Molecular Biology of the Cell

Size: px
Start display at page:

Download "Molecular Biology of the Cell"

Transcription

1 Alberts Johnson Lewis Morgan Raff Roberts Walter Molecular Biology of the Cell Sixth Edition Chapter 11 Membrane Transport of Small Molecules and the Electrical Properties of Membranes Copyright Garland Science 2015 Phospholipids Spontaneously Form Bilayers 1

2 The prohibition of free edges leads to closing in on itself CHAPTER CONTENTS PRINCIPLES OF MEMBRANE TRANSPORT TRANSPORTERS AND ACTIVE MEMBRANE TRANSPORT CHANNELS AND THE ELECTRICAL PROPERTIES OF MEMBRANES 2

3 Introduction PRINCIPLES OF MEMBRANE TRANSPORT Protein-Free Lipid Bilayers Are Impermeable to Ions 3

4 Protein-Free Lipid Bilayers Are Impermeable to Ions Depending on how fast it can be dissolved in lipid bilayers Small Hydrophobic Nonpolar PRINCIPLES OF MEMBRANE TRANSPORT There Are Two Main Classes of Membrane Transport Proteins: Transporters and Channels 4

5 There Are Two Main Classes of Membrane Transport Proteins: Transporters and Channels Molecules /s Molecules /s ConformaEonal change ConformaEonal change PRINCIPLES OF MEMBRANE TRANSPORT Active Transport Is Mediated by Transporters Coupled to an Energy Source 5

6 Passive v.s. active transport? [sugar] [ion] - chemical gradient [sugar]? [ion] - electrochemical gradient V m =-200mV For uncharged molecules: Passive: move from higher concentration to lower concentration Active: need energy input in order to move from lower concentration to higher concentration Active Transport Is Mediated by Transporters Coupled to an Energy Source 6

7 Active Transport Is Mediated by Transporters Coupled to an Energy Source TRANSPORTERS AND ACTIVE MEMBRANE TRANSPORT Introduction 7

8 Introduction Passive transport mediated by uniporter Introduction 8

9 facilitated diffusion The differences between passive diffusion and facilitated diffusion: 1. Transporting rate 2. Certain V max : limited number of transporters presented on the membrane. 3. Specificity: K m K M =1.5 mm Blood glucose is 5 mm, 77% of the maximal rate K M =20 mm After a meal, blood glucose increase from 5 mm to 14 mm, GLUT1 or GLUT2 expressing cells double their glocose uptake? Introduction Active transport Ion concentration gradients ATP Light/redox Bacteriorhodopsin/ Cytochrome C oxidase Energy sources 9

10 TRANSPORTERS AND ACTIVE MEMBRANE TRANSPORT Active Transport Can Be Driven by Ion-Concentration Gradients Three types of transporters: Uniporter, Symporter and antiporter 1.4 min 10

11 Active Transport Can Be Driven by Ion-Concentration Gradients Three types of transporters Secondary active transporter In many cases, they share similar 3D structure Mechanism of glucose transport fueled by Na + gradient Animal plasmamembrane: Using Na + gradients Plants, Yeasts, Bacteria: Using H + gradients 11

12 17/10/17 Transporters are built from (inverted) repeats Inverted repeat MFS: Direct repeat Transporter can works in the reverse direction TRANSPORTERS AND ACTIVE MEMBRANE TRANSPORT Antiporters 12

13 Antiporters in the Plasma Membrane Regulate Cytosolic ph Metabolic will make cytosol acidic, use Na + in /HCO 3 - in /Cl- out /H+ out exchanger and Na + in /H+ out increase cytosolic ph, and Band 3 to balance out their reaction H + /H + Important for CO 2 circulation Carbonic anhydrase: HCO 3 - CO 2 + OH - TRANSPORTERS AND ACTIVE MEMBRANE TRANSPORT An Asymmetric Distribution of Transporters in Epithelial Cells Underlies the Transcellular Transport of Solutes 13

14 1.4 min An Asymmetric Distribution of Transporters in Epithelial Cells Underlies the Transcellular Transport of Solutes Tight junction: 1. Prevent glucose diffusion 2. Help define membrane domains 14

15 TRANSPORTERS AND ACTIVE MEMBRANE TRANSPORT There Are Three Classes of ATP-Driven Pumps There Are Three Classes of ATP-Driven Pumps Form phosphoprotein 15

16 TRANSPORTERS AND ACTIVE MEMBRANE TRANSPORT A P-type ATPase Pumps Ca 2+ into the Sarcoplasmic Reticulum in Muscle Cells Structure of the Sarcoplasmic Reticulum Ca 2+ Pumps in Muscle Cells 16

17 The pumping cycle of the sarcoplasmic reticulum Ca 2+ pump 10-7 M (resting cells) 10-6 M (contracting cells) Calcium binding è 1. Close the pathway to cytosol 2. Phosphate transferred to aspartate high-affinity binding 10-2 M low-affinity binding ADP replaced with ATP è 4. Open the pathway to SR lumen ~90% of integral protein in SR membrane TRANSPORTERS AND ACTIVE MEMBRANE TRANSPORT The Plasma Membrane Na + -K + Pump Establishes Na + and K + Gradients Across the Plasma Membrane 17

18 The function of the Na + -K + Pump 1.4 min The function of the Na + -K + Pump Animal Cell devotes more than one third of its ATP to fuel this pump 18

19 TRANSPORTERS AND ACTIVE MEMBRANE TRANSPORT ABC (ATP-binding cassettes) Transporters Constitute the Largest Family of Membrane Transport Proteins Small-molecule transport by typical ABC transporters Importing or exporting Exporting To extracellular space or ER 19

20 A small section of the double membrane of Gram-negative bacteria, e.g. E. coli 1. In E. coli, 78 genes (5% of the total genes) encode ABC transporters 2. The variety of substrates is great and includes inorganic ions, amino acids, mono- and polysaccharides, peptides, lipids, drugs and even proteins The auxiliary transport system associated with transport ATPase in bacteria with double membrane 20

21 Multiple drug resistance (MDR) protein, also call P-glycoprotein 1. Resistant to multiple anticancer drugs (MDR) 2. Chloroquine (malaria drug) resistance 3. Cystic fibrosis transmembrane conductance regulator protein (CFTR) ATP-gated Cl - channel 2.2 min CHANNELS AND THE ELECTRICAL PROPERTIES OF MEMBRANES Aquaporins Are Permeable to Water But Impermeable to Ions 21

