BIOLOGY. Chapter 23 Protists

Size: px
Start display at page:

Download "BIOLOGY. Chapter 23 Protists"

Transcription

1 BIOLOGY Chapter 23 Protists

2 CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 28 Protists 2014 Pearson Education, Inc.

3 Fig PROTISTS Eukaryotic Single, colonial or multicellular Fungal-like, plant-like, animal-like or mixotrophs (combo) Cilia, flagellum/(a) or psuedopodia Worldwide (aquatic or terrestrial) Aerobic or anaerobic 1 µm

4 Figure 23.8 (a) Paramecium waves hair-like appendages called cilia to propel itself. (b) Amoeba uses lobe-like pseudopodia to anchor itself to a solid surface and pull itself forward. (c) Euglena uses a whip-like tail called a flagellum to propel itself.

5 Figure 23.1 Protists range from the microscopic, single-celled (a) Acanthocystis turfacea and the (b) ciliate Tetrahymena thermophila, both visualized here using light microscopy, to the enormous, multicellular (c) kelps (Chromalveolata) that extend for hundreds of feet in underwater forests. (credit a: modification of work by Yuiuji Tsukii; credit b: modification of work by Richard Robinson, Public Library of Science; credit c: modification of work by Kip Evans, NOAA; scale-bar data from Matt Russell)

6 Fig / Fig 23.4 Endosymbiosis & Eukaryotic evolution Cyanobacterium Cyanbacterium Primary endosymbiosis Heterotrophic Primary endosymbiosis Heterotrophic eukaryote eukaryote Over the course of evolution, this membrane was lost. Membranes are represented as dark lines in the cell Red alga One of these membranes was lost in red and green algal descendants. Green alga Both share similar DNA sequences with photosynthetic cyanobacteria. Red alga Green alga 1 µm

7 Fig Endosymbiosis & Eukaryotic evolution Plastid Dinoflagellates Dinoflagellates Cyanobacterium Cyanobacterium Membranes are represented as dark lines in the cell. Red alga Red alga Secondary endosymbiosis Secondary endosymbiosis Apicomplexans Apicomplexans Primary endosymbiosis Primary endosymbiosis Stramenopiles Stramenopiles Heterotrophic eukaryote Over One the of course these of evolution, membranes was this membrane lost in red and was lost. green algal descendants. Green alga Green alga Secondary endosymbiosis Secondary endosymbiosis Secondary endosymbiosis Secondary endosymbiosis Plastid Plastid Euglenids Euglenids Chlorarachniophytes 4 membranes

8 Figure 23.6 Hypothesized process of endosymbiotic The hypothesized process of endosymbiotic events leading to the evolution of chlorarachniophytes is shown. Primary endosymbiotic event: a heterotrophic eukaryote consumed a cyanobacterium Secondary endosymbiotic event: the cell resulting from primary endosymbiosis was consumed by a second cell organelle became a plastid

9 Fig a/Fig23.9 OLD VERSION 5 Supergroups Protists polyphyletic Alveolate s Stramenopiles Diplomonads Parabasalids Euglenozoans Dinoflagellates Apicomplexans Ciliates Diatoms Golden algae Brown algae Oomycetes Chlorarachniophytes Forams Radiolarians Excavata Chromalveolata Rhizaria cytoskeleton Feeding groove excavated amitochondriate alveoli Flagellum(a) Ameboid critters rrna Red algae Chlorophytes Charophyceans Land plants Archaeplastida plastids (2 membranes) photosynthesis Slime molds Gymnamoebas Entamoebas Nucleariids Fungi Unikonta Single flagellum or ambeoid w/o flagellum Choanoflagellates Animals

10 Figure Supergroups (Presently) Protists polyphyletic Diplomonads Parabasalids Euglenozoans Excavata Excavata 5 μm Archaeplastida 20 μm 50 μm Stramenopiles Alveolates Rhizarians Amoebozoans Opisthokonts Green algae Diatoms Golden algae Brown algae Dinoflagellates Apicomplexans Ciliates Forams Cercozoans Radiolarians Red algae Chlorophytes Charophytes Land plants Slime molds Tubulinids Entamoebas Nucleariids Fungi Choanoflagellates Animals SAR clade Archaeplastida Unikonta SAR Clade 100 μm 50 μm Unikonta 100 μm

11 Figure 28.2a 4 Supergroups Protists polyphyletic Stramenopiles Alveolates Rhizarians Diplomonads Parabasalids Euglenozoans Diatoms Golden algae Brown algae Dinoflagellates Apicomplexans Ciliates Forams Cercozoans Radiolarians Excavata SAR clade cytoskeleton Feeding groove excavated amitochondriate DNA sequence 2 endosymbiosis with red algae Some: alveoli Some hairy flagella Some ameboid rrna Green algae Red algae Chlorophytes Charophytes Land plants Archaeplastida plastids (2 membranes) photosynthesis Amoebozoans Opisthokonts Slime molds Tubulinids Entamoebas Nucleariids Fungi Choanoflagellates Animals Unikonta Single flagellum or ambeoid w/o flagellum

12 Fig b Diplomonads Parabasalids Euglenozoans Excavata cytoskeleton feeding groove amitochondriate

13 Fig. 28-UN1 There were 5 Supergroups Kinetoplastids Euglenids Diplomonads Parabasalids Euglenozoans Excavata Chromalveolata Rhizaria Archaeplastida Unikonta

14 Figure 28.UN02 Now there s 4 Supergroups Diplomonads Parabasalids Euglenozoans Excavata SAR clade Archaeplastida Unikonta

15 Diplomonads Figure Lack plastids No/reduced mitochondria Relic mitosomes lack ETC Anaerobic environment Multi-flagellated (4) 2 haploid nuclei Many parasitic & free-living Giardia lamblia

16 Parabasala Large modified golgi parabasal body No/reduced mitochondria Hydrogenosomes (anaerobic) Multiflagellated Endobionts Trichomonas vaginalis Trichonympha

17 Euglenozoa All biflagellated (2) Crystaline rod Photosynthetic, heterotrophic or mixotrophic Free-living or parasitic Kinetoplastids or Euglenids

18 Figure & Euglenozoa 1) Kinetoplastids spiral or crystaline rod in flagella Large mitochondrion Kinetoplastid DNA Worldwide distribution Free living or parasitic Bait & switch surface proteins Trypa soma Africa African sleeping sickness Americas Chaga s disease Trypanosoma

19 African Sleeping Sickness Trypa osoma gambie se Vector = tsetse fly

20 Chaga s Disease Trypa osoma cruzi Vector = kissing bug (assassin bug) Americas

21 Fig Euglenozoa 2) Euglenids Euglena (mixotrophic) Long flagellum Eyespot Short flagellum Contractile vacuole Light detector Nucleus Chloroplast Euglena (LM) 5 µm Plasma membrane Pellicle

