First generation sequencing and pairwise alignment (High-tech, not high throughput) Analysis of Biological Sequences

Size: px
Start display at page:

Download "First generation sequencing and pairwise alignment (High-tech, not high throughput) Analysis of Biological Sequences"

Transcription

1 First generation sequencing and pairwise alignment (High-tech, not high throughput) Analysis of Biological Sequences

2 where do sequences come from? DNA is not hard to extract (getting DNA from a strawberry is a classic elementary school project). The trick is to get a lot of DNA that has exactly the same sequence.

3 where do sequences come from? sequence-specific cleavage enzymes (restriction enzymes) and PCR (polymerase chain reaction) Molecular Cell Biology. 4th edition Holland-Frei Cancer Medicine. 5th edition. 2000

4 dye-terminator sequencing (sequencing by synthesis) AATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCTTTGGTATTCCAAAGGGCATGCCTG AATTC* AATTCA* AATTCAG* AATTCAGT* AATTCAGTG* smaller products are read first

5 dye-terminator sequencing (sequencing by synthesis) when fluorophore intensities are low, the identity of the base is unclear!

6 so now we have our sequence! what is it? what does it do? Two approaches: analyze properties of the sequence look for similarities to well-described sequences

7 Goals of sequence alignment determine the function of an uncharacterized sequence look for matches to protein-coding or noncoding sequences look for conserved domains find the mutational distance between sequences (for species characterization, forensics etc)

8 Steps in sequence alignment Obtain sequences Align sequences Score alignment Is it significant, mathematically? Biologically?

9 Example alignment PLSQETFSDLWKLL---PENNVLSPLPSQAMD DLMLSPDDIEQWFTE PLSQETF+ LW L +N L+ + +Q +D DL + + IE PLSQETFNQLWTTLGDITDNGNLTQIVTQPLDFSFSETGVADLDIHENRIEMEVER human TP53 vs acorn worm genome is this a statistically significant similarity? is this biologically significant?

10 Dot matrix analysis The simplest, most visual, most intuitive way to create an alignment Reference: Gibbs AJ, McIntyre GA. The diagram, a method for comparing sequences. Its use with amino acid and nucleotide sequences. Eur J. Biochem (1):1-11.

11 Dot matrix alignment PKD protein against itself

12 Dot matrix alignment PKD vs itself with better parameters

13 Dot matrix alignment Lots of variations can align DNA vs DNA, protein vs protein, many scoring schemes Sequence repeats and inverse repeats readily apparent Can be used to find self-complementary portions of sequences (e.g. RNA) to help predict secondary structure Still used today you will see it even in major papers

14 Elements of an alignment ACC--TAGCTAGCCGAT- ACCCCTAGG----CGAAA Matches Mismatches Gaps/indels

15 Creating alignments from scratch Example: ACCTAGCTAGCCGAT And ACCCCTAGGCGAAA Possible alignment: ACC--TAGCTAGCCGAT- ACCCCTAGG----CGAAA

16 Choosing the best alignment ACC--TAGCTAGCCGAT- ACCCCTAG---G-CGAAA ACCTAGCTAGCCGAT- ACCC--CTAG-CGAAA ACC--TAGCTAGCCGAT- ACCCC----TAGGCGAAA

17 Need Scoring Rules For example: score = (#matches) - (#mismatches) - (#gaps)x2 ACCCCTAG---G-CGAAA Score = x2 = -5 ACCC--CTAG-CGAAA Score = x2 = 0 ACC--TAGCTAGCCGAT- ACCTAGCTAGCCGAT- ACC--TAGCTAGCCGAT- ACCCC----TAGGCGAAA Score = x2 = -6

18 Need Scoring Rules For example: score = 3x(#matches) - 4x(#mismatches) - (#gaps) ACCCCTAG---G-CGAAA Score = 3x10-4x1-7 = 19 ACCC--CTAG-CGAAA Score = 3x10-4x2-4 = 18 ACC--TAGCTAGCCGAT- ACCTAGCTAGCCGAT- ACC--TAGCTAGCCGAT- ACCCC----TAGGCGAAA Score = 3x9-4x1-7 = 16

19 Global alignment: Needleman-Wunsch algorithm (Gotoh) Dynamic programming: achieve optimal alignment by constructing optimal alignments of smaller subsequences Assume that the optimal alignment is known up to a point, and then extend the alignment optimally to create a new optimal alignment

20 Global alignment: Needleman-Wunsch-Gotoh Algorithm: ACTTGAA CACA AGTTGTA CTCA ACTTGAAC AGTTGTAC ACTTGAA- AGTTGTAC ACA TCA ACTTGAAC AGTTGTA- CACA TCA ACA CTCA

21 Dynamic programming algorithm: example DNA alignment rules: match = 2, mismatch = -1, gap = -2 Global alignment: start at the beginning of the sequences and progress to the end Score of the alignment = score of the alignment up to the previous character + maximum score of aligning the next two symbols or adding a gap in either sequence.

22 Implementation: dynamic programming - A C C T G A -2 rules: match +2 mismatch -1 gap -2 C -4 T -6 T -8 G -10

23 Implementation: dynamic programming - A C C T G A -2 2 rules: match +2 mismatch -1 gap -2 C -4 T -6 T -8 G -10

24 Implementation: dynamic programming - A C C T G A C -4 0 T -6 T -8 G -10 rules: match +2 mismatch -1 gap -2 Cross vertical line = put gap in sequence B Cross horizontal line = put gap in sequence A Cross at an intersection = align two residues

25 Implementation: dynamic programming - A C C T G A rules: match +2 mismatch -1 gap -2 C A C T -6 G -8 A 2 0 G -10 C

26 Implementation: dynamic programming - A C C T G A rules: match +2 mismatch -1 gap -2 C T G G

27 Implementation: dynamic programming Backtracking step - A C C T G A C T G G GTCCA GGTCA G-TCCA GGT-CA G-TCCA GGTC-A -GTCCA GGTC-A -GTCCA GGT-CA