22 The role of aquporins in fluid secretion in exocrine glands Another example: epithelial cells of kidney Water pass through the pore of aquaporin in a single file From 1.4 min, total 2 min 22

23 Why do aquoporins transport only water, but not ions or proton? 1. Energy cost of dehydrating ion is too high 2. Two Asn in the center prevent proton to get past Carbonyl group Hydrophobic Hydrophilic Proton diffuse, using molecular relay mechanism that required the making and breaking of hydrogen bonds between adjacent water molecules CHANNELS AND THE ELECTRICAL PROPERTIES OF MEMBRANES Ion Channels Are Ion-Selective and Fluctuate Between Open and Closed States More than 100 types of channels Electrical excitability of muscle Electrical signaling of neuron Leaf closing response of mimosa 23

24 Ion Channels Fluctuate Between Open and Closed States Ion selectivity The gating of ion channels 24

25 CHANNELS AND THE ELECTRICAL PROPERTIES OF MEMBRANES The Membrane Potential in Animal Cells Depends Mainly on K + Leak Channels and the K + Gradient Across the Plasma Membrane The Membrane Potential in Animal Cells Depends Mainly on K + Leak Channels and the K + Gradient Across the Plasma Membrane 25

26 The Membrane Potential in Animal Cells Depends Mainly on K + Leak Channels and the K + Gradient Across the Plasma Membrane Nongated ion channels and the resting membrane potential 26

27 E K =(RT/ZF)*ln([K] o /[K] c ) (Nernst equation) R:gas constant, cal/degree.mol T:absolute temperature F:Faraday constant, cal/mol.v At 20 cytosol 150 mm 15 mm K + : E K (V)=(0.059/Z)*log([K] o /[K] c ) E K (mv)=(59/z)*log([k] 0 /[K] c ) E K (mv)=(59/1)*log(15/150) E K (mv)= -59mV E Na =(RT/ZF)*ln([Na] o /[Na] c ) (Nernst equation) cytosol 15 mm 150 mm R:gas constant, cal/degree.mol T:absolute temperature F:Faraday constant, cal/mol.v At 20 Na + : E Na (V)=(0.059/Z)*log([Na] o /[Na] c ) E Na (mv)=(59/z)*log([na] 0 /[Na] c ) E Na (mv)=(59/1)*log(150/15) E Na (mv)= +59mV 27

28 The ionic basis of a membrane potential Figure The ionic basis of a membrane potential. A small flow of inorganic ions through an ion channel carries sufficient charge to cause a large change in the membrane potential. 1. Na + K + pump to generate K + gradient 2. K + leak channel to mediate K + influx and generate membrane poteneal Only 1/100,000 total number of K flowing out is enough to generate 100 mv CHANNELS AND THE ELECTRICAL PROPERTIES OF MEMBRANES The Three-Dimensional Structure of a Bacterial K + Channel Shows How an Ion Channel Can Work 28

29 The Three-Dimensional Structure of a Bacterial K + Channel Shows How an Ion Channel Can Work 1.5 min The Three-Dimensional Structure of a Bacterial K + Channel Shows How an Ion Channel Can Work 29

30 K + specificity of the selectivity filter in a K + channel A model for the gating of a bacterial K + channel Cytosolic side Like diaphragm ( 光圈 ) 30

31 CHANNELS AND THE ELECTRICAL PROPERTIES OF MEMBRANES Mechanosensitive Channels Protect Bacterial Cells Against Extreme Osmotic Pressures In hypotonic conditions, cell Swells, mechanosensitive channel activated, small molecular leak out Auditory hair cell in human cochelea 1.3 min 31

32 The structure of Mechanosensitive Channels CHANNELS AND THE ELECTRICAL PROPERTIES OF MEMBRANES Voltage-Gated Cation Channels Generate Action Potentials in Electrically Excitable Cells 32

33 Voltage-Gated Cation Channels Generate Action Potentials in Neuron 3.2 min A typical vertebrate neuron 33

34 Structure models of voltage-gated Na + channels How do Voltage-Gated Cation Channels Generate Action Potentials? Green line: in the absence of Na + channel 34

35 The propagation of an action potential along an axon CHANNELS AND THE ELECTRICAL PROPERTIES OF MEMBRANES The Use of Channelrhodopsins Has Revolutionized the Study of Neural Circuits Channelrhodopsins: photosensitive ion channels that open in response to light 35

36 Optogenetics: Use light flashes to activate specific neurons From 2.1 min CHANNELS AND THE ELECTRICAL PROPERTIES OF MEMBRANES Myelination Increases the Speed and Efficiency of Action Potential Propagation in Nerve Cells 36

37 Myelination Related desease: Multiple sclerosis Where the Na + channels are concentrated Advantages: 1. Action potential travel much fast 2. Save metabolic energy by confining the excitation at node of Ranvier CHANNELS AND THE ELECTRICAL PROPERTIES OF MEMBRANES Patch-Clamp Recording Indicates That Individual Ion Channels Open in an All-or- Nothing Fashion 37

38 The technique of Patch-Clamp Recording Patch-Clamp Recording Indicates That Individual Ion Channels Open in an All-or-Nothing Fashion 38

39 CHANNELS AND THE ELECTRICAL PROPERTIES OF MEMBRANES Transmitter-Gated Ion Channels Convert Chemical Signals into Electrical Ones at Chemical Synapses Transmitter-Gated Ion Channels Convert Chemical Signals into Electrical Ones at Chemical Synapses 1.5 min 39

40 A chemical synapse Neurotransmitter-gated channels (ionotropic receptors) CHANNELS AND THE ELECTRICAL PROPERTIES OF MEMBRANES Chemical Synapses Can Be Excitatory or Inhibitory Excitatory neurotransmitters (acetylchloline, glutamate and serotonin) open Na + or Ca ++ channels Inhibitory neurotransmitters (γaminobutyric acid GABA and glycine) open Cl - or K + channels Two types of neurotransmitter receptors Ionotropic receptors: fast Metabotropic receptors: slow, but longlasting ² G-protein coupled receptors 40

41 CHANNELS AND THE ELECTRICAL PROPERTIES OF MEMBRANES The Acetylcholine Receptors at the Neuromuscular Junction Are Excitatory Transmitter-Gated Cation Channels Permeable to K +, Na + and Ca ++, but Ca ++ is too low, and K + is at equilibrium. So, it mainly mediate Na + influx, cause depolarization, and then the muscle contract. The Acetylcholine Receptors at the Neuromuscular Junction Are Excitatory Transmitter-Gated Cation Channels Free acetylcholine is cleaved by acetylcholinesterase 41

