Geometrical Concept-reduction in conformational space.and his Φ-ψ Map. G. N. Ramachandran

Size: px
Start display at page:

Download "Geometrical Concept-reduction in conformational space.and his Φ-ψ Map. G. N. Ramachandran"

Transcription

1 Geometrical Concept-reduction in conformational space.and his Φ-ψ Map G. N. Ramachandran

2 Communication paths in trna-synthetase: Insights from protein structure networks and MD simulations Saraswathi Vishveshwara Molecular Biophysics Unit Indian Institute of Science Bangalore, India Indo-US workshop, IISc, December 11, 2007

3 Outline Allosteric effects in proteins Tracking conformational changes Protein Structure Networks Network in dynamical equilibrium trna synthetases Simulations on Methionyl trna synthetase comlexes Communication pathways

4 Allosteric effect Definition: Allostery or a different shape is the coupling of conformational changes between two widely separated sites in a protein. Allosteric proteins bind to two ligands. The binding of one of them alters the affinity of the protein to the other ligand. Allosteric proteins can be multimers, monomer with multidomains

5 Allosteric Models Concerted hypothesis of allostery by Monad et al. (MWC model) Induced fit models: Monad, Koshland Population Shift Model From the Review by Gunasekaran, Ma, and Ruth Nussinov PROTEINS: Structure, Function, and Bioinformatics 57: (2004)

6 Importance of alternate conformations Models differ in their emphasis on whether the allosteric effect is Kinetic or Thermodynamic? Irrespective of the model, it is clear that alternate conformations are taken up in the ligand-bound forms

7 Tracking the changes in conformational states Structures of different liganded states Experimental: X-ray, NMR Structures from simulations: a large ensemble Monitoring of structural changes Gross changes: RMSD Local changes: Residue-wise RMSD, cross correlations Collective movements such as hinge bending, domain movements: Normal mode analysis Gaussian Network model Essential dynamics

8 RMSD Trajectories RMSD as a function of simulation time continuous line: w.r.t <MD> broken line: w.r.t crystal structure RMSD as a function of residue number

9 Pair-wise Cross Correlation C ij = ( r ) ( ) i ri rj rj ( )( 2 2 r 2 2 ) i ri rj rj Cij the cross correlation between the residues i and j ri, rj the coordinates at a given time point, <ri>, <rj> are the averages over the trajectory

10 Collective modes from Essential Dynamics Molecule of N atoms has 3N degrees of freedom. Essential dynamics is a way of capturing important collective modes Covariance matrix (M=[m ij ]) m ij =(1/S) Σ t (x i (t)-<x i >)(x j (t)-<x j >) where S = total number of configurations t = time in picoseconds i = i th coordinate (i=1,2,...,3n) ('N' being number of atoms) <x i >= average value of x i over all configurations Find Eigenvalues and normalized Eigenvectors of Covariance matrix A. Amadei, A.B. Linssen, H.J. Berendsen, Proteins: Struct. Func. Gen., 17, 412 (1993).

11 Conformational changes at Network level Network represents global connectivity. Connections are defined at residue level. Connections are made at desired level of interaction strength between residues.

12 Protein structures as Graphs

13 Protein Graphs Main Chain Interaction (back bone level ) Nodes : Amino acid Residues Edges : Spatial neighbours within fixed distance S.M.Patra, Kannan, Vishveshwara, Biophys. Chem (2000); JMB (1999)

14 Side Chain Interaction High (Iij=11%) Low (Iij=4%) Iij=0% a) High Contact b) Low Contact c)no interaction High and low contact criteria. A pair of phenylalanine rings interacting with each other are shown. The lines between the phenylalanines indicate the atoms that are within a distance of 4.5Å. I ij = (n ij (N i *N j )) 100 I min is user defined interaction cutoff. An (ij) residue pair with I ij > I min is connected by an edge.

15 Backbone-based versus the Side-chain-based Protein Structure Graphs Backbone-based (coarse grained) Based on C-alpha-C-alpha distance The extent of side-chain interaction is not considered Side-chain-based The interactions between sidechains are quantified, hence a weighted graph can be constructed or graphs can be constructed on the basis of the strength of interaction

16 Graph spectral parameters Provide information on the clusters of interacting residues Detect cluster centres, which play a crucial role in the integrity of the cluster Vishveshwara, Brinda and Kannan JTCC, 2002

17 Advantages of Graph Spectral Analysis Solution to weighted graph Identification of Cluster Centre Centre of a Graph E(v) = max d(v,v i ) v i G Clusters (at interaction strength Imin =6%) in Ornithine Decarboxylase

18 Construction of Graphs and Networks Interacting biomolecular residues Adjacency Matrix PSN Size of largest cluster, Degree distribution, Hubs PSG Side chain Clusters (DFS) Brinda, Vishveshwara, Biophysical J, 2005

19 Hubs in Protein Structure Networks Asp Arg Arg Ser Pro His Hubs - highly connected amino acids in the protein structure. Identified as amino acids having a contact number of >= 4 at a given I min.

20 Aminoacyl trna Synthetase (AARS) trna Catalytic domain 70A Anticodon binding domain Communication between the anticodon region and the active-site region is crucial for the faithful translation of the genetic code

21 Aminoacyl trna Synthetases (AARS) Charge an amino acid to the cognate trna in protein synthesis. 20 AARS enzymes two classes based on structural and sequence motifs. Possess proof-reading capacities to ensure correct aminoacylation and determines the fidelity of translation. Other functions: Cytokine like activity, Translational and Transcriptional control, Mitochondrial RNA Splicing, DNA binding etc.