28 Reference Needleman and Wunsch, A general method applicable to the search for similarities in the amino acid sequence of two proteins J. Mol. Biol. (1970) 48: (available through PubMed)

29 Local alignment A local alignment between two sequences is an alignment with maximum similarity between a substring of sequence a and a substring of sequence b Smith and Waterman, Identification of Common Molecular Subsequences, J. Mol Biol. (1981) 147: (available through PubMed)

30 Local alignment: Smith-Waterman Exactly the same algorithm as NWG except that if the score drops below zero, the alignment is terminated. This means that subsequences can be aligned optimally, without incurring penalties from surrounding irrelevant sequence that aligns badly Can end up with more than one optimal alignment, and the same piece of sequence can have more than one alignment to the other sequence

31 Local alignment: Smith-Waterman Algorithm: ACTTGAA CACA AGTTGTA CTCA ACTTGAAC AGTTGTAC ACA TCA ACTTGAAC AGTTGTA- ACA CTCA ACTTGAA AGTTGTA CACA CTCA ACTTGAA- AGTTGTAC CACA TCA

32 Implementation: dynamic programming for local alignment - A C C T G A 0 2 rules: match +2 mismatch -1 gap -2 C 0 A C T 0 G 0 A X G 0 C 0-2 X

33 Implementation: dynamic programming for local alignment - A C C T G A rules: match +2 mismatch -1 gap -2 C T G G

34 Implementation: dynamic programming for local alignment - A C C T G A C T G G rules: match +2 mismatch -1 gap -2 GTCCA GT-CA GTCCA GTC-A

35 Local vs global Scoring matrix or match/mismatch scores will determine whether a local alignment is obtained Needleman-Wunsch can return a local alignment depending on the weighting of end gaps and other scoring parameters Look at alignment: if there are long internal gaps, the alignment is local The best way to tell what s going on is to align random or unrelated sequences under the same conditions (next lecture)

36 Local vs global - A C T rules: match +2 - mismatch -1 gap -2 A C

37 Local vs global - A C T rules: match +2 - mismatch -1 gap -2 A C

38 Scoring rules/matrices Why are they important? Choice of scoring rule can dramatically influence the sequence alignments obtained and, therefore, the analysis being done Different scoring matrices have been developed for different situations; using the wrong one can make a big difference (choosing the wrong sequence as a potential functional ortholog, for example)

39 Scoring rules/matrices What do they mean? Your goal is to figure out whether the two sequences have a common ancestor Scoring matrices implicitly represent a particular theory of evolution Elements of the matrices reflect significance of co-occurence of each pair of amino acid residues or nucleotides

40 Substitution Matrices We need scoring terms for each aligned residue pair Models: Random model (R): letter a occurs with frequency q a

41 Substitution Matrices random model x = ACCTGCC y = ACGTCCA ACCTGCC ACGTCCA p(a)= 0.2 p(t)= 0.2 p(c)= 0.3 p(g)= 0.3

42 Substitution Matrices match model Models: Match model (M): aligned pairs of residues have joint probability p ab p ab =probability that a and b came from common ancestor residue

43 Substitution Matrices Odds ratio: = =

44 Substitution Matrices Change to a sum by using logarithms... Score = Where s(a,b) is just the score of aligning a residue of type a to a residue of type b

45 Substitution Matrices s(a,b) A G M Y A G M Y

46 Substitution Matrices s(a,b) A G M Y A = G = M Y MAGA MAGY

47 Two major scoring matrices PAM = accepted point mutation derived from 71 trees with 1572 accepted mutations, sequences with >85% identity accepted means new amino acid doesn t disrupt the protein s function too severely BLOSUM = Blocks substitution matrices Based on BLOCKS database (Henikoff & Henikoff, 1992) of over 2000 conserved amino acid patterns in over 500 proteins

48 PAM overview based on well-accepted phylogenetic trees STTWC SSTWC STTPC STTPC observations: one S/T change between close relatives, one P/Q change over distant branches, no change from C

49 BLOSUM overview based on alignments of known protein motifs, evolutionary relationship unknown STTWC SSTWC STTPC STTWC observations: three T/S mismatches, three P/Q mismatches, no change from C

50 PAM matrices Each matrix describes changes expected for a given period of evolutionary time (measured by expected similarity of proteins) Count # of changes to each amino acid in the phylogenetic group and divide by the exposure to mutation of the residue Exposure to mutation = frequency of occurrence of amino acid * #amino acid changes in the group/100 sites

51 PAM matrices assumptions P(X->Y) = P(Y->X) P(X->Z->Y) is low in a single PAM period changes are independent across time neighboring amino acids have no influence on probability of substitution All sequences have similar amino acid composition

52 BLOSUM Henikoff & Henikoff used PROTOMAT program to create BLOCKS database from Prosite catalog of aligned proteins PROTOMAT looks for A1-d1-A2-d2-A3 where A1, A2, A3 are conserved residues and d1,d2 < 25 residue intervening sequence

53 BLOSUM construction 1. Count mutations VVAPV AAAPA PVAPV PAAAV N AA = = 7 N VV = = 4 N PP = = 4 N AV = = 8 N AP = = 5 N PV = = 2

54 BLOSUM construction 2. Tallying mutation frequencies q ij = # times amino acid j mutates to amino acid i Since we don t know ancestry, each mutation gets entered twice VVAPV AAAPA PVAPV PAAAV qij A V P A V P q AA = 14 q AV = q VA = 8

55 BLOSUM construction 3. Matrix of mutation probabilities Create probabilities from mutation frequencies by dividing by total number of observations (60) pij A V P A 14/60 8/60 5/60 V 8/60 8/60 2/60 P 5/60 2/60 8/60

56 BLOSUM construction 4. Calculate probability of observing each residue p i is the marginal probability, meaning the expected probability of occurrence of amino acid i VVAPV AAAPA PVAPV PAAAV pi A 9/20 V 6/20 P 5/20

57 BLOSUM construction 5. Obtaining a BLOSUM matrix BLOSUM is a log-likelihood matrix: S ij = 2log 2 (p ij /(p i p j )) Sij A V P A 0.41 AAPVA APPVA V P

58 Choice of matrix High PAM numbers (up to PAM250) are derived from multiplying lots of PAM1 matrices. Low BLOSUM numbers (down to BLOSUM 30) come from very similar sequence blocks Long sequences and sequences from very distantly related organisms should be aligned with high PAM or low BLOSUM #s. The best alignments between sequences with high similarity come from high BLOSUM or low PAM numbers.

