Chapter 5 SteadyState Sinusoidal Analysis


 Alexandra Black
 3 years ago
 Views:
Transcription
1 Chapter 5 SteadyState Sinusoidal Analysis
2 Chapter 5 SteadyState Sinusoidal Analysis 1. Identify the frequency, angular frequency, peak value, rms value, and phase of a sinusoidal signal. 2. Solve steadystate ac circuits using phasors and complex impedances.
3 3. Compute power for steadystate ac circuits. 4. Find Thévenin and Norton equivalent circuits. 5. Determine load impedances for maximum power transfer. 6. Solve balanced threephase circuits.
4
5 SINUSOIDAL CURRENTS AND VOLTAGES V m is the peak value ω is the angular frequency in radians per second θ is the phase angle T is the period
6 Frequency f = 1 T Angular frequency ω 2π = T ω = 2πf sin ( ) ( o ) z = cos z 90
7 RootMeanSquare Values V rms = T 1 T 0 v 2 ()dt t I rms = T 1 T 0 i 2 ()dt t P avg = V 2 rms R P avg = I 2 rms R
8 RMS Value of a Sinusoid V = rms V m 2 The rms value for a sinusoid is the peak value divided by the square root of two. This is not true for other periodic waveforms such as square waves or triangular waves.
9
10 Phasor Definition Time function : ( t) V ( ωt θ ) v = + cos Phasor : V 1 = V θ 1 1
11 Adding Sinusoids Using Phasors Step 1: Determine the phasor for each term. Step 2: Add the phasors using complex arithmetic. Step 3: Convert the sum to polar form. Step 4: Write the result as a time function.
12 Using Phasors to Add Sinusoids v v ( ) ( o ) t = 20cos ωt 45 1 ( ) ( o ) t = 10cos ωt V = 20 1 o 45 V = 10 2 o 30
13 V s = V 1 + V 2 = o o = j j5 = j19.14 = o v s ( ) ( o ) t = cos ωt 39.7
14
15 Sinusoids can be visualized as the realaxis projection of vectors rotating in the complex plane. The phasor for a sinusoid is a snapshot of the corresponding rotating vector at t = 0.
16 Phase Relationships To determine phase relationships from a phasor diagram, consider the phasors to rotate counterclockwise. Then when standing at a fixed point, if V 1 arrives first followed by V 2 after a rotation of θ, we say that V 1 leads V 2 by θ. Alternatively, we could say that V 2 lags V 1 by θ. (Usually, we take θ as the smaller angle between the two phasors.)
17 To determine phase relationships between sinusoids from their plots versus time, find the shortest time interval t p between positive peaks of the two waveforms. Then, the phase angle is θ = (t p /T ) 360. If the peak of v 1 (t) occurs first, we say that v 1 (t) leads v 2 (t) or that v 2 (t) lags v 1 (t).
18
19
20
21 COMPLEX IMPEDANCES V = jωl L I L Z L = jωl = ωl 90 o V = L Z I L L
22
23
24 V = C Z I C C Z C = j 1 ω C = j 1 ω C = 1 ω C o 90 V = RI R R
25
26 Kirchhoff s Laws in Phasor Form We can apply KVL directly to phasors. The sum of the phasor voltages equals zero for any closed path. The sum of the phasor currents entering a node must equal the sum of the phasor currents leaving.
27 Circuit Analysis Using Phasors and Impedances 1. Replace the time descriptions of the voltage and current sources with the corresponding phasors. (All of the sources must have the same frequency.)
28 2. Replace inductances by their complex impedances Z L = jωl. Replace capacitances by their complex impedances Z C = 1/(jωC). Resistances have impedances equal to their resistances. 3. Analyze the circuit using any of the techniques studied earlier in Chapter 2, performing the calculations with complex arithmetic.
29
30
31
32
33
34
35
36
37
38
39
40 AC Power Calculations P = PF = cos( θ ) V rms I rms cos ( θ ) θ = θ θ v i Q = V rms I rms sin( θ )
41 apparent power = V rms I rms 2 2 P + Q = ( V I ) 2 rms rms P = I 2 rms R P = V 2 Rrms R Q = I 2 rms X Q = V 2 Xrms X
42
43
44
45
46
47
48
49
50 THÉVENIN EQUIVALENT CIRCUITS
51 The Thévenin voltage is equal to the opencircuit phasor voltage of the original circuit. V = t V oc We can find the Thévenin impedance by zeroing the independent sources and determining the impedance looking into the circuit terminals.
