Unit 9: Diversity of Life Guided Reading Questions (90 pts total)

Size: px
Start display at page:

Download "Unit 9: Diversity of Life Guided Reading Questions (90 pts total)"

Transcription

1 AP Biology Biology, Campbell and Reece, 10th Edition Adapted from chapter reading guides originally created by Lynn Miriello Name: Chapter 27 Bacteria and Archaea Unit 9: Diversity of Life Guided Reading Questions (90 pts total) Concept 27.1 Structural and functional adaptations contribute to prokaryotic success. 1. What are the three most common shapes of prokaryotes? (Figure 27.2) 2. How does a cell wall help a prokaryote survive? (list at least three ways) 3. Define the following terms: a. peptidoglycan b. Gram stain c. Gram-positive d. Gram-negative e. capsule f. endospore - g. fimbria h. pilus i. flagellum - Page 1 of 24

2 4. Describe the process of the creation of an endospore and why this helps the prokaryote. 5. Explain the movement of prokaryotes. (Be sure to include the term taxis. ) 6. Where do prokaryotes store their chromosome? 7. What is the purpose of having a plasmid and why is this essential? 8. Identify and explain two adaptations that enable prokaryotes to survive in environments too harsh for other organisms. Concept 27.2 Rapid reproduction, mutation, and genetic recombination promote genetic diversity in prokaryotes. 9. Although mutation is the major source of genetic variation in prokaryotes, listed below are the other three ways variation is introduced. Briefly Explain each one. Source of Variation Summary Explanation transformation - transduction - conjugation - Page 2 of 24

3 10. Compare and contrast transduction and transformation (See Concept 16.1). 11. What occurs in bacterial conjugation? Concept 27.3 Diverse nutritional and metabolic adaptations have evolved in prokaryotes. 12. Contrast the different modes of nutrition in a prokaryote. Be sure to include energy sources, carbon sources, and an example of the organism that uses this mode. a. photoautotroph - Energy source Carbon source Example b. chemoautotroph - c. photoheterotroph - d. chemoheterotroph Contrast the following three metabolic relationships to oxygen. a. obligate aerobes - b. obligate anaerobes - c. facultative anaerobes How does nitrogen fixation help prokaryotes become mostly self-sufficient? 15. Describe an example of metabolic cooperation involving a biofilm. Page 3 of 24

4 Concept 27.4 Prokaryotes have radiated into a diverse set of lineages. 16. Contrast the domains bacteria and archaea. 17. Define the following terms: a. extremophiles b. extreme halophiles c. extreme thermophiles d. methanogens Concept 27.5 Prokaryotes play crucial roles in the biosphere. 18. Define each of these terms and give a specific example: a. decomposer - b. symbiosis c. host d. symbiont e. mutualism f. commensalism g. parasitism h. parasite i. pathogen - Page 4 of 24

5 Concept 27.6 Prokaryotes have both beneficial and harmful impacts on humans. 19. Explain the process of bioremediation and how it helps nature by using prokaryotes. AP Biology Exam Checkpoint: 20. Which of the following do bacteria use to attach to surfaces? A. pili B. flagella C. cell walls D. ribosomes Chapter 28 Protists Concept 28.1 Most eukaryotes are single-celled organisms. 1. Protists vary in structure and function more than any other group of organisms. However, there are some common traits shared by all protists. List two of these common traits below. 2. Study Figure What are the four supergroups of eukaryotes? 3. Endosymbiosis was a key process in eukaryotic evolution. Many protist lineages are actually the result of secondary endosymbiosis. Distinguish between primary and secondary endosymbiosis and give an example of each. Definition Example Primary endosymbiosis: Secondary endosymbiosis: Page 5 of 24

6 4. Label the figure below (Figure 28.3) to show the key steps in several secondary endosymbiotic events. Concept 28.2 Excavates include protists with modified mitochondria and protists with unique flagella. 5. List the basic characteristics of the following groups. a. diplomonads b. parabasalids c. euglenozoans - 6. What human disease is associated with the kinetoplastids? 7. Some euglenids are mixotrophs. What is a mixotroph? Page 6 of 24

7 Concept 28.3 The SAR clade is a highly diverse group of protists defined by DNA similarities. 8. What are the defining characteristics of the following groups? a. stramenopiles - b. diatoms c. golden algae d. brown algae 9. What does the term alternation of generations specifically refer to? (Figure 28.13) 10. What is the main morphological feature shared by the organisms included in the alveolates? 11. What are the defining characteristics of the following groups? a. dinoflagellates b. apicomplexans c. ciliates 12. What are the defining characteristics of the following groups? a. rhizarians - b. radiolarioans - c. foraminiferans d. cercozoans Page 7 of 24

8 Concept 28.4 Red algae and green algae are the closest relatives of land plants. 13. What are some of the general characteristics of red algae? 14. What are the two main divisions of green algae? Concept 28.5 Unikonts include protists that are closely related to fungi and animals. 15. What is the main morphological feature shared by the organisms included in the amoebozoans? 16. What are the basic characteristics of the following groups? a. slime molds b. tubulinids c. entamoebas 17. As explained in the introduction to this chapter, the former kingdom Protista is not a monophyletic group. Explain how groups like nucleariids and choanoflagellates illustrate why scientists have abandoned the kingdom Protista. Concept 28.6 Protists play key roles in ecological communities. 18. Justify the claim that photosynthetic protists ( algae ) are among the biosphere s most important organisms. Page 8 of 24

9 FEEDIN 19. Briefly describe three symbiotic relationships that include protists Paramecium, like other freshwater protists, constantly takes in water by osmosis from the hypotonic environment. Bladderlike contractile vacuoles accumulate excess water from radial canals and periodically expel it through the plasma membrane. AP Biology Exam Checkpoint: 20. The paramecium pictured here is an example of a typical A. ciliate. B. diatom. C. dinoflagellate. D. apicomplexan. 50 µm Thousands of cilia cover th surface of Paramecium Micro M Chapter 29 Plant Diversity I: How Plants Colonized Land 1. List the three traits that land plants share with charophytes. Then, list the five derived traits that appear in nearly all land plants but are absent in the charophytes (Figure 29.3) Compatible mates Two cells of compa mating strains align si side and partially fuse Label the diagram to explain plant evolution in broad terms and then answer the question (Figure 29.2). Question: What resource did plants find a way to conserve as they moved onto land? Diplo micro Page 9 of 24 Two rounds of The origina

