produced in such atmospheres. Perhaps instead of forming in the atmosphere, the first organic compounds formed near submerged volcanoes and deep-sea vents, where hot water and minerals gush into the ocean from Earth s interior. These regions are also rich in inorganic sulfur and iron compounds, which are important in ATP synthesis by presentday organisms. The Miller-Urey experiments demonstrate that the abiotic synthesis of organic molecules is possible and support for this idea also comes from analyses of the chemical composition of meteorites which indicate the same proportions of amino acids produced in the Miller-Urey exp. In the 1960s, Sidney Fox synthesized organic polymers such as polypeptides by dripping dilute solutions of organic monomers over hot sand, clay, or rock. This method mimics the condensation of the Miller-Urey model, but with the idea that rain falling from the early atmosphere or waves washing onto hot substrate would be favorable to the formation of polypeptides and other organic polymers. Once these polymers have formed, they can form aggregates, which spontaneously form into proteinoids (protobiont structures similar to living organisms). Molecular & Genetic Evidence Molecular and genetic evidence from extant and extinct organisms indicates that all organisms on Earth share a common ancestral origin of life. Scientific evidence includes molecular building blocks that are common to all life forms (carbohydrates, proteins, lipids, amino acids). Scientific evidence includes a common genetic code (DNA and RNA).

The Origin of Life on Earth

The Origin of Life on Earth Study Guide The Origin of Life on Earth Checking Your Knowledge You should be able to write out the definitions to each of the following terms in your own words: abiotic Miller-Urey experiment ribozyme

More information

Ch. 25/26 Warm-Up. 2. List 3 pieces of evidence to support the endosymbiont theory.

Ch. 25/26 Warm-Up. 2. List 3 pieces of evidence to support the endosymbiont theory. Ch. 25/26 Warm-Up 1. Answer the following using the diagram below: A B C 3 4 2 D 1 a. a common ancestor for D & F b. most closely related species c. least related species d. new species C arises at this

More information

Origins of Life and Extinction

Origins of Life and Extinction Origins of Life and Extinction What is evolution? What is evolution? The change in the genetic makeup of a population over time Evolution accounts for the diversity of life on Earth Natural selection is

More information

MACROEVOLUTION Student Packet SUMMARY EVOLUTION IS A CHANGE IN THE GENETIC MAKEUP OF A POPULATION OVER TIME Macroevolution refers to large-scale

MACROEVOLUTION Student Packet SUMMARY EVOLUTION IS A CHANGE IN THE GENETIC MAKEUP OF A POPULATION OVER TIME Macroevolution refers to large-scale MACROEVOLUTION Student Packet SUMMARY EVOLUTION IS A CHANGE IN THE GENETIC MAKEUP OF A POPULATION OVER TIME Macroevolution refers to large-scale evolutionary changes such as speciation events, origin of

More information

Biology. Slide 1 of 36. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 36. End Show. Copyright Pearson Prentice Hall Biology 1 of 36 2 of 36 Formation of Earth Formation of Earth Hypotheses about Earth s early history are based on a relatively small amount of evidence. Gaps and uncertainties make it likely that scientific

More information

First, an supershort History of the Earth by Eon

First, an supershort History of the Earth by Eon HISTORY OF LIFE WRITTEN IN THE ROCKS (geological record): notice how at first no life, very simple if for billions of years, complex life only recently 600 mya In these chapters, two primary themes: History

More information

Bio 100 Study Guide 14.

Bio 100 Study Guide 14. Bio 100 Study Guide 14 http://www.swarthmore.edu/natsci/cpurrin1/evolk12/slm/origindayimages/06soup.jpg The Origin of Life 1. Conditions on early earth 2. Abiogenic synthesis organic molecules 3. Hot rocks

More information

sparked by just the right combination of physical events & chemical processes Life s Origin & Early Evolution (Ch. 20)

sparked by just the right combination of physical events & chemical processes Life s Origin & Early Evolution (Ch. 20) sparked by just the right combination of physical events & chemical processes Life s Origin & Early Evolution (Ch. 20) 2007-2008 ARCHEAN Millions of years ago PRECAMBRIAN PROTEROZOIC 0 500 1000 Cenozoic

More information

Bio 100 Study Guide 14.