52 The Thévenin impedance equals the opencircuit voltage divided by the shortcircuit current. V Z = oc = t I sc V I t sc I = n I sc
53
54
55
56
57 Maximum Average Power Transfer If the load can take on any complex value, maximum power transfer is attained for a load impedance equal to the complex conjugate of the Thévenin impedance. If the load is required to be a pure resistance, maximum power transfer is attained for a load resistance equal to the magnitude of the Thévenin impedance.
58
59
60 BALANCED THREEPHASE CIRCUITS Much of the power used by business and industry is supplied by threephase distribution systems. Plant engineers need to be familiar with threephase power.
61
62 Phase Sequence Threephase sources can have either a positive or negative phase sequence. The direction of rotation of certain threephase motors can be reversed by changing the phase sequence.
63
64 Wye Wye Connection Threephase sources and loads can be connected either in a wye configuration or in a delta configuration. The key to understanding the various threephase configurations is a careful examination of the wye wye circuit.
65
66 P = p = avg ( t) V I cos( θ ) Y 3 rms Lrms V I 3 Y L sin Yrms Lrms 2 Q = = ( θ ) 3V I sin( θ )
67
68
69
70
71
72 Z = 3Z Δ Y
73
74
Sinusoidal Steady State Analysis (AC Analysis) Part I
Sinusoidal Steady State Analysis (AC Analysis) Part I Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/
More informationEE292: Fundamentals of ECE
EE292: Fundamentals of ECE Fall 2012 TTh 10:0011:15 SEB 1242 Lecture 18 121025 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Review RMS Values Complex Numbers Phasors Complex Impedance Circuit Analysis
More informationSinusoidal Steady State Analysis (AC Analysis) Part II
Sinusoidal Steady State Analysis (AC Analysis) Part II Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/
More informationElectric Circuit Theory
Electric Circuit Theory Nam Ki Min nkmin@korea.ac.kr 01094192320 Chapter 11 Sinusoidal SteadyState Analysis Nam Ki Min nkmin@korea.ac.kr 01094192320 Contents and Objectives 3 Chapter Contents 11.1
More informationChapter 10: Sinusoidal SteadyState Analysis
Chapter 10: Sinusoidal SteadyState Analysis 1 Objectives : sinusoidal functions Impedance use phasors to determine the forced response of a circuit subjected to sinusoidal excitation Apply techniques
More informationEE292: Fundamentals of ECE
EE292: Fundamentals of ECE Fall 2012 TTh 10:0011:15 SEB 1242 Lecture 20 121101 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Chapters 13 Circuit Analysis Techniques Chapter 10 Diodes Ideal Model
More informationChapter 10 AC Analysis Using Phasors
Chapter 10 AC Analysis Using Phasors 10.1 Introduction We would like to use our linear circuit theorems (Nodal analysis, Mesh analysis, Thevenin and Norton equivalent circuits, Superposition, etc.) to
More information11. AC Circuit Power Analysis
. AC Circuit Power Analysis Often an integral part of circuit analysis is the determination of either power delivered or power absorbed (or both). In this chapter First, we begin by considering instantaneous
More informationChapter 9 Objectives
Chapter 9 Engr8 Circuit Analysis Dr Curtis Nelson Chapter 9 Objectives Understand the concept of a phasor; Be able to transform a circuit with a sinusoidal source into the frequency domain using phasor
More informationSinusoids and Phasors
CHAPTER 9 Sinusoids and Phasors We now begins the analysis of circuits in which the voltage or current sources are timevarying. In this chapter, we are particularly interested in sinusoidally timevarying
More informationFall 2011 ME 2305 Network Analysis. Sinusoidal Steady State Analysis of RLC Circuits
Fall 2011 ME 2305 Network Analysis Chapter 4 Sinusoidal Steady State Analysis of RLC Circuits Engr. Humera Rafique Assistant Professor humera.rafique@szabist.edu.pk Faculty of Engineering (Mechatronics)
More information1 Phasors and Alternating Currents