10 3. What general characteristics could you infer about plants that lack vascular tissue? What general characteristics could you infer about plants that have a vascular system? Non-vascular: Vascular: 4. What is the alternative dispersal mechanism other than a seed? 5. As you read about plant life cycles consider these questions: Is the gametophyte dependent on the sporophyte? Is the sporophyte dependent on the gametophyte? Does the organism spend a greater part of the life cycle as haploid or diploid? After you have done this, label the generic diagram to explain Alternation of Generations in plants. Page 10 of 24

11 6. Define the following terms: a. xylem b. tracheids - c. lignin - d. phloem - e. roots - f. leaves - AP Biology Exam Checkpoint: 7. Three of the following are evidence that charophytes are the closest algal relatives of plants. Which one is NOT? A. similar sperm structure B. the presence of chloroplasts C. genetic similarities in chloroplasts D. similarities in cell wall formation during cell division Chapter 30 - Plant Diversity II: The Evolution of Seed Plants 1. Define the following terms: a. seed b. integument - c. ovule d. pollen grain e. pollination 2. What are the evolutionary advantages to seed formation? Page 11 of 24

12 3. Define the following terms: a. flower b. sepal c. petal d. stamen e. filament f. anther g. carpel h. stigma i. style j. ovary k. fruit l. embryo sac m. cross-pollination n. micropyle o. double fertilization p. cotyledon q. endosperm r. monocot - s. dicot t. eudicot Page 12 of 24

13 4. Define coevolution. How does the development of angiosperms and animals in the same time frame meet the definition of coevolution? AP Biology Exam Checkpoint: 5. Besides the plant tissue that humans ingest, which angiosperm tissue is most directly important for human survival? A. bark B. cones C. xylem D. phloem Chapter 31 - Fungi Concept 31.1 Fungi are heterotrophs that feed by absorption. 1. How do fungi acquire their nutrients? How does surface area connect with this concept? 2. Define the following terms concerning the body structure of fungi: a. hyphae b. chitin c. septum d. coenocytic fungi e. mycelium f. haustoria g. mycorrhizae h. ectomycorrhizal fungi i. endomycorrhizal fungi - Page 13 of 24

14 Concept 31.2 Fungi produce spores through sexual or asexual life cycles. 3. Define these terms associated with sexual reproduction in fungi: a. spore b. pheromone c. plasmogamy d. heterokaryon e. dikaryotic f. karyogamy g. mold h. deuteromycete - 4. Use different colors to complete the diagram of the generalized life cycle of a fungus (See Figure 31.5). Be sure to utilize the key in the upper left corner. Page 14 of 24

15 Concept 31.3 The ancestor of fungi was an aquatic, single-celled, flagellated protist. 5. Label the diagram concerning the phylogeny of fungi and their closest relatives (Figure 31.8). Concept 31.4 Fungi have radiated into a diverse set of lineages. 6. What about chytrids is unique among fungi? 7. What are the general characteristics of zygomycetes? How is a zygosporangium unlike a typical zygote? 8. What type of endomycorrihzae do glomeromycetes have and what is special about this fact? 9. What are the general characteristics of ascomycetes? What are ascomycetes asexual spores called? Page 15 of 24

16 10. What are the general characteristics of basidiomycetes? Concept 31.5 Fungi play key roles in nutrient cycling, ecological interactions, and human welfare. 11. What are the three broad categories of symbiotic relationships between fungi and other organisms? List and describe them below What are three practical human uses for fungi? AP Biology Exam Checkpoint: 13. Karyogamy produces a A. spore. B. mycelium. C. diploid zygote. D. haploid zygote. Page 16 of 24

17 Chapter 32 An Overview of Animal Diversity Concept 32.1 Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers. 1. Define the following terms: a. tissue b. cleavage c. blastula d. gastrulation e. gastrula f. larva g. metamorphosis 2. Label the diagram below of early embryonic development (See Figure 32.2). Concept 32.2 The history of animals spans more than half a billion years. 3. What is believed to be the common ancestor of living animals? Page 17 of 24

18 4. Briefly describe two hypotheses for the cause of the Cambrian Explosion Concept 32.3 Animals can be characterized by body plans. 5. Define the following terms with regard to animal body plans. a. body plan b. radial symmetry c. bilateral symmetry d. dorsal e. ventral f. anterior g. posterior h. germ layers i. ectoderm j. endoderm k. diploblastic l. mesoderm m. triploblastic n. body cavity o. coelom p. coelomate q. pseudocoelomate r. acoelomate Page 18 of 24

19 6. Color and label the diagram below (Figure 32.9). 7. Color and label the diagram below to compare and contrast the development of protostomes and deuterostomes (Figure 32.10). 8. What is the difference between determinate cleavage, radial cleavage and indeterminate cleavage? Concept 32.4 Views of animal phylogeny continue to be shaped by new molecular and morphological data. 9. What are the 5 points of agreement on animal phylogeny? Page 19 of 24

20 AP Biology Exam Checkpoint: 10. Study the phylogeny shown in Figure Which phylum is the sister group of Bilateria in this tree? A. Porifera B. Cnidaria C. Metazoa D. Eumetazoa Chapter 33 An Introduction to Invertebrates 1. Using Figure 33.3 and the information in the text, list the distinguishing characteristics and an example of each major invertebrate phylum. a. Porifera Phylum Distinguishing Characteristics Example b. Cnidaria c. Acoela d. Placozoa e. Ctenophora 2. Lophotrochozoa f. Platyhelminthes g. Ectoprocta h. Rotifera i. Brachiopoda j. Acanthocephela k. Nemertea Page 20 of 24

21 Phylum Distinguishing Characteristics Example l. Cycliophora m. Annelida n. Mollusca 3. Ecdysozoa o. Loricifera p. Priapula q. Onychophora r. Nematoda s. Tardigrada t. Arthropoda 4. Deuterostomia u. Hemichordata v. Chordata w. Echinodermata AP Biology Exam Checkpoint: 5. Which of the following combinations of phylum and description is incorrect? A. Nematoda-roundworms, pseudocoelomate B. Porifera-gastrovascular cavity, coelom present C. Cnidaria-radial symmetry, polyp and medusa body forms D. Platyhelminthes-flatworms, gastrovascular cavity, acoelomate Page 21 of 24

