Advanced Tritium Recovery System

Size: px
Start display at page:

Download "Advanced Tritium Recovery System"

Transcription

1 Advanced Tritium Recovery System Introduction As part of the U.S. Inertial Confinement Fusion Program, LLE plans to implode deuterium tritium (DT) charged microspheres. These microspheres are filled with high-pressure deuterium and tritium gas under cryogenic conditions. The spheres are then stored and transferred as needed to the target chamber (located in an adjacent room) under vacuum and at temperatures near 20 K. LLE is licensed to handle up to 10,000 Ci of tritium, but site release target is less than 1 Ci per year. LLE is currently upgrading the systems used to produce, transfer, store, and implode these targets. As part of this upgrade, extensive efforts are being made to ensure staff safety and to limit the radioactive effluent that can be released to the environment. Two independent tritium recovery systems (TRS), currently under construction, will capture any tritium that comes from the various sources. One system will serve Room 157, which houses the production, characterization, and storage of targets, and the other system will serve the target chamber, where the targets are imploded. The exhaust emissions from the process streams, from the gloveboxes that house the streams, and from equipment outgassing will have to be collected and treated to remove any tritium present. This article provides an overview of the requirements and describes the technologies that were considered for the decontamination of the process streams and glovebox-cleanup systems for Room 157. TRS Design Considerations 1. General Constraints and Considerations To maximize personnel safety and minimize site emission, the following factors were considered as part of the decontamination systems design: (a) Critical components and large inventories have secondary or tertiary containment. (b) No single component failure results in a release of tritium to the room or to the stack. (c) Systems containing tritium are designed for high integrity, having all stainless components, with either welded connections or leak-tight (VCR) fittings and a minimum of elastomer seals. (d) Complex operations are typically automated or, if manual, are covered by detailed procedures. (e) Protective systems that are poised are designed to be tested regularly to ensure their operability. (f) Active components are designed to allow easy maintenance. In addition to the design considerations, the operating staff is technically knowledgeable and extensively trained in handling tritium. While the system has been designed to limit the likelihood of accidental emissions to a very low probability, additional features are included to minimize chronic releases. These can be summarized as follows: (a) Since the radiotoxicity of HTO is about 10 4 times greater than that of HT, every effort is made to avoid oxidizing any HT present to HTO. (b) Mixing of exhaust streams having different gases or tritium concentrations is minimized to limit the quantities of effluent to be decontaminated. (c) All exhaust streams are monitored and controlled. (d) All accessible areas are well ventilated to avoid potential tritium buildup due to outgassing from contaminated equipment. 2. Room 157 Functional Requirements To achieve the above objectives, the Room 157 effluent gases are divided into the following four categories: LLE Review, Volume 89 25

2 DT high-pressure-system (DTHPS) secondary containment (SC) cleanup Glovebox (GB) cleanup (low Y, inert) Helium vacuum exhaust cleanup [high temperature (high T), inert] Air vacuum exhaust cleanup [low temperature (low T), air] The relationships between the streams and the subsystems that release these streams are provided in Fig This sorting was done in order to select the best technology for each type of stream and, as a result, achieve the best performance (i.e., lowest emissions) at a reasonable cost. The DTHPS handles pure DT under high pressure, so it has its own secondary containment, which, in turn, has its own tritium-scavenging system to collect any DT that escapes from the DTHPS. This DTHPS secondary containment and its DT scavenging system are housed inside the DTHPS glovebox. For these reasons, it is impractical to combine its effluent with any of the other systems. The second category consists of the gloveboxes that have helium atmospheres. Three process trains exist: one for the DTHPS glovebox atmosphere, one for the FTS (fill transfer station) and TFS (tritium fill station) glovebox atmospheres, and one that acts as a backup to either. Each train consists of a circulating pump, a drier, and, finally, an HT removal bed. Interconnections are provided to allow various combinations of pumps, driers, and HT removal beds. The driers serve primarily to remove any moisture that permeates into the gloveboxes in order to avoid excess loading of the tritium scavengers, but the driers will also remove any HTO that may be present. The rationale for further splitting the glovebox-cleanup function is that the DTHPS has its own internal containment and the DTHPS glovebox represents a tertiary containment. It will normally have no or very low levels of tritium, so it will require essentially no cleanup on an ongoing basis. The FTS and TFS gloveboxes have comparable levels of tritium activity, so mixing these will have no significant effect on cleanup. Another factor is the potential for dilution. Since the effectiveness of cleanup is to some extent driven by the initial concentration of tritium, mixing essentially clean streams with contaminated streams actually decreases the tritium concentration in the contaminated stream, resulting in reduced capture efficiencies in some devices. The third category consists of the vacuum systems that service the helium processes. Again, a further subdivision of this group separates the clean sources, specifically the FTS base, dome and cooling loop, permeation cell seal, stalk Tritium recovery system Inert DTHPS GB DTHPS SC Low T, inert Tritium fill station (TFS) Fill/transfer station (FTS) Process vacuum systems Moving cryostat transport cart (MCTC) Low T, air Target preparation facility Target characterization facility E11354 High T, inert Figure The Room 157 Tritium Recovery System must deal with air and inert gas streams from a variety of sources. 26 LLE Review, Volume 89