22 Classification of AARS AARS are classified into two classes: CLASS I RS Leu Ile Val Cys Met Arg Glu Gln Lys Tyr Trp Oligomeric α α α α α 2 α α α α α 2 α 2 State CLASS II RS Ia Ib Ic Ser Thr Gly Ala Pro His Asp Asn Lys Phe Oligomeric α 2 α 2 (αβ) 2 α 4 α 2 α 2 α 2 α 2 α 2 (αβ) 2 State IIa IIb II c

23 Features distinguishing class I and class II aars. Feature Class I Class II Aminoacylation Fold of the ATP binding domain Leu, Ile, Val, Cys, Met, Arg, Glu, Gln, Lys, Tyr, Trp Rossmann Fold Ser, Thr, Gly, Ala, Pro, His, Asp, Asn, Phe, Lys Antiparallel Beta fold Sequence motifs Aminoacylation of ribose Amino acid binding at the active site trna acceptor end HIGH, KMSKS, GXGXGXER 2 OH Deep Pocket Bent FRXE/D, R/HXXF 3 OH Surface Straight

24 System selected for investigation: Methionine trna Synthetase

25 MD simulations on MetRS complexes A:MetRS B: MetRS+MetAMP C:MetRS+tRNA D:MetRS+tRNA+MetAMP

26 MetRS complexes Simulations RMSD Profiles

27 The CP domain opens up when MetRS is bound to both the trna and the activated methionine

28 Conformation of trna MetRS+tRNA MetRS+tRNA+MetAMP

29 Interactions at the active-site

30 How is the message communicated between the anticodon region and the activation site, which are separated by about 70 A?

31 Dynamics of structure networks

32 Analysis of Network parameters from MD trajectories Insights into biological processes such as The mechanism of protein folding (Ghosh, Brinda, Vishveshwara, Biophysical J, 2006) Long distance communications (allosteric effect)

33 Identification of communication pathways in MetRS from network analysis of MD trajectories Amit Ghosh and S Vishveshwara PNAS September 2007

34 MetRS+tRNA+MetAMP MetRS Leu13-His28-Lys388-Trp461 Dynamical cross correlation maps representing the collective atomic fluctuations

35 Limitation of cross correlation map Cross Correlated residues identified from MD simulations need not be connected in space. Network analysis overcomes this limitation The residues connecting (non-covalent) the correlated ones are identified from the protein structure network, by the analysis of the shortest path between the selected residues

36 Choice of interaction strength for path analysis Imin (%) Size of the largest cluster in MetRS (averaged over MD snapshots) as a function of interaction strength

37 Communication pathways from the anti-codon region to the aminoacylation site Deduced from dynamic cross correlations and identification of shortest paths connected through non-covalent interactions at Imin=3%

38 Communication paths between the anti-codon region and the active site in MetRS

39 Summary of the method of path identification

40 Summary of identified communication paths

41 Tryptophenyl trna Synthetase Functional dimer Complicated communication system (Work in progress)

42 Summary Allosteric effect involves conformational change, which can be identified at different levels. Residue-wise RMSD, Cross correlations, Essential dynamics The global non-covalent connectivity in proteins can be represented as graphs and networks The communication pathways between the anti-codon region and the amino acylation site have been deduced from the dynamic cross correlations and the network analysis of the MD trajectories of Methionyl trna Synthetase

43 Acknowledgements Amit Ghosh: MetRS communication paths Priti Hansia: TrpRS Drs. Brinda, Kannan, swarna M. Patra- structure network Department of Biotechnology, Government of India Super-computer Education and Research Centre (SERC), IISc

44

Supporting information to: Time-resolved observation of protein allosteric communication. Sebastian Buchenberg, Florian Sittel and Gerhard Stock 1

Supporting information to: Time-resolved observation of protein allosteric communication. Sebastian Buchenberg, Florian Sittel and Gerhard Stock 1 Supporting information to: Time-resolved observation of protein allosteric communication Sebastian Buchenberg, Florian Sittel and Gerhard Stock Biomolecular Dynamics, Institute of Physics, Albert Ludwigs

More information

Structural and mechanistic insight into the substrate. binding from the conformational dynamics in apo. and substrate-bound DapE enzyme

Structural and mechanistic insight into the substrate. binding from the conformational dynamics in apo. and substrate-bound DapE enzyme Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 215 Structural and mechanistic insight into the substrate binding from the conformational

More information

Advanced Topics in RNA and DNA. DNA Microarrays Aptamers

Advanced Topics in RNA and DNA. DNA Microarrays Aptamers Quiz 1 Advanced Topics in RNA and DNA DNA Microarrays Aptamers 2 Quantifying mrna levels to asses protein expression 3 The DNA Microarray Experiment 4 Application of DNA Microarrays 5 Some applications

More information

Ranjit P. Bahadur Assistant Professor Department of Biotechnology Indian Institute of Technology Kharagpur, India. 1 st November, 2013

Ranjit P. Bahadur Assistant Professor Department of Biotechnology Indian Institute of Technology Kharagpur, India. 1 st November, 2013 Hydration of protein-rna recognition sites Ranjit P. Bahadur Assistant Professor Department of Biotechnology Indian Institute of Technology Kharagpur, India 1 st November, 2013 Central Dogma of life DNA

More information

Introduction to the Ribosome Overview of protein synthesis on the ribosome Prof. Anders Liljas

Introduction to the Ribosome Overview of protein synthesis on the ribosome Prof. Anders Liljas Introduction to the Ribosome Molecular Biophysics Lund University 1 A B C D E F G H I J Genome Protein aa1 aa2 aa3 aa4 aa5 aa6 aa7 aa10 aa9 aa8 aa11 aa12 aa13 a a 14 How is a polypeptide synthesized? 2

More information

Translation. A ribosome, mrna, and trna.