22 Chapter 34 The Origin and Evolution of Vertebrates 1. List and briefly describe the four derived characters that all chordates have at some point during their life Describe an example of an invertebrate chordate. 3. What features characterize the subphylum Vertebrata? 4. In the evolution of vertebrates, identify the significance of having jaws. 5. Distinguish between the terms oviparous, ovoviviparous, and viviparous. Page 22 of 24

23 6. Chordates 7. Vertebrates 8. Gnathostomes 9. Tetrapods Outline the key characteristics that distinguish the major branches of the Phylum Chordata identified in the table below. Include examples of organisms in each class. Name of Clade Characteristics Examples Cephalochordata Urochordata Myxini Petromyzontida Chondrichthyes Actinopterygii Actinistia Dipnoi b c d Amphibia Reptilia Mammalia Page 23 of 24

24 AP Biology Exam Checkpoint: 10. According to this phylogenetic tree, the animals most closely related to mammals are. A. reptiles B. amphibians C. ray-finned fishes D. sharks, rays, and chimeras Page 24 of 24

Unit 8: Prokaryotes, Protists, & Fungi Guided Reading Questions (60 pts total)

Unit 8: Prokaryotes, Protists, & Fungi Guided Reading Questions (60 pts total) AP Biology Biology, Campbell and Reece, 10th Edition Adapted from chapter reading guides originally created by Lynn Miriello Name: Chapter 27 Bacteria and Archaea Unit 8: Prokaryotes, Protists, & Fungi

More information

A Brief Survey of Life s Diversity 1

A Brief Survey of Life s Diversity 1 Name A Brief Survey of Life s Diversity 1 AP WINTER BREAK ASSIGNMENT (CH 25-34). Complete the questions using the chapters of your textbook Campbell s Biology (8 th edition). CHAPTER 25: The History of

More information

Due Friday, January 11, 2008

Due Friday, January 11, 2008 Due Friday, January 11, 2008 Name AP Biology Winter Assignment Parade Through the Kingdoms A Brief Survey of Life s Diversity Complete the questions using Chapters 26 34 of your textbook: Biology (7th

More information

BIOLOGY. An Overview of Animal Diversity CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. An Overview of Animal Diversity CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 32 An Overview of Animal Diversity Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Concept 32.1: Animals are

More information

AP: CHAPTER 18: the Genetics of VIRUSES p What makes microbes good models to study molecular mechanisms? 4. What is a bacteriophage?

AP: CHAPTER 18: the Genetics of VIRUSES p What makes microbes good models to study molecular mechanisms? 4. What is a bacteriophage? AP: CHAPTER 18: the Genetics of VIRUSES p328-340 1. What makes microbes good models to study molecular mechanisms? Name Per 2. How were viruses first discovered? 3. What are the two basic components of

More information

Animal Diversity. Features shared by all animals. Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers

Animal Diversity. Features shared by all animals. Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers Animal Diversity Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers Nutritional mode Ingest food and use enzymes in the body to digest Cell structure and

More information

Unit 10: Animals Guided Reading Questions (80 pts total)

Unit 10: Animals Guided Reading Questions (80 pts total) Name: AP Biology Biology, Campbell and Reece, 7th Edition Adapted from chapter reading guides originally created by Lynn Miriello Chapter 32 An Introduction to Animal Diversity 1. Define the following

More information

CHAPTERS 16 & 17: PROKARYOTES, FUNGI, AND PLANTS Honors Biology 2012 PROKARYOTES PROKARYOTES. Fig Lived alone on Earth for over 1 billion years

CHAPTERS 16 & 17: PROKARYOTES, FUNGI, AND PLANTS Honors Biology 2012 PROKARYOTES PROKARYOTES. Fig Lived alone on Earth for over 1 billion years CHAPTERS 6 & 7: PROKARYOTES, FUNGI, AND PLANTS Honors Biology 0 PROKARYOTES Lived alone on Earth for over billion years Most numerous and widespread organisms (total biomass of prokaryotes is ten times

More information

An Introduction to Animal Diversity

An Introduction to Animal Diversity Chapter 32 An Introduction to Animal Diversity PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

An Introduction to Animal Diversity

An Introduction to Animal Diversity Chapter 32 An Introduction to Animal Diversity PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero Overview: Welcome to Your Kingdom The animal kingdom

More information

1. General Features of Animals

1. General Features of Animals Chapter 32: An Overview of Animal Diversity 1. General Features of Animals 2. The History of Animals 1. General Features of Animals General Characteristics of Animals animals are multicellular eukaryotic

More information

An Introduction to Animal Diversity

An Introduction to Animal Diversity Chapter 32 An Introduction to Animal Diversity PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

Chapter 32 Introduction to Animal Diversity. Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Chapter 32 Introduction to Animal Diversity. Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Chapter 32 Introduction to Animal Diversity Welcome to Your Kingdom The animal kingdom extends far beyond humans and other animals we may encounter 1.3 million living species of animals have been identified

More information

Unit 11: Plants Guided Reading Questions (75 pts total)

Unit 11: Plants Guided Reading Questions (75 pts total) Name: AP Biology Biology, Campbell and Reece, 7th Edition Adapted from chapter reading guides originally created by Lynn Miriello Unit 11: Plants Guided Reading Questions (75 pts total) Chapter 29 Plant

More information

Chapter 32 Introduction to Animal Diversity

Chapter 32 Introduction to Animal Diversity Chapter 32 Introduction to Animal Diversity Review: Biology 101 There are 3 domains: They are Archaea Bacteria Protista! Eukarya Endosymbiosis (proposed by Lynn Margulis) is a relationship between two

More information

8/23/2014. Introduction to Animal Diversity

8/23/2014. Introduction to Animal Diversity Introduction to Animal Diversity Chapter 32 Objectives List the characteristics that combine to define animals Summarize key events of the Paleozoic, Mesozoic, and Cenozoic eras Distinguish between the

More information

Protists 9/11/2017. Endosymbiosis

Protists 9/11/2017. Endosymbiosis Protists Chapter 28 Most eukaryotes are single-celled organisms Protists are eukaryotes Eukaryotic cells have organelles and are more complex than prokaryotic cells Most protists are unicellular, but there

More information

Unit 10: Animals Guided Reading Questions (100 pts total)