3 aligner, and borescope, from potentially contaminated sources. Using a monitor to confirm the absence of tritium, the exhaust is routed directly to the stack. If tritium activity is detected, the stream is combined with the other helium vacuum exhaust streams for treatment. All other helium vacuum exhaust steams are combined into a collection tank. A pump circulates the gas through a drier to remove any HTO, a Ni catalyst bed cracks any organically bound tritium, and finally a scavenger bed removes the product HTO. The subsystem pressure is capped by a relief valve that discharges to a second tank, which can also recirculate any effluent through a second scavenger. The gas in this second loop should be essentially tritium free and should be releasable to the environment. Any discharged gas is nevertheless monitored, and, if it requires further decontamination, it can be routed to the air vacuum exhaust for additional processing. The final category comprises air vacuum exhaust streams. These streams are not subdivided since they are all normally active, so they will require a routine processing. The stream is initially passed through a drier bed to remove any tritium that might be present as HTO. This may be sufficient to allow the exhaust to be released to the stack, so the stream is monitored at this point and, if possible, sent to stack. If the level of tritium activity is still above the release criteria, the stream is routed to a catalytic oxidizer to convert any tritium that may be present as HT or organically bound tritium (OBT) to HTO. This effluent is then passed through a condenser and another drier bed before going to stack. The final effluent is once more monitored for compliance purposes. The catalytic reactor most suitable for the LLE application is palladium-coated alumina operated at high temperature (~450 C) and sized to give a residence time of about 4 s. The reactor is followed by a chiller to cool the exhaust before it goes into a drier bed. The catalytic reactor, chiller, and drier beds used in this application are designed for high flow and low resistance to minimize the need for additional pumps to move the gas through the detritiation loops. All the tritium removal beds have provision for in-situ regeneration to eliminate the need for routine bed removal. The regeneration of the HT scavenging beds is accomplished by heating the bed and using a helium carrier flow to accumulate the released HT on a cryogenic molecular sieve before it is transferred to a transportable U-bed for eventual removal from the system. Thus, any captured HT will remain in the elemental form throughout the entire tritium cycle. The drier beds are also heated for regeneration, releasing the HTO, which is carried by an N 2 gas carrier to a chiller followed by a condenser to remove the bulk of the moisture. The gas then flows to a polishing drier bed, is monitored, and finally released to stack. The recovered moisture, including HTO, is collected in liquid form for interim storage, pending final disposal. Regeneration of driers is by reverse flow to counteract HTO tailing in the drier beds. Hot, dry nitrogen gas is used as a carrier to achieve dew points below -100 C. This allows an extended operating cycle while still maintaining the low outlet tritium concentration needed to meet emission targets. Tritium Removal Technologies A number of viable options are available for removing HT from inert gas streams, and given the number of helium-based streams at LLE, every effort was made to use this capability to minimize the production of HTO. The following section examines the technologies that were applicable to the LLE Tritium Removal System. 1. Uranium Beds Uranium reacts exothermically with hydrogen at room temperature, forming UH 3. Uranium has a high storage capacity for hydrogen (up to 300 scc/g U) and uniform reaction kinetics over a very large H/U ratio. The decontamination factor varies depending on flow and tritium concentration, but a practical minimum effluent concentration of 2 mci/m 3 is achievable. 1 The hydriding reaction is reversible, and by heating the hydride to ~400 C, the hydrogen is released, restoring the bed to its original state. Varying the amount of heat applied can control the hydrogen release rate. However, uranium reacts not only with hydrogen, but also reacts strongly with oxygen and somewhat with nitrogen at room temperatures. Both the oxidation and nitriding are exothermic and become more vigorous at elevated temperatures. When purged with air, U-beds will release stored tritium. For this reason, uranium can be used only for tritium removal from inert gas streams. It will remove large amounts of tritium with high efficiency and will do so for considerable carrier gas flow rates. Its affinity for oxygen and, to some extent, other gases serves to purify the tritium since only the hydrogen isotopes are released when uranium is heated, although at the cost of irreversibly reacting with the uranium. U-beds have been extensively used, and a very large experience base exists to support this application. LLE Review, Volume 89 27

4 Uranium is not recommended for inert glovebox atmosphere cleanup since the practical decontamination level of ~2 mci/m 3 is higher than desired. It is best used where large quantities of tritium must be removed and where the effluent will not be released to stack. 2. Zirconium-Iron (ZrFe) Beds The ZrFe alloy known as ST-198 can also scavenge tritium from inert gas streams since it forms a stable tritide that can be reversibly decomposed. 2 It has a rather modest storage capacity for tritium (0.8 scc/g alloy yields a 1-mCi/m 3 vapor present over the alloy) but can decontaminate to mci/m 3 levels if tritium inventory of the alloy is kept sufficiently low. Although it requires a substantial residence time (>3 s) to achieve good detritiation, it is an excellent tritium scavenger for glovebox decontamination and for polishing exhaust streams before stacking. Since ST-198 reacts very slowly with nitrogen at room temperature, it can be used to scavenge HT from nitrogen streams. 3 It does not react with organics (CH 4 ), so it will not scavenge tritiated organics from a gas stream unless the stream has been preconditioned with a nickel catalyst to crack the organics to produce HT. 4,5 While ST-198 can be regenerated by heating, it degrades during this process and consequently has a limited lifetime. Like uranium, ST-198 reacts with oxygen at room temperature and with nitrogen at elevated ( 450 C) temperatures. Both reactions will release stored tritium. ZrFe is best where quantities of hydrogen isotopes are limited, but where the effluent tritium concentration must be suitable for release to the environment. 6,7 3. Cryogenic Molecular Sieves Cryogenic molecular sieves can scavenge hydrogen isotopes from a helium carrier by adsorbing the hydrogen molecules. Depending on the partial pressure of hydrogen that is acceptable, molecular sieves operating at liquid nitrogen (LN) temperatures can have a high capacity for hydrogen isotopes. However, the tritium is not firmly bound in the molecular sieve at 77 K, so the tritium residence time in the bed is finite. The residence time is a function of both flow and geometry in that longer beds and lower flows yield a longer time to breakthrough. Warming the molecular sieve slightly above LN temperatures (i.e., to ~100 K) will release the stored hydrogen isotopes. At these temperatures, all other gases will remain firmly adsorbed, thus allowing the recovery of pure-hydrogen isotopes. These gases can, however, be desorbed by heating the molecular sieve to 350 C, regenerating the molecular sieve to its original condition. These characteristics make cryosorption an excellent technique to scavenge tritium from helium gas streams. Low exhaust levels of tritium activities can be achieved by limiting the amounts of tritium in the molecular sieve and by monitoring for impending breakthrough. When breakthrough becomes evident, the bed needs to be valved out of service so it can be unloaded. The unloading process proceeds rapidly since the bed needs to be warmed to only 100 K for complete HT unloading. Figure illustrates the efficacy of a cryogenic mole sieve bed to remove HT from a helium stream containing up to 800 mci/m 3. During this test, the activity downstream of the bed remains below 0.3 mci/m 3 until breakthrough occurs. Upstream activity (Ci/m 3 ) E Time (min) Downstream activity (mci/m 3 ) Figure Transfer of tritium from 800-g ST198 bed to cryogenic mole sieve bed with a 28 slpm helium carrier until tritium breakthrough is observed. The chief disadvantage of cryosorption is that it requires liquid nitrogen temperatures to retain the hydrogen isotopes on the molecular sieve. This means that a loss of cryogenics could result in the inadvertent release of hydrogen. This capture technology is not passively safe. In addition, the complexity of cryogenic handling is costly and requires techniques and skills that are not commonplace. An example is the need for regenerative heat exchangers as part of any cryotrap to obtain high utilization of liquid nitrogen inventories. 28 LLE Review, Volume 89

5 System Configuration A comprehensive tritium removal system (presented schematically in Fig ) has been designed and is being built so that LLE can perform its research program and still meet tritium emission targets. To ensure that this system can provide the desired detritiation performance and also provide the highest practical degree of staff safety, all relevant technologies were extensively reviewed. Based on this review, ZrFe scavenger beds are used to reduce tritium levels to low values, cryogenic molecular sieves are used to concentrate tritium, and uranium flow-through beds are used to capture large amounts of tritium. Nickel catalysts are used to crack organics, Pd on alumina is used to oxidize any tritium compounds in air systems, and 5A molecular sieve driers were selected to remove HTO. The technologies selected for the final design were those judged most suitable based on demonstrated robustness, effectiveness, and real-life operating experience. ACKNOWLEDGMENT This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460 and the University of Rochester. The support of DOE does not constitute an endorsement by DOE of the views expressed in this article. REFERENCES 1. W. T. Shmayda and N. P. Kherani, Fusion Eng. Des. 10, 359 (1989). 2. W. T. Shmayda, N. P. Kherani, B. Wallace, and F. Mazza, Fusion Technol. 21, 616 (1992). 3. K. J. Maynard, N. P. Kherani, and W. T. Shmayda, Fusion Technol. 28, 1546 (1995). 4. N. P. Kherani, W. T. Shmayda, and R. A. Jalbert, Fusion Eng. Proc. 2, 1239 (1987). 5. A. B. Antoniazzi and W. T. Shmayda, Fusion Technol. 30, 879 (1996). 6. A. G. Heics and W. T. Shmayda, Fusion Eng. 1, 65 (1994). 7. A. G. Heics and W. T. Shmayda, Fusion Technol. 28, 1509 (1995). To stack Clean He Cat Rxr ZrFe bed Tank ZrFe bed Ni bed Tank Low-T vac High-T vac Air vac ZrFe bed DTHPS G/B Located in DTHPS G/B E11365 USB DTHPS sec. cont. ZrFe bed ZrFe bed Located in TRS enclosure FTS G/B TFS G/B Figure Schematic of the Room 157 Tritium Recovery System. LLE Review, Volume 89 29