42 CHANNELS AND THE ELECTRICAL PROPERTIES OF MEMBRANES Many Psychoactive Drugs Act at Synapses Curare, targeting acetylcholine receptors on skeletal muscle cells, to relax muscles during operation Ambien, sleeping pills, bind to and activate GABA receptor (an inhibitory Cl - receptor) Neuromuscular Transmission Involves the Sequential Activation of Five Different Sets of Ion Channels 1. Voltage-gated Ca ++ channel 2. Acetylcholine receptors 3. Voltage-gated Na + channel 4. Voltage-gated Ca ++ channel in transverse tubules 5. Ca ++ -pump in SR Cytosolic Ca ++ increase, and then muscle cell contract. 42

43 Single Neurons Are Complex Computation Devices Neuronal Computation Requires a Combination of at Least Three Kinds of K + Channels in the initial segment for encoding 1. Delayed K + Channels: Reploarize the membrane after each action potential to prepare the cell to file again Voltage-gated, but slow kinetics, open during the falling phase of the action potential when Na+ channels are inactive, make the membrane back to the K+ equilibrium potential which make Na+ channels rcovered from their inactivated state Repolarization of the membrane also closes the delayed K+ channels 43

44 Neuronal Computation Requires a Combination of at Least Three Kinds of K + Channels in the initial segment for encoding 2. Rapidly inactivating K+ channel: The frequence of the firing has to reflect the intensity of the simulation. And, below a threshold level of stimulation, the cell will not fire It also opens when the membrane is depolarized, But with specific voltage sensitivity and kinetics of inactivation Figure The magnitude of the combined postsynaptic potential (PSP) is reflected in the frequency of firing of action potentials. The mix of excitatory and inhibitory PSPs produces a combined PSP at the initial segment. A comparison of (A) and (B) shows how the firing frequency of an axon increases with an increase in the combined PSP, while (C) summarizes the general relationship Neuronal Computation Requires a Combination of at Least Three Kinds of K + Channels in the initial segment for encoding 3. Ca +2 activating K + channel: Adaptation: decrease the response of the cell to an unchanging. Prolonged stimulation will increase cytosolic Ca 2+ via voltage-gated Ca 2+ channel, and then activate Ca +2 activating K + channel. Make the membrane harder to depolarize Feel a light touch on the shoulder and yet ignore the constant pressure of our clothing 44

45 CHANNELS AND THE ELECTRICAL PROPERTIES OF MEMBRANES Long-Term Potentiation (LTP) in the Mammalian Hippocampus (for Learning) Depends on Ca 2+ Entry Through NMDA- Receptor Channels Some synapses in the hippocampus show a striking form of synaptic plasticity with repeated use: whereas occasional single action potentials in the presynaptic cells leave no lasting trace, a short burst of repetitive firing causes long-term potentiation (LTP ), such that subsequent single action potentials in the presynaptic cells evoke a greatly enhanced response in the postsynaptic cells. The effect lasts hours, days, or weeks, according to the number and intensity of the bursts of repetitive firing Long-Term Potentiation (LTP) in the Mammalian Hippocampus Depends on Ca 2+ Entry Through NMDA-Receptor Channels LTP occurs on any occasion when a presynaptic cell fires (once or more) at a time when the postsynaptic membrane is strongly depolarized (either through recent repetitive firing of the same presynaptic cell or by other means). The NMDA-receptor channels are doubly gated, opening only when two conditions are satisfied simultaneously: glutamate must be bound to the receptor, and the membrane must be strongly depolarized. The second condition is required for releasing the Mg2+ that normally blocks the resting channel 45

46 Long-Term Potentiation (LTP) in the Mammalian Hippocampus Depends on Ca 2+ Entry Through NMDA-Receptor Channels 46

CELL BIOLOGY - CLUTCH CH. 9 - TRANSPORT ACROSS MEMBRANES.

CELL BIOLOGY - CLUTCH CH. 9 - TRANSPORT ACROSS MEMBRANES. !! www.clutchprep.com K + K + K + K + CELL BIOLOGY - CLUTCH CONCEPT: PRINCIPLES OF TRANSMEMBRANE TRANSPORT Membranes and Gradients Cells must be able to communicate across their membrane barriers to materials

More information

Membrane transport 1. Summary

Membrane transport 1. Summary Membrane transport 1. Summary A. Simple diffusion 1) Diffusion by electrochemical gradient no energy required 2) No channel or carrier (or transporter protein) is needed B. Passive transport (= Facilitated

More information

لجنة الطب البشري رؤية تنير دروب تميزكم

لجنة الطب البشري رؤية تنير دروب تميزكم 1) Hyperpolarization phase of the action potential: a. is due to the opening of voltage-gated Cl channels. b. is due to prolonged opening of voltage-gated K + channels. c. is due to closure of the Na +

More information

Membranes 2: Transportation

Membranes 2: Transportation Membranes 2: Transportation Steven E. Massey, Ph.D. Associate Professor Bioinformatics Department of Biology University of Puerto Rico Río Piedras Office & Lab: NCN#343B Tel: 787-764-0000 ext. 7798 E-mail:

More information

Neurophysiology. Danil Hammoudi.MD

Neurophysiology. Danil Hammoudi.MD Neurophysiology Danil Hammoudi.MD ACTION POTENTIAL An action potential is a wave of electrical discharge that travels along the membrane of a cell. Action potentials are an essential feature of animal

More information

MEMBRANE STRUCTURE. Lecture 9. Biology Department Concordia University. Dr. S. Azam BIOL 266/

MEMBRANE STRUCTURE. Lecture 9. Biology Department Concordia University. Dr. S. Azam BIOL 266/ MEMBRANE STRUCTURE Lecture 9 BIOL 266/4 2014-15 Dr. S. Azam Biology Department Concordia University RED BLOOD CELL MEMBRANE PROTEINS The Dynamic Nature of the Plasma Membrane SEM of human erythrocytes

More information

Neurons and Nervous Systems

Neurons and Nervous Systems 34 Neurons and Nervous Systems Concept 34.1 Nervous Systems Consist of Neurons and Glia Nervous systems have two categories of cells: Neurons, or nerve cells, are excitable they generate and transmit electrical