Unit 10: Animals Guided Reading Questions (100 pts total) Name: AP Biology Biology, Campbell and Reece, 7th Edition Adapted from chapter reading guides originally created by Lynn Miriello Chapter 32 An Introduction to Animal Diversity 1. Define the following

More information

Symbiosis. Symbiosis is a close association between of two or more organisms. Endosymbiosis living within another

Symbiosis. Symbiosis is a close association between of two or more organisms. Endosymbiosis living within another PROTISTS Protists constitute several kingdoms within the domain Eukarya Protists obtain their nutrition in a variety of ways Algae are autotrophic protists Protozoans are heterotrophic protists Fungus

More information

Bacteria, Protists, Fungi, Plants, Animals: Phylogeny and Diversity

Bacteria, Protists, Fungi, Plants, Animals: Phylogeny and Diversity Bacteria, Protists, Fungi, Plants, Animals: Phylogeny and Diversity 1/8/2006 Phylogeny 2 1/8/2006 Phylogeny 3 Proteobacteria Chlamydias Spirochetes Cyanobacteria Gram positive bacteria Korarchaeotes Euryarchaeotes,

More information

BIOLOGY. Chapter 27 Introduction to Animal Diversity

BIOLOGY. Chapter 27 Introduction to Animal Diversity BIOLOGY Chapter 27 Introduction to Animal Diversity Fig. 32-1 An Overview of Animal Diversity Multicellular Nutrition mode: Heterotrophic (ingestion) Cell structure & specialization Tissues develop from

More information

Outline. v Definition and major characteristics of animals v Dividing animals into groups based on: v Animal Phylogeny

Outline. v Definition and major characteristics of animals v Dividing animals into groups based on: v Animal Phylogeny BIOSC 041 Overview of Animal Diversity: Animal Body Plans Reference: Chapter 32 Outline v Definition and major characteristics of animals v Dividing animals into groups based on: Body symmetry Tissues

More information

Number of Species. Taxonomy and Animal Phylogeny. Approx. 1.5 million species known. Taxonomy = Systematics = Phylogeny. Miller and Harley Chap.

Number of Species. Taxonomy and Animal Phylogeny. Approx. 1.5 million species known. Taxonomy = Systematics = Phylogeny. Miller and Harley Chap. Taxonomy and Animal Phylogeny Miller and Harley Chap. 7 Number of Species Approx. 1.5 million species known Taxonomy = Systematics = Phylogeny 1 Taxonomic Hierarchy Carolus Linnaeus (1707-1778) Kingdom

More information

v Scientists have identified 1.3 million living species of animals v The definition of an animal

v Scientists have identified 1.3 million living species of animals v The definition of an animal Biosc 41 9/10 Announcements BIOSC 041 v Genetics review: group problem sets Groups of 3-4 Correct answer presented to class = 2 pts extra credit Incorrect attempt = 1 pt extra credit v Lecture: Animal

More information

Learning Objectives. The Animal Kingdom: An Introduction to Animal Diversity. Sexual Reproduction

Learning Objectives. The Animal Kingdom: An Introduction to Animal Diversity. Sexual Reproduction Learning Objectives The Animal Kingdom: An Introduction to Animal Diversity Chapter 29 What characters are common to most animals? Advantages and disadvantages of different environments Searching for relationships

More information

Ms.Sastry, AP Biology Unit 4/Chp 26 to 34/Diversity 1 Chapter in class follow along lecture notes

Ms.Sastry, AP Biology Unit 4/Chp 26 to 34/Diversity 1 Chapter in class follow along lecture notes Ms.Sastry, AP Biology Unit 4/Chp 26 to 34/Diversity 1 Chapter 26 34 in class follow along lecture notes Chp 26 Origin of life: 1) When did earth form? 2) What is the order of evolution of life forms on

More information

Biosc 41 9/10 Announcements

Biosc 41 9/10 Announcements Biosc 41 9/10 Announcements v Genetics review: group problem sets Groups of 3-4 Correct answer presented to class = 2 pts extra credit Incorrect attempt = 1 pt extra credit v Lecture: Animal Body Plans

More information

The Prokaryotic World

The Prokaryotic World The Prokaryotic World A. An overview of prokaryotic life There is no doubt that prokaryotes are everywhere. By everywhere, I mean living in every geographic region, in extremes of environmental conditions,

More information

Animal Diversity. Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers 9/20/2017

Animal Diversity. Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers 9/20/2017 Animal Diversity Chapter 32 Which of these organisms are animals? Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers Animals share the same: Nutritional

More information

BIOLOGY. An Introduction to Animal Diversity CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. An Introduction to Animal Diversity CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 32 An Introduction to Animal Diversity Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick A Kingdom of Consumers

More information

Unit 9: Animals & Plants Guided Reading Questions (100 pts total)

Unit 9: Animals & Plants Guided Reading Questions (100 pts total) Name: AP Biology Biology, Campbell and Reece, 7th Edition Adapted from chapter reading guides originally created by Lynn Miriello Chapter 32 An Introduction to Animal Diversity 1. Define the following

More information

Chapter 29 Plant Diversity I: How Plants Colonized Land

Chapter 29 Plant Diversity I: How Plants Colonized Land Chapter 29: Plant Diversity I: How Plants Colonized Land Chapter 29 Plant Diversity I: How Plants Colonized Land Name Period Concept 29.1 Land plants evolved from green algae 1. Plants colonized land about

More information

Unit 7: Plant Evolution, Structure and Function

Unit 7: Plant Evolution, Structure and Function Time: 7 Days (some time spent working over breaks on this topic) and then an exam 16% of the AP Exam is on this material. Topics Covered: Reproduction, growth, and development Structural, physiological,

More information

BIOLOGY - CLUTCH CH.29 - PROTISTS.