59 BLOSUM vs PAM BLOSUM: based on short conserved sequences (blocks) Based on a range of evolutionary periods Each matrix constructed separately Indirectly accounts for interdependence of residues Range of sequences, range of replacements Overcounts related mutations PAM: evolutionary model Based on extrapolation from a short evolutionary period Errors in PAM1 are magnified through PAM250 Assumes Markov process Many sequences depart from average composition Rare replacements too infrequent to be represented accurately

60 Issues Both BLOSUM and PAM matrices are derived from small sets of sequences from biased databases Both types of matrices require aligned sequences for their construction Both types of matrices depend on global, ungapped alignments

Algorithms in Bioinformatics FOUR Pairwise Sequence Alignment. Pairwise Sequence Alignment. Convention: DNA Sequences 5. Sequence Alignment

Algorithms in Bioinformatics FOUR Pairwise Sequence Alignment. Pairwise Sequence Alignment. Convention: DNA Sequences 5. Sequence Alignment Algorithms in Bioinformatics FOUR Sami Khuri Department of Computer Science San José State University Pairwise Sequence Alignment Homology Similarity Global string alignment Local string alignment Dot

More information

Algorithms in Bioinformatics

Algorithms in Bioinformatics Algorithms in Bioinformatics Sami Khuri Department of omputer Science San José State University San José, alifornia, USA khuri@cs.sjsu.edu www.cs.sjsu.edu/faculty/khuri Pairwise Sequence Alignment Homology

More information

Pairwise sequence alignment

Pairwise sequence alignment Department of Evolutionary Biology Example Alignment between very similar human alpha- and beta globins: GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKL G+ +VK+HGKKV A+++++AH+D++ +++++LS+LH KL GNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKL

More information

Quantifying sequence similarity

Quantifying sequence similarity Quantifying sequence similarity Bas E. Dutilh Systems Biology: Bioinformatic Data Analysis Utrecht University, February 16 th 2016 After this lecture, you can define homology, similarity, and identity

More information

Sequence Analysis 17: lecture 5. Substitution matrices Multiple sequence alignment

Sequence Analysis 17: lecture 5. Substitution matrices Multiple sequence alignment Sequence Analysis 17: lecture 5 Substitution matrices Multiple sequence alignment Substitution matrices Used to score aligned positions, usually of amino acids. Expressed as the log-likelihood ratio of

More information

Biochemistry 324 Bioinformatics. Pairwise sequence alignment

Biochemistry 324 Bioinformatics. Pairwise sequence alignment Biochemistry 324 Bioinformatics Pairwise sequence alignment How do we compare genes/proteins? When we have sequenced a genome, we try and identify the function of unknown genes by finding a similar gene

More information

THEORY. Based on sequence Length According to the length of sequence being compared it is of following two types

THEORY. Based on sequence Length According to the length of sequence being compared it is of following two types Exp 11- THEORY Sequence Alignment is a process of aligning two sequences to achieve maximum levels of identity between them. This help to derive functional, structural and evolutionary relationships between

More information

Sara C. Madeira. Universidade da Beira Interior. (Thanks to Ana Teresa Freitas, IST for useful resources on this subject)

Sara C. Madeira. Universidade da Beira Interior. (Thanks to Ana Teresa Freitas, IST for useful resources on this subject) Bioinformática Sequence Alignment Pairwise Sequence Alignment Universidade da Beira Interior (Thanks to Ana Teresa Freitas, IST for useful resources on this subject) 1 16/3/29 & 23/3/29 27/4/29 Outline

More information

Sequence analysis and Genomics

Sequence analysis and Genomics Sequence analysis and Genomics October 12 th November 23 rd 2 PM 5 PM Prof. Peter Stadler Dr. Katja Nowick Katja: group leader TFome and Transcriptome Evolution Bioinformatics group Paul-Flechsig-Institute

More information

Sequence Alignment: Scoring Schemes. COMP 571 Luay Nakhleh, Rice University

Sequence Alignment: Scoring Schemes. COMP 571 Luay Nakhleh, Rice University Sequence Alignment: Scoring Schemes COMP 571 Luay Nakhleh, Rice University Scoring Schemes Recall that an alignment score is aimed at providing a scale to measure the degree of similarity (or difference)

More information

Moreover, the circular logic

Moreover, the circular logic Moreover, the circular logic How do we know what is the right distance without a good alignment? And how do we construct a good alignment without knowing what substitutions were made previously? ATGCGT--GCAAGT

More information

Lecture 2, 5/12/2001: Local alignment the Smith-Waterman algorithm. Alignment scoring schemes and theory: substitution matrices and gap models

Lecture 2, 5/12/2001: Local alignment the Smith-Waterman algorithm. Alignment scoring schemes and theory: substitution matrices and gap models Lecture 2, 5/12/2001: Local alignment the Smith-Waterman algorithm Alignment scoring schemes and theory: substitution matrices and gap models 1 Local sequence alignments Local sequence alignments are necessary

More information

Sequence Alignments. Dynamic programming approaches, scoring, and significance. Lucy Skrabanek ICB, WMC January 31, 2013

Sequence Alignments. Dynamic programming approaches, scoring, and significance. Lucy Skrabanek ICB, WMC January 31, 2013 Sequence Alignments Dynamic programming approaches, scoring, and significance Lucy Skrabanek ICB, WMC January 31, 213 Sequence alignment Compare two (or more) sequences to: Find regions of conservation

More information

Practical considerations of working with sequencing data

Practical considerations of working with sequencing data Practical considerations of working with sequencing data File Types Fastq ->aligner -> reference(genome) coordinates Coordinate files SAM/BAM most complete, contains all of the info in fastq and more!