More information

Advanced Higher Biology. Unit 1- Cells and Proteins 2c) Membrane Proteins

Advanced Higher Biology. Unit 1- Cells and Proteins 2c) Membrane Proteins Advanced Higher Biology Unit 1- Cells and Proteins 2c) Membrane Proteins Membrane Structure Phospholipid bilayer Transmembrane protein Integral protein Movement of Molecules Across Membranes Phospholipid

More information

Membrane Physiology. Dr. Hiwa Shafiq Oct-18 1

Membrane Physiology. Dr. Hiwa Shafiq Oct-18 1 Membrane Physiology Dr. Hiwa Shafiq 22-10-2018 29-Oct-18 1 Chemical compositions of extracellular and intracellular fluids. 29-Oct-18 2 Transport through the cell membrane occurs by one of two basic processes:

More information

Nervous Tissue. Neurons Neural communication Nervous Systems

Nervous Tissue. Neurons Neural communication Nervous Systems Nervous Tissue Neurons Neural communication Nervous Systems What is the function of nervous tissue? Maintain homeostasis & respond to stimuli Sense & transmit information rapidly, to specific cells and

More information

Nervous Tissue. Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation

Nervous Tissue. Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation Nervous Tissue Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation What is the function of nervous tissue? Maintain homeostasis & respond to stimuli

More information

Nervous Systems: Neuron Structure and Function

Nervous Systems: Neuron Structure and Function Nervous Systems: Neuron Structure and Function Integration An animal needs to function like a coherent organism, not like a loose collection of cells. Integration = refers to processes such as summation

More information

Membrane Potentials, Action Potentials, and Synaptic Transmission. Membrane Potential

Membrane Potentials, Action Potentials, and Synaptic Transmission. Membrane Potential Cl Cl - - + K + K+ K + K Cl - 2/2/15 Membrane Potentials, Action Potentials, and Synaptic Transmission Core Curriculum II Spring 2015 Membrane Potential Example 1: K +, Cl - equally permeant no charge

More information

Lecture 04, 04 Sept 2003 Chapters 4 and 5. Vertebrate Physiology ECOL 437 University of Arizona Fall instr: Kevin Bonine t.a.

Lecture 04, 04 Sept 2003 Chapters 4 and 5. Vertebrate Physiology ECOL 437 University of Arizona Fall instr: Kevin Bonine t.a. Lecture 04, 04 Sept 2003 Chapters 4 and 5 Vertebrate Physiology ECOL 437 University of Arizona Fall 2003 instr: Kevin Bonine t.a.: Bret Pasch Vertebrate Physiology 437 1. Membranes (CH4) 2. Nervous System

More information

Nerve Signal Conduction. Resting Potential Action Potential Conduction of Action Potentials

Nerve Signal Conduction. Resting Potential Action Potential Conduction of Action Potentials Nerve Signal Conduction Resting Potential Action Potential Conduction of Action Potentials Resting Potential Resting neurons are always prepared to send a nerve signal. Neuron possesses potential energy

More information

The Neuron - F. Fig. 45.3

The Neuron - F. Fig. 45.3 excite.org(anism): Electrical Signaling The Neuron - F. Fig. 45.3 Today s lecture we ll use clickers Review today 11:30-1:00 in 2242 HJ Patterson Electrical signals Dendrites: graded post-synaptic potentials

More information

Nervous System Organization

Nervous System Organization The Nervous System Nervous System Organization Receptors respond to stimuli Sensory receptors detect the stimulus Motor effectors respond to stimulus Nervous system divisions Central nervous system Command

More information

MEMBRANE POTENTIALS AND ACTION POTENTIALS:

MEMBRANE POTENTIALS AND ACTION POTENTIALS: University of Jordan Faculty of Medicine Department of Physiology & Biochemistry Medical students, 2017/2018 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Review: Membrane physiology

More information

Control and Integration. Nervous System Organization: Bilateral Symmetric Animals. Nervous System Organization: Radial Symmetric Animals

Control and Integration. Nervous System Organization: Bilateral Symmetric Animals. Nervous System Organization: Radial Symmetric Animals Control and Integration Neurophysiology Chapters 10-12 Nervous system composed of nervous tissue cells designed to conduct electrical impulses rapid communication to specific cells or groups of cells Endocrine

More information

PROPERTY OF ELSEVIER SAMPLE CONTENT - NOT FINAL. The Nervous System and Muscle

PROPERTY OF ELSEVIER SAMPLE CONTENT - NOT FINAL. The Nervous System and Muscle The Nervous System and Muscle SECTION 2 2-1 Nernst Potential 2-2 Resting Membrane Potential 2-3 Axonal Action Potential 2-4 Neurons 2-5 Axonal Conduction 2-6 Morphology of Synapses 2-7 Chemical Synaptic

More information

Membrane Protein Channels

Membrane Protein Channels Membrane Protein Channels Potassium ions queuing up in the potassium channel Pumps: 1000 s -1 Channels: 1000000 s -1 Pumps & Channels The lipid bilayer of biological membranes is intrinsically impermeable

More information

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES Physiology Unit 2 MEMBRANE POTENTIALS and SYNAPSES Neuron Communication Neurons are stimulated by receptors on dendrites and cell bodies (soma) Ligand gated ion channels GPCR s Neurons stimulate cells

More information

Chapter 9. Nerve Signals and Homeostasis

Chapter 9. Nerve Signals and Homeostasis Chapter 9 Nerve Signals and Homeostasis A neuron is a specialized nerve cell that is the functional unit of the nervous system. Neural signaling communication by neurons is the process by which an animal

More information

Chapt. 12, Movement Across Membranes. Chapt. 12, Movement through lipid bilayer. Chapt. 12, Movement through lipid bilayer

Chapt. 12, Movement Across Membranes. Chapt. 12, Movement through lipid bilayer. Chapt. 12, Movement through lipid bilayer Chapt. 12, Movement Across Membranes Two ways substances can cross membranes Passing through the lipid bilayer Passing through the membrane as a result of specialized proteins 1 Chapt. 12, Movement through

More information

Channels can be activated by ligand-binding (chemical), voltage change, or mechanical changes such as stretch.

Channels can be activated by ligand-binding (chemical), voltage change, or mechanical changes such as stretch. 1. Describe the basic structure of an ion channel. Name 3 ways a channel can be "activated," and describe what occurs upon activation. What are some ways a channel can decide what is allowed to pass through?