Translation. A ribosome, mrna, and trna. Translation The basic processes of translation are conserved among prokaryotes and eukaryotes. Prokaryotic Translation A ribosome, mrna, and trna. In the initiation of translation in prokaryotes, the Shine-Dalgarno

More information

What makes a good graphene-binding peptide? Adsorption of amino acids and peptides at aqueous graphene interfaces: Electronic Supplementary

What makes a good graphene-binding peptide? Adsorption of amino acids and peptides at aqueous graphene interfaces: Electronic Supplementary Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is The Royal Society of Chemistry 21 What makes a good graphene-binding peptide? Adsorption of amino acids and

More information

Properties of amino acids in proteins

Properties of amino acids in proteins Properties of amino acids in proteins one of the primary roles of DNA (but not the only one!) is to code for proteins A typical bacterium builds thousands types of proteins, all from ~20 amino acids repeated

More information

Sequential resonance assignments in (small) proteins: homonuclear method 2º structure determination

Sequential resonance assignments in (small) proteins: homonuclear method 2º structure determination Lecture 9 M230 Feigon Sequential resonance assignments in (small) proteins: homonuclear method 2º structure determination Reading resources v Roberts NMR of Macromolecules, Chap 4 by Christina Redfield

More information

Using Higher Calculus to Study Biologically Important Molecules Julie C. Mitchell

Using Higher Calculus to Study Biologically Important Molecules Julie C. Mitchell Using Higher Calculus to Study Biologically Important Molecules Julie C. Mitchell Mathematics and Biochemistry University of Wisconsin - Madison 0 There Are Many Kinds Of Proteins The word protein comes

More information

Proteins: Characteristics and Properties of Amino Acids

Proteins: Characteristics and Properties of Amino Acids SBI4U:Biochemistry Macromolecules Eachaminoacidhasatleastoneamineandoneacidfunctionalgroupasthe nameimplies.thedifferentpropertiesresultfromvariationsinthestructuresof differentrgroups.thergroupisoftenreferredtoastheaminoacidsidechain.

More information

Supplementary Figure 3 a. Structural comparison between the two determined structures for the IL 23:MA12 complex. The overall RMSD between the two

Supplementary Figure 3 a. Structural comparison between the two determined structures for the IL 23:MA12 complex. The overall RMSD between the two Supplementary Figure 1. Biopanningg and clone enrichment of Alphabody binders against human IL 23. Positive clones in i phage ELISA with optical density (OD) 3 times higher than background are shown for

More information

Advanced Certificate in Principles in Protein Structure. You will be given a start time with your exam instructions

Advanced Certificate in Principles in Protein Structure. You will be given a start time with your exam instructions BIRKBECK COLLEGE (University of London) Advanced Certificate in Principles in Protein Structure MSc Structural Molecular Biology Date: Thursday, 1st September 2011 Time: 3 hours You will be given a start

More information

Energy and Cellular Metabolism

Energy and Cellular Metabolism 1 Chapter 4 About This Chapter Energy and Cellular Metabolism 2 Energy in biological systems Chemical reactions Enzymes Metabolism Figure 4.1 Energy transfer in the environment Table 4.1 Properties of

More information

UNIT TWELVE. a, I _,o "' I I I. I I.P. l'o. H-c-c. I ~o I ~ I / H HI oh H...- I II I II 'oh. HO\HO~ I "-oh

UNIT TWELVE. a, I _,o ' I I I. I I.P. l'o. H-c-c. I ~o I ~ I / H HI oh H...- I II I II 'oh. HO\HO~ I -oh UNT TWELVE PROTENS : PEPTDE BONDNG AND POLYPEPTDES 12 CONCEPTS Many proteins are important in biological structure-for example, the keratin of hair, collagen of skin and leather, and fibroin of silk. Other

More information

Final Chem 4511/6501 Spring 2011 May 5, 2011 b Name

Final Chem 4511/6501 Spring 2011 May 5, 2011 b Name Key 1) [10 points] In RNA, G commonly forms a wobble pair with U. a) Draw a G-U wobble base pair, include riboses and 5 phosphates. b) Label the major groove and the minor groove. c) Label the atoms of

More information

Protein structure. Protein structure. Amino acid residue. Cell communication channel. Bioinformatics Methods

Protein structure. Protein structure. Amino acid residue. Cell communication channel. Bioinformatics Methods Cell communication channel Bioinformatics Methods Iosif Vaisman Email: ivaisman@gmu.edu SEQUENCE STRUCTURE DNA Sequence Protein Sequence Protein Structure Protein structure ATGAAATTTGGAAACTTCCTTCTCACTTATCAGCCACCT...

More information

BIRKBECK COLLEGE (University of London)

BIRKBECK COLLEGE (University of London) BIRKBECK COLLEGE (University of London) SCHOOL OF BIOLOGICAL SCIENCES M.Sc. EXAMINATION FOR INTERNAL STUDENTS ON: Postgraduate Certificate in Principles of Protein Structure MSc Structural Molecular Biology

More information

7.012 Problem Set 1. i) What are two main differences between prokaryotic cells and eukaryotic cells?

7.012 Problem Set 1. i) What are two main differences between prokaryotic cells and eukaryotic cells? ame 7.01 Problem Set 1 Section Question 1 a) What are the four major types of biological molecules discussed in lecture? Give one important function of each type of biological molecule in the cell? b)

More information

Physiochemical Properties of Residues

Physiochemical Properties of Residues Physiochemical Properties of Residues Various Sources C N Cα R Slide 1 Conformational Propensities Conformational Propensity is the frequency in which a residue adopts a given conformation (in a polypeptide)