6

Performance of the Tritium Removal Systems at LLE

Performance of the Tritium Removal Systems at LLE Performance of the Tritium Removal Systems at LLE 5SJUJVN GJMM TUBUJPO DMFBOVQ TZTUFN $SZPHFOJD FRVJQNFOU DMFBOVQ TZTUFN 4ISPVE SFUSBDUPS 5BSHFU DIBNCFS 5SJUJVN GBDJMJUZ --& USJUJVN FRVJQNFOU 1FSNFBUJPO

More information

Cryogenic Target Handling System Operations Manual Volume IV CTHS Description Chapter 5: Tritium Fill Station (TFS)

Cryogenic Target Handling System Operations Manual Volume IV CTHS Description Chapter 5: Tritium Fill Station (TFS) CHATER 5: TRITIUM FILL STATION (TFS) REVISION B (ARIL 2004) S-AA-M-31 Cryogenic Target Handling System Operations Manual Volume IV CTHS Description Chapter 5: Tritium Fill Station (TFS) Table of Contents

More information

Cryogenic Target Handling System Operations Manual Volume IV CTHS Description Chapter 12: Tritium Removal System (TRS)

Cryogenic Target Handling System Operations Manual Volume IV CTHS Description Chapter 12: Tritium Removal System (TRS) CHAPTER 12: ROOM 157 TRITIUM REMOVAL SYSTEM (TRS) REVISION A (JULY 2004) S-AA-M-31 Cryogenic Target Handling System Operations Manual Volume IV CTHS Description Chapter 12: Tritium Removal System (TRS)

More information

Manufacturing Process of Self-Luminous Glass Tube (SLGT) Utilizing Tritium Gas: Design of Tritium Handling Facilities

Manufacturing Process of Self-Luminous Glass Tube (SLGT) Utilizing Tritium Gas: Design of Tritium Handling Facilities Korean J. Chem. Eng., 21(3), 562-566 (2004) Manufacturing Process of Self-Luminous Glass Tube (SLGT) Utilizing Tritium Gas: Design of Tritium Handling Facilities Kyeongsook Kim, KwangSin Kim, Soon Hwan

More information

Tritium Inventories and Tritium Safety Design Principles for the Fuel cycle of ITER

Tritium Inventories and Tritium Safety Design Principles for the Fuel cycle of ITER Tritium Inventories and Tritium Safety Design Principles for the Fuel cycle of ITER I. R. Cristescu 1), I. Cristescu 1), L. Doerr 1), M. Glugla 1), D. Murdoch 2), 1) Forschungszentrum Karlsruhe, Tritium

More information

TRITIUM RECOVERY FROM WASTE USING A PALLADIUM MEMBRANE REACTOR

TRITIUM RECOVERY FROM WASTE USING A PALLADIUM MEMBRANE REACTOR TRITIUM RECOVERY FROM WASTE USING A PALLADIUM MEMBRANE REACTOR Stephen A. Birdsell and R. Scott Willms Los Alamos National Laboratory MS C348, Los Alamos, New Mexico 87545 ABSTRACT A large quantity of

More information

Key words: EcosimPro, model, simulation, detritiation.

Key words: EcosimPro, model, simulation, detritiation. Design, modelling and simulation of the water detritiation system (WDS) of the ITER project with EcosimPro. Carlos Rodríguez Aguirre Email: carlos_vince@hotmail.com Tutor from the university: Mónica Coca

More information

Tritium Fuel Cycle Safety

Tritium Fuel Cycle Safety Tritium Fuel Cycle Safety W Kirk Hollis 1, Craig MV Taylor 1, Scott Willms 2 1 Los Alamos National Laboratory, 2 ITER IAEA Workshop on Fusion Energy June 14 th, 2018 Slide 1 Overview What is a Tritium

More information

UPDATE OF ITER ISS-WDS PROCESS DESIGN 2 TW6-TTFD-TPI-55 (EFDA/ )

UPDATE OF ITER ISS-WDS PROCESS DESIGN 2 TW6-TTFD-TPI-55 (EFDA/ ) 2007 Annual Report of the EURATOM-MEdC Association 71 UPDATE OF ITER ISS-WDS PROCESS DESIGN 2 TW6-TTFD-TPI-55 (EFDA/06-1511) A. Lazar*, S. Brad*, N. Sofalca*, M. Vijulie* I.Cristescu**,L. Dör**, W. Wurster**

More information

Titanium for Long-Term Tritium Storage (U)

Titanium for Long-Term Tritium Storage (U) Titanium for Long-Term Tritium Storage (U) by L. K. Heung Westinghouse Savannah River Company Savannah River Site Aiken, South Carolina 29808 DISCLAIMER This report was prepared as an account of work sponsored

More information

Successful Development of a New Catalyst for Efficiently Collecting Tritium in Nuclear Fusion Reactors

Successful Development of a New Catalyst for Efficiently Collecting Tritium in Nuclear Fusion Reactors January 15, 2015 Japan Atomic Energy Agency Tanaka Precious Metals Tanaka Holdings Co., Ltd. Successful Development of a New Catalyst for Efficiently Collecting Tritium in Nuclear Fusion Reactors World

More information

12 Moderator And Moderator System

12 Moderator And Moderator System 12 Moderator And Moderator System 12.1 Introduction Nuclear fuel produces heat by fission. In the fission process, fissile atoms split after absorbing slow neutrons. This releases fast neutrons and generates

More information

3.1 Tritium Plant and Detritiation

3.1 Tritium Plant and Detritiation 3.1 Tritium Plant and 3.1.1 Description 1 3.1.1.1 Tokamak Fuel Processing Subsystems 1 3.1.1.2 Tritium Confinement and Subsystems 6 3.1.1.3 Design Integration 20 3.1.1.4 Performance Analysis/Design Integrity

More information

High-Pressure Volumetric Analyzer

High-Pressure Volumetric Analyzer High-Pressure Volumetric Analyzer High-Pressure Volumetric Analysis HPVA II Benefits Dual free-space measurement for accurate isotherm data Free space can be measured or entered Correction for non-ideality

More information

Water Desorption from Metallic Surfaces at Room Temperature

Water Desorption from Metallic Surfaces at Room Temperature Water Desorption from Metallic Surfaces at Room emperature Ben Petroski Livonia High School LLE Advisor: Dr. Walter Shmayda March 2010 1 Abstract Water adsorption and desorption is a major issue in industries

More information

Tritium Inventories and Containment Philosophy for the Fuel cycle of ITER

Tritium Inventories and Containment Philosophy for the Fuel cycle of ITER Tritium Inventories and Containment Philosophy for the Fuel cycle of ITER I. R. Cristescu 1), I. Cristescu 1), L. Doerr 1), M. Glugla 1), D. Murdoch 2) 1), Tritium Laboratory, Germany 2) EFDA CSU Garching,

More information

Be prepared to discuss the quantitative comparison method in the oral exam.