Physics 4 Chapter : Alternating Current 0/5 Phasors and Alternating Currents alternating current: current that varies sinusoidally with time ac source: any device that supplies a sinusoidally varying potential
More informationSinusoidal Steady State Analysis
Sinusoidal Steady State Analysis 9 Assessment Problems AP 9. [a] V = 70/ 40 V [b] 0 sin(000t +20 ) = 0 cos(000t 70 ).. I = 0/ 70 A [c] I =5/36.87 + 0/ 53.3 =4+j3+6 j8 =0 j5 =.8/ 26.57 A [d] sin(20,000πt
More informationElectric Circuits II Sinusoidal Steady State Analysis. Dr. Firas Obeidat
Electric Circuits II Sinusoidal Steady State Analysis Dr. Firas Obeidat 1 Table of Contents 1 2 3 4 5 Nodal Analysis Mesh Analysis Superposition Theorem Source Transformation Thevenin and Norton Equivalent
More informationCIRCUIT ANALYSIS II. (AC Circuits)
Will Moore MT & MT CIRCUIT ANALYSIS II (AC Circuits) Syllabus Complex impedance, power factor, frequency response of AC networks including Bode diagrams, secondorder and resonant circuits, damping and
More informationChapter 10: Sinusoidal SteadyState Analysis
Chapter 10: Sinusoidal SteadyState Analysis 10.1 10.2 10.3 10.4 10.5 10.6 10.9 Basic Approach Nodal Analysis Mesh Analysis Superposition Theorem Source Transformation Thevenin & Norton Equivalent Circuits
More informationSinusoidal SteadyState Analysis
Sinusoidal SteadyState Analysis Mauro Forti October 27, 2018 Constitutive Relations in the Frequency Domain Consider a network with independent voltage and current sources at the same angular frequency
More informationLecture 11  AC Power
 AC Power 11/17/2015 Reading: Chapter 11 1 Outline Instantaneous power Complex power Average (real) power Reactive power Apparent power Maximum power transfer Power factor correction 2 Power in AC Circuits
More informationSinusoidal SteadyState Analysis
Chapter 4 Sinusoidal SteadyState Analysis In this unit, we consider circuits in which the sources are sinusoidal in nature. The review section of this unit covers most of section 9.1 9.9 of the text.
More informationRefresher course on Electrical fundamentals (Basics of A.C. Circuits) by B.M.Vyas
Refresher course on Electrical fundamentals (Basics of A.C. Circuits) by B.M.Vyas A specifically designed programme for Da Afghanistan Breshna Sherkat (DABS) Afghanistan 1 Areas Covered Under this Module
More informationEE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, pm, Room TBA
EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, 2006 67 pm, Room TBA First retrieve your EE2110 final and other course papers and notes! The test will be closed book
More informationChapter 10 Sinusoidal Steady State Analysis Chapter Objectives:
Chapter 10 Sinusoidal Steady State Analysis Chapter Objectives: Apply previously learn circuit techniques to sinusoidal steadystate analysis. Learn how to apply nodal and mesh analysis in the frequency
More informationModule 4. Singlephase AC Circuits
Module 4 Singlephase AC Circuits Lesson 14 Solution of Current in RLC Series Circuits In the last lesson, two points were described: 1. How to represent a sinusoidal (ac) quantity, i.e. voltage/current
More informationPower Systems  Basic Concepts and Applications  Part I
PDHonline Course E104 (1 PDH) Power ystems Basic Concepts and Applications Part I Instructor: hihmin Hsu PhD PE 01 PDH Online PDH Center 57 Meadow Estates Drive Fairfax A 006658 Phone & Fax: 709880088
More informationBasics of Network Theory (PartI)
Basics of Network Theory (PartI) 1. One coulomb charge is equal to the charge on (a) 6.24 x 10 18 electrons (b) 6.24 x 10 24 electrons (c) 6.24 x 10 18 atoms (d) none of the above 2. The correct relation
More informationCircuit AnalysisIII. Circuit AnalysisII Lecture # 3 Friday 06 th April, 18
Circuit AnalysisIII Sinusoids Example #1 ü Find the amplitude, phase, period and frequency of the sinusoid: v (t ) =12cos(50t +10 ) Signal Conversion ü From sine to cosine and vice versa. ü sin (A ± B)