22 Fig. 28-UN2 Older version Dinoflagellates Apicomplexans Ciliates Diatoms Golden algae Brown algae Oomycetes Alveolates Stramenopiles Excavata Chromalveolata Alveoli Flagellum(a) Rhizaria Archaeplastida Unikonta

23 Figure 28.UN03 Present version Diatoms Golden algae Brown algae Dinoflagellates Apicomplexans Ciliates Forams Cercozoans Radiolarians Stramenopiles Alveolates Rhizarians Excavata SAR clade DNA sequence 2 endosymbiosis with red algae Some: alveoli Some hairy flagella Some ameboid rrna Archaeplastida Unikonta

24 0.2 µm Alveolates: 1) Dinoflagellates, 2) Apicomplexans & 3) Ciliates Flagellum Alveoli Alveolate Fig

25 Figure Dinoflagellates Biflagellated (90 ) Flagellular groove Cellulose plates Freshwater & marine Photosynthetic & mixotrophic Endosymbionts of corals (zooxanthellae/zoochorellae) Red tides Paralytic shellfish poisoning (PSP)

26 Fig µm Flagella

27 Figure Apicomplexan Specialized structure on sporozoite or merozoite stage penetrate host All parasitic Digenetic Sexual & asexual stages Bait & switch surface proteins

28 Fig /Fig Anopheles Inside human Plasmodium lifecycle Merozoite Liver Liver cell Apex Merozoite (n) Red blood cell Red blood cells Gametocytes (n) Key Haploid (n) Diploid (2n)

29 Fig /Fig Inside mosquito Anopheles Inside human Plasmodium lifecycle Merozoite Liver Liver cell Apex Merozoite (n) Red blood cell Zygote (2n) Red blood cells FERTILIZATION Gametes Gametocytes (n) Key Haploid (n) Diploid (2n)

30 Fig /Fig Inside mosquito Anopheles Inside human Plasmodium lifecycle Sporozoites (n) Liver Merozoite Liver cell Oocyst Apex MEIOSIS Merozoite (n) Red blood cell Zygote (2n) Red blood cells FERTILIZATION Gametes Gametocytes (n) Key Haploid (n) Diploid (2n)

31 Figure Ciliates Paramecium Cilia 2 nucleic Macronucleus (regulation) Micronucleus (repro) Conjugation & binary fission Vacuoles (food, contractile) Free living, parasitic Blepharisma Stentor

32 Figure Ciliate Diversity

33 Fig Figure Contractile vacuole 50 µm Cilia Oral groove Cell mouth Micronucleus Macronucleus Food vacuoles (a) Feeding, waste removal, and water balance MEIOSIS Compatible mates Diploid micronucleus The original macronucleus disintegrates. Diploid micronucleus Haploid micronucleus MICRONUCLEAR FUSION Key (b) Conjugation and reproduction Conjugation Reproduction

34 Figure The complex process of sexual reproduction in Paramecium creates eight daughter cells from two original cells. Each cell has a macronucleus and a micronucleus. During sexual reproduction, the macronucleus dissolves and is replaced by a micronucleus. (credit micrograph : modification of work by Ian Sutton; scale-bar data from Matt Russell)

35 3 clades Diatoms Golden algae Brown algae Aquatic algae w/ flagella Thin straw-like flagella Stramenopiles

36 Fig /Fig Stramenopile flagella Smooth flagellum Hairy flagellum 5 µm

37 Fig /Fig Diatom flagella 3 µm

38 /Fig Freshwater or Marine Unicellular Overlapping silica walls Phytoplankton Diatomaceous earth Diatoms

39 Fig h /Fig µm

40 Fig Flagellum Outer container Living cell Chrysophyta = golden algae

41 Brown Algae Phyaeophyta Fucoxanthin (PS pigment) Marine,cold Blade Alternation of generations Diploid & haploid Analogous structures Stipe Holdfast Fig

42 Fig Sporangia 10 cm Mature female gemetophyte (n) Developing sporophyte Zygote (2n) FERTILIZATION Sporophyte (2n) Egg Female Zoospore MEIOSIS Gametophytes (n) Male Hairy flagellum Key Sperm Haploid (n) Diploid (2n)

43 Rhizarians amoebas Radiolarians, foraminiferans (forams) & cercozoans Psuedopodia (locomotion & feeding) Figure Pseudopodia Radiolarian Silica tests Psuedo radiate from central body 200 µm Fig

44 Fig i/Fig µm Foraminiferan (Foram) CaCO 3 tests Porous, multichambered test Psuedo through pores Endosymbiotic algae

45 Cercozoans Amoeboid & flagellated with threadlike psuedopodia Marine, FW & soil ecosystems Parasitic & predators Figure 28.19

46 Fig. 28-UN4 Older version Chlorophytes Charophyceans Red algae Green algae Land plants Excavata Chromalveolata Rhizaria Archaeplastida Unikonta

47 Figure 28.UN04 Current version Chlorophytes Charophytes Red algae Green algae Land plants Excavata SAR clade Archaeplastida Plastids endosymbiosis Unikonta

48 Fig Red Algae Rhodophyta Phycoerythin Warmer waters 20 cm Bonnemaisonia hamifera 8 mm Dulse (Palmaria palmata) Nori. The red alga Porphyra is the source of a traditional Japanese food. The seaweed is grown on nets in shallow coastal waters. The harvested seaweed is spread on bamboo screens to dry. Paper-thin, glossy sheets of nori make a mineral-rich wrap for rice, seafood, and vegetables in sushi.

49 Fig j/Fig µm Green Algae Chlorophyta Fresh vs marine Chlorophyll Charophytes Land Plants 50 µm Daughter colony

50 Fig Green Algae (a) Ulva, or sea lettuce 2 cm (b) Caulerpa, an intertidal chlorophyte

51 Chromoaveolata SAR supergroup The SAR clade is a diverse monophyletic supergroup 3 major clades stramenopiles, alveolates, & rhizarians highly diverse group DNA similarities Diatom diversity rhizarian in the SAR clade 5 μm Smooth flagellum Hairy flagellum

52 Figure 28.UN05 Slime molds Tubulinids Entamoebas Nucleariids Fungi Choanoflagellates Animals Excavata SAR clade Archaeplastida Unikonta

53 Fig f Psuedopodia Amoebozoans Opisthokonts Slime molds Gymnamoebas Entamoebas Nucleariids Fungi Choanoflagellates Animals Unikonta Posterior flagellum

54 Fig /Fig Amoebozoans Plasmodial slime molds 4 cm FERTILIZATION Zygote (2n) Feeding plasmodium Mature plasmodium (preparing to fruit) Flagellated cells (n) Amoeboid cells (n) Germinating spore Spores (n) Mature sporangium Young sporangium MEIOSIS 1 mm Stalk Key Haploid (n) Diploid (2n)