BIOLOGY - CLUTCH CH.29 - PROTISTS. !! www.clutchprep.com Eukrayotic cells are large, have a nucleus, contain membrane-bound organelles, and use a cytoskeleton The nucleus is the synapomorphy that unifies eukaryotes Endosymbiotic theory

More information

Chapter 16. The Origin and Evolution of Microbial Life: Prokaryotes and Protists. Lecture by Joan Sharp

Chapter 16. The Origin and Evolution of Microbial Life: Prokaryotes and Protists. Lecture by Joan Sharp Chapter 16 The Origin and Evolution of Microbial Life: Prokaryotes and Protists PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Lecture

More information

UNIVERSITY OF BOLTON SCHOOL OF SPORT AND BIOMEDICAL SCIENCES BSC(HONS) BIOLOGY SEMESTER ONE EXAMINATION 2015/2016 DIVERSITY OF LIFE MODULE NO: BIO4003

UNIVERSITY OF BOLTON SCHOOL OF SPORT AND BIOMEDICAL SCIENCES BSC(HONS) BIOLOGY SEMESTER ONE EXAMINATION 2015/2016 DIVERSITY OF LIFE MODULE NO: BIO4003 [LH4] UNIVERSITY OF BOLTON SCHOOL OF SPORT AND BIOMEDICAL SCIENCES BSC(HONS) BIOLOGY SEMESTER ONE EXAMINATION 2015/2016 DIVERSITY OF LIFE MODULE NO: BIO4003 Date: Friday 15 January 2016 Time: 10.00 am

More information

Chapter 32, 10 th edition Q1.Which characteristic below is shared by plants, fungi, and animals? ( Concept 32.1)

Chapter 32, 10 th edition Q1.Which characteristic below is shared by plants, fungi, and animals? ( Concept 32.1) Chapter 32, 10 th edition Q1.Which characteristic below is shared by plants, fungi, and animals? ( Concept 32.1) A) They are multicellular eukaryotes. B) They are heterotrophs. C) Their cells are supported

More information

9/8/2017. Bacteria and Archaea. Three domain system: The present tree of life. Structural and functional adaptations contribute to prokaryotic success

9/8/2017. Bacteria and Archaea. Three domain system: The present tree of life. Structural and functional adaptations contribute to prokaryotic success 5 m 2 m 9/8/2017 Three domain system: The present tree of life Bacteria and Archaea Chapter 27 Structural and functional adaptations contribute to prokaryotic success Unicellular Small Variety of shapes

More information

1. General Features of Protists

1. General Features of Protists Chapter 28: Protists 1. General Features of Protists 2. Survey of the Protista A. The Excavata B. The SAR Clade C. The Archaeplastida D. The Unikonta 1. General Features of Protists All Protists are Eukaryotes

More information

Protists The Simplest Eukaryotes. Chapter 22 Part 1

Protists The Simplest Eukaryotes. Chapter 22 Part 1 Protists The Simplest Eukaryotes Chapter 22 Part 1 Impacts, Issues The Malaria Menace Plasmodium, a single-celled protist, causes malaria but also manipulates its mosquito and human hosts to maximize its

More information

Biology 211 (1) Exam 2 Worksheet!

Biology 211 (1) Exam 2 Worksheet! Biology 211 (1) Exam 2 Worksheet Chapter 33 Introduction to Animal Diversity Kingdom Animalia: 1. Approximately how many different animal species are alive on Earth currently. How many those species have

More information

Protists. Protists. Protist Feeding Strategies. Protist Body Plans. Endosymbiosis. Protist Reproduction 3/3/2011. Eukaryotes Not a monophyletic group

Protists. Protists. Protist Feeding Strategies. Protist Body Plans. Endosymbiosis. Protist Reproduction 3/3/2011. Eukaryotes Not a monophyletic group Protists Protists Eukaryotes Not a monophyletic group Paraphyletic March 3 rd, 2011 Still use the term protist All eukaryotes except Plants, Fungi, Animals Most unicellular Some colonial Some multicelled

More information

Biology 11. The Kingdom Animalia

Biology 11. The Kingdom Animalia Biology 11 The Kingdom Animalia Objectives By the end of the lesson you should be able to: Describe the 5 ways we classify animals Symmetry Germ layers Body plan Segmentation Animal Evolution Hank Video

More information

SG 9.2 notes Ideas about targets and terms: 9.2 In the past, all living things were classified in either the kingdom of animals or plants

SG 9.2 notes Ideas about targets and terms: 9.2 In the past, all living things were classified in either the kingdom of animals or plants Ideas about targets and terms: 9.2 In the past, all living things were classified in either the kingdom of animals or plants Euglena are singled celled organisms in pond water They are green, so contain,

More information

BIOLOGY 144 MODULE OUTLINES AND STUDY OBJECTIVES

BIOLOGY 144 MODULE OUTLINES AND STUDY OBJECTIVES BIOLOGY 144 MODULE OUTLINES AND STUDY OBJECTIVES (2017) The module is based on the prescribed text (Biology:The Dynamic Science, 3 rd edition, Russell, Hertz, McMillan). The numbers in brackets represent

More information

Importance of Protists

Importance of Protists Protists Protists The kingdom Protista is a very diverse kingdom. Eukaryotes that are not classified as fungi, plants, or animals are classified as protists. However, even though they are officially in

More information

Protists & Fungi. Words to Know: Chapters 19 & 20. Label the paramecium diagram above. (pg. 548)

Protists & Fungi. Words to Know: Chapters 19 & 20. Label the paramecium diagram above. (pg. 548) Words to Know: Protozoan Chapters 19 & 20 Protists & Fungi Microsporidium Contractile vacuole Pseudopod Bioluminescent Colony Plasmodium Chitin Hypha Septum Spore Sporangium Rhizoid Lichen Mycorrhiza Label

More information

Lab tomorrow.

Lab tomorrow. Lab tomorrow https://pages.stolaf.edu/angell/readings/ Unit 1 A. The early life and the Diversification of Prokaryotes (Ch24) B. Origin and Diversification of Eukaryotes (Ch25) C. Broad Patterns of Evolution

More information

Introduction to Animal Diversity Lecture 7 Winter 2014

Introduction to Animal Diversity Lecture 7 Winter 2014 Introduction to Animal Diversity Lecture 7 Winter 2014 Evolution of Animals 1 Prokaryotes Eukaryotes Prokaryotes No nucleus Nucleoid region Simple No membrane bound organelles Smaller (1-5 nm) Evolutionarily

More information

3. Choanoflagellates resemble what? What is the significance of this resemblance?

3. Choanoflagellates resemble what? What is the significance of this resemblance? I. Animal Diversity 1. What are some basic characteristics of the animal kingdom? What characteristics make them different from plants? - Eukaryotic, heterotrophic (we don t make our own food), we store

More information

Number of Species. Taxonomy and Animal Phylogeny. Approx. 1.5 million species known. Taxonomy = Systematics = Phylogeny. Miller and Harley Chap.