Bio 100 Study Guide 14. Bio 100 Study Guide 14 http://www.swarthmore.edu/natsci/cpurrin1/evolk12/slm/origindayimages/06soup.jpg The Origin of Life - Issues i. Conditions on early earth ii. iii. iv. Abiogenic synthesis organic

More information

Text Readings. Chapter # 17 in Audesirk, Audesirk and Byers: The History of Life Pg. # Geologic Time...

Text Readings. Chapter # 17 in Audesirk, Audesirk and Byers: The History of Life Pg. # Geologic Time... Text Readings Chapter # 17 in Audesirk, Audesirk and Byers: The History of Life Pg. # 332-145. Geologic Time........ Geological Sources - 4.5 Billion Years Atmospheric Gases: Nitrogen (N 2 ) Water Vapor

More information

Chapter 19. History of Life on Earth

Chapter 19. History of Life on Earth Chapter 19 History of Life on Earth Adapted from Holt Biology 2008 Chapter 19 Section 3: Evolution of Life Key Vocabulary Terms Adapted from Holt Biology 2008 Cyanobacteria Photosynthetic prokaryotes Adapted

More information

Origin of Life. What is Life? The evolutionary tree of life can be documented with evidence. The Origin of Life on Earth is another

Origin of Life. What is Life? The evolutionary tree of life can be documented with evidence. The Origin of Life on Earth is another sparked by just the right combination of physical events & chemical processes Origin of Life 500 Paleozoic 1500 2000 2500 3000 3500 ARCHEAN Millions of years ago 1000 PROTEROZOIC Cenozoic Mesozoic 4000

More information

Chapter 26. Origin of Life

Chapter 26. Origin of Life Chapter 26. Origin of Life 1 The history tree of life can be documented with evidence as already discussed. The Origin of Life on Earth is another story 2 Origin of Life hypothesis Abiotic synthesis of

More information

Cell Biology 1.5- The Origin of Cells

Cell Biology 1.5- The Origin of Cells Essential idea: There is an unbroken chain of life from the first cells on Earth to all cells in organisms alive today. Cell Biology 1.5- The Origin of Cells Nature of Science: Testing the general principles

More information

9.1- Earth Forms and Life Begins

9.1- Earth Forms and Life Begins 9.1- Earth Forms and Life Begins About Earth: Earth was formed about 4.6 billion years ago! The first life on earth appeared about 4 billion years ago Life started out as small, single-celled organisms

More information

Chapter 19. History of Life on Earth

Chapter 19. History of Life on Earth Chapter 19 History of Life on Earth Opening Activity Draw a picture of what you think Earth s first life form may have looked like and label the parts of the organism. Content Objectives I will be able

More information

8/23/2014. The History of Life on Earth

8/23/2014. The History of Life on Earth The History of Life on Earth Chapter 25 Objectives Define radiometric dating, serial endosymbiosis, Pangaea, snowball Earth, exaptation, heterochrony, and paedomorphosis Describe the contributions made

More information

Origins of Life & the Cambrian Explosion

Origins of Life & the Cambrian Explosion Origins of Life & the Cambrian Explosion Impact Frustration period forces origins of life into a narrow time period to have gotten started! Hydrothermal vents may have served as zones of refuge. Origin

More information

Origins of Life & the Cambrian Explosion

Origins of Life & the Cambrian Explosion Origins of Life & the Cambrian Explosion Impact Frustration period forces origins of life into a narrow time period to have gotten started! Hydrothermal vents may have served as zones of refuge. 1 Origin

More information

Outline. Origin and History of Life

Outline. Origin and History of Life Origin and History of Life Chapter 19 Primitive Earth Origin of First Cells Fossils The Precambrian The Paleozoic The Mesozoic The Cenozoic Continental Drift Mass Extinctions Outline 1 2 The Primitive

More information

HISTORY OF LIFE ON EARTH

HISTORY OF LIFE ON EARTH HISTORY OF LIFE ON EARTH EARTH S HISTORY Earth s age: - about 4.6 billion years old (big bang) First life forms appeared ~3.5 billion years ago How did life arise? 1. Small organic molecules were synthesized

More information

UNIT 4: History Of Biological Diversity

UNIT 4: History Of Biological Diversity UNIT 4: History Of Biological Diversity CHAPTER 14: The History of Life PAST NOW FUTURE? What is this? Earth s Early history Approximately 4.6 billion years ago, the Earth was formed when many pieces of