More information

CISC 889 Bioinformatics (Spring 2004) Sequence pairwise alignment (I)

CISC 889 Bioinformatics (Spring 2004) Sequence pairwise alignment (I) CISC 889 Bioinformatics (Spring 2004) Sequence pairwise alignment (I) Contents Alignment algorithms Needleman-Wunsch (global alignment) Smith-Waterman (local alignment) Heuristic algorithms FASTA BLAST

More information

Lecture 4: Evolutionary Models and Substitution Matrices (PAM and BLOSUM)

Lecture 4: Evolutionary Models and Substitution Matrices (PAM and BLOSUM) Bioinformatics II Probability and Statistics Universität Zürich and ETH Zürich Spring Semester 2009 Lecture 4: Evolutionary Models and Substitution Matrices (PAM and BLOSUM) Dr Fraser Daly adapted from

More information

Computational Biology

Computational Biology Computational Biology Lecture 6 31 October 2004 1 Overview Scoring matrices (Thanks to Shannon McWeeney) BLAST algorithm Start sequence alignment 2 1 What is a homologous sequence? A homologous sequence,

More information

InDel 3-5. InDel 8-9. InDel 3-5. InDel 8-9. InDel InDel 8-9

InDel 3-5. InDel 8-9. InDel 3-5. InDel 8-9. InDel InDel 8-9 Lecture 5 Alignment I. Introduction. For sequence data, the process of generating an alignment establishes positional homologies; that is, alignment provides the identification of homologous phylogenetic

More information

Module: Sequence Alignment Theory and Applications Session: Introduction to Searching and Sequence Alignment

Module: Sequence Alignment Theory and Applications Session: Introduction to Searching and Sequence Alignment Module: Sequence Alignment Theory and Applications Session: Introduction to Searching and Sequence Alignment Introduction to Bioinformatics online course : IBT Jonathan Kayondo Learning Objectives Understand

More information

Bioinformatics. Scoring Matrices. David Gilbert Bioinformatics Research Centre

Bioinformatics. Scoring Matrices. David Gilbert Bioinformatics Research Centre Bioinformatics Scoring Matrices David Gilbert Bioinformatics Research Centre www.brc.dcs.gla.ac.uk Department of Computing Science, University of Glasgow Learning Objectives To explain the requirement

More information

3. SEQUENCE ANALYSIS BIOINFORMATICS COURSE MTAT

3. SEQUENCE ANALYSIS BIOINFORMATICS COURSE MTAT 3. SEQUENCE ANALYSIS BIOINFORMATICS COURSE MTAT.03.239 25.09.2012 SEQUENCE ANALYSIS IS IMPORTANT FOR... Prediction of function Gene finding the process of identifying the regions of genomic DNA that encode

More information

Scoring Matrices. Shifra Ben-Dor Irit Orr

Scoring Matrices. Shifra Ben-Dor Irit Orr Scoring Matrices Shifra Ben-Dor Irit Orr Scoring matrices Sequence alignment and database searching programs compare sequences to each other as a series of characters. All algorithms (programs) for comparison

More information

In-Depth Assessment of Local Sequence Alignment

In-Depth Assessment of Local Sequence Alignment 2012 International Conference on Environment Science and Engieering IPCBEE vol.3 2(2012) (2012)IACSIT Press, Singapoore In-Depth Assessment of Local Sequence Alignment Atoosa Ghahremani and Mahmood A.

More information

Sequence analysis and comparison

Sequence analysis and comparison The aim with sequence identification: Sequence analysis and comparison Marjolein Thunnissen Lund September 2012 Is there any known protein sequence that is homologous to mine? Are there any other species

More information

CONCEPT OF SEQUENCE COMPARISON. Natapol Pornputtapong 18 January 2018

CONCEPT OF SEQUENCE COMPARISON. Natapol Pornputtapong 18 January 2018 CONCEPT OF SEQUENCE COMPARISON Natapol Pornputtapong 18 January 2018 SEQUENCE ANALYSIS - A ROSETTA STONE OF LIFE Sequence analysis is the process of subjecting a DNA, RNA or peptide sequence to any of

More information

Pairwise Alignment. Guan-Shieng Huang. Dept. of CSIE, NCNU. Pairwise Alignment p.1/55

Pairwise Alignment. Guan-Shieng Huang. Dept. of CSIE, NCNU. Pairwise Alignment p.1/55 Pairwise Alignment Guan-Shieng Huang shieng@ncnu.edu.tw Dept. of CSIE, NCNU Pairwise Alignment p.1/55 Approach 1. Problem definition 2. Computational method (algorithms) 3. Complexity and performance Pairwise

More information

Pairwise & Multiple sequence alignments

Pairwise & Multiple sequence alignments Pairwise & Multiple sequence alignments Urmila Kulkarni-Kale Bioinformatics Centre 411 007 urmila@bioinfo.ernet.in Basis for Sequence comparison Theory of evolution: gene sequences have evolved/derived

More information

Introduction to sequence alignment. Local alignment the Smith-Waterman algorithm

Introduction to sequence alignment. Local alignment the Smith-Waterman algorithm Lecture 2, 12/3/2003: Introduction to sequence alignment The Needleman-Wunsch algorithm for global sequence alignment: description and properties Local alignment the Smith-Waterman algorithm 1 Computational

More information

Large-Scale Genomic Surveys

Large-Scale Genomic Surveys Bioinformatics Subtopics Fold Recognition Secondary Structure Prediction Docking & Drug Design Protein Geometry Protein Flexibility Homology Modeling Sequence Alignment Structure Classification Gene Prediction

More information

Lecture 1, 31/10/2001: Introduction to sequence alignment. The Needleman-Wunsch algorithm for global sequence alignment: description and properties

Lecture 1, 31/10/2001: Introduction to sequence alignment. The Needleman-Wunsch algorithm for global sequence alignment: description and properties Lecture 1, 31/10/2001: Introduction to sequence alignment The Needleman-Wunsch algorithm for global sequence alignment: description and properties 1 Computational sequence-analysis The major goal of computational