Number of Species. Taxonomy and Animal Phylogeny. Approx. 1.5 million species known. Taxonomy = Systematics = Phylogeny. Miller and Harley Chap. Taxonomy and Animal Phylogeny Miller and Harley Chap. 7 Number of Species Approx. 1.5 million species known Taxonomy = Systematics = Phylogeny 1 Taxonomic Hierarchy Carolus Linnaeus (1707-1778) Kingdom

More information

Animals. What are they? Where did they come from? What are their evolutionary novelties? What characterizes their diversification?

Animals. What are they? Where did they come from? What are their evolutionary novelties? What characterizes their diversification? Animals What are they? Where did they come from? What are their evolutionary novelties? What characterizes their diversification? What synapomorphies unite Animals Multicellular Heterotrophs (Metazoans)?

More information

Biology 211 (1) Exam 3 Review! Chapter 31!

Biology 211 (1) Exam 3 Review! Chapter 31! Biology 211 (1) Exam 3 Review Chapter 31 Origin of Land Plants: 1. Fill in the correct amount of years ago the following events occurred. years ago there was a thin coating of cyanobacteri b. years ago

More information

Kingdom: Plantae. Domain Archaea. Domain Eukarya. Domain Bacteria. Common ancestor

Kingdom: Plantae. Domain Archaea. Domain Eukarya. Domain Bacteria. Common ancestor Kingdom: Plantae Domain Eukarya Domain Bacteria Domain Archaea Domain Eukarya Common ancestor The First Plants For more than 3 billion years, Earth s terrestrial surface was lifeless life evolved in the

More information

An Overview of Animal Diversity

An Overview of Animal Diversity Figure 32.1 CAMPBELL BIOLOGY Figure 32.1a A Kingdom of Consumers TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson! Most animals are mobile and use traits such as strength, speed, toxins, or camouflage

More information

Pre-AP BIOLOGY FINAL EXAM REVIEW SPRING

Pre-AP BIOLOGY FINAL EXAM REVIEW SPRING Terms to define: Classification Phylogeny Cladogram binomial nomenclature Taxonomy Natural Selection vestigial structures homologous structures analogous structures Genetic Drift Allele Frequency Homozygous

More information

The Evolution of Animal Diversity. Dr. Stephen J. Salek Biology 130 Fayetteville State University

The Evolution of Animal Diversity. Dr. Stephen J. Salek Biology 130 Fayetteville State University The Evolution of Animal Diversity Dr. Stephen J. Salek Biology 130 Fayetteville State University Create your own animal? Start with a basic plant. Make the plant into a simple animal such as a worm. Consider:

More information

Bell Work. identify the phylum that each character belongs to. Tuesday, February 19, 13

Bell Work. identify the phylum that each character belongs to. Tuesday, February 19, 13 Bell Work identify the phylum that each character belongs to Bell Work identify the phylum that each character belongs to Porifera Bell Work identify the phylum that each character belongs to Porifera

More information

Embryonic Development. Chapters 32-34: Animal Diversity AP Biology Fig Zygote Cleavage Blastocoel. Cleavage.

Embryonic Development. Chapters 32-34: Animal Diversity AP Biology Fig Zygote Cleavage Blastocoel. Cleavage. Chapters 32-34: Animal Diversity AP Biology 2012 1 Animal Characteristics Heterotrophs Multicellular Eukaryotes Cells lack cell walls Bodies held together by structural proteins like collagen Contain nervous

More information

INDEPENDENT STUDY: KINGDOM FUNGI

INDEPENDENT STUDY: KINGDOM FUNGI INDEPENDENT STUDY: KINGDOM FUNGI Please complete the questions using your textbook as a reference. As you will see, this is not as detailed as your usual Guided Readings and you will have to focus on some

More information

Number of Species. Taxonomic Hierarchy. Representing the Groups. Binomial Nomenclature. Taxonomy and Animal Phylogeny. Carolus Linnaeus ( )

Number of Species. Taxonomic Hierarchy. Representing the Groups. Binomial Nomenclature. Taxonomy and Animal Phylogeny. Carolus Linnaeus ( ) Taxonomy and Animal Phylogeny Number of Species Approx. 1.5 million species known Miller and Harley Chap. 7 Taxonomy = Systematics = Phylogeny Taxonomic Hierarchy Carolus Linnaeus (1707-1778) Kingdom Phylum

More information

Protists. There are NO typical protists. Protist General Characteristics - usually single cell - eukaryotic - paraphyletic group

Protists. There are NO typical protists. Protist General Characteristics - usually single cell - eukaryotic - paraphyletic group There are NO typical protists. Protist General Characteristics - usually single cell - eukaryotic - paraphyletic group Traditional Classification There are three divisions of the Kingdom Protista: Protozoa,

More information

3/22/2011. Review. Review. Mitosis: division of cells that results in two identical daughter cells with same genetic information as the first cell

3/22/2011. Review. Review. Mitosis: division of cells that results in two identical daughter cells with same genetic information as the first cell Review Review Mitosis: division of cells that results in two identical daughter cells with same genetic information as the first cell Meiosis: division of cells that results in daughter cells with one-half

More information

Finishing Chapters 15 and 16. For Next Week

Finishing Chapters 15 and 16. For Next Week Finishing Chapters 15 and 16 For Next Week Lab Invertebrate questions due at 8:40 AM Bring dissecting kit and gloves to lab Lecture Assignment: Collect 5 branches from trees, put in plastic bags For each,

More information

Have cell walls Made of

Have cell walls Made of _ are unicellular fungi _ are multicellular fungi And can only Reproduce Using Can also reproduce Can spread using Because they do not make their own food Hyphae Mycelium Fruiting Body Heterotrophs Budding

More information

Ms. SASTRY 1 Chapter in class follow along lecture notes

Ms. SASTRY 1 Chapter in class follow along lecture notes Ms. SASTRY 1 Chapter 26 34 in class follow along lecture notes Chp 26 Origin of life: 1) When did earth form? 2) What is the order of evolution of life forms on earth? 3) What were their modes of nutrition

More information

A) Parasitic B) Mutualistic C) Decomposer D) The first and second responses are both correct. E) All of the listed responses are correct.