More information

Carolina Origin of Life Kit for AP Biology

Carolina Origin of Life Kit for AP Biology Student Guide NAME DATE. Carolina Origin of Life Kit for AP Biology Imagine that you are a scientist interested in studying the origin of life in a lab setting. This has never been accomplished before,

More information

History of Life on Earth

History of Life on Earth Macroevolution Broad pattern of evolution at and above the species level (in contrast to microevolution) History of Life on Earth Chapter 25 Early earth Miller and Urey Experiments ~4.5 billion years old

More information

Phylogeny & Systematics

Phylogeny & Systematics Phylogeny & Systematics Phylogeny & Systematics An unexpected family tree. What are the evolutionary relationships among a human, a mushroom, and a tulip? Molecular systematics has revealed that despite

More information

sparked by just the right combination of physical events & chemical processes Origin of Life

sparked by just the right combination of physical events & chemical processes Origin of Life sparked by just the right combination of physical events & chemical processes Origin of Life 2010-2011 ARCHEAN Millions of years ago PRECAMBRIAN PROTEROZOIC 0 500 1000 Cenozoic Mesozoic Paleozoic Colonization

More information

Energy Requirement Energy existed in several forms satisfied condition 2 (much more UV than present no ozone layer!)

Energy Requirement Energy existed in several forms satisfied condition 2 (much more UV than present no ozone layer!) Biology 10 Chapter 19-3 p 553-558 Earth s Early History Objectives Describe the hypotheses scientists have about early Earth, and the origin of life. Describe the theory of how eukaryotic cells formed.

More information

dition-test-bank

dition-test-bank Link download full: Biology Exploring the Diversity of Life 2nd Edition Test Bank https://digitalcontentmarket.org/download/biology-exploring-the-diversity-of-life-2nd-e dition-test-bank CHAPTER 3 Defining

More information

Chapter 14 The History of Life

Chapter 14 The History of Life Section 1: Fossil Evidence of Change Section 2: The Origin of Life Click on a lesson name to select. 14.1 Fossil Evidence of Change Land Environments Earth formed about 4.6 billion years ago. Gravity pulled

More information

The Origin of Cells (1.5) IB Diploma Biology

The Origin of Cells (1.5) IB Diploma Biology The Origin of Cells (1.5) IB Diploma Biology Cell theory states that: All living things are composed of cells (or cell products) The cell is the smallest unit of life Cells only arise from pre-existing

More information

Chapter Fourteen (Evolution)

Chapter Fourteen (Evolution) 1 SECTION ONE: BIOGENESIS Chapter Fourteen (Evolution) The principle of biogenesis states that all living things come from other living things. Even though this seems like common sense to people today,

More information

Earth s Formation: 4.6 Billion Years ago

Earth s Formation: 4.6 Billion Years ago Earth s Formation: 4.6 Billion Years ago Formed from interstellar gas & dust into molten planet Earth s early atmosphere was hostile, made of carbon monoxide, methane, ammonia, nitrogen, nitrogen, sulfur,

More information

Evidence indicates that a sequence of chemical events preceded the origin of life on Earth and that life has evolved continuously since that time.

Evidence indicates that a sequence of chemical events preceded the origin of life on Earth and that life has evolved continuously since that time. Section 2: Evidence indicates that a sequence of chemical events preceded the origin of life on Earth and that life has evolved continuously since that time. K What I Know W What I Want to Find Out L What

More information

CHAPTER 19 THE HISTORY OF LIFE. Dr. Bertolotti

CHAPTER 19 THE HISTORY OF LIFE. Dr. Bertolotti CHAPTER 19 THE HISTORY OF LIFE Dr. Bertolotti Essential Question: HOW DO FOSSILS HELP BIOLOGISTS UNDERSTAND THE HISTORY OF LIFE ON EARTH? WHAT DO FOSSILS REVEAL ABOUT ANCIENT LIFE? FOSSILS AND ANCIENT

More information

Summary The Fossil Record Earth s Early History. Name Class Date

Summary The Fossil Record Earth s Early History. Name Class Date Name Class Date Chapter 17 Summary The History of Life 17 1 The Fossil Record Fossils are preserved traces and remains of ancient life. Scientists who study fossils are called paleontologists. They use

More information

Revision Based on Chapter 19 Grade 11

Revision Based on Chapter 19 Grade 11 Revision Based on Chapter 19 Grade 11 Biology Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Most fossils are found in rusty water. volcanic rock. sedimentary

More information

The History of Life. Before You Read. Read to Learn

The History of Life. Before You Read. Read to Learn 14 The History of Life section 1 Fossil Evidence of Change Before You Read Throughout Earth s history, many species have become extinct. On the lines below, name some organisms that have become extinct.