55 Amoebozoans Figure Spores FERTILIZATION (n) Cellular Slime molds 600 µm Emerging amoeba (n) Solitary amoebas (feeding stage) (n) SEXUAL REPRODUCTION MEIOSIS Zygote (2n) Fruiting bodies (n) ASEXUAL REPRODUCTION Aggregated amoebas Amoebas (n) Migrating aggregate 200 µm Fig Key Haploid (n) Diploid (2n)

56 Fig l/Fig Amoebozoans 100 µm

57 Figure 28.29/Fig Protists play key roles in ecological communities Photosynthetic Protists Producer Other consumers Herbivorous plankton Carnivorous plankton Prokaryotic producers Protistan producers

58 Figure Protists play key roles in ecological communities Endosymbiont

59 Figure 28.2 Excavata 5 μm Archaeplastida 20 μm 50 μm Diplomonads Parabasalids Euglenozoans Excavata Stramenopiles Alveolates Rhizarians Amoebozoans Opisthokonts Green algae Diatoms Golden algae Brown algae Dinoflagellates Apicomplexans Ciliates Forams Cercozoans Radiolarians Red algae Chlorophytes Charophytes Land plants Slime molds Tubulinids Entamoebas Nucleariids Fungi Choanoflagellates Animals SAR clade Archaeplastida Unikonta SAR Clade 100 μm 50 μm Unikonta 100 μm

60 Figure 28.UN06a Eukaryote Supergroup Major Groups Key Morphological Characteristics Specific Examples Excavata Diplomonads and parabasalids Modified mitochondria Giardia, Trichomonas Euglenozoans Kinetoplastids Spiral or crystalline rod inside flagella Trypanosoma, Euglena Euglenids SAR Clade Stramenopiles Diatoms Hairy and smooth flagella Phytophthora, Laminaria Golden algae Brown algae Alveolates Dinoflagellates Apicomplexans Membrane-enclosed sacs (alveoli) beneath plasma membrane Pfiesteria, Plasmodium, Paramecium Ciliates Rhizarians Radiolarians Amoebas with threadlike pseudopodia Globigerina Forams Cercozoans

61 Figure 28.UN06b Eukaryote Supergroup Major Groups Key Morphological Characteristics Specific Examples Archaeplastida Red algae Phycoerythrin (photosynthetic pigment) Porphyra Green algae Plant-type chloroplasts Chlamydomonas, Ulva Land plants (See Chapters 29 and 30.) Mosses, ferns, conifers, flowering plants Unikonta Amoebozoans Slime molds Tubulinids Amoebas with lobeshaped or tube-shaped pseudopodia Amoeba, Dictyostelium Entamoebas Opisthokonts (Highly variable; see Chapters ) Choanoflagellates, nucleariids, animals, fungi

62 If the mitochondria and chloroplasts in eukaryotic cells resulted from endosymbiosis, what features might we expect these organelles to contain? A. a plasma membrane, DNA, and ribosomes B. a plasma membrane, nucleus, and ribosomes C. nucleus, DNA, and ribosomes D. a plasma membrane, nucleus, and cilia E. nucleus, ribosomes, and cilia

63 Trypanosoma, a kinetoplastid, is the causative agent of a) HIV/AIDS b) Malaria c) Giardiasis d) Trichomoniasis e) Sleeping sickness

64 Which of the following most likely arose from endosymbiosis? A. nuclear membrane and Golgi apparatus B. ER and chloroplasts C. chloroplasts and mitochondria D. mitochondria and Golgi apparatus

Endosymbiosis & Eukaryotic evolution

Endosymbiosis & Eukaryotic evolution Fig. 28-01 PROTISTS Eukaryotic Single, colonial or multicellular Fungal-like, plant-like, animal-like or mixotrophs (combo) Cilia, flagellum/(a) or psuedopodia Worldwide (aquatic or terrestrial) Aerobic

More information

1. General Features of Protists

1. General Features of Protists Chapter 28: Protists 1. General Features of Protists 2. Survey of the Protista A. The Excavata B. The SAR Clade C. The Archaeplastida D. The Unikonta 1. General Features of Protists All Protists are Eukaryotes

More information

2014 Pearson Education, Inc. 1

2014 Pearson Education, Inc. 1 1 4.5 bya 3.5 2.5 1.5 500 mya 1.8 bya 1.5 bya 1.3 bya 1.2 bya 750 mya 635 mya 600 mya 0.5 cm 550 mya 535 mya 1 cm 20 µm (a) A 1.8-billionyear-old fossil eukaryote (b) Tappania, a 1.5-billion-year-old fossil

More information

Protists 9/11/2017. Endosymbiosis

Protists 9/11/2017. Endosymbiosis Protists Chapter 28 Most eukaryotes are single-celled organisms Protists are eukaryotes Eukaryotic cells have organelles and are more complex than prokaryotic cells Most protists are unicellular, but there

More information

Pearson Education, Inc.

Pearson Education, Inc. 1 4.5 bya 3.5 1.5 2.5 500 mya 1.8 bya 1.5 bya 1.3 bya 1.2 bya 550 750 mya 635 mya 600 mya mya 0.5 cm 535 mya 1 cm (a) A 1.8-billionyear-old fossil (b) Tappania, a 1.5-billion-year-old fossil that may represent

More information

Fig. 27-18e 0.5 µm Thiomargarita namibiensis containing sulfur wastes (LM) Fig. 27-18f 10 µm Fruiting bodies of Chondromyces crocatus, a myxobacterium (SEM) Fig. 27-18g 5 µm B. bacteriophorus Bdellovibrio

More information

BIOLOGY - CLUTCH CH.29 - PROTISTS.

BIOLOGY - CLUTCH CH.29 - PROTISTS. !! www.clutchprep.com Eukrayotic cells are large, have a nucleus, contain membrane-bound organelles, and use a cytoskeleton The nucleus is the synapomorphy that unifies eukaryotes Endosymbiotic theory

More information

Protists. Chapter 28. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Protists. Chapter 28. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 28 Protists PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Overview:

More information

Outline. Diplomonads. Excavata. Parabasalids. Euglenozoans. Diatoms. Golden algae. Brown algae. SAR clade. Dinoflagellates Apicomplexans

Outline. Diplomonads. Excavata. Parabasalids. Euglenozoans. Diatoms. Golden algae. Brown algae. SAR clade. Dinoflagellates Apicomplexans BIOSC 041 PROTISTS! Reference: Chapter 28 Outline v General characteristics of protists v Our understanding of the relationships among protist groups continues to change rapidly! v One hypothesis divides

More information

Protists. There are NO typical protists. Protist General Characteristics - usually single cell - eukaryotic - paraphyletic group