More information

Secondary Structure. Bioch/BIMS 503 Lecture 2. Structure and Function of Proteins. Further Reading. Φ, Ψ angles alone determine protein structure

Secondary Structure. Bioch/BIMS 503 Lecture 2. Structure and Function of Proteins. Further Reading. Φ, Ψ angles alone determine protein structure Bioch/BIMS 503 Lecture 2 Structure and Function of Proteins August 28, 2008 Robert Nakamoto rkn3c@virginia.edu 2-0279 Secondary Structure Φ Ψ angles determine protein structure Φ Ψ angles are restricted

More information

Major Types of Association of Proteins with Cell Membranes. From Alberts et al

Major Types of Association of Proteins with Cell Membranes. From Alberts et al Major Types of Association of Proteins with Cell Membranes From Alberts et al Proteins Are Polymers of Amino Acids Peptide Bond Formation Amino Acid central carbon atom to which are attached amino group

More information

Exam I Answer Key: Summer 2006, Semester C

Exam I Answer Key: Summer 2006, Semester C 1. Which of the following tripeptides would migrate most rapidly towards the negative electrode if electrophoresis is carried out at ph 3.0? a. gly-gly-gly b. glu-glu-asp c. lys-glu-lys d. val-asn-lys

More information

Protein Structure Bioinformatics Introduction

Protein Structure Bioinformatics Introduction 1 Swiss Institute of Bioinformatics Protein Structure Bioinformatics Introduction Basel, 27. September 2004 Torsten Schwede Biozentrum - Universität Basel Swiss Institute of Bioinformatics Klingelbergstr

More information

NMR study of complexes between low molecular mass inhibitors and the West Nile virus NS2B-NS3 protease

NMR study of complexes between low molecular mass inhibitors and the West Nile virus NS2B-NS3 protease University of Wollongong Research Online Faculty of Science - Papers (Archive) Faculty of Science, Medicine and Health 2009 NMR study of complexes between low molecular mass inhibitors and the West Nile

More information

Supplementary figure 1. Comparison of unbound ogm-csf and ogm-csf as captured in the GIF:GM-CSF complex. Alignment of two copies of unbound ovine

Supplementary figure 1. Comparison of unbound ogm-csf and ogm-csf as captured in the GIF:GM-CSF complex. Alignment of two copies of unbound ovine Supplementary figure 1. Comparison of unbound and as captured in the GIF:GM-CSF complex. Alignment of two copies of unbound ovine GM-CSF (slate) with bound GM-CSF in the GIF:GM-CSF complex (GIF: green,

More information

Dominant Paths in Protein Folding

Dominant Paths in Protein Folding Dominant Paths in Protein Folding Henri Orland SPhT, CEA-Saclay France work in collaboration with P. Faccioli, F. Pederiva, M. Sega University of Trento Henri Orland Annecy meeting 2006 Outline Basic notions

More information

Details of Protein Structure

Details of Protein Structure Details of Protein Structure Function, evolution & experimental methods Thomas Blicher, Center for Biological Sequence Analysis Anne Mølgaard, Kemisk Institut, Københavns Universitet Learning Objectives

More information

TRANSLATION: How to make proteins?

TRANSLATION: How to make proteins? TRANSLATION: How to make proteins? EUKARYOTIC mrna CBP80 NUCLEUS SPLICEOSOME 5 UTR INTRON 3 UTR m 7 GpppG AUG UAA 5 ss 3 ss CBP20 PABP2 AAAAAAAAAAAAA 50-200 nts CYTOPLASM eif3 EJC PABP1 5 UTR 3 UTR m 7

More information

Viewing and Analyzing Proteins, Ligands and their Complexes 2

Viewing and Analyzing Proteins, Ligands and their Complexes 2 2 Viewing and Analyzing Proteins, Ligands and their Complexes 2 Overview Viewing the accessible surface Analyzing the properties of proteins containing thousands of atoms is best accomplished by representing

More information

Read more about Pauling and more scientists at: Profiles in Science, The National Library of Medicine, profiles.nlm.nih.gov

Read more about Pauling and more scientists at: Profiles in Science, The National Library of Medicine, profiles.nlm.nih.gov 2018 Biochemistry 110 California Institute of Technology Lecture 2: Principles of Protein Structure Linus Pauling (1901-1994) began his studies at Caltech in 1922 and was directed by Arthur Amos oyes to

More information

Clustering and Model Integration under the Wasserstein Metric. Jia Li Department of Statistics Penn State University

Clustering and Model Integration under the Wasserstein Metric. Jia Li Department of Statistics Penn State University Clustering and Model Integration under the Wasserstein Metric Jia Li Department of Statistics Penn State University Clustering Data represented by vectors or pairwise distances. Methods Top- down approaches

More information

1. What is an ångstrom unit, and why is it used to describe molecular structures?

1. What is an ångstrom unit, and why is it used to describe molecular structures? 1. What is an ångstrom unit, and why is it used to describe molecular structures? The ångstrom unit is a unit of distance suitable for measuring atomic scale objects. 1 ångstrom (Å) = 1 10-10 m. The diameter

More information

Supplementary Information Intrinsic Localized Modes in Proteins

Supplementary Information Intrinsic Localized Modes in Proteins Supplementary Information Intrinsic Localized Modes in Proteins Adrien Nicolaï 1,, Patrice Delarue and Patrick Senet, 1 Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute,

More information

Computer simulations of protein folding with a small number of distance restraints

Computer simulations of protein folding with a small number of distance restraints Vol. 49 No. 3/2002 683 692 QUARTERLY Computer simulations of protein folding with a small number of distance restraints Andrzej Sikorski 1, Andrzej Kolinski 1,2 and Jeffrey Skolnick 2 1 Department of Chemistry,