More informationEE 212 PASSIVE AC CIRCUITS
EE 212 PASSIVE AC CIRCUITS Condensed Text Prepared by: Rajesh Karki, Ph.D., P.Eng. Dept. of Electrical Engineering University of Saskatchewan About the EE 212 Condensed Text The major topics in the course
More informationSINUSOIDAL STEADY STATE CIRCUIT ANALYSIS
SINUSOIDAL STEADY STATE CIRCUIT ANALYSIS 1. Introduction A sinusoidal current has the following form: where I m is the amplitude value; ω=2 πf is the angular frequency; φ is the phase shift. i (t )=I m.sin
More informationChapter 33. Alternating Current Circuits
Chapter 33 Alternating Current Circuits 1 Capacitor Resistor + Q = C V = I R R I + + Inductance d I Vab = L dt AC power source The AC power source provides an alternative voltage, Notation  Lower case
More informationREACTANCE. By: Enzo Paterno Date: 03/2013
REACTANCE REACTANCE By: Enzo Paterno Date: 03/2013 5/2007 Enzo Paterno 1 RESISTANCE  R i R (t R A resistor for all practical purposes is unaffected by the frequency of the applied sinusoidal voltage or
More informationSinusoidal SteadyState Analysis
Sinusoidal SteadyState Analysis Almost all electrical systems, whether signal or power, operate with alternating currents and voltages. We have seen that when any circuit is disturbed (switched on or
More informationChapter 5. Department of Mechanical Engineering
Source Transformation By KVL: V s =ir s + v By KCL: i s =i + v/r p is=v s /R s R s =R p V s /R s =i + v/r s i s =i + v/r p Two circuits have the same terminal voltage and current Source Transformation
More informationTHREE PHASE SYSTEMS Part 1
ERT105: ELECTRCAL TECHNOLOGY CHAPTER 3 THREE PHASE SYSTEMS Part 1 1 Objectives Become familiar with the operation of a three phase generator and the magnitude and phase relationship. Be able to calculate
More informationBasics of Electric Circuits
António Dente Célia de Jesus February 2014 1 Alternating Current Circuits 1.1 Using Phasors There are practical and economic reasons justifying that electrical generators produce emf with alternating and
More informationBASIC NETWORK ANALYSIS
SECTION 1 BASIC NETWORK ANALYSIS A. Wayne Galli, Ph.D. Project Engineer Newport News Shipbuilding SeriesParallel dc Network Analysis......................... 1.1 BranchCurrent Analysis of a dc Network......................
More informationNETWORK ANALYSIS WITH APPLICATIONS
NETWORK ANALYSIS WITH APPLICATIONS Third Edition William D. Stanley Old Dominion University Prentice Hall Upper Saddle River, New Jersey I Columbus, Ohio CONTENTS 1 BASIC CIRCUIT LAWS 1 11 General Plan
More informationPhasors: Impedance and Circuit Anlysis. Phasors
Phasors: Impedance and Circuit Anlysis Lecture 6, 0/07/05 OUTLINE Phasor ReCap Capacitor/Inductor Example Arithmetic with Complex Numbers Complex Impedance Circuit Analysis with Complex Impedance Phasor
More informationNotes on Electric Circuits (Dr. Ramakant Srivastava)
Notes on Electric ircuits (Dr. Ramakant Srivastava) Passive Sign onvention (PS) Passive sign convention deals with the designation of the polarity of the voltage and the direction of the current arrow
More informationThevenin Norton Equivalencies  GATE Study Material in PDF
Thevenin Norton Equivalencies  GATE Study Material in PDF In these GATE 2018 Notes, we explain the Thevenin Norton Equivalencies. Thevenin s and Norton s Theorems are two equally valid methods of reducing
More informationReview of DC Electric Circuit. DC Electric Circuits Examples (source:
Review of DC Electric Circuit DC Electric Circuits Examples (source: http://hyperphysics.phyastr.gsu.edu/hbase/electric/dcex.html) 1 Review  DC Electric Circuit Multisim Circuit Simulation DC Circuit
More informationCircuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer
Circuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer J. McNames Portland State University ECE 221 Circuit Theorems Ver. 1.36 1
More information4/27 Friday. I have all the old homework if you need to collect them.