More information

Advanced topics in bioinformatics

Advanced topics in bioinformatics Feinberg Graduate School of the Weizmann Institute of Science Advanced topics in bioinformatics Shmuel Pietrokovski & Eitan Rubin Spring 2003 Course WWW site: http://bioinformatics.weizmann.ac.il/courses/atib

More information

Bioinformatics for Computer Scientists (Part 2 Sequence Alignment) Sepp Hochreiter

Bioinformatics for Computer Scientists (Part 2 Sequence Alignment) Sepp Hochreiter Bioinformatics for Computer Scientists (Part 2 Sequence Alignment) Institute of Bioinformatics Johannes Kepler University, Linz, Austria Sequence Alignment 2. Sequence Alignment Sequence Alignment 2.1

More information

Lecture 4: Evolutionary models and substitution matrices (PAM and BLOSUM).

Lecture 4: Evolutionary models and substitution matrices (PAM and BLOSUM). 1 Bioinformatics: In-depth PROBABILITY & STATISTICS Spring Semester 2011 University of Zürich and ETH Zürich Lecture 4: Evolutionary models and substitution matrices (PAM and BLOSUM). Dr. Stefanie Muff

More information

Similarity or Identity? When are molecules similar?

Similarity or Identity? When are molecules similar? Similarity or Identity? When are molecules similar? Mapping Identity A -> A T -> T G -> G C -> C or Leu -> Leu Pro -> Pro Arg -> Arg Phe -> Phe etc If we map similarity using identity, how similar are

More information

Sequence Alignment: A General Overview. COMP Fall 2010 Luay Nakhleh, Rice University

Sequence Alignment: A General Overview. COMP Fall 2010 Luay Nakhleh, Rice University Sequence Alignment: A General Overview COMP 571 - Fall 2010 Luay Nakhleh, Rice University Life through Evolution All living organisms are related to each other through evolution This means: any pair of

More information

Bioinformatics (GLOBEX, Summer 2015) Pairwise sequence alignment

Bioinformatics (GLOBEX, Summer 2015) Pairwise sequence alignment Bioinformatics (GLOBEX, Summer 2015) Pairwise sequence alignment Substitution score matrices, PAM, BLOSUM Needleman-Wunsch algorithm (Global) Smith-Waterman algorithm (Local) BLAST (local, heuristic) E-value

More information

Chapter 5. Proteomics and the analysis of protein sequence Ⅱ

Chapter 5. Proteomics and the analysis of protein sequence Ⅱ Proteomics Chapter 5. Proteomics and the analysis of protein sequence Ⅱ 1 Pairwise similarity searching (1) Figure 5.5: manual alignment One of the amino acids in the top sequence has no equivalent and

More information

Bioinformatics and BLAST

Bioinformatics and BLAST Bioinformatics and BLAST Overview Recap of last time Similarity discussion Algorithms: Needleman-Wunsch Smith-Waterman BLAST Implementation issues and current research Recap from Last Time Genome consists

More information

Alignment & BLAST. By: Hadi Mozafari KUMS

Alignment & BLAST. By: Hadi Mozafari KUMS Alignment & BLAST By: Hadi Mozafari KUMS SIMILARITY - ALIGNMENT Comparison of primary DNA or protein sequences to other primary or secondary sequences Expecting that the function of the similar sequence

More information

20 Grundlagen der Bioinformatik, SS 08, D. Huson, May 27, Global and local alignment of two sequences using dynamic programming

20 Grundlagen der Bioinformatik, SS 08, D. Huson, May 27, Global and local alignment of two sequences using dynamic programming 20 Grundlagen der Bioinformatik, SS 08, D. Huson, May 27, 2008 4 Pairwise alignment We will discuss: 1. Strings 2. Dot matrix method for comparing sequences 3. Edit distance 4. Global and local alignment

More information

Single alignment: Substitution Matrix. 16 march 2017

Single alignment: Substitution Matrix. 16 march 2017 Single alignment: Substitution Matrix 16 march 2017 BLOSUM Matrix BLOSUM Matrix [2] (Blocks Amino Acid Substitution Matrices ) It is based on the amino acids substitutions observed in ~2000 conserved block

More information

C E N T R. Introduction to bioinformatics 2007 E B I O I N F O R M A T I C S V U F O R I N T. Lecture 5 G R A T I V. Pair-wise Sequence Alignment

C E N T R. Introduction to bioinformatics 2007 E B I O I N F O R M A T I C S V U F O R I N T. Lecture 5 G R A T I V. Pair-wise Sequence Alignment C E N T R E F O R I N T E G R A T I V E B I O I N F O R M A T I C S V U Introduction to bioinformatics 2007 Lecture 5 Pair-wise Sequence Alignment Bioinformatics Nothing in Biology makes sense except in

More information

An Introduction to Sequence Similarity ( Homology ) Searching

An Introduction to Sequence Similarity ( Homology ) Searching An Introduction to Sequence Similarity ( Homology ) Searching Gary D. Stormo 1 UNIT 3.1 1 Washington University, School of Medicine, St. Louis, Missouri ABSTRACT Homologous sequences usually have the same,

More information

Pairwise sequence alignments

Pairwise sequence alignments Pairwise sequence alignments Volker Flegel VI, October 2003 Page 1 Outline Introduction Definitions Biological context of pairwise alignments Computing of pairwise alignments Some programs VI, October

More information

Introduction to Bioinformatics Online Course: IBT

Introduction to Bioinformatics Online Course: IBT Introduction to Bioinformatics Online Course: IBT Multiple Sequence Alignment Building Multiple Sequence Alignment Lec1 Building a Multiple Sequence Alignment Learning Outcomes 1- Understanding Why multiple

More information

BIO 285/CSCI 285/MATH 285 Bioinformatics Programming Lecture 8 Pairwise Sequence Alignment 2 And Python Function Instructor: Lei Qian Fisk University