Protists. There are NO typical protists. Protist General Characteristics - usually single cell - eukaryotic - paraphyletic group There are NO typical protists. Protist General Characteristics - usually single cell - eukaryotic - paraphyletic group Traditional Classification There are three divisions of the Kingdom Protista: Protozoa,

More information

LECTURE PRESENTATIONS

LECTURE PRESENTATIONS LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 28 Protists Lectures by Erin Barley

More information

Protists 2/14/2012. Chapter 28. Overview: Living Small. Concept 28.1: Most eukaryotes are single-celled organisms

Protists 2/14/2012. Chapter 28. Overview: Living Small. Concept 28.1: Most eukaryotes are single-celled organisms LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 28 Protists Overview: Living Small

More information

Protists. Chapter 28. Overview: Living Small. Concept 28.1: Most eukaryotes are single-celled organisms

Protists. Chapter 28. Overview: Living Small. Concept 28.1: Most eukaryotes are single-celled organisms Chapter 28 Protists Overview: Living Small Even a low-power microscope can reveal a great variety of organisms in a drop of pond water Protist is the informal name of the group of mostly unicellular eukaryotes

More information

BIOLOGY. Protists CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson. Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick

BIOLOGY. Protists CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson. Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 28 Protists Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Living Small Even a low-power microscope can reveal

More information

Symbiosis. Symbiosis is a close association between of two or more organisms. Endosymbiosis living within another

Symbiosis. Symbiosis is a close association between of two or more organisms. Endosymbiosis living within another PROTISTS Protists constitute several kingdoms within the domain Eukarya Protists obtain their nutrition in a variety of ways Algae are autotrophic protists Protozoans are heterotrophic protists Fungus

More information

Origins of Eukaryotic Diversity Protists Diversity

Origins of Eukaryotic Diversity Protists Diversity Origins of Eukaryotic Diversity Protists Diversity For Lecture, Make sure you know the Water Molds (Oomycota) names and characteris6cs of the taxa at the levels indicated by the red arrows. Characteristics

More information

v How long ago is Earth thought to have formed? v What is thought to have been the first genetic material? v Are we tetrapods?

v How long ago is Earth thought to have formed? v What is thought to have been the first genetic material? v Are we tetrapods? Biosc 41 Announcements 9/29 v Quick review followed by lecture quiz (history & phylogeny) v Lecture: Protists v Lab: Protozoa (animal-like protists) v Lab exam 1 is Wed! (does not cover today s lab) Review:

More information

Protists The Simplest Eukaryotes. Chapter 22 Part 1

Protists The Simplest Eukaryotes. Chapter 22 Part 1 Protists The Simplest Eukaryotes Chapter 22 Part 1 Impacts, Issues The Malaria Menace Plasmodium, a single-celled protist, causes malaria but also manipulates its mosquito and human hosts to maximize its

More information

PROTISTS James Bier

PROTISTS James Bier PROTISTS 2013-2015 James Bier Objectives 1. List the characteristics shared among the protists. 2. Describe secondary endosymbiosis and the evidence for this hypothesis. 3. List the five major taxa of

More information

Chapter 28 / Protists. I. Introduction A. Eukaryotes 1. 1 st eukaryotic organisms 2. most are unicellular 3. considered simple. Part I: Protozoans

Chapter 28 / Protists. I. Introduction A. Eukaryotes 1. 1 st eukaryotic organisms 2. most are unicellular 3. considered simple. Part I: Protozoans Randa, Bio 1151 1 Chapter 28 / Protists I. Introduction A. Eukaryotes 1. 1 st eukaryotic organisms 2. most are unicellular 3. considered simple B. Protist diversity (ecological grouping) 1. comprised of:

More information

Importance of Protists

Importance of Protists Protists Protists The kingdom Protista is a very diverse kingdom. Eukaryotes that are not classified as fungi, plants, or animals are classified as protists. However, even though they are officially in

More information

METHODS OF CLASSIFYING INTO A CERTAIN KINGDOM: 1. prokaryote OR eukaryote 2. single OR multi celled 3. autotroph OR heterotroph

METHODS OF CLASSIFYING INTO A CERTAIN KINGDOM: 1. prokaryote OR eukaryote 2. single OR multi celled 3. autotroph OR heterotroph CH. 22 PROTISTS METHODS OF CLASSIFYING INTO A CERTAIN KINGDOM: 1. prokaryote OR eukaryote 2. single OR multi celled 3. autotroph OR heterotroph 6 Kingdoms 1. Eubacteria prokaryotes; single cell; heterotroph

More information

PROTISTA. The paraphyletic, nonfungi, + Even MORE new words to remember!

PROTISTA. The paraphyletic, nonfungi, + Even MORE new words to remember! PROTISTA The paraphyletic, nonfungi, non-animal, nonplant Eucarya + Even MORE new words to remember! Key Points Origin of eukaryotes via symbiosis Origin of classification based on functional (ecological)

More information

Protists. Protists. Protist Feeding Strategies. Protist Body Plans. Endosymbiosis. Protist Reproduction 3/3/2011. Eukaryotes Not a monophyletic group

Protists. Protists. Protist Feeding Strategies. Protist Body Plans. Endosymbiosis. Protist Reproduction 3/3/2011. Eukaryotes Not a monophyletic group Protists Protists Eukaryotes Not a monophyletic group Paraphyletic March 3 rd, 2011 Still use the term protist All eukaryotes except Plants, Fungi, Animals Most unicellular Some colonial Some multicelled

More information

Chapter 22: Protists

Chapter 22: Protists Chapter 22: Protists Protists Protistans are Unlike Prokaryotes Have a nucleus and organelles Have proteins associated with DNA Use microtubules in a cytoskeleton, spindle apparatus, and cilia and flagella

More information

Chapter 21 Protists The Simplest Eukaryotes. Cengage Learning 2016

Chapter 21 Protists The Simplest Eukaryotes. Cengage Learning 2016 Chapter 21 Protists The Simplest Eukaryotes Protists Eukaryotes that are not fungi, plants, or animals Structurally less complex Play important ecological roles as producers or predators of microorganisms

More information

Microbial Diversity. Bacteria Archaea Protista Fungi. Copyright 2011 Pearson Education, Inc.