More information

Microbes and Origins of Life. Evolution has occurred almost elusively in a microbial world!!!

Microbes and Origins of Life. Evolution has occurred almost elusively in a microbial world!!! Microbes and Origins of Life Evolution has occurred almost elusively in a microbial world!!! Impact Frustration period forces origins of life into a narrow time period to have gotten started! Hydrothermal

More information

Earth s history can be broken up into 4 time periods: Precambrian Paleozoic Era Mesozoic Era Cenozoic Era

Earth s history can be broken up into 4 time periods: Precambrian Paleozoic Era Mesozoic Era Cenozoic Era Earth s History Video Clip Earth s History Earth s history can be broken up into 4 time periods: Precambrian Paleozoic Era Mesozoic Era Cenozoic Era Scientists have put together a timeline of Earth s history

More information

The history of Life Section 19.1: The fossil record

The history of Life Section 19.1: The fossil record The history of Life Section 19.1: The fossil record Fossils and Ancient Life Fossils provide information about extinct species Fossils can vary greatly Different sizes, types and degrees of preservation

More information

Chapter 17 The History of Life

Chapter 17 The History of Life Chapter 17 The History of Life The fossil record provides evidence about the history of life on Earth. It also shows how different groups of organisms, including species, have changed over time. Paleontologists

More information

Carolina TM Origin of Life Kit for AP Biology

Carolina TM Origin of Life Kit for AP Biology NAME DATE Carolina TM Origin of Life Kit for AP Biology Imagine that you are a scientist interested in studying the origin of life in a lab setting. This has never been accomplished before, but you have

More information

Chapters 25 and 26. Searching for Homology. Phylogeny

Chapters 25 and 26. Searching for Homology. Phylogeny Chapters 25 and 26 The Origin of Life as we know it. Phylogeny traces evolutionary history of taxa Systematics- analyzes relationships (modern and past) of organisms Figure 25.1 A gallery of fossils The

More information

Evolution and diversity of organisms

Evolution and diversity of organisms Evolution and diversity of organisms Competency Levels - 7 3.1.1 Uses the theories of origin of life and natural selection to analyze the process of evolution of life 3.2.1 Constructs hierarchy of taxa

More information

Endosymbiotic Theory

Endosymbiotic Theory Endosymbiotic Theory Evolution of Prokaryotes The oldest known fossils are 3.5 bya = stromatolites which are rock like layers of bacteria and sediment. Earliest life forms may have emerged as early as

More information

Chapter 25: The Origin and Evolutionary History of Life on Earth

Chapter 25: The Origin and Evolutionary History of Life on Earth Chapter 25: The Origin and Evolutionary History of Life on Earth Chemical conditions of the early Earth A model for the first cells First life Life changes the planet: oxygenating Earth s oceans and atmosphere

More information

I. History of Life on Earth

I. History of Life on Earth Evolution I. History of Life on Earth I. History of Life A. Early History of Earth I. Early earth was inhospitable hot, with many volcanoes little free oxygen and lots of carbon dioxide other gases present:

More information

ASTR 390 Astrobiology

ASTR 390 Astrobiology ASTR 390 Astrobiology Abiotic Origins of Life on Earth Prof. Geller Some Thoughts on Life s Origins Searching for the origin Functional beginnings of life From chemistry to biology at the molecular level

More information

AP: CHAPTER 24: THE ORIGIN OF SPECIES 1. Define the term species.