More information

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES Physiology Unit 2 MEMBRANE POTENTIALS and SYNAPSES In Physiology Today Ohm s Law I = V/R Ohm s law: the current through a conductor between two points is directly proportional to the voltage across the

More information

Lecture 2. Excitability and ionic transport

Lecture 2. Excitability and ionic transport Lecture 2 Excitability and ionic transport Selective membrane permeability: The lipid barrier of the cell membrane and cell membrane transport proteins Chemical compositions of extracellular and intracellular

More information

Universality of sensory-response systems

Universality of sensory-response systems excite.org(anism): Electrical Signaling Universality of sensory-response systems Three step process: sensation-integration-response Bacterial chemotaxis Madigan et al. Fig. 8.24 Rick Stewart (CBMG) Human

More information

Biology September 2015 Exam One FORM G KEY

Biology September 2015 Exam One FORM G KEY Biology 251 17 September 2015 Exam One FORM G KEY PRINT YOUR NAME AND ID NUMBER in the space that is provided on the answer sheet, and then blacken the letter boxes below the corresponding letters of your

More information

Biology September 2015 Exam One FORM W KEY

Biology September 2015 Exam One FORM W KEY Biology 251 17 September 2015 Exam One FORM W KEY PRINT YOUR NAME AND ID NUMBER in the space that is provided on the answer sheet, and then blacken the letter boxes below the corresponding letters of your

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 48 Neurons, Synapses, and Signaling

More information

MOLECULAR CELL BIOLOGY

MOLECULAR CELL BIOLOGY 1 Lodish Berk Kaiser Krieger scott Bretscher Ploegh Matsudaira MOLECULAR CELL BIOLOGY SEVENTH EDITION CHAPTER 11 Transmembrane Transport of Ions and Small Molecules Copyright 2013 by W. H. Freeman and

More information

Organization of the nervous system. Tortora & Grabowski Principles of Anatomy & Physiology; Page 388, Figure 12.2

Organization of the nervous system. Tortora & Grabowski Principles of Anatomy & Physiology; Page 388, Figure 12.2 Nervous system Organization of the nervous system Tortora & Grabowski Principles of Anatomy & Physiology; Page 388, Figure 12.2 Autonomic and somatic efferent pathways Reflex arc - a neural pathway that

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling Chapter 48 Neurons, Synapses, and Signaling PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

Information processing. Divisions of nervous system. Neuron structure and function Synapse. Neurons, synapses, and signaling 11/3/2017

Information processing. Divisions of nervous system. Neuron structure and function Synapse. Neurons, synapses, and signaling 11/3/2017 Neurons, synapses, and signaling Chapter 48 Information processing Divisions of nervous system Central nervous system (CNS) Brain and a nerve cord Integration center Peripheral nervous system (PNS) Nerves

More information

Lecture 3 13/11/2018

Lecture 3 13/11/2018 Lecture 3 13/11/2018 1 Plasma membrane ALL cells have a cell membrane made of proteins and lipids. protein channel Cell Membrane Layer 1 Layer 2 lipid bilayer protein pump Lipid bilayer allows water, carbon

More information

Transport of glucose across epithelial cells: a. Gluc/Na cotransport; b. Gluc transporter Alberts

Transport of glucose across epithelial cells: a. Gluc/Na cotransport; b. Gluc transporter Alberts Figure 7 a. Secondary transporters make up the largest subfamily of transport proteins. TAGI 2000. Nature 408, 796 1. Na+- or H+-coupled cotransporters - Secondary active transport 2/7-02 Energy released

More information

2002NSC Human Physiology Semester Summary

2002NSC Human Physiology Semester Summary 2002NSC Human Physiology Semester Summary Griffith University, Nathan Campus Semester 1, 2014 Topics include: - Diffusion, Membranes & Action Potentials - Fundamentals of the Nervous System - Neuroanatomy

More information

Electrical Properties of the Membrane

Electrical Properties of the Membrane BIOE 2520 Electrical Properties of the Membrane Reading: Chapter 11 of Alberts et al. Stephen Smith, Ph.D. 433 Biotech Center shs46@pitt.edu Permeability of Lipid membrane Lipid bilayer is virtually impermeable

More information

NOTES: CH 48 Neurons, Synapses, and Signaling

NOTES: CH 48 Neurons, Synapses, and Signaling NOTES: CH 48 Neurons, Synapses, and Signaling A nervous system has three overlapping functions: 1) SENSORY INPUT: signals from sensory receptors to integration centers 2) INTEGRATION: information from

More information

The Nervous System. Nerve Impulses. Resting Membrane Potential. Overview. Nerve Impulses. Resting Membrane Potential

The Nervous System. Nerve Impulses. Resting Membrane Potential. Overview. Nerve Impulses. Resting Membrane Potential The Nervous System Overview Nerve Impulses (completed12/03/04) (completed12/03/04) How do nerve impulses start? (completed 19/03/04) (completed 19/03/04) How Fast are Nerve Impulses? Nerve Impulses Nerve

More information

Chapter 37 Active Reading Guide Neurons, Synapses, and Signaling

Chapter 37 Active Reading Guide Neurons, Synapses, and Signaling Name: AP Biology Mr. Croft Section 1 1. What is a neuron? Chapter 37 Active Reading Guide Neurons, Synapses, and Signaling 2. Neurons can be placed into three groups, based on their location and function.

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling Chapter 48 Neurons, Synapses, and Signaling PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

ACTIVE TRANSPORT AND GLUCOSE TRANSPORT. (Chapter 14 and 15, pp and pp )

ACTIVE TRANSPORT AND GLUCOSE TRANSPORT. (Chapter 14 and 15, pp and pp ) ACTIVE TRANSPORT AND GLUCOSE TRANSPORT (Chapter 14 and 15, pp 140-143 and pp 146-151) Overview Active transport is the movement of molecules across a cell membrane in the direction against their concentration

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 37 Neurons, Synapses, and Signaling Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

Ion Channel Structure and Function (part 1)

Ion Channel Structure and Function (part 1) Ion Channel Structure and Function (part 1) The most important properties of an ion channel Intrinsic properties of the channel (Selectivity and Mode of Gating) + Location Physiological Function Types

More information

BIOLOGY. 1. Overview of Neurons 11/3/2014. Neurons, Synapses, and Signaling. Communication in Neurons

BIOLOGY. 1. Overview of Neurons 11/3/2014. Neurons, Synapses, and Signaling. Communication in Neurons CAMPBELL BIOLOGY TENTH EDITION 48 Reece Urry Cain Wasserman Minorsky Jackson Neurons, Synapses, and Signaling Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick 1. Overview of Neurons Communication

More information

Nervous System AP Biology

Nervous System AP Biology Nervous System 2007-2008 Why do animals need a nervous system? What characteristics do animals need in a nervous system? fast accurate reset quickly Remember Poor think bunny! about the bunny signal direction

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling Chapter 48 Neurons, Synapses, and Signaling PowerPoint Lectures for Biology, Eighth Edition Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp and Janette Lewis Copyright

More information

Chem Lecture 9 Pumps and Channels Part 1

Chem Lecture 9 Pumps and Channels Part 1 Chem 45 - Lecture 9 Pumps and Channels Part 1 Question of the Day: What two factors about a molecule influence the change in its free energy as it moves across a membrane? Membrane proteins function as

More information

Neurophysiology. + = Na + - = Cl - Proteins HOW? HOW?