Be prepared to discuss the quantitative comparison method in the oral exam. Subject: Ring Experiment III 8 Shell and Tube Heat Exchanger Control The shell and Tube Heat Exchanger has two control valves: one on the process fluid flowing to the tubes and one on the cooling water

More information

10.1 Functions, Basic Configuration and System Boundaries

10.1 Functions, Basic Configuration and System Boundaries 10 Tritium Plant and Detritiation 10.1 Functions, Basic Configuration and System Boundaries 10.1.1 Functions The tritium plant shall be designed to perform the functions described in the DRG1, section

More information

Tritiated Waste Management Opportunities Based On The Reduction Of Tritium Activity And Outgassing 15607

Tritiated Waste Management Opportunities Based On The Reduction Of Tritium Activity And Outgassing 15607 Tritiated Waste Management Opportunities Based On The Reduction Of Tritium Activity And Outgassing 15607 Daniel CANAS *, Christelle DECANIS **, Didier DALL AVA *, Jérôme PAMELA *** * : CEA, DEN/DADN, Centre

More information

WM 05 Conference, February 27 March 3, 2005, Tucson, AZ DEVELOPMENT OF A STORAGE VESSEL AND SHIPPING PACKAGE FOR TRITIUM

WM 05 Conference, February 27 March 3, 2005, Tucson, AZ DEVELOPMENT OF A STORAGE VESSEL AND SHIPPING PACKAGE FOR TRITIUM DEVELOPMENT OF A STORAGE VESSEL AND SHIPPING PACKAGE FOR TRITIUM S. P. Yim, M. S. Lee, K. S. Bang, K. S. Seo, K.-R. Kim, S. Paek, D.-H. Ahn, H. Chung Korea Atomic Energy Research Institute P.O. Box 105,

More information

3. Chemical Hygiene Plan: Laboratory Standard Operating Procedures. A. Laboratory Specific Information and Signatures

3. Chemical Hygiene Plan: Laboratory Standard Operating Procedures. A. Laboratory Specific Information and Signatures 3. Chemical Hygiene Plan: Laboratory Standard Operating Procedures A. Laboratory Specific Information and Signatures The Chemical Hygiene Plan: Laboratory Standard Operating Procedures (section 3 only),

More information

Tritium Safety of Russian Test Blanket Module

Tritium Safety of Russian Test Blanket Module Tritium Safety of Russian Test Blanket Module V.K. Kapyshev, V.G. Kovalenko, Y.S. Strebkov N.A. Dollezhal Research and Development Institute of Power Engineering, PO Box 788, Moscow 101000, Russia Abstract

More information

TECHNICAL NOTE related to the Market survey on Water Holding Tanks for the Water Detritiation System (WDS) Prepared by Reviewed by Approved by ---

TECHNICAL NOTE related to the Market survey on Water Holding Tanks for the Water Detritiation System (WDS) Prepared by Reviewed by Approved by --- Page 1 / 5 Ver. 1.1 TECHNICAL NOTE related to the Market survey on Water Holding Tanks for the Water Detritiation System (WDS) INDUSTRY SURVEY Document Reference: F4E_D_2ENZ79 Revision Number: 1.1 ITER

More information

Research and Development on European Cleaning Solutions for Radioactive Applications. Clean air solutions

Research and Development on European Cleaning Solutions for Radioactive Applications. Clean air solutions Research and Development on European Cleaning Solutions for Radioactive Applications Dipl. Ing. Axel Mahler, R&D Director Europe, Camfil AB, Sweden 19.03.2014 Your speaker: Axel Mahler, R&D Director Europe

More information

Adsorption (Ch 12) - mass transfer to an interface

Adsorption (Ch 12) - mass transfer to an interface Adsorption (Ch 12) - mass transfer to an interface (Absorption - mass transfer to another phase) Gas or liquid adsorption (molecular) onto solid surface Porous solids provide high surface area per weight

More information

Gas Chromatography Separation of H 2 -D 2 -Ar Using Pd/K

Gas Chromatography Separation of H 2 -D 2 -Ar Using Pd/K Gas Chromatography Separation of H 2 -D 2 -Ar Using Pd/K FTP/P1-06 X. J. Qian 1), D. L. Luo 1), C. Qin 1), G. Q. Huang 1), W. Yang 1) 1) China Academy of Engineering Physics, Mianyang, SiChuan, P.R.China

More information

Competitive Advantages of Ontos7 Atmospheric Plasma

Competitive Advantages of Ontos7 Atmospheric Plasma Competitive Advantages of Ontos7 Atmospheric Plasma Eric Schulte Matt Phillips Keith Cooper SETNA Proprietary 1 Advantages of Ontos7 Atmospheric Plasma Process over Vacuum RIE Plasma for Die/Wafer Surface

More information

SOME CONSIDERATION IN THE TRITIUM CONTROL DESIGN OF THE SOLID BREEDER BLANKET CONCEPTS

SOME CONSIDERATION IN THE TRITIUM CONTROL DESIGN OF THE SOLID BREEDER BLANKET CONCEPTS SOME CONSIDERATION IN THE TRITIUM CONTROL DESIGN OF THE SOLID BREEDER BLANKET CONCEPTS L.V. Boccaccini, N. Bekris, R. Meyder and the HCPB Design Team CBBI-13, Santa Barbara, 30th Nov.-2nd Dec. 2005 L.V.

More information

Recovery of Tritium in Room Air by Precious Metal Catalyst with Hydrophilic Substrate

Recovery of Tritium in Room Air by Precious Metal Catalyst with Hydrophilic Substrate Journal of NUCLEAR SCIENCE and TECHNOLOGY, 25[4], pp. 383~394 (April 1988). 383 Recovery of Tritium in Room Air by Precious Metal Catalyst with Hydrophilic Substrate Kenzo MUNAKATA, Masabumi NISHIKAWA,

More information

Lecture (9) Reactor Sizing. Figure (1). Information needed to predict what a reactor can do.