4/27 Friday Last HW: do not need to turn it. Solution will be posted on the web. I have all the old homework if you need to collect them. Final exam: 79pm, Monday, 4/30 at Lambert Fieldhouse F101 Calculator
More informationThree Phase Circuits
Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/ OUTLINE Previously on ELCN102 Three Phase Circuits Balanced
More informationSinusoidal Response of RLC Circuits
Sinusoidal Response of RLC Circuits Series RL circuit Series RC circuit Series RLC circuit Parallel RL circuit Parallel RC circuit RL Series Circuit RL Series Circuit RL Series Circuit Instantaneous
More informationBASIC PRINCIPLES. Power In SinglePhase AC Circuit
BASIC PRINCIPLES Power In SinglePhase AC Circuit Let instantaneous voltage be v(t)=v m cos(ωt+θ v ) Let instantaneous current be i(t)=i m cos(ωt+θ i ) The instantaneous p(t) delivered to the load is p(t)=v(t)i(t)=v
More informationP A R T 2 AC CIRCUITS. Chapter 9 Sinusoids and Phasors. Chapter 10 Sinusoidal SteadyState Analysis. Chapter 11 AC Power Analysis
P A R T 2 AC CIRCUITS Chapter 9 Sinusoids and Phasors Chapter 10 Sinusoidal SteadyState Analysis Chapter 11 AC Power Analysis Chapter 12 ThreePhase Circuits Chapter 13 Magnetically Coupled Circuits Chapter
More informationStudy Notes on Network Theorems for GATE 2017
Study Notes on Network Theorems for GATE 2017 Network Theorems is a highly important and scoring topic in GATE. This topic carries a substantial weight age in GATE. Although the Theorems might appear to
More informationAlternating Current Circuits
Alternating Current Circuits AC Circuit An AC circuit consists of a combination of circuit elements and an AC generator or source. The output of an AC generator is sinusoidal and varies with time according
More informationAnnouncements: Today: more AC circuits
Announcements: Today: more AC circuits I 0 I rms Current through a light bulb I 0 I rms I t = I 0 cos ωt I 0 Current through a LED I t = I 0 cos ωt Θ(cos ωt ) Theta function (is zero for a negative argument)
More informationInductive & Capacitive Circuits. Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur
Inductive & Capacitive Circuits Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur LR Circuit LR Circuit (Charging) Let us consider a circuit having an inductance
More informationConsider a simple RC circuit. We might like to know how much power is being supplied by the source. We probably need to find the current.
AC power Consider a simple RC circuit We might like to know how much power is being supplied by the source We probably need to find the current R 10! R 10! is VS Vmcosωt Vm 10 V f 60 Hz V m 10 V C 150
More informationReview of Basic Electrical and Magnetic Circuit Concepts EE
Review of Basic Electrical and Magnetic Circuit Concepts EE 442642 Sinusoidal Linear Circuits: Instantaneous voltage, current and power, rms values Average (real) power, reactive power, apparent power,
More informationElectrical Circuits Lab Series RC Circuit Phasor Diagram
Electrical Circuits Lab. 0903219 Series RC Circuit Phasor Diagram  Simple steps to draw phasor diagram of a series RC circuit without memorizing: * Start with the quantity (voltage or current) that is
More informationBFF1303: ELECTRICAL / ELECTRONICS ENGINEERING. Alternating Current Circuits : Basic Law
BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING Alternating Current Circuits : Basic Law Ismail Mohd Khairuddin, Zulkifil Md Yusof Faculty of Manufacturing Engineering Universiti Malaysia Pahang Alternating
More informationBasics of Network Theory (PartI)
Basics of Network Theory (PartI). A square waveform as shown in figure is applied across mh ideal inductor. The current through the inductor is a. wave of peak amplitude. V 0 0.5 t (m sec) [Gate 987: Marks]
More informationNetwork Graphs and Tellegen s Theorem
Networ Graphs and Tellegen s Theorem The concepts of a graph Cut sets and Kirchhoff s current laws Loops and Kirchhoff s voltage laws Tellegen s Theorem The concepts of a graph The analysis of a complex
More informationChapter 10: Sinusoids and Phasors