More information

Peptides And Proteins

Peptides And Proteins Kevin Burgess, May 3, 2017 1 Peptides And Proteins from chapter(s) in the recommended text A. Introduction B. omenclature And Conventions by amide bonds. on the left, right. 2 -terminal C-terminal triglycine

More information

Lecture 15: Realities of Genome Assembly Protein Sequencing

Lecture 15: Realities of Genome Assembly Protein Sequencing Lecture 15: Realities of Genome Assembly Protein Sequencing Study Chapter 8.10-8.15 1 Euler s Theorems A graph is balanced if for every vertex the number of incoming edges equals to the number of outgoing

More information

Catalytic power of enzymes

Catalytic power of enzymes Enzyme catalysis Catalytic power of enzymes Enzymatic reactions are involved in most biological processes. There is a major practical and fundamental interest in finding out what makes enzymes so efficient

More information

C CH 3 N C COOH. Write the structural formulas of all of the dipeptides that they could form with each other.

C CH 3 N C COOH. Write the structural formulas of all of the dipeptides that they could form with each other. hapter 25 Biochemistry oncept heck 25.1 Two common amino acids are 3 2 N alanine 3 2 N threonine Write the structural formulas of all of the dipeptides that they could form with each other. The carboxyl

More information

7.05 Spring 2004 February 27, Recitation #2

7.05 Spring 2004 February 27, Recitation #2 Recitation #2 Contact Information TA: Victor Sai Recitation: Friday, 3-4pm, 2-132 E-mail: sai@mit.edu ffice ours: Friday, 4-5pm, 2-132 Unit 1 Schedule Recitation/Exam Date Lectures covered Recitation #2

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 14, 2018 02:00 pm GMT PDB ID : 3RRQ Title : Crystal structure of the extracellular domain of human PD-1 Authors : Lazar-Molnar, E.; Ramagopal, U.A.; Nathenson,

More information

Other Methods for Generating Ions 1. MALDI matrix assisted laser desorption ionization MS 2. Spray ionization techniques 3. Fast atom bombardment 4.

Other Methods for Generating Ions 1. MALDI matrix assisted laser desorption ionization MS 2. Spray ionization techniques 3. Fast atom bombardment 4. Other Methods for Generating Ions 1. MALDI matrix assisted laser desorption ionization MS 2. Spray ionization techniques 3. Fast atom bombardment 4. Field Desorption 5. MS MS techniques Matrix assisted

More information

Basic Principles of Protein Structures

Basic Principles of Protein Structures Basic Principles of Protein Structures Proteins Proteins: The Molecule of Life Proteins: Building Blocks Proteins: Secondary Structures Proteins: Tertiary and Quartenary Structure Proteins: Geometry Proteins

More information

Protein Struktur (optional, flexible)

Protein Struktur (optional, flexible) Protein Struktur (optional, flexible) 22/10/2009 [ 1 ] Andrew Torda, Wintersemester 2009 / 2010, AST nur für Informatiker, Mathematiker,.. 26 kt, 3 ov 2009 Proteins - who cares? 22/10/2009 [ 2 ] Most important

More information

Protein Fragment Search Program ver Overview: Contents:

Protein Fragment Search Program ver Overview: Contents: Protein Fragment Search Program ver 1.1.1 Developed by: BioPhysics Laboratory, Faculty of Life and Environmental Science, Shimane University 1060 Nishikawatsu-cho, Matsue-shi, Shimane, 690-8504, Japan

More information

Structure Investigation of Fam20C, a Golgi Casein Kinase

Structure Investigation of Fam20C, a Golgi Casein Kinase Structure Investigation of Fam20C, a Golgi Casein Kinase Sharon Grubner National Taiwan University, Dr. Jung-Hsin Lin University of California San Diego, Dr. Rommie Amaro Abstract This research project

More information

Packing of Secondary Structures

Packing of Secondary Structures 7.88 Lecture Notes - 4 7.24/7.88J/5.48J The Protein Folding and Human Disease Professor Gossard Retrieving, Viewing Protein Structures from the Protein Data Base Helix helix packing Packing of Secondary

More information

Amino Acid Side Chain Induced Selectivity in the Hydrolysis of Peptides Catalyzed by a Zr(IV)-Substituted Wells-Dawson Type Polyoxometalate

Amino Acid Side Chain Induced Selectivity in the Hydrolysis of Peptides Catalyzed by a Zr(IV)-Substituted Wells-Dawson Type Polyoxometalate Amino Acid Side Chain Induced Selectivity in the Hydrolysis of Peptides Catalyzed by a Zr(IV)-Substituted Wells-Dawson Type Polyoxometalate Stef Vanhaecht, Gregory Absillis, Tatjana N. Parac-Vogt* Department

More information

Structure and evolution of the spliceosomal peptidyl-prolyl cistrans isomerase Cwc27

Structure and evolution of the spliceosomal peptidyl-prolyl cistrans isomerase Cwc27 Acta Cryst. (2014). D70, doi:10.1107/s1399004714021695 Supporting information Volume 70 (2014) Supporting information for article: Structure and evolution of the spliceosomal peptidyl-prolyl cistrans isomerase

More information

Translation and Operons

Translation and Operons Translation and Operons You Should Be Able To 1. Describe the three stages translation. including the movement of trna molecules through the ribosome. 2. Compare and contrast the roles of three different

More information

Supporting Information

Supporting Information Supporting Information Boehr et al. 10.1073/pnas.0914163107 SI Text Materials and Methods. R 2 relaxation dispersion experiments. 15 NR 2 relaxation dispersion data measured at 1 H Larmor frequencies of