A) Parasitic B) Mutualistic C) Decomposer D) The first and second responses are both correct. E) All of the listed responses are correct. Chapter 31, 10 th edition Q1.Fungi are organisms. ( Concept 31.1) A) mixotrophic B) chemoautotrophic C) photoheterotrophic D) photoautotrophic E) chemoheterotrophic Q2. fungi absorb nutrients from living

More information

Section 4 Professor Donald McFarlane

Section 4 Professor Donald McFarlane Characteristics Section 4 Professor Donald McFarlane Lecture 11 Animals: Origins and Bauplans Multicellular heterotroph Cells lack cell walls Most have nerves, muscles, capacity to move at some point in

More information

Copyright 2009 Pearson Education, Inc. FUNGI

Copyright 2009 Pearson Education, Inc. FUNGI Copyright 2009 Pearson Education, Inc. FUNGI FUNGI Fungi are absorptive heterotrophic eukaryotes that digest their food externally and absorb the nutrients Most fungi consist of a mass of threadlike hyphae

More information

Biological Diversity Lab #1 : Domains Eubacteria and Archaea and Protista

Biological Diversity Lab #1 : Domains Eubacteria and Archaea and Protista Biological Diversity Lab #1 : Domains Eubacteria and Archaea and Protista Refer to the AP Biology book, Helms Labs 22 and be sure to site other resources used complete this lab in your lab journal. Be

More information

Protists: Molds Lecture 3 Spring 2014

Protists: Molds Lecture 3 Spring 2014 Meet the Protists 1 Protists: Molds Lecture 3 Spring 2014 Domain Eukarya What unites them as a group? The Origin of Eukaryotic Cells Evolution of the endomembrane system Which organelles are included in

More information

Protists: Molds Lecture 3 Spring 2014

Protists: Molds Lecture 3 Spring 2014 Protists: Molds Lecture 3 Spring 2014 Meet the Protists 1 Domain Eukarya What unites them as a group? The Origin of Eukaryotic Cells 2 Evolution of the endomembrane system Which organelles are included

More information

A. Incorrect! Sponges are mostly marine animals. This is a feature of sponges.

A. Incorrect! Sponges are mostly marine animals. This is a feature of sponges. College Biology - Problem Drill 15: The Evolution of Animal Diversity Question No. 1 of 10 1. Which is not a feature of the phyla porifera- sponges? Question #01 (A) Most are marine animals. (B) They have

More information

1A Review Questions. Matching 6. Class 7. Order 8. Binomial nomenclature 9. Phylum 10. Species

1A Review Questions. Matching 6. Class 7. Order 8. Binomial nomenclature 9. Phylum 10. Species 1A Review Questions 1. What is taxonomy? a. Set of paired statements that are used to identify organisms b. Relationships between organisms c. A science involving naming and categorizing species based

More information

Resources. Visual Concepts. Chapter Presentation. Copyright by Holt, Rinehart and Winston. All rights reserved.

Resources. Visual Concepts. Chapter Presentation. Copyright by Holt, Rinehart and Winston. All rights reserved. Chapter Presentation Visual Concepts Transparencies Standardized Test Prep Introduction to Animals Table of Contents Section 2 Animal Body Systems Objectives Identify the features that animals have in

More information

Chapter 12. Eukaryotes. Characterizing and Classifying. 8/3/2014 MDufilho 1

Chapter 12. Eukaryotes. Characterizing and Classifying. 8/3/2014 MDufilho 1 Chapter 12 Characterizing and Classifying Eukaryotes 8/3/2014 MDufilho 1 General Characteristics of Eukaryotic Organisms Five major groups Protozoa Fungi Algae Water molds Slime molds Include both human

More information

Exam 2 BIO101, Fall 2010

Exam 2 BIO101, Fall 2010 Exam 2 BIO101, Fall 2010 Name: Multiple Choice Questions. Circle the one best answer for each question. (3 points each) 1. All craniates are also classified as A. chordates. B. amniotes. C. vertebrates.

More information

copyright cmassengale Kingdoms and Classification

copyright cmassengale Kingdoms and Classification 1 Kingdoms and Classification 2 Domains Broadest, most inclusive taxon Three domains Archaea and Eubacteria are unicellular prokaryotes (no nucleus or membrane-bound organelles) Eukarya are more complex

More information

Prokaryotes. Prokaryotes. Chapter 15: Prokaryotes and Protists. Major episodes in the history of life. Major episodes in the history of life

Prokaryotes. Prokaryotes. Chapter 15: Prokaryotes and Protists. Major episodes in the history of life. Major episodes in the history of life Chapter 15: Prokaryotes and Protists The book lumps these VERY DIFFERENT organsims together, simply because they are small, or microscopic Bacteria Archae Protista Major episodes in the history of life

More information

protozoans gametophyte bacilli source of energy halophiles ovule ovary 1. The two main branches of prokaryotes are archae and _bacteria_.

protozoans gametophyte bacilli source of energy halophiles ovule ovary 1. The two main branches of prokaryotes are archae and _bacteria_. Biology 122 Prof. Molly Gildea Exam 2, 11/5/08 1. Fill in the blanks with words from the word bank. (30 pts) archae spirochete endospore source of carbon sporophyte bacteria mathanogens protozoans gametophyte

More information

Origins of Eukaryotic Diversity Protists Diversity

Origins of Eukaryotic Diversity Protists Diversity Origins of Eukaryotic Diversity Protists Diversity For Lecture, Make sure you know the Water Molds (Oomycota) names and characteris6cs of the taxa at the levels indicated by the red arrows. Characteristics

More information

Intro to Prokaryotes Lecture 1 Spring 2014

Intro to Prokaryotes Lecture 1 Spring 2014 Intro to Prokaryotes Lecture 1 Spring 2014 Meet the Prokaryotes 1 Meet the Prokaryotes 2 Meet the Prokaryotes 3 Why study prokaryotes? Deep Time 4 Fig. 25.7 Fossilized stromatolite (above) and living stromatolite

More information

Kingdom Plantae. Biology : A Brief Survey of Plants. Jun 22 7:09 PM

Kingdom Plantae. Biology : A Brief Survey of Plants. Jun 22 7:09 PM Kingdom Plantae Biology 2201 6.1 6.2 : A Brief Survey of Plants The study of plants is called botany. Plants are believed to have evolved from green algae. The main plant (land) characteristics are as

More information

LEARNING OBJECTIVES FOR BY 124 EXAM II. 1. List characteristics that distinguish fungi from organisms in other kingdoms.