Chapter 10: Sinusoids and Phasors 1. Motivation 2. Sinusoid Features 3. Phasors 4. Phasor Relationships for Circuit Elements 5. Impedance and Admittance 6. Kirchhoff s Laws in the Frequency Domain 7. Impedance
More informationECE 5260 Microwave Engineering University of Virginia. Some Background: Circuit and Field Quantities and their Relations
ECE 5260 Microwave Engineering University of Virginia Lecture 2 Review of Fundamental Circuit Concepts and Introduction to Transmission Lines Although electromagnetic field theory and Maxwell s equations
More informationHandout 11: AC circuit. AC generator
Handout : AC circuit AC generator Figure compares the voltage across the directcurrent (DC) generator and that across the alternatingcurrent (AC) generator For DC generator, the voltage is constant For
More informationLecture (5) Power Factor,threephase circuits, and Per Unit Calculations
Lecture (5) Power Factor,threephase circuits, and Per Unit Calculations 51 Repeating the Example on Power Factor Correction (Given last Class) P? Q? S? Light Motor From source 1000 volts @ 60 Htz 10kW
More informationIntroduction to AC Circuits (Capacitors and Inductors)
Introduction to AC Circuits (Capacitors and Inductors) Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/
More informationElectric Circuits I FINAL EXAMINATION
EECS:300, Electric Circuits I s6fs_elci7.fm  Electric Circuits I FINAL EXAMINATION Problems Points.. 3. 0 Total 34 Was the exam fair? yes no 5//6 EECS:300, Electric Circuits I s6fs_elci7.fm  Problem
More informationLearnabout Electronics  AC Theory
Learnabout Electronics  AC Theory Facts & Formulae for AC Theory www.learnaboutelectronics.org Contents AC Wave Values... 2 Capacitance... 2 Charge on a Capacitor... 2 Total Capacitance... 2 Inductance...
More informationD C Circuit Analysis and Network Theorems:
UNIT1 D C Circuit Analysis and Network Theorems: Circuit Concepts: Concepts of network, Active and passive elements, voltage and current sources, source transformation, unilateral and bilateral elements,
More informationPhasor mathematics. Resources and methods for learning about these subjects (list a few here, in preparation for your research):
Phasor mathematics This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
More informationRevision of Basic A.C. Theory
Revision of Basic A.C. Theory 1 Revision of Basic AC Theory (Much of this material has come from Electrical & Electronic Principles & Technology by John Bird) Electricity is generated in power stations
More informationModule 4. Singlephase AC Circuits. Version 2 EE IIT, Kharagpur 1
Module 4 Singlephase A ircuits ersion EE IIT, Kharagpur esson 4 Solution of urrent in  Series ircuits ersion EE IIT, Kharagpur In the last lesson, two points were described:. How to represent a sinusoidal
More informationSchedule. ECEN 301 Discussion #20 Exam 2 Review 1. Lab Due date. Title Chapters HW Due date. Date Day Class No. 10 Nov Mon 20 Exam Review.
Schedule Date Day lass No. 0 Nov Mon 0 Exam Review Nov Tue Title hapters HW Due date Nov Wed Boolean Algebra 3. 3.3 ab Due date AB 7 Exam EXAM 3 Nov Thu 4 Nov Fri Recitation 5 Nov Sat 6 Nov Sun 7 Nov Mon
More informationd n 1 f dt n 1 + K+ a 0f = C cos(ωt + φ)
Tutorial TUTOR: THE PHASOR TRANSFORM All voltages currents in linear circuits with sinusoidal sources are described by constantcoefficient linear differential equations of the form (1) a n d n f dt n
More informationElectric Circuits II Power Measurement. Dr. Firas Obeidat
Electric Circuits II Power Measurement Dr. Firas Obeidat 1 Table of contents 1 SinglePhase Power Measurement 2 ThreePhase Power Measurement 2 SinglePhase Power Measurement The wattmeter is the instrument
More informationHomework 2 SJTU233. Part A. Part B. Problem 2. Part A. Problem 1. Find the impedance Zab in the circuit seen in the figure. Suppose that R = 5 Ω.
Homework 2 SJTU233 Problem 1 Find the impedance Zab in the circuit seen in the figure. Suppose that R = 5 Ω. Express Zab in polar form. Enter your answer using polar notation. Express argument in degrees.