AP: CHAPTER 24: THE ORIGIN OF SPECIES 1. Define the term species. AP Biology Chapter 24 Guided Reading Assignment Ms. Hall Name AP: CHAPTER 24: THE ORIGIN OF SPECIES 1. Define the term species. 2. How do the patterns of speciation differ? a. anagenesis b. cladogenesis

More information

The History of Life. Fossils and Ancient Life (page 417) How Fossils Form (page 418) Interpreting Fossil Evidence (pages ) Chapter 17

The History of Life. Fossils and Ancient Life (page 417) How Fossils Form (page 418) Interpreting Fossil Evidence (pages ) Chapter 17 Chapter 17 The History of Life Section 17 1 The Fossil Record (pages 417 422) This section explains how fossils form and how they can be interpreted. It also describes the geologic time scale that is used

More information

ASTR 390 Astrobiology

ASTR 390 Astrobiology ASTR 390 Astrobiology Abiotic Origins of Life on Earth Prof. Geller 1 Some Thoughts on Life s Origins Searching for the origin Functional beginnings of life From chemistry to biology at the molecular level

More information

Bio Chemical evolution

Bio Chemical evolution Bio Chemical evolution It is generally agreed by Astronomers, Geologist and Biologist that the earth is about 4.5 to 5 thousand million years old. This theory is the most accepted theory in the field of

More information

.Biology Chapter 14 Test: The History of Life

.Biology Chapter 14 Test: The History of Life Class: Date:.Biology Chapter 14 Test: The History of Life True/False Indicate whether the statement is true or false. 1. On the geologic time scale, an eon is longer than an era. 2. The oblong shape of

More information

From soup to cells the origin of life

From soup to cells the origin of life From soup to cells the origin of life A microbe-like cellular filament found in 3.465 billion year old rock Evolution encompasses a wide range of phenomena: from the emergence of major lineages, to mass

More information

Section 17 1 The Fossil Record (pages )

Section 17 1 The Fossil Record (pages ) Chapter 17 The History of Life Section 17 1 The Fossil Record (pages 417 422) Key Concepts What is the fossil record? What information do relative dating and radioactive dating provide about fossils? What

More information

Section 17 1 The Fossil Record (pages )

Section 17 1 The Fossil Record (pages ) Name Class Date Chapter 17 The History of Life Section 17 1 The Fossil Record (pages 417 422) This section explains how fossils form and how they can be interpreted. It also describes the geologic time

More information

Name Class Date. Crossword Puzzle Use the clues below to complete the puzzle.

Name Class Date. Crossword Puzzle Use the clues below to complete the puzzle. Chapter 17 The History of Life Chapter Vocabulary Review Crossword Puzzle Use the clues below to complete the puzzle. 1 2 3 4 5 6 7 8 9 10 11 Across 2. time span shorter than an era, such as Quaternary

More information

AP BIOLOGY (UNIT 9) (Ch. 26)

AP BIOLOGY (UNIT 9) (Ch. 26) EARLY EARTH AND THE ORIGIN OF LIFE (Ch. 26) In the Big Bang Theory, the observable universe began with an instantaneously expanding point, roughly ten to twenty billion years ago. Since then, the universe

More information

Origins How Life Began Chapter 18

Origins How Life Began Chapter 18 You have to know: How do we know? Origins How Life Began Chapter 18 Sun was Born: 5 BYA Earth was born: 4.6 BYA >Big Bang 13.7BYA >Math of expansion of the Universe >Radio telescopes detecting radio waves

More information

SECTION 14-1 REVIEW BIOGENESIS. 2. The purpose of the netting in Redi s experiment was to prevent

SECTION 14-1 REVIEW BIOGENESIS. 2. The purpose of the netting in Redi s experiment was to prevent SECTION 14-1 REVIEW BIOGENESIS VOCABULARY REVIEW Define the following terms. 1. biogenesis 2. spontaneous generation 3. vital force MULTIPLE CHOICE Write the correct letter in the blank. 1. One of the

More information

Write the events about the origins of life on Earth in order from oldest to youngest

Write the events about the origins of life on Earth in order from oldest to youngest Write the events about the origins of life on Earth in order from oldest to youngest 1. Earth forms 2. First organic molecules (such as amino acids) appear 3. First anaerobic prokaryotic cells appear 4.

More information

Chapter Study Guide Section 17-1 The Fossil Record (pages )

Chapter Study Guide Section 17-1 The Fossil Record (pages ) Name Class Date Chapter Study Guide Section 17-1 The Fossil Record (pages 417-422) Key Concepts What is the fossil record? What information do relative dating and radioactive dating provide about fossils?