Lecture (9) Reactor Sizing. Figure (1). Information needed to predict what a reactor can do. Lecture (9) Reactor Sizing 1.Introduction Chemical kinetics is the study of chemical reaction rates and reaction mechanisms. The study of chemical reaction engineering (CRE) combines the study of chemical

More information

SAFETY TRAINING LEAFLET 08 ACETYLENE, CALCIUM CARBIDE, LIME SLUDGE AND PURIFYING MATERIALS

SAFETY TRAINING LEAFLET 08 ACETYLENE, CALCIUM CARBIDE, LIME SLUDGE AND PURIFYING MATERIALS SAFETY TRAINING LEAFLET 08 ACETYLENE, CALCIUM CARBIDE, LIME SLUDGE AND PURIFYING MATERIALS Doc 23.08/18 EUROPEAN INDUSTRIAL GASES ASSOCIATION AISBL AVENUE DES ARTS 3-5 B 1210 BRUSSELS Tel: +32 2 217 70

More information

An Overview of SRNL Tritium Activities

An Overview of SRNL Tritium Activities An Overview of SRNL Tritium Activities Greg Staack Hydrogen Processing Group Workshop on Tritium Control and Capture October 27-28, 2015 SRNL-STI-2015-00582, Rev. 0 Savannah River Site 2 Savannah River

More information

MELCOR Analysis of Helium/Water/Air Ingress into ITER Cryostat and Vacuum Vessel

MELCOR Analysis of Helium/Water/Air Ingress into ITER Cryostat and Vacuum Vessel TM-2926-1 MELCOR Analysis of Helium/Water/Air Ingress into ITER Cryostat and Vacuum Vessel C. H. Sheng and L. L. Spontón Studsvik Nuclear AB, SE-611 82 Nyköping, Sweden chunhong.sheng@studsvik.se Abstract

More information

EVIDENCE FOR PRODUCTION OF TRITIUM VIA COLD FUSION REACTIONS IN DEUTERIUM GAS LOADED PALLADIUM

EVIDENCE FOR PRODUCTION OF TRITIUM VIA COLD FUSION REACTIONS IN DEUTERIUM GAS LOADED PALLADIUM Krishnan, M.S., et al., Evidence for Production of Tritium via Cold Fusion Reactions in Deuterium Gas Loaded Palladium, in BARC Studies in Cold Fusion, P.K. Iyengar and M. Srinivasan, Editors. 1989, Atomic

More information

Process Design Decisions and Project Economics Prof. Dr. V. S. Moholkar Department of Chemical Engineering Indian Institute of Technology, Guwahati

Process Design Decisions and Project Economics Prof. Dr. V. S. Moholkar Department of Chemical Engineering Indian Institute of Technology, Guwahati Process Design Decisions and Project Economics Prof. Dr. V. S. Moholkar Department of Chemical Engineering Indian Institute of Technology, Guwahati Module - 2 Flowsheet Synthesis (Conceptual Design of

More information

Lecture 7. Sorption-Separation Equipment

Lecture 7. Sorption-Separation Equipment Lecture 7. Sorption-Separation Equipment Adsorption - Stirred-tank, slurry operation - Cyclic fixed-bed batch operation - Thermal (temperature)-swing adsorption - Fluidizing bed for adsorption and moving

More information

The Vacuum Sorption Solution

The Vacuum Sorption Solution The Total Sorption Solution The Vacuum Sorption Solution The Vacuum Sorption Solution www.thesorptionsolution.com About the Technique DVS Vacuum - the only gravimetric system that supports static and dynamic

More information

Tritium Control and Safety

Tritium Control and Safety Tritium Control and Safety Brad Merrill Fusion Safety Program 1 st APEX Electronic Meeting, February 6, 2003 Presentation Outline Temperature & tritium control approach TMAP model of solid wall AFS/Flibe

More information

Monitoring and shaping the thermal processes of the Detritiation Pilot Plant using infrared thermography

Monitoring and shaping the thermal processes of the Detritiation Pilot Plant using infrared thermography Monitoring and shaping the thermal processes of the Detritiation Pilot Plant using infrared thermography SORIN GHERGHINESCU National R&D Institute for Cryogenics and Isotopic Technologies (ICIT) code 240050

More information

Tritium Plant in ITER and F4E Contribution. G. Piazza ITER Department, Fusion for Energy

Tritium Plant in ITER and F4E Contribution. G. Piazza ITER Department, Fusion for Energy Tritium Plant in ITER and F4E Contribution G. Piazza ITER Department, Fusion for Energy 1 Presentation Outline Introduction Fuel Cycle of a Fusion Reactor Overall description of the ITER Tritium Plant

More information

Noble Gas Control Room Accident Filtration System for Severe Accident Conditions (N-CRAFT)

Noble Gas Control Room Accident Filtration System for Severe Accident Conditions (N-CRAFT) E-Journal of Advanced Maintenance Vol.7-1 (2015) 34-42 Japan Society of Maintenology Noble Gas Control Room Accident Filtration System for Severe Accident Conditions (N-CRAFT) Axel HILL *1, Dr. Cristoph

More information

OVERVIEW OF THE TRITIUM-IN-AIR MONITORING SYSTEM OF CERNAVODA NPP U1 ROMANIA MODERNIZATION AND IMPROVEMENT PROJECT

OVERVIEW OF THE TRITIUM-IN-AIR MONITORING SYSTEM OF CERNAVODA NPP U1 ROMANIA MODERNIZATION AND IMPROVEMENT PROJECT International Conference Nuclear Energy in Central Europe 2001 Hoteli Bernardin, Portorož, Slovenia, September 10-13, 2001 www: http://www.drustvo-js.si/port2001/ e-mail: PORT2001@ijs.si tel.:+ 386 1 588

More information

CHLORINE RECOVERY FROM HYDROGEN CHLORIDE

CHLORINE RECOVERY FROM HYDROGEN CHLORIDE CHLORINE RECOVERY FROM HYDROGEN CHLORIDE The Project A plant is to be designed for the production of 10,000 metric tons per year of chlorine by the catalytic oxidation of HCl gas. Materials Available 1.

More information

Radiation Safety Training for General Radiation Workers

Radiation Safety Training for General Radiation Workers Radiation Safety Training for General Radiation Workers Walter Shmayda LLE Radiation Safety Officer University of Rochester Laboratory for Laser Energetics 1 Summary The sources and effects of radiation

More information

GA A22714 THE DESIGN OF THE OMEGA CRYOGENIC TARGET SYSTEM

GA A22714 THE DESIGN OF THE OMEGA CRYOGENIC TARGET SYSTEM GA A22714 THE DESIGN OF THE OMEGA CRYOGENIC TARGET SYSTEM by D.T. GOODIN, N.B. ALEXANDER, I. ANTEBY, W.A. BAUGH, G.E. BESENBRUCH, K.K. BOLINE, L.C. BROWN, W. EGLI, J.F. FOLLIN, C.R. GIBSON, E.H. HOFFMANN,

More information

THE APPLICATION OF PROCESS MASS SPECTROMETRY TO FUMED SILICA PRODUCTION

THE APPLICATION OF PROCESS MASS SPECTROMETRY TO FUMED SILICA PRODUCTION JPACSM 5 Process Analytical Chemistry THE APPLICATION OF PROCESS MASS SPECTROMETRY TO FUMED SILICA PRODUCTION Peter Traynor and Steven Trimuar Thermo Electron Corporation Houston, TX Robert G. Wright Thermo

More information

In terms of production, nitric acid is the third most widely produced acid across the world.