LEARNING OBJECTIVES FOR BY 124 EXAM II. 1. List characteristics that distinguish fungi from organisms in other kingdoms. LEARNING OBJECTIVES FOR BY 124 EXAM II CHAPTER 31 1. List characteristics that distinguish fungi from organisms in other kingdoms. 2. Explain how fungi obtain their nutrients. 3. Describe the basic body

More information

Chapter 32. Objectives. Table of Contents. Characteristics. Characteristics, continued. Section 1 The Nature of Animals

Chapter 32. Objectives. Table of Contents. Characteristics. Characteristics, continued. Section 1 The Nature of Animals Introduction to Animals Table of Contents Objectives Identify four important characteristics of animals. List two kinds of tissues found only in animals. Explain how the first animals may have evolved

More information

Bergen Community College Division of Math, Science, and Technology Department of Biology and Horticulture. Course Syllabus. BIO 101 General Biology I

Bergen Community College Division of Math, Science, and Technology Department of Biology and Horticulture. Course Syllabus. BIO 101 General Biology I Bergen Community College Division of Math, Science, and Technology Department of Biology and Horticulture Semester and year: Course Number and Section: Meeting Times and Locations: Instructor: Office Location:

More information

Plant Diversity & Evolution (Outline)

Plant Diversity & Evolution (Outline) Plant Diversity & Evolution (Outline) Review the Life cycle of Fungi Characteristics of organisms in the Kingdom Plantae. Evolution of plants: Challenges and adaptations to living on land Highlights of

More information

AP Biology. Evolution of Land Plants. Kingdom: Plants. Plant Diversity. Animal vs. Plant life cycle. Bryophytes: mosses & liverworts

AP Biology. Evolution of Land Plants. Kingdom: Plants. Plant Diversity. Animal vs. Plant life cycle. Bryophytes: mosses & liverworts Kingdom: Plants Domain Eukarya Domain Domain Domain Eubacteria Archaea Eukarya 2007-2008 Common ancestor Evolution of Land Plants 500 mya land plants evolved special adaptations for life on dry land protection

More information

Chapter 27: Bacteria and Archaea

Chapter 27: Bacteria and Archaea Name Period Overview 1. The chapter opens with amazing tales of life at the extreme edge. What are the masters of adaptation? Describe the one case you thought most dramatic. Concept 27.1 Structural and

More information

Biology 2. Lecture Material. For. Exam 1

Biology 2. Lecture Material. For. Exam 1 Biology 2 Macroevolution & Systematics 1 Biology 2 Lecture Material For Exam 1 Eukaryotes Halophiles Archaea Thermophiles Univeral Ancestor Methanogens Proteobacteria Chlamydia Bacteria Spirochetes Cyanobacteria

More information

Plants and Fungi. Bryophytes Bryophytes, most commonly mosses Sprawl as low mats over acres of land

Plants and Fungi. Bryophytes Bryophytes, most commonly mosses Sprawl as low mats over acres of land Plants and Fungi Terrestrial Adaptations of Plants Structural Adaptations A plant is a multicellular eukaryote and a photoautotroph, making organic molecules by photosynthesis In terrestrial habitats,

More information

Unit B: Diversity of Living Things

Unit B: Diversity of Living Things Unit B: Diversity of Living Things Chapter 3: Multicellular Diversity - Considerable diversity exists among multicellular organisms, as well. Specific Expectations: In the chapter you will learn how to

More information

KINGDOM ANIMALIA CHARACTERISTICS

KINGDOM ANIMALIA CHARACTERISTICS KINGDOM ANIMALIA CHARACTERISTICS EUKARYOTIC MULTICELLULAR HETEROTROPHIC (by ingestion) MOVE AT SOME POINT IN LIFE (not all - sponges are sessile) DIGEST FOOD TO GET NUTRIENTS LACK CELL WALLS CHARACTERISTICS

More information

Features of the Animal

Features of the Animal Features of the Animal Kingdom Bởi: OpenStaxCollege Even though members of the animal kingdom are incredibly diverse, animals share common features that distinguish them from organisms in other kingdoms.

More information

Amoeba hunts and kills paramecia and stentor. Eukaryotic photosynthetic cells

Amoeba hunts and kills paramecia and stentor. Eukaryotic photosynthetic cells Amoeba hunts and kills paramecia and stentor Eukaryotic photosynthetic cells 1 Eukaryotic organelles are odd in many ways Organelles: membrane bound compartments in a cell Nucleus, chloroplasts, and mitochondria

More information

Biology 1030 Winter 2009

Biology 1030 Winter 2009 Microorganisms Chapter 17 (556-560, 564-565) Chapter 31 (608-623) Chapter 28 (549-569) Microorganisms Bacteria Cyanobacteria Fungi Protists Bacteria Are Wee 1 mm = 1000000 Largest prokaryote is 100000

More information

Animal Origins and Evolution

Animal Origins and Evolution Animal Origins and Evolution Common Features of Animals multicellular heterotrophic motile Sexual reproduction, embryo Evolution of Animals All animals are multicellular and heterotrophic, which means

More information

BIOLOGY - CLUTCH CH.32 - OVERVIEW OF ANIMALS.

BIOLOGY - CLUTCH CH.32 - OVERVIEW OF ANIMALS. !! www.clutchprep.com Animals are multicellular, heterotrophic eukaryotes that feed by ingesting their food Most animals are diploid, and produce gametes produced directly by meiosis Animals lack cell

More information

2014 Pearson Education, Inc. 1

2014 Pearson Education, Inc. 1 1 4.5 bya 3.5 2.5 1.5 500 mya 1.8 bya 1.5 bya 1.3 bya 1.2 bya 750 mya 635 mya 600 mya 0.5 cm 550 mya 535 mya 1 cm 20 µm (a) A 1.8-billionyear-old fossil eukaryote (b) Tappania, a 1.5-billion-year-old fossil

More information

Eukaryotic photosynthetic cells

Eukaryotic photosynthetic cells Amoeba hunts and kills paramecia and stentor Eukaryotic photosynthetic cells Eukaryotic organelles are odd in many ways Organelles: membrane bound compartments in a cell Nucleus, chloroplasts, and mitochondria

More information