BIO 285/CSCI 285/MATH 285 Bioinformatics Programming Lecture 8 Pairwise Sequence Alignment 2 And Python Function Instructor: Lei Qian Fisk University BIO 285/CSCI 285/MATH 285 Bioinformatics Programming Lecture 8 Pairwise Sequence Alignment 2 And Python Function Instructor: Lei Qian Fisk University Measures of Sequence Similarity Alignment with dot

More information

Sequence Database Search Techniques I: Blast and PatternHunter tools

Sequence Database Search Techniques I: Blast and PatternHunter tools Sequence Database Search Techniques I: Blast and PatternHunter tools Zhang Louxin National University of Singapore Outline. Database search 2. BLAST (and filtration technique) 3. PatternHunter (empowered

More information

Lecture 4: September 19

Lecture 4: September 19 CSCI1810: Computational Molecular Biology Fall 2017 Lecture 4: September 19 Lecturer: Sorin Istrail Scribe: Cyrus Cousins Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes

More information

Collected Works of Charles Dickens

Collected Works of Charles Dickens Collected Works of Charles Dickens A Random Dickens Quote If there were no bad people, there would be no good lawyers. Original Sentence It was a dark and stormy night; the night was dark except at sunny

More information

Sequence Alignment Techniques and Their Uses

Sequence Alignment Techniques and Their Uses Sequence Alignment Techniques and Their Uses Sarah Fiorentino Since rapid sequencing technology and whole genomes sequencing, the amount of sequence information has grown exponentially. With all of this

More information

Lecture 5,6 Local sequence alignment

Lecture 5,6 Local sequence alignment Lecture 5,6 Local sequence alignment Chapter 6 in Jones and Pevzner Fall 2018 September 4,6, 2018 Evolution as a tool for biological insight Nothing in biology makes sense except in the light of evolution

More information

Local Alignment Statistics

Local Alignment Statistics Local Alignment Statistics Stephen Altschul National Center for Biotechnology Information National Library of Medicine National Institutes of Health Bethesda, MD Central Issues in Biological Sequence Comparison

More information

Sequence Alignment (chapter 6)

Sequence Alignment (chapter 6) Sequence lignment (chapter 6) he biological problem lobal alignment Local alignment Multiple alignment Introduction to bioinformatics, utumn 6 Background: comparative genomics Basic question in biology:

More information

Pairwise sequence alignments. Vassilios Ioannidis (From Volker Flegel )

Pairwise sequence alignments. Vassilios Ioannidis (From Volker Flegel ) Pairwise sequence alignments Vassilios Ioannidis (From Volker Flegel ) Outline Introduction Definitions Biological context of pairwise alignments Computing of pairwise alignments Some programs Importance

More information

Homology Modeling (Comparative Structure Modeling) GBCB 5874: Problem Solving in GBCB

Homology Modeling (Comparative Structure Modeling) GBCB 5874: Problem Solving in GBCB Homology Modeling (Comparative Structure Modeling) Aims of Structural Genomics High-throughput 3D structure determination and analysis To determine or predict the 3D structures of all the proteins encoded

More information

Practical Bioinformatics

Practical Bioinformatics 5/2/2017 Dictionaries d i c t i o n a r y = { A : T, T : A, G : C, C : G } d i c t i o n a r y [ G ] d i c t i o n a r y [ N ] = N d i c t i o n a r y. h a s k e y ( C ) Dictionaries g e n e t i c C o

More information

Introduction to Bioinformatics

Introduction to Bioinformatics Introduction to Bioinformatics Jianlin Cheng, PhD Department of Computer Science Informatics Institute 2011 Topics Introduction Biological Sequence Alignment and Database Search Analysis of gene expression

More information

Sequence Comparison. mouse human

Sequence Comparison. mouse human Sequence Comparison Sequence Comparison mouse human Why Compare Sequences? The first fact of biological sequence analysis In biomolecular sequences (DNA, RNA, or amino acid sequences), high sequence similarity

More information

Pairwise Sequence Alignment

Pairwise Sequence Alignment Introduction to Bioinformatics Pairwise Sequence Alignment Prof. Dr. Nizamettin AYDIN naydin@yildiz.edu.tr Outline Introduction to sequence alignment pair wise sequence alignment The Dot Matrix Scoring

More information

5. MULTIPLE SEQUENCE ALIGNMENT BIOINFORMATICS COURSE MTAT

5. MULTIPLE SEQUENCE ALIGNMENT BIOINFORMATICS COURSE MTAT 5. MULTIPLE SEQUENCE ALIGNMENT BIOINFORMATICS COURSE MTAT.03.239 03.10.2012 ALIGNMENT Alignment is the task of locating equivalent regions of two or more sequences to maximize their similarity. Homology:

More information

Sequence comparison: Score matrices

Sequence comparison: Score matrices Sequence comparison: Score matrices http://facultywashingtonedu/jht/gs559_2013/ Genome 559: Introduction to Statistical and omputational Genomics Prof James H Thomas FYI - informal inductive proof of best

More information

Sequence comparison: Score matrices. Genome 559: Introduction to Statistical and Computational Genomics Prof. James H. Thomas

Sequence comparison: Score matrices. Genome 559: Introduction to Statistical and Computational Genomics Prof. James H. Thomas Sequence comparison: Score matrices Genome 559: Introduction to Statistical and omputational Genomics Prof James H Thomas Informal inductive proof of best alignment path onsider the last step in the best

More information

Sequence comparison: Score matrices. Genome 559: Introduction to Statistical and Computational Genomics Prof. James H. Thomas

Sequence comparison: Score matrices. Genome 559: Introduction to Statistical and Computational Genomics Prof. James H. Thomas Sequence comparison: Score matrices Genome 559: Introduction to Statistical and omputational Genomics Prof James H Thomas FYI - informal inductive proof of best alignment path onsider the last step in

More information

Tools and Algorithms in Bioinformatics

Tools and Algorithms in Bioinformatics Tools and Algorithms in Bioinformatics GCBA815, Fall 2013 Week3: Blast Algorithm, theory and practice Babu Guda, Ph.D. Department of Genetics, Cell Biology & Anatomy Bioinformatics and Systems Biology