Microbial Diversity. Bacteria Archaea Protista Fungi. Copyright 2011 Pearson Education, Inc. Microbial Diversity Bacteria Archaea Protista Fungi Figure 19-1 Three common prokaryote shapes Figure 19-2 The prokaryote flagellum Figure 19-2b The structure of the bacterial flagellum cell wall wheelandaxle

More information

Key Points PROTISTA. Functional arrangements. General. All of these groups are polyphyletic 9/18/14

Key Points PROTISTA. Functional arrangements. General. All of these groups are polyphyletic 9/18/14 PROTISTA The paraphyletic, nonfungi, non-animal, nonplant Eucarya + Even MORE new words to remember! Key Points Origin of eukaryotes via symbiosis Origin of classification based on functional (ecological)

More information

On the slides and live specimens find the (and know the function of) nucleus paramylon bodies cytopharynx flagellum eyespot

On the slides and live specimens find the (and know the function of) nucleus paramylon bodies cytopharynx flagellum eyespot Biology 3B Laboratory Protist Diversity Objectives Learn the basic characteristics that define organisms classified within the Protist taxon To learn the anatomy, life cycles and identification of representative

More information

Amoeba hunts and kills paramecia and stentor. Eukaryotic photosynthetic cells

Amoeba hunts and kills paramecia and stentor. Eukaryotic photosynthetic cells Amoeba hunts and kills paramecia and stentor Eukaryotic photosynthetic cells 1 Eukaryotic organelles are odd in many ways Organelles: membrane bound compartments in a cell Nucleus, chloroplasts, and mitochondria

More information

Eukaryotic photosynthetic cells

Eukaryotic photosynthetic cells Amoeba hunts and kills paramecia and stentor Eukaryotic photosynthetic cells Eukaryotic organelles are odd in many ways Organelles: membrane bound compartments in a cell Nucleus, chloroplasts, and mitochondria

More information

Characterizing and Classifying Eukaryotes

Characterizing and Classifying Eukaryotes PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University C H A P T E R 12 Characterizing and Classifying Eukaryotes Eukaryotic microorganisms Fungi Algae Water

More information

Kingdom Protista. Protista

Kingdom Protista. Protista Kingdom Protista Protista Traditionally a kingdom level taxon Current evidence places organisms in as many as 3-5 kingdoms We will classify all: Unicellular or simple colonial Eukaryotic Organisms that

More information

Page # In what ways are protists important? The Protists. A diverse assemblage of eukaryotes that ARENʼT fungi, plants, or animals

Page # In what ways are protists important? The Protists. A diverse assemblage of eukaryotes that ARENʼT fungi, plants, or animals In what ways are protists important? The Protists A diverse assemblage of eukaryotes that ARENʼT fungi, plants, or animals Base of many food chains - especially in aquatic settings Clarify water by filtering

More information

Origins of Eukaryotic Diversity Protists Diversity

Origins of Eukaryotic Diversity Protists Diversity Origins of Eukaryotic Diversity Protists Diversity Euglenas Kinetoplastids Water Molds (Oomycota) For Lecture & Lab, make sure to know the supergroup and the most specific clade or group and characteris

More information

Protists (Eukarya) Ch Feb 2009 ECOL 182R UofA K. E. Bonine. Life can be divided into 3 domains. 1.5bya. Prokaryotes = bacteria + archaea

Protists (Eukarya) Ch Feb 2009 ECOL 182R UofA K. E. Bonine. Life can be divided into 3 domains. 1.5bya. Prokaryotes = bacteria + archaea Protists (Eukarya) Ch 29 26 Feb 2009 ECOL 182R UofA K. E. Bonine 1 Life can be divided into 3 domains 3.8bya 1.5bya Prokaryotes = bacteria + archaea Prokaryote was ancestral and only form for billions

More information

Protists (Eukarya) Ch Feb 2009 ECOL 182R UofA K. E. Bonine

Protists (Eukarya) Ch Feb 2009 ECOL 182R UofA K. E. Bonine Protists (Eukarya) Ch 29 26 Feb 2009 ECOL 182R UofA K. E. Bonine 1 Life can be divided into 3 domains 3.8bya 1.5bya Prokaryotes = bacteria + archaea Prokaryote was ancestral and only form for billions

More information

CHAPTERS 16 & 17: PROKARYOTES, FUNGI, AND PLANTS Honors Biology 2012 PROKARYOTES PROKARYOTES. Fig Lived alone on Earth for over 1 billion years

CHAPTERS 16 & 17: PROKARYOTES, FUNGI, AND PLANTS Honors Biology 2012 PROKARYOTES PROKARYOTES. Fig Lived alone on Earth for over 1 billion years CHAPTERS 6 & 7: PROKARYOTES, FUNGI, AND PLANTS Honors Biology 0 PROKARYOTES Lived alone on Earth for over billion years Most numerous and widespread organisms (total biomass of prokaryotes is ten times

More information

Protists: Algae Lecture 5 Spring 2014

Protists: Algae Lecture 5 Spring 2014 Protists: Algae Lecture 5 Spring 2014 Meet the algae 1 Protist Phylogeny Algae - Not monophyletic What unites them as a group? Range from unicellular to multicellular From phytoplankton to kelp forests

More information

Protists: Algae Lecture 5 Spring Protist Phylogeny. Meet the algae. Primary & Secondary Endosymbiosis. Endosymbiosis. Secondary Endosymbiosis

Protists: Algae Lecture 5 Spring Protist Phylogeny. Meet the algae. Primary & Secondary Endosymbiosis. Endosymbiosis. Secondary Endosymbiosis Meet the algae Protists: Algae Lecture 5 Spring 2014 Protist Phylogeny 1 Primary & Secondary Endosymbiosis 2 Algae - Not monophyletic What unites them as a group? Range from unicellular to multicellular

More information

There are two commonly accepted theories for how eukaryotic cells evolved: infolding and endosymbiosis. Infolding

There are two commonly accepted theories for how eukaryotic cells evolved: infolding and endosymbiosis. Infolding Protists Protists The kingdom Protista is a very diverse kingdom. Eukaryotes that are not classified as fungi, plants, or animals are classified as protists. However, even though they are officially in

More information

Lab tomorrow.

Lab tomorrow. Lab tomorrow https://pages.stolaf.edu/angell/readings/ Unit 1 A. The early life and the Diversification of Prokaryotes (Ch24) B. Origin and Diversification of Eukaryotes (Ch25) C. Broad Patterns of Evolution

More information

Kingdom Protista. Mr. Krause Edina Public Schools ISD273 EXIT 2/16/2005

Kingdom Protista. Mr. Krause Edina Public Schools ISD273 EXIT 2/16/2005 Kingdom Protista Mr. Krause Edina Public Schools ISD273 Kingdom Protista General Characteristics Animal-Like Protists Plant-Like Protists Fungus-Like Protists General Characteristics Protozoa - Greek name

More information

Biology 2. Lab Packet. For. Practical 1

Biology 2. Lab Packet. For. Practical 1 Biology 2: LAB PRACTICUM 1 1 Biology 2 Lab Packet For Practical 1 Diplomonads Excavata Parabaslids Euglenozoans Dinoflagellates Alveolates Apicomplexans Ciliates Chromalveo Diatoms Golden Algae Stramenopiles

More information

What Are the Protists?