In terms of production, nitric acid is the third most widely produced acid across the world. In terms of production, nitric acid is the third most widely produced acid across the world. It has a wide range of uses in agriculture, industry and medicine where it is used as a fertiliser and in the

More information

Preparations for proof-of- principle D-T IEC experiments

Preparations for proof-of- principle D-T IEC experiments 14 th US-Japan Workshop on IEC October 15-16, 2012 University of Maryland Preparations for proof-of- principle D-T IEC experiments Yasushi YAMAMOTO 1, Masami Ohnishi 1, Hodaka, Osawa 1, Yuji Hatano 2 and

More information

TRITIUM ISSUES AT JET

TRITIUM ISSUES AT JET TRITIUM ISSUES AT JET A C Bell EURATOM/UKAEA Fusion Association Culham Science Centre, Abingdon Oxon, UK +44 ()1235 464746 INTRODUCTION The JET machine was originally planned to be capable of operation

More information

Lecture 25: Manufacture of Maleic Anhydride and DDT

Lecture 25: Manufacture of Maleic Anhydride and DDT Lecture 25: Manufacture of Maleic Anhydride and DDT 25.1 Introduction - In this last lecture for the petrochemicals module, we demonstrate the process technology for Maleic anhydride and DDT. - Maleic

More information

The outermost container into which vitrified high level waste or spent fuel rods are to be placed. Made of stainless steel or inert alloy.

The outermost container into which vitrified high level waste or spent fuel rods are to be placed. Made of stainless steel or inert alloy. Glossary of Nuclear Waste Terms Atom The basic component of all matter; it is the smallest part of an element having all the chemical properties of that element. Atoms are made up of protons and neutrons

More information

Complex Compounds Background of Complex Compound Technology

Complex Compounds Background of Complex Compound Technology Complex Compounds For more than 20 years, Rocky Research has been a pioneer in the field of sorption refrigeration utilizing complex compounds. Our technology earned special recognition from NASA in 1999.

More information

Nanoparticle Safety Program

Nanoparticle Safety Program Environmental Health & Safety 1314 Kinnear Rd. Columbus, Ohio 43212 Phone (614) 292-1284 Fax (614) 292-6404 http://www.ehs.osu.edu/ Nanoparticle Safety Program Prepared by: The Ohio State University Environmental

More information

The Vacuum Case for KATRIN

The Vacuum Case for KATRIN The Vacuum Case for KATRIN Institute of Nuclear Physics, Forschungszentrum Karlsruhe,Germany, for the KATRIN Collaboration Lutz.Bornschein@ik.fzk.de The vacuum requirements of the KATRIN experiment have

More information

Vacuum techniques (down to 1 K)

Vacuum techniques (down to 1 K) Vacuum techniques (down to 1 K) For isolation (deep Knudsen regime) liquid helium dewar / inner vacuum jacket Leak testing at level 10-11 Pa m3/s (10-10 mbar l/s) liquid helium dewar & transfer syphon

More information

Explosion Properties of Highly Concentrated Ozone Gas. 1 Iwatani International Corporation, Katsube, Moriyama, Shiga , Japan

Explosion Properties of Highly Concentrated Ozone Gas. 1 Iwatani International Corporation, Katsube, Moriyama, Shiga , Japan Explosion Properties of Highly Concentrated Ozone Gas Kunihiko Koike 1*, Masaharu Nifuku 2, Koichi Izumi 1, Sadaki Nakamura 1, Shuzo Fujiwara 2 and Sadashige Horiguchi 2 1 Iwatani International Corporation,

More information

Chemistry Instrumental Analysis Lecture 27. Chem 4631

Chemistry Instrumental Analysis Lecture 27. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 27 Gas Chromatography Introduction GC covers all chromatographic methods in which the mobile phase is gas. It may involve either a solid stationary phase (GSC)

More information

Figure 1. Pore size distribution

Figure 1. Pore size distribution Product Information '2:(;Ã237,325(Ã/ÃDQGÃ9 Polymeric Adsorbents Dow has developed a new polymeric adsorbent type for the concentration of organics from air and water. Key features of these adsorbents are:

More information

Adsorption Processes. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad

Adsorption Processes. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Adsorption Processes Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Contents Introduction Principles of adsorption Types of adsorption Definitions Brief history Adsorption isotherms Mechanism

More information

EXECUTIVE SUMMARY. especially in last 50 years. Industries, especially power industry, are the large anthropogenic

EXECUTIVE SUMMARY. especially in last 50 years. Industries, especially power industry, are the large anthropogenic EXECUTIVE SUMMARY Introduction The concentration of CO 2 in atmosphere has increased considerably in last 100 years, especially in last 50 years. Industries, especially power industry, are the large anthropogenic

More information

Hydrogen & Chlorine monitoring for the Chlor-Alkali Industry

Hydrogen & Chlorine monitoring for the Chlor-Alkali Industry technical datasheet Application Note - AN9041 Hydrogen & Chlorine monitoring for the Chlor-Alkali Industry Measurement Technology Limited (MTL) part of Eaton's Crouse-Hinds business, design and manufacture

More information

SOME ASPECTS OF COOLANT CHEMISTRY SAFETY REGULATIONS AT RUSSIA S NPP WITH FAST REACTORS

SOME ASPECTS OF COOLANT CHEMISTRY SAFETY REGULATIONS AT RUSSIA S NPP WITH FAST REACTORS Federal Environmental, Industrial and Nuclear Supervision Service Scientific and Engineering Centre for Nuclear and Radiation Safety Scientific and Engineering Centre for Nuclear and Radiation Safety Member

More information

OVERVIEW OF THE LIQUID ARGON CRYOGENICS FOR THE SHORT BASELINE NEUTRINO PROGRAM (SBN) AT FERMILAB

OVERVIEW OF THE LIQUID ARGON CRYOGENICS FOR THE SHORT BASELINE NEUTRINO PROGRAM (SBN) AT FERMILAB PAPER ID: 039 DOI: 10.18462/iir.cryo.2017.039 FERMILAB-CONF-17-023-ND OVERVIEW OF THE LIQUID ARGON CRYOGENICS FOR THE SHORT BASELINE NEUTRINO PROGRAM (SBN) AT FERMILAB Barry Norris (a), Johan Bremer (b),

More information

On the Emissivity of Silver Coated Panels, Effect of Long Term Stability and Effect of Coating Thickness

On the Emissivity of Silver Coated Panels, Effect of Long Term Stability and Effect of Coating Thickness JET P(98)57 P A eladarakis W Obert On the Emissivity of Silver Coated Panels, Effect of Long Term Stability and Effect of Coating Thickness This document is intended for publication in the open literature.

More information

Experience with Tritium Evolution During Irradiation of MSRE Flibe in the MITR

Experience with Tritium Evolution During Irradiation of MSRE Flibe in the MITR MIT NUCLEAR REACTOR LABORATORY AN MIT INTERDEPARTMENTAL CENTER Experience with Tritium Evolution During Irradiation of MSRE Flibe in the MITR David Carpenter Group Leader, Reactor Experiments 10/27/15

More information

Tritium processing system for the ITER Li/V Blanket Test Module

Tritium processing system for the ITER Li/V Blanket Test Module Fusion Engineering and Design 39 40 (1998) 859 864 Tritium processing system for the ITER Li/V Blanket Test Module Dai-Kai Sze a, *, Thanh Q. Hua a, Mohamad A. Dagher b, Lester M. Waganer c, Mohamed A.