More information

CSE 549: Computational Biology. Substitution Matrices

CSE 549: Computational Biology. Substitution Matrices CSE 9: Computational Biology Substitution Matrices How should we score alignments So far, we ve looked at arbitrary schemes for scoring mutations. How can we assign scores in a more meaningful way? Are

More information

Alignment principles and homology searching using (PSI-)BLAST. Jaap Heringa Centre for Integrative Bioinformatics VU (IBIVU)

Alignment principles and homology searching using (PSI-)BLAST. Jaap Heringa Centre for Integrative Bioinformatics VU (IBIVU) Alignment principles and homology searching using (PSI-)BLAST Jaap Heringa Centre for Integrative Bioinformatics VU (IBIVU) http://ibivu.cs.vu.nl Bioinformatics Nothing in Biology makes sense except in

More information

Substitution matrices

Substitution matrices Introduction to Bioinformatics Substitution matrices Jacques van Helden Jacques.van-Helden@univ-amu.fr Université d Aix-Marseille, France Lab. Technological Advances for Genomics and Clinics (TAGC, INSERM

More information

Homology Modeling. Roberto Lins EPFL - summer semester 2005

Homology Modeling. Roberto Lins EPFL - summer semester 2005 Homology Modeling Roberto Lins EPFL - summer semester 2005 Disclaimer: course material is mainly taken from: P.E. Bourne & H Weissig, Structural Bioinformatics; C.A. Orengo, D.T. Jones & J.M. Thornton,

More information

Lecture 4: Hidden Markov Models: An Introduction to Dynamic Decision Making. November 11, 2010

Lecture 4: Hidden Markov Models: An Introduction to Dynamic Decision Making. November 11, 2010 Hidden Lecture 4: Hidden : An Introduction to Dynamic Decision Making November 11, 2010 Special Meeting 1/26 Markov Model Hidden When a dynamical system is probabilistic it may be determined by the transition

More information

An Introduction to Bioinformatics Algorithms Hidden Markov Models

An Introduction to Bioinformatics Algorithms   Hidden Markov Models Hidden Markov Models Outline 1. CG-Islands 2. The Fair Bet Casino 3. Hidden Markov Model 4. Decoding Algorithm 5. Forward-Backward Algorithm 6. Profile HMMs 7. HMM Parameter Estimation 8. Viterbi Training

More information

Bio nformatics. Lecture 3. Saad Mneimneh

Bio nformatics. Lecture 3. Saad Mneimneh Bio nformatics Lecture 3 Sequencing As before, DNA is cut into small ( 0.4KB) fragments and a clone library is formed. Biological experiments allow to read a certain number of these short fragments per

More information

Bioinformatics for Biologists

Bioinformatics for Biologists Bioinformatics for Biologists Sequence Analysis: Part I. Pairwise alignment and database searching Fran Lewitter, Ph.D. Head, Biocomputing Whitehead Institute Bioinformatics Definitions The use of computational

More information

Lecture Notes: Markov chains

Lecture Notes: Markov chains Computational Genomics and Molecular Biology, Fall 5 Lecture Notes: Markov chains Dannie Durand At the beginning of the semester, we introduced two simple scoring functions for pairwise alignments: a similarity

More information

1.5 Sequence alignment

1.5 Sequence alignment 1.5 Sequence alignment The dramatic increase in the number of sequenced genomes and proteomes has lead to development of various bioinformatic methods and algorithms for extracting information (data mining)

More information

Tutorial 4 Substitution matrices and PSI-BLAST

Tutorial 4 Substitution matrices and PSI-BLAST Tutorial 4 Substitution matrices and PSI-BLAST 1 Agenda Substitution Matrices PAM - Point Accepted Mutations BLOSUM - Blocks Substitution Matrix PSI-BLAST Cool story of the day: Why should we care about

More information

Tools and Algorithms in Bioinformatics

Tools and Algorithms in Bioinformatics Tools and Algorithms in Bioinformatics GCBA815, Fall 2015 Week-4 BLAST Algorithm Continued Multiple Sequence Alignment Babu Guda, Ph.D. Department of Genetics, Cell Biology & Anatomy Bioinformatics and

More information

Evolutionary Models. Evolutionary Models

Evolutionary Models. Evolutionary Models Edit Operators In standard pairwise alignment, what are the allowed edit operators that transform one sequence into the other? Describe how each of these edit operations are represented on a sequence alignment

More information

Analysis and Design of Algorithms Dynamic Programming

Analysis and Design of Algorithms Dynamic Programming Analysis and Design of Algorithms Dynamic Programming Lecture Notes by Dr. Wang, Rui Fall 2008 Department of Computer Science Ocean University of China November 6, 2009 Introduction 2 Introduction..................................................................

More information

Hidden Markov Models

Hidden Markov Models Hidden Markov Models Outline 1. CG-Islands 2. The Fair Bet Casino 3. Hidden Markov Model 4. Decoding Algorithm 5. Forward-Backward Algorithm 6. Profile HMMs 7. HMM Parameter Estimation 8. Viterbi Training

More information

Basic Local Alignment Search Tool

Basic Local Alignment Search Tool Basic Local Alignment Search Tool Alignments used to uncover homologies between sequences combined with phylogenetic studies o can determine orthologous and paralogous relationships Local Alignment uses

More information

EECS730: Introduction to Bioinformatics

EECS730: Introduction to Bioinformatics EECS730: Introduction to Bioinformatics Lecture 07: profile Hidden Markov Model http://bibiserv.techfak.uni-bielefeld.de/sadr2/databasesearch/hmmer/profilehmm.gif Slides adapted from Dr. Shaojie Zhang

More information

Algorithms in Bioinformatics: A Practical Introduction. Sequence Similarity

Algorithms in Bioinformatics: A Practical Introduction. Sequence Similarity Algorithms in Bioinformatics: A Practical Introduction Sequence Similarity Earliest Researches in Sequence Comparison Doolittle et al. (Science, July 1983) searched for platelet-derived growth factor (PDGF)

More information

Protein Bioinformatics. Rickard Sandberg Dept. of Cell and Molecular Biology Karolinska Institutet sandberg.cmb.ki.