Neurophysiology. + = Na + - = Cl - Proteins HOW? HOW? All animal cells have electric potential differences (voltages) across plasma s only electrically excitable cells can respond with APs Luigi Galvani (1791) Animal electricity Electrical fluid passed through

More information

Chapter 48 Neurons, Synapses, and Signaling

Chapter 48 Neurons, Synapses, and Signaling Chapter 48 Neurons, Synapses, and Signaling Concept 48.1 Neuron organization and structure reflect function in information transfer Neurons are nerve cells that transfer information within the body Neurons

More information

37 Neurons, Synapses, and Signaling

37 Neurons, Synapses, and Signaling CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 37 Neurons, Synapses, and Signaling Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: Lines of Communication

More information

Overview Organization: Central Nervous System (CNS) Peripheral Nervous System (PNS) innervate Divisions: a. Afferent

Overview Organization: Central Nervous System (CNS) Peripheral Nervous System (PNS) innervate Divisions: a. Afferent Overview Organization: Central Nervous System (CNS) Brain and spinal cord receives and processes information. Peripheral Nervous System (PNS) Nerve cells that link CNS with organs throughout the body.

More information

Transporters and Membrane Motors Nov 15, 2007

Transporters and Membrane Motors Nov 15, 2007 BtuB OM vitamin B12 transporter F O F 1 ATP synthase Human multiple drug resistance transporter P-glycoprotein Transporters and Membrane Motors Nov 15, 2007 Transport and membrane motors Concentrations

More information

Dendrites - receives information from other neuron cells - input receivers.

Dendrites - receives information from other neuron cells - input receivers. The Nerve Tissue Neuron - the nerve cell Dendrites - receives information from other neuron cells - input receivers. Cell body - includes usual parts of the organelles of a cell (nucleus, mitochondria)

More information

Neurons. The Molecular Basis of their Electrical Excitability

Neurons. The Molecular Basis of their Electrical Excitability Neurons The Molecular Basis of their Electrical Excitability Viva La Complexity! Consider, The human brain contains >10 11 neurons! Each neuron makes 10 3 (average) synaptic contacts on up to 10 3 other

More information

Housekeeping, 26 January 2009

Housekeeping, 26 January 2009 5 th & 6 th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2009 Neurons Chapter 11 Kevin Bonine & Kevin Oh 1. Finish Solutes + Water 2. Neurons

More information

Neurons. 5 th & 6 th Lectures Mon 26 & Wed 28 Jan Finish Solutes + Water. 2. Neurons. Chapter 11

Neurons. 5 th & 6 th Lectures Mon 26 & Wed 28 Jan Finish Solutes + Water. 2. Neurons. Chapter 11 5 th & 6 th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2009 Neurons Chapter 11 Kevin Bonine & Kevin Oh 1. Finish Solutes + Water 2. Neurons

More information

TRANSPORT ACROSS MEMBRANE

TRANSPORT ACROSS MEMBRANE TRANSPORT ACROSS MEMBRANE The plasma membrane functions to isolate the inside of the cell from its environment, but isolation is not complete. A large number of molecules constantly transit between the

More information

Biochemistry. Biochemistry 9/20/ Bio-Energetics. 4.2) Transport of ions and small molecules across cell membranes

Biochemistry. Biochemistry 9/20/ Bio-Energetics. 4.2) Transport of ions and small molecules across cell membranes 9/20/15 Biochemistry Biochemistry 4. Bio-Energetics 4.2) Transport of ions and small molecules across cell membranes Aquaporin, the water channel, consists of four identical transmembrane polypeptides

More information

(Be sure to clearly state the principles addressed in your discussion.)

(Be sure to clearly state the principles addressed in your discussion.) CELL QUESTION 1992: AP BIOLOGY A laboratory assistant prepared solutions of 0.8 M, 0.6 M, 0.4 M, and 0.2 M sucrose, but forgot to label them. After realizing the error, the assistant randomly labeled the

More information

Electrical Signaling. Lecture Outline. Using Ions as Messengers. Potentials in Electrical Signaling

Electrical Signaling. Lecture Outline. Using Ions as Messengers. Potentials in Electrical Signaling Lecture Outline Electrical Signaling Using ions as messengers Potentials in electrical signaling Action Graded Other electrical signaling Gap junctions The neuron Using Ions as Messengers Important things

More information

Introduction to electrophysiology. Dr. Tóth András

Introduction to electrophysiology. Dr. Tóth András Introduction to electrophysiology Dr. Tóth András Topics Transmembran transport Donnan equilibrium Resting potential Ion channels Local and action potentials Intra- and extracellular propagation of the

More information

Neurons: Cellular and Network Properties HUMAN PHYSIOLOGY POWERPOINT

Neurons: Cellular and Network Properties HUMAN PHYSIOLOGY POWERPOINT POWERPOINT LECTURE SLIDE PRESENTATION by LYNN CIALDELLA, MA, MBA, The University of Texas at Austin Additional text by J Padilla exclusively for physiology at ECC UNIT 2 8 Neurons: PART A Cellular and

More information

OT Exam 1, August 9, 2002 Page 1 of 8. Occupational Therapy Physiology, Summer Examination 1. August 9, 2002

OT Exam 1, August 9, 2002 Page 1 of 8. Occupational Therapy Physiology, Summer Examination 1. August 9, 2002 Page 1 of 8 Occupational Therapy Physiology, Summer 2002 Examination 1 August 9, 2002 Dr. Heckman's section is questions 1-6 and each question is worth 5 points for a total of 30 points. Dr. Driska's section

More information

Biochemistry. Biochemistry 7/11/ Bio-Energetics. 4.2) Transport of ions and small molecules across cell membranes