More information

GA A22900 STATUS OF THE DESIGN AND TESTING OF THE OMEGA CRYOGENIC TARGET SYSTEM (OCTS)

GA A22900 STATUS OF THE DESIGN AND TESTING OF THE OMEGA CRYOGENIC TARGET SYSTEM (OCTS) GA A22900 STATUS OF THE DESIGN AND TESTING OF THE OMEGA CRYOGENIC TARGET SYSTEM (OCTS) by D.T. GOODIN, N.B. ALEXANDER, I. ANTEBY, W.A. BAUGH, G.E. BESENBRUCH, K.K. BOLINE, L.C. BROWN, W. ENGLI, J.F. FOLLIN,

More information

Chapter 3: Source Measurement Techniques

Chapter 3: Source Measurement Techniques Chapter 3 Source Measurement Techniques Measurement Methods Method 18, Measurement of Gaseous Organic Compound Emissions by Gas Chromatography Method 25, Determination of Total Gaseous Non-Methane Organic

More information

Automated multi-vapor gravimetric sorption analyzer for advanced research applications

Automated multi-vapor gravimetric sorption analyzer for advanced research applications Automated multi-vapor gravimetric sorption analyzer for advanced research applications Automated multi-vapor gravimetric sorption analyzer for advanced research applications Key benefits of the DVS Advantage

More information

11. Radioactive Waste Management AP1000 Design Control Document

11. Radioactive Waste Management AP1000 Design Control Document CHAPTER 11 RADIOACTIVE WASTE MANAGEMENT 11.1 Source Terms This section addresses the sources of radioactivity that are treated by the liquid and gaseous radwaste systems. Radioactive materials are generated

More information

Improvement of Hydrogen Isotope Release on Lithium Orthosilicate Ceramic Pebble by Catalytic Metals

Improvement of Hydrogen Isotope Release on Lithium Orthosilicate Ceramic Pebble by Catalytic Metals J. Plasma Fusion Res. SERIES, Vol. 10 (2013) Improvement of Hydrogen Isotope Release on Lithium Orthosilicate Ceramic Pebble by Catalytic Metals Chengjian XIAO a, Chunmei KANG b, Xingbi REN a, Xiaoling

More information

Chem 481 Lecture Material 4/22/09

Chem 481 Lecture Material 4/22/09 Chem 481 Lecture Material 4/22/09 Nuclear Reactors Poisons The neutron population in an operating reactor is controlled by the use of poisons in the form of control rods. A poison is any substance that

More information

Vacuum. Residual pressure can thwart the best cryogenic design. Each gas molecule collision carries ~kt from the hot exterior to the cold interior.

Vacuum. Residual pressure can thwart the best cryogenic design. Each gas molecule collision carries ~kt from the hot exterior to the cold interior. Vacuum Residual pressure can thwart the best cryogenic design Each gas molecule collision carries ~kt from the hot exterior to the cold interior. 1 millitorr = 3.5x10¹³/cm³ Gas atoms leaving the hot surfaces

More information

The Preparative Gas Chromatographic System of the JET Active Gas Handling System Tritium Commissioning and Use during and after DTE1

The Preparative Gas Chromatographic System of the JET Active Gas Handling System Tritium Commissioning and Use during and after DTE1 JET P(98)76 R Lässer et al The Preparative Gas Chromatographic System of the JET Active Gas Handling System Tritium Commissioning and Use during and after DTE1 This document is intended for publication

More information

Roll-to-roll equipment for atmospheric atomic layer deposition for solar applications

Roll-to-roll equipment for atmospheric atomic layer deposition for solar applications Roll-to-roll equipment for atmospheric atomic layer deposition for solar applications Raymond Knaapen, VDL Enabling Technologies Group E-mail: Raymond.Knaapen@vdletg.com Amongst thin-film deposition techniques,

More information

Tritium Transport Modelling: first achievements on ITER Test Blanket Systems simulation and perspectives for DEMO Breeding Blanket

Tritium Transport Modelling: first achievements on ITER Test Blanket Systems simulation and perspectives for DEMO Breeding Blanket Tritium Transport Modelling: first achievements on ITER Test Blanket Systems simulation and perspectives for DEMO Breeding Blanket I. Ricapito 1), P. Calderoni 1), A. Ibarra 2), C. Moreno 2), Y. Poitevin

More information

Ways to Improve the Energy Efficiency of AN Solution Plants

Ways to Improve the Energy Efficiency of AN Solution Plants Ways to Improve the Energy Efficiency of AN Solution Plants by Axel Erben Uhde GmbH Dortmund, Germany Prepared for Presentation at NITROGEN 2009 International Conference Rome, Italy 22-25 February 2009

More information

STATE OF COLORADO DESIGN CRITERIA FOR POTABLE WATER SYSTEMS WATER QUALITY CONTROL DIVISION. Price: $5.00. Revised March 31, 1997

STATE OF COLORADO DESIGN CRITERIA FOR POTABLE WATER SYSTEMS WATER QUALITY CONTROL DIVISION. Price: $5.00. Revised March 31, 1997 STATE OF COLORADO DESIGN CRITERIA FOR POTABLE WATER SYSTEMS WATER QUALITY CONTROL DIVISION Revised March 31, 1997 Price: $5.00 a. an arrangement where the water pipe to be injected with chlorine enters

More information

ION Pumps for UHV Systems, Synchrotrons & Particle Accelerators. Mauro Audi, Academic, Government & Research Marketing Manager

ION Pumps for UHV Systems, Synchrotrons & Particle Accelerators. Mauro Audi, Academic, Government & Research Marketing Manager ION Pumps for UHV Systems, Synchrotrons & Particle Accelerators Mauro Audi, Academic, Government & Research Marketing Manager ION Pumps Agilent Technologies 1957-59 Varian Associates invents the first

More information

WASTE CHARACTERIZATION FOR RADIOACTIVE LIQUID WASTE EVAPORATORS AT ARGONNE NATIONAL LABORATORY - WEST

WASTE CHARACTERIZATION FOR RADIOACTIVE LIQUID WASTE EVAPORATORS AT ARGONNE NATIONAL LABORATORY - WEST WASTE CHARACTERIZATION FOR RADIOACTIVE LIQUID WASTE EVAPORATORS AT ARGONNE NATIONAL LABORATORY - WEST Low Level, Intermediate Level, and Mixed Waste By Boyd D. Christensen Operations Division and Michael

More information

AOAC Official Method 2016.xx. Determination of Total Sulfur in Fertilizers by High Temperature Combustion

AOAC Official Method 2016.xx. Determination of Total Sulfur in Fertilizers by High Temperature Combustion AOAC Official Method 2016.xx Determination of Total Sulfur in Fertilizers by High Temperature Combustion Proposed First Action 2015 (Applicable for measuring total sulfur concentration in solid and liquid

More information

Process Design Decisions and Project Economics Prof. Dr. V. S. Moholkar Department of Chemical Engineering Indian Institute of Technology, Guwahati

Process Design Decisions and Project Economics Prof. Dr. V. S. Moholkar Department of Chemical Engineering Indian Institute of Technology, Guwahati Process Design Decisions and Project Economics Prof. Dr. V. S. Moholkar Department of Chemical Engineering Indian Institute of Technology, Guwahati Module - 2 Flowsheet Synthesis (Conceptual Design of

More information

Conceptual Design and Optimization for JET Water Detritiation System Cryodistillation Facility