Protein Bioinformatics. Rickard Sandberg Dept. of Cell and Molecular Biology Karolinska Institutet sandberg.cmb.ki. Protein Bioinformatics Rickard Sandberg Dept. of Cell and Molecular Biology Karolinska Institutet rickard.sandberg@ki.se sandberg.cmb.ki.se Outline Protein features motifs patterns profiles signals 2 Protein

More information

Week 10: Homology Modelling (II) - HHpred

Week 10: Homology Modelling (II) - HHpred Week 10: Homology Modelling (II) - HHpred Course: Tools for Structural Biology Fabian Glaser BKU - Technion 1 2 Identify and align related structures by sequence methods is not an easy task All comparative

More information

BIOINFORMATICS: An Introduction

BIOINFORMATICS: An Introduction BIOINFORMATICS: An Introduction What is Bioinformatics? The term was first coined in 1988 by Dr. Hwa Lim The original definition was : a collective term for data compilation, organisation, analysis and

More information

Pattern Matching (Exact Matching) Overview

Pattern Matching (Exact Matching) Overview CSI/BINF 5330 Pattern Matching (Exact Matching) Young-Rae Cho Associate Professor Department of Computer Science Baylor University Overview Pattern Matching Exhaustive Search DFA Algorithm KMP Algorithm

More information

Study and Implementation of Various Techniques Involved in DNA and Protein Sequence Analysis

Study and Implementation of Various Techniques Involved in DNA and Protein Sequence Analysis Study and Implementation of Various Techniques Involved in DNA and Protein Sequence Analysis Kumud Joseph Kujur, Sumit Pal Singh, O.P. Vyas, Ruchir Bhatia, Varun Singh* Indian Institute of Information

More information

Learning Sequence Motif Models Using Expectation Maximization (EM) and Gibbs Sampling

Learning Sequence Motif Models Using Expectation Maximization (EM) and Gibbs Sampling Learning Sequence Motif Models Using Expectation Maximization (EM) and Gibbs Sampling BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 009 Mark Craven craven@biostat.wisc.edu Sequence Motifs what is a sequence

More information

Tree of Life iological Sequence nalysis Chapter http://tolweb.org/tree/ Phylogenetic Prediction ll organisms on Earth have a common ancestor. ll species are related. The relationship is called a phylogeny

More information

Hidden Markov Models

Hidden Markov Models Hidden Markov Models Slides revised and adapted to Bioinformática 55 Engª Biomédica/IST 2005 Ana Teresa Freitas Forward Algorithm For Markov chains we calculate the probability of a sequence, P(x) How

More information

Exercise 5. Sequence Profiles & BLAST

Exercise 5. Sequence Profiles & BLAST Exercise 5 Sequence Profiles & BLAST 1 Substitution Matrix (BLOSUM62) Likelihood to substitute one amino acid with another Figure taken from https://en.wikipedia.org/wiki/blosum 2 Substitution Matrix (BLOSUM62)

More information

bioinformatics 1 -- lecture 7

bioinformatics 1 -- lecture 7 bioinformatics 1 -- lecture 7 Probability and conditional probability Random sequences and significance (real sequences are not random) Erdos & Renyi: theoretical basis for the significance of an alignment

More information

Motivating the need for optimal sequence alignments...

Motivating the need for optimal sequence alignments... 1 Motivating the need for optimal sequence alignments... 2 3 Note that this actually combines two objectives of optimal sequence alignments: (i) use the score of the alignment o infer homology; (ii) use

More information

"Nothing in biology makes sense except in the light of evolution Theodosius Dobzhansky

Nothing in biology makes sense except in the light of evolution Theodosius Dobzhansky MOLECULAR PHYLOGENY "Nothing in biology makes sense except in the light of evolution Theodosius Dobzhansky EVOLUTION - theory that groups of organisms change over time so that descendeants differ structurally

More information

Statistical Machine Learning Methods for Bioinformatics II. Hidden Markov Model for Biological Sequences

Statistical Machine Learning Methods for Bioinformatics II. Hidden Markov Model for Biological Sequences Statistical Machine Learning Methods for Bioinformatics II. Hidden Markov Model for Biological Sequences Jianlin Cheng, PhD Department of Computer Science University of Missouri 2008 Free for Academic

More information

... and searches for related sequences probably make up the vast bulk of bioinformatics activities.

... and searches for related sequences probably make up the vast bulk of bioinformatics activities. 1 2 ... and searches for related sequences probably make up the vast bulk of bioinformatics activities. 3 The terms homology and similarity are often confused and used incorrectly. Homology is a quality.

More information

BINF 730. DNA Sequence Alignment Why?

BINF 730. DNA Sequence Alignment Why? BINF 730 Lecture 2 Seuence Alignment DNA Seuence Alignment Why? Recognition sites might be common restriction enzyme start seuence stop seuence other regulatory seuences Homology evolutionary common progenitor

More information

Biologically significant sequence alignments using Boltzmann probabilities

Biologically significant sequence alignments using Boltzmann probabilities Biologically significant sequence alignments using Boltzmann probabilities P. Clote Department of Biology, Boston College Gasson Hall 416, Chestnut Hill MA 02467 clote@bc.edu May 7, 2003 Abstract In this

More information

Computational Genomics and Molecular Biology, Fall

Computational Genomics and Molecular Biology, Fall Computational Genomics and Molecular Biology, Fall 2014 1 HMM Lecture Notes Dannie Durand and Rose Hoberman November 6th Introduction In the last few lectures, we have focused on three problems related

More information

Sequence Bioinformatics. Multiple Sequence Alignment Waqas Nasir

Sequence Bioinformatics. Multiple Sequence Alignment Waqas Nasir Sequence Bioinformatics Multiple Sequence Alignment Waqas Nasir 2010-11-12 Multiple Sequence Alignment One amino acid plays coy; a pair of homologous sequences whisper; many aligned sequences shout out

More information