Biochemistry. Biochemistry 7/11/ Bio-Energetics. 4.2) Transport of ions and small molecules across cell membranes Biochemistry Biochemistry 4. Bio-Energetics 4.2) Transport of ions and small molecules across cell membranes Aquaporin, the water channel, consists of four identical transmembrane polypeptides Key Energy

More information

Membrane Protein Pumps

Membrane Protein Pumps Membrane Protein Pumps Learning objectives You should be able to understand & discuss: Active transport-na + /K + ATPase ABC transporters Metabolite transport by lactose permease 1. Ion pumps: ATP-driven

More information

PHYSIOLOGY CHAPTER 9 MUSCLE TISSUE Fall 2016

PHYSIOLOGY CHAPTER 9 MUSCLE TISSUE Fall 2016 PHYSIOLOGY CHAPTER 9 MUSCLE TISSUE Fall 2016 2 Chapter 9 Muscles and Muscle Tissue Overview of Muscle Tissue types of muscle: are all prefixes for muscle Contractility all muscles cells can Smooth & skeletal

More information

UNIT I INTRODUCTION TO ARTIFICIAL NEURAL NETWORK IT 0469 NEURAL NETWORKS

UNIT I INTRODUCTION TO ARTIFICIAL NEURAL NETWORK IT 0469 NEURAL NETWORKS UNIT I INTRODUCTION TO ARTIFICIAL NEURAL NETWORK IT 0469 NEURAL NETWORKS Elementary Neuro Physiology Neuron: A neuron nerve cell is an electricallyexcitable cell that processes and transmits information

More information

Lecture 10 : Neuronal Dynamics. Eileen Nugent

Lecture 10 : Neuronal Dynamics. Eileen Nugent Lecture 10 : Neuronal Dynamics Eileen Nugent Origin of the Cells Resting Membrane Potential: Nernst Equation, Donnan Equilbrium Action Potentials in the Nervous System Equivalent Electrical Circuits and

More information

BIOLOGY. Neurons, Synapses, and Signaling CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. Neurons, Synapses, and Signaling CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 48 Neurons, Synapses, and Signaling Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Lines of Communication The

More information

Dr. Ketki Assistant Professor Department of Biochemistry Heritage IMS, Varanasi

Dr. Ketki Assistant Professor Department of Biochemistry Heritage IMS, Varanasi TRANSPORT MECHANISMS Dr. Ketki Assistant Professor Department of Biochemistry Heritage IMS, Varanasi Membrane selectivity allows adjustments of cell composition and function If plasma membrane is relatively

More information

Chapter 10. Thermodynamics of Transport. Thermodynamics of Transport, con t. BCH 4053 Summer 2001 Chapter 10 Lecture Notes. Slide 1.

Chapter 10. Thermodynamics of Transport. Thermodynamics of Transport, con t. BCH 4053 Summer 2001 Chapter 10 Lecture Notes. Slide 1. BCH 4053 Summer 2001 Chapter 10 Lecture Notes 1 Chapter 10 Membrane Transport 2 3 Thermodynamics of Transport Free Energy change is given by difference in electrochemical potential and the quantity transported

More information

Purpose: Perception, Movement, Learning, Memory, Thinking, Communication Functions:

Purpose: Perception, Movement, Learning, Memory, Thinking, Communication Functions: Nervous System Purpose: Perception, Movement, Learning, Memory, Thinking, Communication Functions: Sensory Input: Obtaining stimulation from the environment (light, heat, pressure, vibration, chemical,

More information

CIE Biology A-level Topic 15: Control and coordination

CIE Biology A-level Topic 15: Control and coordination CIE Biology A-level Topic 15: Control and coordination Notes Neuron structure The nerve cells called neurones play an important role in coordinating communication within the nervous system. The structure

More information

thebiotutor.com A2 Biology Unit 5 Responses, Nervous System & Muscles

thebiotutor.com A2 Biology Unit 5 Responses, Nervous System & Muscles thebiotutor.com A2 Biology Unit 5 Responses, Nervous System & Muscles 1 Response Mechanism tropism Definition A growth movement of part of plant in response to a directional stimulus examples Positive:

More information

What are neurons for?

What are neurons for? 5 th & 6 th Lectures Mon 26 & Wed 28 Jan 2009 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 2009 Kevin Bonine & Kevin Oh 1. Finish Solutes Water 2. Neurons Neurons Chapter 11

More information

BIOLOGY 11/10/2016. Neurons, Synapses, and Signaling. Concept 48.1: Neuron organization and structure reflect function in information transfer

BIOLOGY 11/10/2016. Neurons, Synapses, and Signaling. Concept 48.1: Neuron organization and structure reflect function in information transfer 48 Neurons, Synapses, and Signaling CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Concept 48.1: Neuron organization

More information

NEURONS, SENSE ORGANS, AND NERVOUS SYSTEMS CHAPTER 34

NEURONS, SENSE ORGANS, AND NERVOUS SYSTEMS CHAPTER 34 NEURONS, SENSE ORGANS, AND NERVOUS SYSTEMS CHAPTER 34 KEY CONCEPTS 34.1 Nervous Systems Are Composed of Neurons and Glial Cells 34.2 Neurons Generate Electric Signals by Controlling Ion Distributions 34.3

More information

Ch 8: Neurons: Cellular and Network Properties, Part 1

Ch 8: Neurons: Cellular and Network Properties, Part 1 Developed by John Gallagher, MS, DVM Ch 8: Neurons: Cellular and Network Properties, Part 1 Objectives: Describe the Cells of the NS Explain the creation and propagation of an electrical signal in a nerve

More information

Renal handling of substances. Dr.Charushila Rukadikar Assistance Professor Physiology

Renal handling of substances. Dr.Charushila Rukadikar Assistance Professor Physiology Renal handling of substances Dr.Charushila Rukadikar Assistance Professor Physiology GENERAL PRINCIPLES OF RENAL TUBULAR TRANSPORT Transport mechanisms across cell membrane 1) Passive transport i. Diffusion

More information

Bio 449 Fall Exam points total Multiple choice. As with any test, choose the best answer in each case. Each question is 3 points.