More information

Chapter 30 The Theory of Evolution

Chapter 30 The Theory of Evolution Chapter 30 The Theory of Evolution http://www.pbs.org/wgbh/nova/odyssey/debate/ http://www.nationalgeographic.com/features/outpost/ http://www.discovery.com/news/features/humanorig Evolution A process

More information

Biology. Slide 1 / 44. Slide 2 / 44. Slide 3 / 44. Origins of Life Multiple Choice

Biology. Slide 1 / 44. Slide 2 / 44. Slide 3 / 44. Origins of Life Multiple Choice Slide 1 / 44 Slide 2 / 44 iology Origins of Life Multiple hoice 2015-10-14 www.njctl.org 1 Where did the heavier elements, present in our solar system, come from? Slide 3 / 44 collisions between the earth

More information

Study Guide. Section 1: Fossil Evidence of Change CHAPTER 14

Study Guide. Section 1: Fossil Evidence of Change CHAPTER 14 Name Date Class Study Guide CHAPTER 14 Section 1: Fossil Evidence of Change In your textbook, read about Earth s early history. For each statement below, write true or false. 1. Solid Earth formed about

More information

Tracing Evolutionary History (Outline)

Tracing Evolutionary History (Outline) Tracing Evolutionary History (Outline) Four stages leading to emergence of living cells Geophysical conditions impact on biodiversity: - continental drift and volcanism, earthquakes and meteorites Living

More information

Biology. Slide 1 / 44. Slide 2 / 44. Slide 3 / 44. Origins of Life Multiple Choice

Biology. Slide 1 / 44. Slide 2 / 44. Slide 3 / 44. Origins of Life Multiple Choice Slide 1 / 44 Slide 2 / 44 iology Origins of Life Multiple hoice 2015-10-14 www.njctl.org 1 Where did the heavier elements, present in our solar system, come from? Slide 3 / 44 collisions between the earth

More information

3. Evolutionary change is random because gene mutations are random. A. True B. False

3. Evolutionary change is random because gene mutations are random. A. True B. False Clicker Questions, Test 2 February 9, 2015, Outline 7 1. Darwin coined the term Natural Selection to contrast with what other term? A. Evolutionary Selection B. Competition C. Artificial Selection D. Survival

More information

The Evolution of Microbial Life

The Evolution of Microbial Life 1 Chapter 15 The Evolution of Microbial Life Chapter 15 Outline: The Evolution of Microbial Life Major Episodes in the History of Life The Origin of Life Prokaryotes Protists 2 PowerPoint Lectures for

More information

12.1. KEY CONCEPT Fossils are a record of life that existed in the past. 68 Reinforcement Unit 4 Resource Book

12.1. KEY CONCEPT Fossils are a record of life that existed in the past. 68 Reinforcement Unit 4 Resource Book 12.1 THE FOSSIL RECORD KEY CONCEPT Fossils are a record of life that existed in the past. Fossils can form in several different ways: Permineralization occurs when water surrounds a hard structure such

More information

Oceans: the cradle of life? Chapter 5. Cells: a sense of scale. Head of a needle

Oceans: the cradle of life? Chapter 5. Cells: a sense of scale. Head of a needle Oceans: the cradle of life? Highest diversity of life, particularly archae, bacteria, and animals Will start discussion of life in the ocean with prokaryote microorganisms Prokaryotes are also believed

More information

History of Life on Earth The Geological Time- Scale

History of Life on Earth The Geological Time- Scale History of Life on Earth The Geological Time- Scale Agenda or Summary Layout The Geological Time-Scale 1 2 3 The Geological Time-Scale The Beginning of Life Cambrian Explosion The Geological Time-Scale

More information

UNIT 4: EVOLUTION Chapter 12: The History of Life. I. The Fossil Record (12.1) A. Fossils can form in several ways

UNIT 4: EVOLUTION Chapter 12: The History of Life. I. The Fossil Record (12.1) A. Fossils can form in several ways UNIT IV Chapter 12 The History Of Life UNIT 4: EVOLUTION Chapter 12: The History of Life I. The Fossil Record (12.1) A. Fossils can form in several ways 1. Permineralization- minerals carried by water

More information

The Prokaryotic World

The Prokaryotic World The Prokaryotic World A. An overview of prokaryotic life There is no doubt that prokaryotes are everywhere. By everywhere, I mean living in every geographic region, in extremes of environmental conditions,

More information

Origins of Life. Fundamental Properties of Life. The Tree of Life. Chapter 26

Origins of Life. Fundamental Properties of Life. The Tree of Life. Chapter 26 Origins of Life The Tree of Life Cell is the basic unit of life Today all cells come from pre-existing cells Earth formed ~4.5 billion years ago (BYA) Chapter 26 As it cooled, chemically-rich oceans were