What Are the Protists? Protists 1 What Are the Protists? 2 Protists are all the eukaryotes that are not fungi, plants, or animals. Protists are a paraphyletic group. Protists exhibit wide variation in morphology, size, and nutritional

More information

19.1 Diversity of Protists. KEY CONCEPT Kingdom Protista is the most diverse of all the kingdoms.

19.1 Diversity of Protists. KEY CONCEPT Kingdom Protista is the most diverse of all the kingdoms. 19.1 Diversity of Protists KEY CONCEPT Kingdom Protista is the most diverse of all the kingdoms. 19.1 Diversity of Protists Protists can be animal-like, plantlike, or funguslike. Protists are eukaryotes

More information

Continued from Chapter 26.

Continued from Chapter 26. Changing understanding Continued from Chapter 26. Based on phylogenetic research Two kingdoms to five kingdoms to three domains Three domain system: The present tree of life Animation: Classification Schemes

More information

PROTISTS. Chapter 25 Biology II

PROTISTS. Chapter 25 Biology II PROTISTS Chapter 25 Biology II Vocabulary- Protists (44 words) 1. Protist 2. binary fission 3. conjugation 4. Multiple fission 5. pseudopodium 6. test 7. Amoeboid movement 8. cilium 9. Pellicle 10. oral

More information

Unit 8: Prokaryotes, Protists, & Fungi Guided Reading Questions (60 pts total)

Unit 8: Prokaryotes, Protists, & Fungi Guided Reading Questions (60 pts total) AP Biology Biology, Campbell and Reece, 10th Edition Adapted from chapter reading guides originally created by Lynn Miriello Name: Chapter 27 Bacteria and Archaea Unit 8: Prokaryotes, Protists, & Fungi

More information

5/10/2013. Protists. Kingdom Protista. Called the Junk Drawer. 3 Subkingdoms of Protists. Protozoans Algae Slime molds

5/10/2013. Protists. Kingdom Protista. Called the Junk Drawer. 3 Subkingdoms of Protists. Protozoans Algae Slime molds Protists Kingdom Protista Called the Junk Drawer 3 Subkingdoms of Protists Protozoans Algae Slime molds 1 Protozoans Animal-like Superphyla: Sarcodines ( Sarcodina ) Ciliates ( Ciliophora ) Flagellates

More information

Biological Diversity Lab #1 : Domains Eubacteria and Archaea and Protista

Biological Diversity Lab #1 : Domains Eubacteria and Archaea and Protista Biological Diversity Lab #1 : Domains Eubacteria and Archaea and Protista Refer to the AP Biology book, Helms Labs 22 and be sure to site other resources used complete this lab in your lab journal. Be

More information

Kingdom Protista. Lab Exercise 20. Introduction. Contents. Objectives

Kingdom Protista. Lab Exercise 20. Introduction. Contents. Objectives Lab Exercise Kingdom Protista Contents Objectives 1 Introduction 1 Activity.1 Animal-like Protists 2 Activity.2 Fungal-like Protists 3 Activity.3 Plant-like Protists 3 Resutls Section 5 Introduction This

More information

*live organisms* prepared slides. Blepharisma Euglena Paramecium caudatum Phacus Pelomyxa Amoeba proteus Actinosphaerium. Vorticella.

*live organisms* prepared slides. Blepharisma Euglena Paramecium caudatum Phacus Pelomyxa Amoeba proteus Actinosphaerium. Vorticella. *live organisms* Blepharisma Euglena Paramecium caudatum Phacus Pelomyxa Amoeba proteus Actinosphaerium Vorticella Stentor prepared slides Radiolarians Vorticella Trypanosomes Giardia Plasmodium Foramenifera

More information

Kingdom Protista. The world of Protists: Animal-like Protists Plant-like Protists Fungus-like Protists

Kingdom Protista. The world of Protists: Animal-like Protists Plant-like Protists Fungus-like Protists Kingdom Protista The world of Protists: Animal-like Protists Plant-like Protists Fungus-like Protists DOMAIN EUKARYA PROTISTS KINGDOM PROTISTA Any eukaryote that is not classified as a fungus, plant, or

More information

9/24/2013. Bacteria and Archaea. Masters of Adaptation. Archaea. Three domain system: The present tree of life

9/24/2013. Bacteria and Archaea. Masters of Adaptation. Archaea. Three domain system: The present tree of life 200 m 2. 300 m 2 m 1 m Bacteria and Archaea Three domain system: The present tree of life Chapter 27 Masters of Adaptation Structural and functional adaptations contribute to prokaryotic success Unicellular

More information

The Protistans. Includes protozoans and algae All single celled eukaryotes

The Protistans. Includes protozoans and algae All single celled eukaryotes Includes protozoans and algae All single celled eukaryotes The Protistans Protozoa - Unicellular, eukaryotic, heterotrophic - Inhabit water and soil - Some normal microbiota of animals - Few cause disease

More information

Chapter 21: Protist Evolution and Diversity

Chapter 21: Protist Evolution and Diversity Chapter 21: Protist Evolution and Diversity AP Curriculum Alignment Big Idea 1, which includes the concept that mutually beneficial associations among ancient bacteria gave rise to eukaryotic cells, is

More information

Life Science. Chapter 9 Part 1 Protista

Life Science. Chapter 9 Part 1 Protista Life Science Chapter 9 Part 1 Protista Protista Junk drawer kingdom a little bit of everything, some w/ cell walls (composition varies), some w/out. All are Eukaryotes, autotrophs and heterotrophs represented.

More information

The Origins of Eukaryotic Diversity

The Origins of Eukaryotic Diversity http://animal.discovery.com/tvshows/monsters-insideme/videos/the-brain-eatingamoeba.htm The Origins of Eukaryotic Diversity Introduction to the protists Kingdom Protista split into as many as 20 kingdoms

More information

Prokaryotes Divide Asexually! Cell Cycles & Life Cycles. Heyer 1. Cell Cycles, Sex, & Ploidy! Cells divide to reproduce! Growth & Development

Prokaryotes Divide Asexually! Cell Cycles & Life Cycles. Heyer 1. Cell Cycles, Sex, & Ploidy! Cells divide to reproduce! Growth & Development Cell Cycles, Sex, & Ploidy! 1. DNA is the molecule of inheritance. 2. A chromosome is one long dsdna. In eukaryotes, the dsdna molecule is wrapped with histones & other proteins to form chromatin. 3. A

More information

Chapter 7. Protists. Protists( 원생동물 )

Chapter 7. Protists. Protists( 원생동물 ) Protists( 원생동물 ) - currently 100,000 species, 35,000 species found in fossils - lying in classification gap bwtn prokaryote and smallest animal and plants - all are unicellular, some exist as colonies

More information

OpenStax-CNX module: m Groups of Protists. OpenStax. Abstract. By the end of this section, you will be able to:

OpenStax-CNX module: m Groups of Protists. OpenStax. Abstract. By the end of this section, you will be able to: OpenStax-CNX module: m44617 1 Groups of Protists OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 By the end of this section, you will be able

More information

2.3. The Protists. why Protists Are Important

2.3. The Protists. why Protists Are Important 2.3 The Protists The smallest eukaryotes and some of the largest belong to the Kingdom Protista. This kingdom is extremely diverse. Some of its members, such as amoebas and paramecia, are very small and

More information

Rhizarians. Forams. Radiolarians. Cercozoans

Rhizarians. Forams. Radiolarians. Cercozoans results from conjugation, a sexual process in which two individuals exchange haploid micronuclei but do not reproduce (Figure 28.17b). Ciliates generally reproduce asexually by binary fission, during which

More information

Protists: Molds Lecture 3 Spring 2014

Protists: Molds Lecture 3 Spring 2014 Meet the Protists 1 Protists: Molds Lecture 3 Spring 2014 Domain Eukarya What unites them as a group? The Origin of Eukaryotic Cells Evolution of the endomembrane system Which organelles are included in

More information

Protists: Molds Lecture 3 Spring 2014

Protists: Molds Lecture 3 Spring 2014 Protists: Molds Lecture 3 Spring 2014 Meet the Protists 1 Domain Eukarya What unites them as a group? The Origin of Eukaryotic Cells 2 Evolution of the endomembrane system Which organelles are included

More information

Observing and Classifying Protozoa

Observing and Classifying Protozoa Name: Class: _ Date: _ Observing and Classifying Protozoa Background The name protozoa actually means first animals. This name was given because many protozoa share characteristics with animals. However,

More information

Name Date Class CHAPTER 19

Name Date Class CHAPTER 19 Name Date Class Study Guide CHAPTER 19 Section 1: Introduction to Protists In your textbook, read about protists. Match the definition in Column A with the term in Column B. Column A Column B 1. protist

More information

Notes - Microbiology Protista

Notes - Microbiology Protista Notes - Microbiology Protista Part 1 Animal like Protists - Kingdom Protista is a very diverse group of organisms. There are over 115 000 different kinds, with traits that fit with fungi, plants, and animals.

More information

Chapter 16. The Origin and Evolution of Microbial Life: Prokaryotes and Protists. Lecture by Joan Sharp

Chapter 16. The Origin and Evolution of Microbial Life: Prokaryotes and Protists. Lecture by Joan Sharp Chapter 16 The Origin and Evolution of Microbial Life: Prokaryotes and Protists PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Lecture

More information

20-1 The Kingdom Protista

20-1 The Kingdom Protista 20-1 The Kingdom Protista Protists are that are not members of the Plant, Animal, or Fungi Kingdoms. The Kingdom Protista may include more than 200,000 species. Most, but not all, protists are. One way

More information

Chapter 20 Protists Section Review 20-1

Chapter 20 Protists Section Review 20-1 Chapter 20 Protists Section Review 20-1 1. What are protists? 2. Why is it easier to define protists by what they are not, rather than by what they are? Completion On the lines provided, complete the following

More information

Characterizing and Classifying Eukaryotes

Characterizing and Classifying Eukaryotes CSLO5. Describe evidence for the evolution of cells, organelles and major metabolic pathways from early prokaryotes and how phylogenetic trees reflect evolutionary relationships. CSLO6. Compare characteristics

More information

What is a Protist? A protist is any organism that is not: a plant, an animal, a fungus or a prokaryote.

What is a Protist? A protist is any organism that is not: a plant, an animal, a fungus or a prokaryote. Kingdom Protista What is a Protist? There is much debate about this very diverse group of organisms. Scientists have been arguing for years over how best to classify these organisms. Eventually the protists

More information

Characterizing and Classifying Eukaryotes

Characterizing and Classifying Eukaryotes CSLO5. Describe evidence for the evolution of cells, organelles and major metabolic pathways from early prokaryotes and how phylogenetic trees reflect evolutionary relationships. CSLO6. Compare characteristics

More information

The Protists (Ch. 28) I. Taxon: Protista: II. Super Kingdom Excavata Diplomonads Parabasalids and Euglenozoids Kingdom Diplomonadida mitosomes

The Protists (Ch. 28) I. Taxon: Protista: II. Super Kingdom Excavata Diplomonads Parabasalids and Euglenozoids Kingdom Diplomonadida mitosomes The Protists (Ch. 28) I. Taxon: Protista: General characteristics 1. some are unicellular, some are colonial, and some are truly multicellular 2. artificial polyphyletic grouping among kingdoms 3. comprised

More information

Kingdom Protista. The following organisms will be examined in the lab today: Volvox, Oedogonium, Spirogyra, Ulva

Kingdom Protista. The following organisms will be examined in the lab today: Volvox, Oedogonium, Spirogyra, Ulva Kingdom Protista I. Introduction The protists are a diverse group of organisms. In the past they have been classified as fungi, plants and animals. They can be green, autotrophs or nongreen heterotrophs.

More information

23 PROTISTS. Chapter Outline. Introduction

23 PROTISTS. Chapter Outline. Introduction CHAPTER 23 PROTISTS 609 23 PROTISTS Figure 23.1 Protists range from the microscopic, single-celled (a) Acanthocystis turfacea and the (b) ciliate Tetrahymena thermophila, both visualized here using light

More information

Chapter 21 Protists BIOLOGY II

Chapter 21 Protists BIOLOGY II Chapter 21 Protists BIOLOGY II Section 1 Characteristics of Protists Diversity Most diverse of all organisms ALL are eukaryotic Are eukaryotic organisms that cannot be classified as fungi, plants, or animals

More information

29/11/2012. Characteristics. Protist Diversity. Characteristics. Kingdom Protista. Examples of Plant-like Protists

29/11/2012. Characteristics. Protist Diversity. Characteristics. Kingdom Protista. Examples of Plant-like Protists Kingdom Protista Learning Outcome B1 Characteristics Appeared in the fossil record 1.5 billion years ago have an evolutionary advancement over bacteria, because they have a membranebound nucleus. also

More information

You and plants have something in common! 1

You and plants have something in common! 1 7-2 Eukaryotic Cell Structure & Function These are micrographs of cells you saw in the Cell Types Lab. One is plant (onion epithelium), the other animal (human cheek epithelium). Determine which is which

More information

Biology 2201 Unit 2 Chapter 5

Biology 2201 Unit 2 Chapter 5 Biology 2201 Unit 2 Chapter 5 5.2 Kingdom Protista (pp. 140-151) Kingdom Protista general characterisitcs and groups Protists are a very diverse kingdom of living things that do not fit into any other

More information

SY 2017/ nd Final Term Revision. Student s Name: Grade: 10A/B. Subject: Biology. Teacher Signature