Bio 449 Fall Exam points total Multiple choice. As with any test, choose the best answer in each case. Each question is 3 points. Name: Exam 1 100 points total Multiple choice. As with any test, choose the best answer in each case. Each question is 3 points. 1. The term internal environment, as coined by Clause Bernard, is best defined

More information

Introduction to electrophysiology 1. Dr. Tóth András

Introduction to electrophysiology 1. Dr. Tóth András Introduction to electrophysiology 1. Dr. Tóth András Topics Transmembran transport Donnan equilibrium Resting potential Ion channels Local and action potentials Intra- and extracellular propagation of

More information

Fundamentals of the Nervous System and Nervous Tissue

Fundamentals of the Nervous System and Nervous Tissue Chapter 11 Part B Fundamentals of the Nervous System and Nervous Tissue Annie Leibovitz/Contact Press Images PowerPoint Lecture Slides prepared by Karen Dunbar Kareiva Ivy Tech Community College 11.4 Membrane

More information

According to the diagram, which of the following is NOT true?

According to the diagram, which of the following is NOT true? Instructions: Review Chapter 44 on muscular-skeletal systems and locomotion, and then complete the following Blackboard activity. This activity will introduce topics that will be covered in the next few

More information

COGNITIVE SCIENCE 107A

COGNITIVE SCIENCE 107A COGNITIVE SCIENCE 107A Electrophysiology: Electrotonic Properties 2 Jaime A. Pineda, Ph.D. The Model Neuron Lab Your PC/CSB115 http://cogsci.ucsd.edu/~pineda/cogs107a/index.html Labs - Electrophysiology

More information

UNIT 6 THE MUSCULAR SYSTEM

UNIT 6 THE MUSCULAR SYSTEM UNIT 6 THE MUSCULAR SYSTEM I. Functions of Muscular System A. Produces Movement Internal vs. External «locomotion & manipulation «circulate blood & maintain blood pressure «move fluids, food, baby B. Maintaining

More information

Introduction to CNS neurobiology: focus on retina

Introduction to CNS neurobiology: focus on retina Introduction to CNS neurobiology: focus on retina September 27, 2017 The retina is part of the CNS Calloway et al., 2009) 1 Retinal circuits: neurons and synapses Rods and Cones Bipolar cells Horizontal

More information

Rahaf Nasser mohammad khatatbeh

Rahaf Nasser mohammad khatatbeh 7 7... Hiba Abu Hayyeh... Rahaf Nasser mohammad khatatbeh Mohammad khatatbeh Brief introduction about membrane potential The term membrane potential refers to a separation of opposite charges across the

More information

Neurophysiology. I. Background. A. Cell Types 1. Neurons 2. Glia. B. Subtypes 1. Differ based on their structure, chemistry and function

Neurophysiology. I. Background. A. Cell Types 1. Neurons 2. Glia. B. Subtypes 1. Differ based on their structure, chemistry and function Neurophysiology I. Background A. Cell Types 1. Neurons 2. Glia B. Subtypes 1. Differ based on their structure, chemistry and function C. Relative distribution 1. 100 billion neurons (give or take 100 million)

More information

Neurophysiology. Review from 12b. Topics in neurophysiology 7/08/12. Lecture 11b BIOL241

Neurophysiology. Review from 12b. Topics in neurophysiology 7/08/12. Lecture 11b BIOL241 Neurophysiology Lecture 11b BIOL241 Review from 12b. CNS brain and spinal cord PNS nerves SNS (somatic) ANS (autonomic) Sympathetic NS Parasympathetic NS Afferent vs efferent (SAME) Cells of the nervous

More information

BIOELECTRIC PHENOMENA

BIOELECTRIC PHENOMENA Chapter 11 BIOELECTRIC PHENOMENA 11.3 NEURONS 11.3.1 Membrane Potentials Resting Potential by separation of charge due to the selective permeability of the membrane to ions From C v= Q, where v=60mv and

More information

NEURONS Excitable cells Therefore, have a RMP Synapse = chemical communication site between neurons, from pre-synaptic release to postsynaptic

NEURONS Excitable cells Therefore, have a RMP Synapse = chemical communication site between neurons, from pre-synaptic release to postsynaptic NEUROPHYSIOLOGY NOTES L1 WHAT IS NEUROPHYSIOLOGY? NEURONS Excitable cells Therefore, have a RMP Synapse = chemical communication site between neurons, from pre-synaptic release to postsynaptic receptor

More information

PNS Chapter 7. Membrane Potential / Neural Signal Processing Spring 2017 Prof. Byron Yu

PNS Chapter 7. Membrane Potential / Neural Signal Processing Spring 2017 Prof. Byron Yu PNS Chapter 7 Membrane Potential 18-698 / 42-632 Neural Signal Processing Spring 2017 Prof. Byron Yu Roadmap Introduction to neuroscience Chapter 1 The brain and behavior Chapter 2 Nerve cells and behavior

More information

Structure and Measurement of the brain lecture notes

Structure and Measurement of the brain lecture notes Structure and Measurement of the brain lecture notes Marty Sereno 2009/2010!"#$%&'(&#)*%$#&+,'-&.)"/*"&.*)*-'(0&1223 Neurons and Models Lecture 1 Topics Membrane (Nernst) Potential Action potential/voltage-gated

More information

General Physics. Nerve Conduction. Newton s laws of Motion Work, Energy and Power. Fluids. Direct Current (DC)

General Physics. Nerve Conduction. Newton s laws of Motion Work, Energy and Power. Fluids. Direct Current (DC) Newton s laws of Motion Work, Energy and Power Fluids Direct Current (DC) Nerve Conduction Wave properties of light Ionizing Radiation General Physics Prepared by: Sujood Alazzam 2017/2018 CHAPTER OUTLINE

More information

Cellular Transport. 1. Transport to and across the membrane 1a. Transport of small molecules and ions 1b. Transport of proteins

Cellular Transport. 1. Transport to and across the membrane 1a. Transport of small molecules and ions 1b. Transport of proteins Transport Processes Cellular Transport 1. Transport to and across the membrane 1a. Transport of small molecules and ions 1b. Transport of proteins 2. Vesicular transport 3. Transport through the nuclear

More information

Introduction and the Hodgkin-Huxley Model

Introduction and the Hodgkin-Huxley Model 1 Introduction and the Hodgkin-Huxley Model Richard Bertram Department of Mathematics and Programs in Neuroscience and Molecular Biophysics Florida State University Tallahassee, Florida 32306 Reference:

More information

Biological membranes and bioelectric phenomena

Biological membranes and bioelectric phenomena Lectures on Medical Biophysics Dept. Biophysics, Medical faculty, Masaryk University in Brno Biological membranes and bioelectric phenomena A part of this lecture was prepared on the basis of a presentation

More information