Conceptual Design and Optimization for JET Water Detritiation System Cryodistillation Facility CCFE-PR(15)05 X. Lefebvre, A. Hollingsworth, A. Parracho, P. Dalgliesh, B. Butler, R. Smith and JET EFDA Contributors Conceptual Design and Optimization for JET Water Detritiation System Cryodistillation

More information

STATIC GAS MONITOR Type SGM/DEW Revision A of 20 aprile 2016

STATIC GAS MONITOR Type SGM/DEW Revision A of 20 aprile 2016 APPLICATIONS Moisture monitoring of air or gas (SF6) Suitable for indoor or outdoor Industrial, medical or aerospace fields HIGHLIGHTS High voltage circuit breakers commonly used for distribution and transmission

More information

Course Reactor & Auxiliaries - Module 1 - Moderator Heavy Watec. Module 1 MODERATOR ..." Y "... I

Course Reactor & Auxiliaries - Module 1 - Moderator Heavy Watec. Module 1 MODERATOR ... Y ... I Approval Issue Module 1 MODERATOR I-ICA\/V \AIATeD..." Y. 1111 "... I Course 233 - Reactor & Auxiliaries - Module 1 - Moderator Heavy Watec ~t'\tcc 11_ CCl:I:CC~I~CC...,-... ~"...-...- OBJECTIVES: Mter

More information

Phone: , For Educational Use. SOFTbank E-Book Center, Tehran. Fundamentals of Heat Transfer. René Reyes Mazzoco

Phone: , For Educational Use. SOFTbank E-Book Center, Tehran. Fundamentals of Heat Transfer. René Reyes Mazzoco 8 Fundamentals of Heat Transfer René Reyes Mazzoco Universidad de las Américas Puebla, Cholula, Mexico 1 HEAT TRANSFER MECHANISMS 1.1 Conduction Conduction heat transfer is explained through the molecular

More information

GC Instruments. GC Instruments - Sample Introduction

GC Instruments. GC Instruments - Sample Introduction GC Instruments 1 Fairly simple instrumentation Maintaining constant average pressure is important! Pressure controls flow rate T influences retention (k ) Flow rate monitoring Changing flow rate changes

More information

Studies on bi-directional hydrogen isotopes permeation through the first wall of a magnetic fusion power reactor

Studies on bi-directional hydrogen isotopes permeation through the first wall of a magnetic fusion power reactor Studies on bi-directional hydrogen isotopes permeation through the first wall of a magnetic fusion power reactor IAEA-CRP Plasma-Wall Interaction with Reduced Activation Steel Surfaces in Fusion Devices

More information

Lecture 14, 8/9/2017. Nuclear Reactions and the Transmutation of Elements Nuclear Fission; Nuclear Reactors Nuclear Fusion

Lecture 14, 8/9/2017. Nuclear Reactions and the Transmutation of Elements Nuclear Fission; Nuclear Reactors Nuclear Fusion Lecture 14, 8/9/2017 Nuclear Reactions and the Transmutation of Elements Nuclear Fission; Nuclear Reactors Nuclear Fusion Nuclear Reactions and the Transmutation of Elements A nuclear reaction takes place

More information

SEPARATION BY BARRIER

SEPARATION BY BARRIER SEPARATION BY BARRIER SEPARATION BY BARRIER Phase 1 Feed Barrier Phase 2 Separation by barrier uses a barrier which restricts and/or enhances the movement of certain chemical species with respect to other

More information

5. Collection and Analysis of. Rate Data

5. Collection and Analysis of. Rate Data 5. Collection and nalysis of o Objectives Rate Data - Determine the reaction order and specific reaction rate from experimental data obtained from either batch or flow reactors - Describe how to analyze

More information

Summary Tritium Day Workshop

Summary Tritium Day Workshop Summary Tritium Day Workshop Presentations by M. Abdou, A. Loarte, L. Baylor, S. Willms, C. Day, P. Humrickhouse, M. Kovari 4th IAEA DEMO Programme Workshop November 18th, 2016 - Karlsruhe, Germany Overall

More information

AP1000 European 11. Radioactive Waste Management Design Control Document

AP1000 European 11. Radioactive Waste Management Design Control Document CHAPTER 11 RADIOACTIVE WASTE MANAGEMENT 11.1 Source Terms This section addresses the sources of radioactivity that are treated by the liquid and gaseous radwaste systems. Radioactive materials are generated

More information

1. A. Define the term rate of reaction. The measure of the amount of reactants being converted into products per unit amount of time

1. A. Define the term rate of reaction. The measure of the amount of reactants being converted into products per unit amount of time Name answer key period IB topic 6 Kinetics 1. A. Define the term rate of reaction. The measure of the amount of reactants being converted into products per unit amount of time b. the reaction between C

More information

CRYOGENIC SYSTEMS FOR INERTIAL FUSION ENERGY. CEA-Grenoble France DSM/DRFMC/SBT

CRYOGENIC SYSTEMS FOR INERTIAL FUSION ENERGY. CEA-Grenoble France DSM/DRFMC/SBT CRYOGENIC SYSTEMS FOR INERTIAL FUSION ENERGY CEA-Grenoble France DSM/DRFMC/SBT D.Chatain JP. Périn, P.Bonnay, E.Bouleau, M.Chichoux, D.Communal, J.Manzagol, F.Viargues, D.Brisset, G. Paquignon, V.Lamaison.

More information

SOPHISTICATED DESIGN, INTUITIVE OPERATION, RESEARCH-GRADE RESULTS

SOPHISTICATED DESIGN, INTUITIVE OPERATION, RESEARCH-GRADE RESULTS SOPHISTICATED DESIGN, INTUITIVE OPERATION, RESEARCH-GRADE RESULTS ASAP 2020 Plus: Accelerated Surface Area and Porosimetry System The Micromeritics ASAP 2020 Plus integrates a variety of automated gas

More information

Technische Universität Dresden Lehrstuhl für Kälte- und Kryotechnik Dresden, 01062, Germany

Technische Universität Dresden Lehrstuhl für Kälte- und Kryotechnik Dresden, 01062, Germany CONSTRUCTION OF A PARA-ORTHO HYDROGEN TEST CRYOSTAT J. Essler, Ch. Haberstroh Technische Universität Dresden Lehrstuhl für Kälte- und Kryotechnik Dresden, 01062, Germany ABSTRACT In a prospective hydrogen

More information

Facilities Management

Facilities Management Policy Number: 700.20 Title: Chemical Fume Hood Policy Implementation Date: 2002 Last Audited: August, 2017 Last Revised: October 23rd, 2017 Facilities Management Introduction The laboratory chemical fume

More information

Data acquisition system for optimization and control of the processes from an isotopic exchange column

Data acquisition system for optimization and control of the processes from an isotopic exchange column Data acquisition system for optimization and control of the processes from an isotopic exchange column C. M. Retevoi, I. Stefan, A. Bornea & O. Balteanu National Institute of Research-Development for Cryogenic

More information

Petrochemical. Transformer Oil Gas Analysis - TOGA

Petrochemical. Transformer Oil Gas Analysis - TOGA Petrochemical Transformer Oil Gas Analysis - TOGA www.dps-instruments.com The DPS TOGA GC Systems are designed to analyze oil from electrical insulation materials that may have decomposed under thermal,

More information