More information

Protein Structures: Experiments and Modeling. Patrice Koehl

Protein Structures: Experiments and Modeling. Patrice Koehl Protein Structures: Experiments and Modeling Patrice Koehl Structural Bioinformatics: Proteins Proteins: Sources of Structure Information Proteins: Homology Modeling Proteins: Ab initio prediction Proteins:

More information

Ramachandran Plot. 4ysz Phi (degrees) Plot statistics

Ramachandran Plot. 4ysz Phi (degrees) Plot statistics B Ramachandran Plot ~b b 135 b ~b ~l l Psi (degrees) 5-5 a A ~a L - -135 SER HIS (F) 59 (G) SER (B) ~b b LYS ASP ASP 315 13 13 (A) (F) (B) LYS ALA ALA 315 173 (E) 173 (E)(A) ~p p ~b - -135 - -5 5 135 (degrees)

More information

Central Dogma. modifications genome transcriptome proteome

Central Dogma. modifications genome transcriptome proteome entral Dogma DA ma protein post-translational modifications genome transcriptome proteome 83 ierarchy of Protein Structure 20 Amino Acids There are 20 n possible sequences for a protein of n residues!

More information

Protein Structure. Role of (bio)informatics in drug discovery. Bioinformatics

Protein Structure. Role of (bio)informatics in drug discovery. Bioinformatics Bioinformatics Protein Structure Principles & Architecture Marjolein Thunnissen Dep. of Biochemistry & Structural Biology Lund University September 2011 Homology, pattern and 3D structure searches need

More information

What binds to Hb in addition to O 2?

What binds to Hb in addition to O 2? Reading: Ch5; 158-169, 162-166, 169-174 Problems: Ch5 (text); 3,7,8,10 Ch5 (study guide-facts); 1,2,3,4,5,8 Ch5 (study guide-apply); 2,3 Remember Today at 5:30 in CAS-522 is the second chance for the MB

More information

F. Piazza Center for Molecular Biophysics and University of Orléans, France. Selected topic in Physical Biology. Lecture 1

F. Piazza Center for Molecular Biophysics and University of Orléans, France. Selected topic in Physical Biology. Lecture 1 Zhou Pei-Yuan Centre for Applied Mathematics, Tsinghua University November 2013 F. Piazza Center for Molecular Biophysics and University of Orléans, France Selected topic in Physical Biology Lecture 1

More information

Supplementary Information. Broad Spectrum Anti-Influenza Agents by Inhibiting Self- Association of Matrix Protein 1

Supplementary Information. Broad Spectrum Anti-Influenza Agents by Inhibiting Self- Association of Matrix Protein 1 Supplementary Information Broad Spectrum Anti-Influenza Agents by Inhibiting Self- Association of Matrix Protein 1 Philip D. Mosier 1, Meng-Jung Chiang 2, Zhengshi Lin 2, Yamei Gao 2, Bashayer Althufairi

More information

NMR parameters intensity chemical shift coupling constants 1D 1 H spectra of nucleic acids and proteins

NMR parameters intensity chemical shift coupling constants 1D 1 H spectra of nucleic acids and proteins Lecture #2 M230 NMR parameters intensity chemical shift coupling constants Juli Feigon 1D 1 H spectra of nucleic acids and proteins NMR Parameters A. Intensity (area) 1D NMR spectrum: integrated intensity

More information

Protein Simulations in Confined Environments

Protein Simulations in Confined Environments Critical Review Lecture Protein Simulations in Confined Environments Murat Cetinkaya 1, Jorge Sofo 2, Melik C. Demirel 1 1. 2. College of Engineering, Pennsylvania State University, University Park, 16802,

More information

Amino Acids and Proteins at ZnO-water Interfaces in Molecular Dynamics Simulations: Electronic Supplementary Information

Amino Acids and Proteins at ZnO-water Interfaces in Molecular Dynamics Simulations: Electronic Supplementary Information Amino Acids and Proteins at ZnO-water Interfaces in Molecular Dynamics Simulations: Electronic Supplementary Information Grzegorz Nawrocki and Marek Cieplak Institute of Physics, Polish Academy of Sciences,

More information

Chapter

Chapter Chapter 17 17.4-17.6 Molecular Components of Translation A cell interprets a genetic message and builds a polypeptide The message is a series of codons on mrna The interpreter is called transfer (trna)

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 8, 2018 06:13 pm GMT PDB ID : 5G5C Title : Structure of the Pyrococcus furiosus Esterase Pf2001 with space group C2221 Authors : Varejao, N.; Reverter,

More information

Problem Set 1

Problem Set 1 2006 7.012 Problem Set 1 Due before 5 PM on FRIDAY, September 15, 2006. Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. For each of the following parts, pick

More information

Gene regulation II Biochemistry 302. February 27, 2006

Gene regulation II Biochemistry 302. February 27, 2006 Gene regulation II Biochemistry 302 February 27, 2006 Molecular basis of inhibition of RNAP by Lac repressor 35 promoter site 10 promoter site CRP/DNA complex 60 Lewis, M. et al. (1996) Science 271:1247

More information

Programme Last week s quiz results + Summary Fold recognition Break Exercise: Modelling remote homologues

Programme Last week s quiz results + Summary Fold recognition Break Exercise: Modelling remote homologues Programme 8.00-8.20 Last week s quiz results + Summary 8.20-9.00 Fold recognition 9.00-9.15 Break 9.15-11.20 Exercise: Modelling remote homologues 11.20-11.40 Summary & discussion 11.40-12.00 Quiz 1 Feedback

More information

Protein Struktur. Biologen und Chemiker dürfen mit Handys spielen (leise) go home, go to sleep. wake up at slide 39

Protein Struktur. Biologen und Chemiker dürfen mit Handys spielen (leise) go home, go to sleep. wake up at slide 39 Protein Struktur Biologen und Chemiker dürfen mit Handys spielen (leise) go home, go to sleep wake up at slide 39 Andrew Torda, Wintersemester 2016/ 2017 Andrew Torda 17.10.2016 [ 1 ] Proteins - who cares?