More information09/29/2009 Reading: Hambley Chapter 5 and Appendix A
EE40 Lec 10 Complex Numbers and Phasors Prof. Nathan Cheung 09/29/2009 Reading: Hambley Chapter 5 and Appendix A Slide 1 OUTLINE Phasors as notation for Sinusoids Arithmetic with Complex Numbers Complex
More informationTransformer Fundamentals
Transformer Fundamentals 1 Introduction The physical basis of the transformer is mutual induction between two circuits linked by a common magnetic field. Transformer is required to pass electrical energy
More information15884/484 Electric Power Systems 1: DC and AC Circuits
15884/484 Electric Power Systems 1: DC and AC Circuits J. Zico Kolter October 8, 2013 1 Hydro Estimated U.S. Energy Use in 2010: ~98.0 Quads Lawrence Livermore National Laboratory Solar 0.11 0.01 8.44
More informationTransformer. Transformer comprises two or more windings coupled by a common magnetic circuit (M.C.).
. Transformers Transformer Transformer comprises two or more windings coupled by a common magnetic circuit (M.C.). f the primary side is connected to an AC voltage source v (t), an AC flux (t) will be
More informationCourse Updates. Reminders: 1) Assignment #10 due Today. 2) Quiz # 5 Friday (Chap 29, 30) 3) Start AC Circuits
ourse Updates http://www.phys.hawaii.edu/~varner/phys272spr10/physics272.html eminders: 1) Assignment #10 due Today 2) Quiz # 5 Friday (hap 29, 30) 3) Start A ircuits Alternating urrents (hap 31) In this
More informationECE 241L Fundamentals of Electrical Engineering. Experiment 6 AC Circuits
ECE 241L Fundamentals of Electrical Engineering Experiment 6 AC Circuits A. Objectives: Objectives: I. Calculate amplitude and phase angles of ac voltages and impedances II. Calculate the reactance and
More informationEIT Review 1. FE/EIT Review. Circuits. John A. Camara, Electrical Engineering Reference Manual, 6 th edition, Professional Publications, Inc, 2002.
FE/EIT eview Circuits Instructor: uss Tatro eferences John A. Camara, Electrical Engineering eference Manual, 6 th edition, Professional Publications, Inc, 00. John A. Camara, Practice Problems for the
More informationLO 1: Three Phase Circuits
Course: EEL 2043 Principles of Electric Machines Class Instructor: Dr. Haris M. Khalid Email: hkhalid@hct.ac.ae Webpage: www.harismkhalid.com LO 1: Three Phase Circuits Three Phase AC System Three phase
More informationAn op amp consisting of a complex arrangement of resistors, transistors, capacitors, and diodes. Here, we ignore the details.
CHAPTER 5 Operational Amplifiers In this chapter, we learn how to use a new circuit element called op amp to build circuits that can perform various kinds of mathematical operations. Op amp is a building
More informationConsider Figure What is the horizontal axis grid increment?
Chapter Outline CHAPER 14 hreephase Circuits and Power 14.1 What Is hreephase? Why Is hreephase Used? 14.2 hreephase Circuits: Configurations, Conversions, Analysis 14.2.1 Delta Configuration Analysis
More information12. Introduction and Chapter Objectives
Real Analog  Circuits 1 Chapter 1: SteadyState Sinusoidal Power 1. Introduction and Chapter Objectives In this chapter we will address the issue of power transmission via sinusoidal or AC) signals. This
More information2. The following diagram illustrates that voltage represents what physical dimension?
BioE 1310  Exam 1 2/20/2018 Answer Sheet  Correct answer is A for all questions 1. A particular voltage divider with 10 V across it consists of two resistors in series. One resistor is 7 KΩ and the other
More informationPHASOR DIAGRAMS HANDSON RELAY SCHOOL WSU PULLMAN, WA.
PHASOR DIAGRAMS HANDSON RELAY SCHOOL WSU PULLMAN, WA. RON ALEXANDER  BPA What are phasors??? In normal practice, the phasor represents the rms maximum value of the positive half cycle of the sinusoid
More informationAC analysis  many examples
AC analysis  many examples The basic method for AC analysis:. epresent the AC sources as complex numbers: ( ). Convert resistors, capacitors, and inductors into their respective impedances: resistor Z
More informationCHAPTER 45 COMPLEX NUMBERS
CHAPTER 45 COMPLEX NUMBERS EXERCISE 87 Page 50. Solve the quadratic equation: x + 5 0 Since x + 5 0 then x 5 x 5 ( )(5) 5 j 5 from which, x ± j5. Solve the quadratic equation: x x + 0 Since x x + 0 then
More informationGeneration, transmission and distribution, as well as power supplied to industrial and commercial customers uses a 3 phase system.