More information

13.1 Originating Events

13.1 Originating Events 13.1 Originating Events Earth, and life on it, originated billions of years ago. Scientists have pieced together a scientific description of the initial conditions and events that may have resulted in

More information

Calculating extra credit from clicker points. Total points through last week: Participation: 6 x 2 = 12 Performance: = 26

Calculating extra credit from clicker points. Total points through last week: Participation: 6 x 2 = 12 Performance: = 26 Clicker Questions, Test 2 February 10, 2016, Outline 7 1. Darwin coined the term Natural Selection to contrast with what other term? A. Evolutionary Selection B. Competition C. Artificial Selection D.

More information

X The evolution of life on Earth.

X The evolution of life on Earth. X The evolution of life on Earth http://sgoodwin.staff.shef.ac.uk/phy229.html 10.0 Introduction A combination of the fossil record, biology and genetics allows us to examine the evolution of life on Earth.

More information

EVOLUTION & SPECIATION

EVOLUTION & SPECIATION EVOLUTION & SPECIATION Page 2 VOCABULARY REVIEW NEW VOCABULARY EVOLUTION CHANGE OVER TIME NATURAL SELECTION - INDIVIDUALS BETTER ADAPTED TO THE ENVIRONMENT ARE ABLE TO SURVIVE & REPRODUCE. A.K.A. SURVIVAL

More information

Biology 3201 Unit 4 Ecology Ch Adaptation and Speciation

Biology 3201 Unit 4 Ecology Ch Adaptation and Speciation Biology 3201 Unit 4 Ecology Ch. 21 - Adaptation and Speciation Speciation Speciation: the formation of a new species Biological species: a group of organisms able to interbreed and produce fertile offspring.

More information

Biology 10 th Grade. Textbook: Biology, Miller and Levine, Pearson (2010) Prerequisite: None

Biology 10 th Grade. Textbook: Biology, Miller and Levine, Pearson (2010) Prerequisite: None Biology 10 th Grade SCI 401, 402 Biology 1 credit 5 days a week; 2 semesters Taught in English Biology - The Study of Life! This is a required course for all 10 th grade students in both the Mexican and/or

More information

4) Outline the major developments that allowed life to exist on Earth.

4) Outline the major developments that allowed life to exist on Earth. Objectives 4) Outline the major developments that allowed life to exist on Earth. 5) Describe the types of organisms that arose during the four major divisions of the geologic time scale. Each layer of

More information

Unit 7: Evolution Guided Reading Questions (80 pts total)

Unit 7: Evolution Guided Reading Questions (80 pts total) AP Biology Biology, Campbell and Reece, 10th Edition Adapted from chapter reading guides originally created by Lynn Miriello Name: Unit 7: Evolution Guided Reading Questions (80 pts total) Chapter 22 Descent

More information

Eukaryotic Cells. Figure 1: A mitochondrion

Eukaryotic Cells. Figure 1: A mitochondrion Eukaryotic Cells Figure 1: A mitochondrion How do cells accomplish all their functions in such a tiny, crowded package? Eukaryotic cells those that make up cattails and apple trees, mushrooms and dust

More information

Slide 1 / Describe the setup of Stanley Miller s experiment and the results. What was the significance of his results?

Slide 1 / Describe the setup of Stanley Miller s experiment and the results. What was the significance of his results? Slide 1 / 57 1 Describe the setup of Stanley Miller s experiment and the results. What was the significance of his results? Slide 2 / 57 2 Explain how dehydration synthesis and hydrolysis are related.