More information

Resonance assignments in proteins. Christina Redfield

Resonance assignments in proteins. Christina Redfield Resonance assignments in proteins Christina Redfield 1. Introduction The assignment of resonances in the complex NMR spectrum of a protein is the first step in any study of protein structure, function

More information

Model Mélange. Physical Models of Peptides and Proteins

Model Mélange. Physical Models of Peptides and Proteins Model Mélange Physical Models of Peptides and Proteins In the Model Mélange activity, you will visit four different stations each featuring a variety of different physical models of peptides or proteins.

More information

Deciphering the Rules for Amino Acid Co- Assembly Based on Interlayer Distances

Deciphering the Rules for Amino Acid Co- Assembly Based on Interlayer Distances Supporting Information Deciphering the Rules for Amino Acid Co- Assembly Based on Interlayer Distances Santu Bera, Sudipta Mondal, Yiming Tang, Guy Jacoby, Elad Arad, ǁ Tom Guterman, Raz Jelinek, ǁ Roy

More information

Chapter 4: Amino Acids

Chapter 4: Amino Acids Chapter 4: Amino Acids All peptides and polypeptides are polymers of alpha-amino acids. lipid polysaccharide enzyme 1940s 1980s. Lipids membrane 1960s. Polysaccharide Are energy metabolites and many of

More information

Introduction to Comparative Protein Modeling. Chapter 4 Part I

Introduction to Comparative Protein Modeling. Chapter 4 Part I Introduction to Comparative Protein Modeling Chapter 4 Part I 1 Information on Proteins Each modeling study depends on the quality of the known experimental data. Basis of the model Search in the literature

More information

GENETICS - CLUTCH CH.11 TRANSLATION.

GENETICS - CLUTCH CH.11 TRANSLATION. !! www.clutchprep.com CONCEPT: GENETIC CODE Nucleotides and amino acids are translated in a 1 to 1 method The triplet code states that three nucleotides codes for one amino acid - A codon is a term for

More information

Housekeeping. Housekeeping. Molecules of Life: Biopolymers

Housekeeping. Housekeeping. Molecules of Life: Biopolymers Molecules of Life: Biopolymers Dr. Dale Hancock D.Hancock@mmb.usyd.edu.au Room 377 Biochemistry building Housekeeping Answers to the practise calculations and a narration are on WebT. Access these through

More information

FW 1 CDR 1 FW 2 CDR 2

FW 1 CDR 1 FW 2 CDR 2 Supplementary Figure 1 Supplementary Figure 1: Interface of the E9:Fas structure. The two interfaces formed by V H and V L of E9 with Fas are shown in stereo. The Fas receptor is represented as a surface

More information

Biological Macromolecules

Biological Macromolecules Introduction for Chem 493 Chemistry of Biological Macromolecules Dr. L. Luyt January 2008 Dr. L. Luyt Chem 493-2008 1 Biological macromolecules are the molecules of life allow for organization serve a

More information

Molecular Structure Prediction by Global Optimization

Molecular Structure Prediction by Global Optimization Molecular Structure Prediction by Global Optimization K.A. DILL Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA 94118 A.T. PHILLIPS Computer Science

More information

April, The energy functions include:

April, The energy functions include: REDUX A collection of Python scripts for torsion angle Monte Carlo protein molecular simulations and analysis The program is based on unified residue peptide model and is designed for more efficient exploration

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Jan 14, 2019 11:10 AM EST PDB ID : 6GYW Title : Crystal structure of DacA from Staphylococcus aureus Authors : Tosi, T.; Freemont, P.S.; Grundling, A. Deposited

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015 Supporting information Influence

More information

Exam III. Please read through each question carefully, and make sure you provide all of the requested information.

Exam III. Please read through each question carefully, and make sure you provide all of the requested information. 09-107 onors Chemistry ame Exam III Please read through each question carefully, and make sure you provide all of the requested information. 1. A series of octahedral metal compounds are made from 1 mol

More information

NH 2. Biochemistry I, Fall Term Sept 9, Lecture 5: Amino Acids & Peptides Assigned reading in Campbell: Chapter

NH 2. Biochemistry I, Fall Term Sept 9, Lecture 5: Amino Acids & Peptides Assigned reading in Campbell: Chapter Biochemistry I, Fall Term Sept 9, 2005 Lecture 5: Amino Acids & Peptides Assigned reading in Campbell: Chapter 3.1-3.4. Key Terms: ptical Activity, Chirality Peptide bond Condensation reaction ydrolysis

More information

Bacterial protease uses distinct thermodynamic signatures for substrate recognition

Bacterial protease uses distinct thermodynamic signatures for substrate recognition Bacterial protease uses distinct thermodynamic signatures for substrate recognition Gustavo Arruda Bezerra, Yuko Ohara-Nemoto, Irina Cornaciu, Sofiya Fedosyuk, Guillaume Hoffmann, Adam Round, José A. Márquez,

More information

PROTEIN SECONDARY STRUCTURE PREDICTION: AN APPLICATION OF CHOU-FASMAN ALGORITHM IN A HYPOTHETICAL PROTEIN OF SARS VIRUS

PROTEIN SECONDARY STRUCTURE PREDICTION: AN APPLICATION OF CHOU-FASMAN ALGORITHM IN A HYPOTHETICAL PROTEIN OF SARS VIRUS Int. J. LifeSc. Bt & Pharm. Res. 2012 Kaladhar, 2012 Research Paper ISSN 2250-3137 www.ijlbpr.com Vol.1, Issue. 1, January 2012 2012 IJLBPR. All Rights Reserved PROTEIN SECONDARY STRUCTURE PREDICTION:

More information

Course Notes: Topics in Computational. Structural Biology.