Threephase Circuits Generation, transmission and distribution, as well as power supplied to industrial and commercial customers uses a 3 phase system. Where 3 voltages are supplied of equal magnitude,
More informationAC Circuits Homework Set
Problem 1. In an oscillating LC circuit in which C=4.0 μf, the maximum potential difference across the capacitor during the oscillations is 1.50 V and the maximum current through the inductor is 50.0 ma.
More informationSCHOOL OF MATHEMATICS MATHEMATICS FOR PART I ENGINEERING. Selfpaced Course
SCHOOL OF MATHEMATICS MATHEMATICS FOR PART I ENGINEERING Selfpaced Course MODULE 26 APPLICATIONS TO ELECTRICAL CIRCUITS Module Topics 1. Complex numbers and alternating currents 2. Complex impedance 3.
More informationChapter 1W Basic Electromagnetic Concepts
Chapter 1W Basic Electromagnetic Concepts 1W Basic Electromagnetic Concepts 1W.1 Examples and Problems on Electric Circuits 1W.2 Examples on Magnetic Concepts This chapter includes additional examples
More informationECE 45 Average Power Review
UC San Diego J. Connelly Complex Power ECE 45 Average Power Review When dealing with timedependent voltage and currents, we have to consider a more general definition of power. We can calculate the instantaneous
More informationPHASOR DIAGRAMS HANDSON RELAY SCHOOL WSU PULLMAN, WA. RON ALEXANDER  BPA
PHASOR DIAGRAMS HANDSON RELAY SCHOOL WSU PULLMAN, WA. RON ALEXANDER  BPA I m VECTOR. Cause I m committing crimes with magnitude and direction at the same time!" What are phasors??? In normal practice,
More information3.1 Superposition theorem
Many electric circuits are complex, but it is an engineer s goal to reduce their complexity to analyze them easily. In the previous chapters, we have mastered the ability to solve networks containing independent
More informationEE 40: Introduction to Microelectronic Circuits Spring 2008: Midterm 2
EE 4: Introduction to Microelectronic Circuits Spring 8: Midterm Venkat Anantharam 3/9/8 Total Time Allotted : min Total Points:. This is a closed book exam. However, you are allowed to bring two pages
More information= 32.0\cis{38.7} = j Ω. Zab = Homework 2 SJTU233. Part A. Part B. Problem 2. Part A. Problem 1
Homework 2 SJTU233 Problem 1 Find the impedance Zab in the circuit seen in the figure. Suppose that R = 5 Ω. Express Zab in polar form. Enter your answer using polar notation. Express argument in degrees.
More informationPhysics 116A Notes Fall 2004
Physics 116A Notes Fall 2004 David E. Pellett Draft v.0.9 Notes Copyright 2004 David E. Pellett unless stated otherwise. References: Text for course: Fundamentals of Electrical Engineering, second edition,
More informationECE 205: Intro Elec & Electr Circuits
ECE 205: Intro Elec & Electr Circuits Final Exam Study Guide Version 1.00 Created by Charles Feng http://www.fenguin.net ECE 205: Intro Elec & Electr Circuits Final Exam Study Guide 1 Contents 1 Introductory
More informationPower Factor Improvement
Salman bin AbdulazizUniversity College of Engineering Electrical Engineering Department EE 2050Electrical Circuit Laboratory Power Factor Improvement Experiment # 4 Objectives: 1. To introduce the concept
More informationRLC Circuit (3) We can then write the differential equation for charge on the capacitor. The solution of this differential equation is
RLC Circuit (3) We can then write the differential equation for charge on the capacitor The solution of this differential equation is (damped harmonic oscillation!), where 25 RLC Circuit (4) If we charge
More informationECE 421/521 Electric Energy Systems Power Systems Analysis I 2 Basic Principles. Instructor: Kai Sun Fall 2013
ECE 41/51 Electric Energy Systems Power Systems Analysis I Basic Principles Instructor: Kai Sun Fall 013 1 Outline Power in a 1phase AC circuit Complex power Balanced 3phase circuit Single Phase AC System
More information