SY 2017/ nd Final Term Revision. Student s Name: Grade: 10A/B. Subject: Biology. Teacher Signature SY 2017/2018 2 nd Final Term Revision Student s Name: Grade: 10A/B Subject: Biology Teacher Signature Biology Grade 10A/B Revision Work Sheet Modified True/False Indicate whether the statement is true

More information

Biology. Slide 1of 39. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1of 39. End Show. Copyright Pearson Prentice Hall Biology 1of 39 2of 39 20-4 Plantlike Protists: Red, Brown, and Green Algae Plantlike Protists: Red, Brown and Green Algae Most of these algae are multicellular, like plants. Their reproductive cycles are

More information

Page 1. Skill: Knowledge/Comprehension. Skill: Knowledge/Comprehension. Skill: Knowledge/Comprehension

Page 1. Skill: Knowledge/Comprehension. Skill: Knowledge/Comprehension. Skill: Knowledge/Comprehension Chapter 28 Protists Multiple-Choice Questions 1) Protists are alike in that all are A) unicellular. B) eukaryotic. C) symbionts. D) monophyletic. E) autotrophic. Topic: Concept 28.1 2) Biologists have

More information

Bacteria, Protists, Fungi, Plants, Animals: Phylogeny and Diversity

Bacteria, Protists, Fungi, Plants, Animals: Phylogeny and Diversity Bacteria, Protists, Fungi, Plants, Animals: Phylogeny and Diversity 1/8/2006 Phylogeny 2 1/8/2006 Phylogeny 3 Proteobacteria Chlamydias Spirochetes Cyanobacteria Gram positive bacteria Korarchaeotes Euryarchaeotes,

More information

Protist Classification the Saga Continues

Protist Classification the Saga Continues Protist Classification the Saga Continues Learning Objectives Explain what a protist is. Describe how protists are related to other eukaryotes. What Are Protists? Photosynthetic Motile Unicellular Multicellular

More information

Chapter 5 - Eukaryotic microorganisms

Chapter 5 - Eukaryotic microorganisms Chapter 5 - Eukaryotic microorganisms Some things to think about as we discuss the difference between prokaryotic and eukaryotic organisms Relate importance of differences between prokaryotic pathogens

More information

General Characteristics of Protists

General Characteristics of Protists General Characteristics of Protists Protists are: Eukaryotic Unicellular Most solitary, though some colonize. Some Autotrophic, some Heterotrophic Share characteristics with plants, animals and fungi.

More information

Protist any organism that is NOT a plant, animal, fungi, prokaryote. grouping for organisms that don't fit into other kingdoms

Protist any organism that is NOT a plant, animal, fungi, prokaryote. grouping for organisms that don't fit into other kingdoms Chapter 20 Protists 20 1 What are protists? https://www.youtube.com/watch?v=ln69k7lytsu (20 Minutes) Protist any organism that is NOT a plant, animal, fungi, prokaryote grouping for organisms that don't

More information

Protists & Fungi. Words to Know: Chapters 19 & 20. Label the paramecium diagram above. (pg. 548)

Protists & Fungi. Words to Know: Chapters 19 & 20. Label the paramecium diagram above. (pg. 548) Words to Know: Protozoan Chapters 19 & 20 Protists & Fungi Microsporidium Contractile vacuole Pseudopod Bioluminescent Colony Plasmodium Chitin Hypha Septum Spore Sporangium Rhizoid Lichen Mycorrhiza Label

More information

Biology. Slide 1of 34. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1of 34. End Show. Copyright Pearson Prentice Hall Biology 1of 34 20 5 Funguslike Protists 2of 34 20 5 Funguslike Protists Similarities and differences between funguslike protists and fungi Like fungi, g, funguslike protists are heterotrophs that absorb

More information

Finishing Chapters 15 and 16. For Next Week

Finishing Chapters 15 and 16. For Next Week Finishing Chapters 15 and 16 For Next Week Lab Invertebrate questions due at 8:40 AM Bring dissecting kit and gloves to lab Lecture Assignment: Collect 5 branches from trees, put in plastic bags For each,

More information

ZOOLOGY 101 SECTION 2 LECTURE NOTES

ZOOLOGY 101 SECTION 2 LECTURE NOTES ZOOLOGY 101 SECTION 2 LECTURE NOTES I. Protists - Commonly called protozoans - All single celled eukaryotes Three most important phyla: 1. Sarcomastigophora: includes the amebas and the flagellates 2.

More information

Protist any organism that is NOT a plant, animal, fungi, prokaryote. grouping for organisms that don't fit into other kingdoms

Protist any organism that is NOT a plant, animal, fungi, prokaryote. grouping for organisms that don't fit into other kingdoms Chapter 20 Protists 20 1 What are protists? https://www.youtube.com/watch?v=ln69k7lytsu (20 Minutes) Protist any organism that is NOT a plant, animal, fungi, prokaryote include more than 200,000 species

More information

Chapter 12B: EUKARYOTES The Protists & Helminths. 1. Protists. Algae Protozoa. 2. Helminths. 1. Protists. A. Algae. B. Protozoa. A.

Chapter 12B: EUKARYOTES The Protists & Helminths. 1. Protists. Algae Protozoa. 2. Helminths. 1. Protists. A. Algae. B. Protozoa. A. Chapter 12B: EUKARYOTES The Protists & Helminths 1. Protists Algae Protozoa 2. Helminths 1. Protists A. Algae B. Protozoa A. Algae 1 Overview of the Algae Characteristics of algae: unicellular or multicellular

More information

Bio 134. Ch. 19 Protists

Bio 134. Ch. 19 Protists Bio 134 Ch. 19 Protists Main Idea! Protists form a diverse group of organisms that are subdivided based on their method of obtaining nutrients What do all protists have in common?! They are all eukaryotes

More information

Unit 10: The simplest living beings

Unit 10: The simplest living beings Unit 10: The simplest living beings 1. Fungi 2. Protoctists 2.1. Protozoa 2.2. Algae 3. Bacteria 4. Viruses Think and answer? a. What type of organism can you see in the photograph? b. What type of cells

More information

Prokaryotes 1. General Characteristics and structures The prokaryotic Cells contain a single circular chromosome, ribosomes (70S), and a cell wall

Prokaryotes 1. General Characteristics and structures The prokaryotic Cells contain a single circular chromosome, ribosomes (70S), and a cell wall Prokaryotes 1. General Characteristics and structures The prokaryotic Cells contain a single circular chromosome, ribosomes (70S), and a cell wall made up of peptidoglycan. They have no membrane bound

More information

Practice Test for Exam 1

Practice Test for Exam 1 Practice Test for Exam 1 1. An explanation for natural phenomena that is well supported by many reliable observations describes which of the following? a. Fact b. Hypothesis c. Law d. Scientific theory

More information