Course Notes: Topics in Computational. Structural Biology. Course Notes: Topics in Computational Structural Biology. Bruce R. Donald June, 2010 Copyright c 2012 Contents 11 Computational Protein Design 1 11.1 Introduction.........................................

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 8, 2018 08:34 pm GMT PDB ID : 1RUT Title : Complex of LMO4 LIM domains 1 and 2 with the ldb1 LID domain Authors : Deane, J.E.; Ryan, D.P.; Maher, M.J.;

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information A Sensitive Phosphorescent Thiol Chemosensor Based on an Iridium(III) Complex with α,β-unsaturated Ketone Functionalized 2,2 -Bipyridyl Ligand Na Zhao, a Yu-Hui Wu,

More information

Supplement information

Supplement information Electronic Supplementary Material (ESI) for Physil Chemistry Chemil Physics. This journal is the Owner Societies 216 Supplement information Fullerenol C 6 (OH) 16 prevents amyloid fibrillization of Aβ

More information

RNA & PROTEIN SYNTHESIS. Making Proteins Using Directions From DNA

RNA & PROTEIN SYNTHESIS. Making Proteins Using Directions From DNA RNA & PROTEIN SYNTHESIS Making Proteins Using Directions From DNA RNA & Protein Synthesis v Nitrogenous bases in DNA contain information that directs protein synthesis v DNA remains in nucleus v in order

More information

A) at equilibrium B) endergonic C) endothermic D) exergonic E) exothermic.

A) at equilibrium B) endergonic C) endothermic D) exergonic E) exothermic. CHEM 2770: Elements of Biochemistry Mid Term EXAMINATION VERSION A Date: October 29, 2014 Instructor: H. Perreault Location: 172 Schultz Time: 4 or 6 pm. Duration: 1 hour Instructions Please mark the Answer

More information

NMR Assignments using NMRView II: Sequential Assignments

NMR Assignments using NMRView II: Sequential Assignments NMR Assignments using NMRView II: Sequential Assignments DO THE FOLLOWING, IF YOU HAVE NOT ALREADY DONE SO: For Mac OS X, you should have a subdirectory nmrview. At UGA this is /Users/bcmb8190/nmrview.

More information

Reading Assignments. A. Genes and the Synthesis of Polypeptides. Lecture Series 7 From DNA to Protein: Genotype to Phenotype

Reading Assignments. A. Genes and the Synthesis of Polypeptides. Lecture Series 7 From DNA to Protein: Genotype to Phenotype Lecture Series 7 From DNA to Protein: Genotype to Phenotype Reading Assignments Read Chapter 7 From DNA to Protein A. Genes and the Synthesis of Polypeptides Genes are made up of DNA and are expressed

More information

CHMI 2227 EL. Biochemistry I. Test January Prof : Eric R. Gauthier, Ph.D.

CHMI 2227 EL. Biochemistry I. Test January Prof : Eric R. Gauthier, Ph.D. CHMI 2227 EL Biochemistry I Test 1 26 January 2007 Prof : Eric R. Gauthier, Ph.D. Guidelines: 1) Duration: 55 min 2) 14 questions, on 7 pages. For 70 marks (5 marks per question). Worth 15 % of the final

More information

Section Week 3. Junaid Malek, M.D.

Section Week 3. Junaid Malek, M.D. Section Week 3 Junaid Malek, M.D. Biological Polymers DA 4 monomers (building blocks), limited structure (double-helix) RA 4 monomers, greater flexibility, multiple structures Proteins 20 Amino Acids,

More information

Oxygen Binding in Hemocyanin

Oxygen Binding in Hemocyanin Supporting Information for Quantum Mechanics/Molecular Mechanics Study of Oxygen Binding in Hemocyanin Toru Saito and Walter Thiel* Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470

More information

7.014 Quiz I Handout

7.014 Quiz I Handout 7.014 Quiz I andout Quiz I announcements: Quiz I: Friday, February 27 12:05 12:55 Walker Gym, rd floor (room 5040) **This will be a closed book exam** Quiz Review Session: Wednesday, February 25 7:00 9:00

More information

Translation. Genetic code

Translation. Genetic code Translation Genetic code If genes are segments of DNA and if DNA is just a string of nucleotide pairs, then how does the sequence of nucleotide pairs dictate the sequence of amino acids in proteins? Simple

More information

Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08 Å resolution: comparison with the Azotobacter vinelandii MoFe protein

Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08 Å resolution: comparison with the Azotobacter vinelandii MoFe protein Acta Cryst. (2015). D71, 274-282, doi:10.1107/s1399004714025243 Supporting information Volume 71 (2015) Supporting information for article: Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08

More information

The translation machinery of the cell works with triples of types of RNA bases. Any triple of RNA bases is known as a codon. The set of codons is

The translation machinery of the cell works with triples of types of RNA bases. Any triple of RNA bases is known as a codon. The set of codons is Relations Supplement to Chapter 2 of Steinhart, E. (2009) More Precisely: The Math You Need to Do Philosophy. Broadview Press. Copyright (C) 2009 Eric Steinhart. Non-commercial educational use encouraged!

More information

Supplemental Material can be found at:

Supplemental Material can be found at: Supplemental Material can be found at: http://www.jbc.org/content/suppl/2009/02/03/m807361200.dc1.html THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 284, NO. 15, pp. 10088 10099, April 10, 2009 2009 by The

More information