More information

ORIGIN OF CELLULARITY AND CELLULAR DIVERSITY

ORIGIN OF CELLULARITY AND CELLULAR DIVERSITY ORIGIN OF CELLULARITY AND CELLULAR DIVERSITY Geological stratigraphy, together with radioactive dating, show the sequence of events in the history of the Earth. Note the entry for cyanobacteria and stromatolites

More information

GACE Biology Assessment Test I (026) Curriculum Crosswalk

GACE Biology Assessment Test I (026) Curriculum Crosswalk Subarea I. Cell Biology: Cell Structure and Function (50%) Objective 1: Understands the basic biochemistry and metabolism of living organisms A. Understands the chemical structures and properties of biologically

More information

Unit 8: EVOLUTION NOTES

Unit 8: EVOLUTION NOTES Unit 8: EVOLUTION NOTES Canale LE EVOLUTION is the change in gene frequency in a population over time. Generally, organisms change from simple to more complex, and happens over many generations. **Evolution

More information

Outline 10: Origin of Life. Better Living Through Chemistry

Outline 10: Origin of Life. Better Living Through Chemistry Outline 10: Origin of Life Better Living Through Chemistry What is Life? Internal chemical activity providing growth, repair, and generation of energy. The ability to reproduce. The capacity to respond

More information

The two questions we re trying to answer today: 1) How did life on Earth form? 2) How did life on Earth become so diverse?

The two questions we re trying to answer today: 1) How did life on Earth form? 2) How did life on Earth become so diverse? The two questions we re trying to answer today: 1) How did life on Earth form? 2) How did life on Earth become so diverse? Using only science to explain! Remember, there are two types of cells on Earth:

More information

I. Early Theory! A. Spontaneous Generation - The hypothesis that life arises regularly from non-living things

I. Early Theory! A. Spontaneous Generation - The hypothesis that life arises regularly from non-living things ORIGIN OF LIFE! I. Early Theory! A. Spontaneous Generation - The hypothesis that life arises regularly from non-living things II. Experiments That Helped to Disprove Spontaneous Generation! A. Italian

More information

A. Incorrect! Darwin could not draw complete conclusions because of the lack of fossils.

A. Incorrect! Darwin could not draw complete conclusions because of the lack of fossils. High School Biology - Problem Drill 15: Evolutionary History Question No. 1 of 10 1. Which of the following statements is incorrect? Question #01 (A) Darwin was unable to come to a firm conclusion because

More information

The History of Life on Earth

The History of Life on Earth Chapter 25 The History of Life on Earth PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

1. Evolution and Classification

1. Evolution and Classification 1. Evolution and Classification 1.1 Origin of Life and Plants 1.2 Animal Evolution 1.3 Human Evolution 1.4 Mechanisms of Evolution 1.5 Hardy-Weinberg Equilibrium 1.6 Mechanisms of Speciation 1.7 Classification

More information

I. Life on Earth originated between 3.5 and 4.0 billion years ago

I. Life on Earth originated between 3.5 and 4.0 billion years ago CHAPTER 24 EARLY EARTH AND THE ORIGIN OF LIFE OUTLINE I. Life on Earth originated between 3.5 and 4.0 billion years ago II. III. IV. The first cells may have originated by chemical evolution on a young

More information

Name Date Class. scientists were led to believe once again that these organisms must have arisen (7).

Name Date Class. scientists were led to believe once again that these organisms must have arisen (7). Name Date Class Chapter 14 The History of Life, continued Section 14.2 The Origin of Life In your textbook, read about origins: the early ideas. Use each of the terms below just once to complete the passage.

More information

Classification & History of Life

Classification & History of Life Classification & History of Life Today & next time Taxonomy Modes of Life Origin of Life Traditional new History of life Taxonomy: Organize life into related groups Traditional Taxonomy Grouped by shared

More information

Origins of Life. Fundamental Properties of Life. Conditions on Early Earth. Evolution of Cells. The Tree of Life

Origins of Life. Fundamental Properties of Life. Conditions on Early Earth. Evolution of Cells. The Tree of Life The Tree of Life Chapter 26 Origins of Life The Earth formed as a hot mass of molten rock about 4.5 billion years ago (BYA) -As it cooled, chemically-rich oceans were formed from water condensation Life

More information

Bio-organic chemicals can be formed by simple inorganic processes involving basic C, H, O, S, and N compounds and a source of energy

Bio-organic chemicals can be formed by simple inorganic processes involving basic C, H, O, S, and N compounds and a source of energy ORIGIN OF CELLS Summary Bio-organic chemicals can be formed by simple inorganic processes involving basic C, H, O, S, and N compounds and a source of energy Concentration of substrates for synthetic reactions

More information

ASTR 390 Astrobiology

ASTR 390 Astrobiology ASTR 390 Astrobiology Origins of Complex Life on Earth The origin of life on Earth most likely occurred A before 4.5 billion years ago B between about 4.5 billion years ago and 3.5 billion years ago C

More information