Chapter 8. Cellular Reproduction: Cells from Cells. Lectures by Chris C. Romero, updated by Edward J. Zalisko

Size: px
Start display at page:

Download "Chapter 8. Cellular Reproduction: Cells from Cells. Lectures by Chris C. Romero, updated by Edward J. Zalisko"

Transcription

1 Chapter 8 Cellular Reproduction: Cells from Cells Lectures by Chris C. Romero, updated by Edward J. Zalisko PowerPoint Lectures for Campbell Essential Biology, Fourth Edition Eric Simon, Jane Reece, and Jean Dickey Campbell Essential Biology with Physiology, Third Edition Eric Simon, Jane Reece, and Jean Dickey

2 WHAT CELL REPRODUCTION ACCOMPLISHES Reproduction: May result in the birth of new organisms More commonly involves the production of new cells

3 When a cell undergoes reproduction, or cell division, two daughter cells are produced that are genetically identical to each other and to the parent cell. Before a parent cell splits into two, it duplicates its chromosomes, the structures that contain most of the organism s DNA. During cell division, each daughter cell receives one set of chromosomes.

4 Cell division plays important roles in the lives of organisms. Cell division: Replaces damaged or lost cells Permits growth Allows for reproduction

5 Colorized TEM LM Cell Replacement FUNCTIONS OF CELL DIVISION Growth via Cell Division Human kidney cell Early human embryo Figure 8.1a

6 LM FUNCTIONS OF CELL DIVISION Asexual Reproduction Amoeba Sea stars African Violet In asexual reproduction: Single-celled organisms reproduce by simple cell division There is no fertilization of an egg by a sperm Some multicellular organisms, such as sea stars, can grow new individuals from fragmented pieces. Growing a new plant from a clipping is another example of asexual reproduction. Figure 8.1b

7 In asexual reproduction, the lone parent and its offspring have identical genes. Mitosis is the type of cell division responsible for: Asexual reproduction Growth and maintenance of multicellular organisms

8 Sexual reproduction requires fertilization of an egg by a sperm using a special type of cell division called meiosis. This occurs only in reproductive organs (testes and ovaries) Thus, sexually reproducing organisms use: Meiosis for reproduction Mitosis for growth and maintenance

9 THE CELL CYCLE AND MITOSIS In a eukaryotic cell: Most genes are located on chromosomes in the cell nucleus A few genes are found in DNA in mitochondria and chloroplasts

10 Eukaryotic Chromosomes Each eukaryotic chromosome contains one very long DNA molecule, typically bearing thousands of genes. The number of chromosomes in a eukaryotic cell depends on the species.

11 Species Indian muntjac deer Koala Opossum Giraffe Mouse Human Duck-billed platypus Buffalo Dog Red viscacha rat Number of chromosomes in body cells Figure 8.2

12 Chromosomes: Are made of chromatin, a combination of DNA and protein molecules Are not visible in a cell until cell division occurs

13 LM Chromosomes Figure 8.3

14 The DNA in a cell is packed into an elaborate, multilevel system of coiling and folding. Histones are proteins used to package DNA in eukaryotes. Nucleosomes consist of DNA wound around histone molecules.

15 TEM TEM DNA double helix Beads on a string Histones Nucleosome Tight helical fiber Looped domains Duplicated chromosomes (sister chromatids) Centromere Figure 8.4

16 Before a cell divides, it duplicates all of its chromosomes, resulting in two copies called sister chromatids. Sister chromatids are joined together at a narrow waist called the centromere.

17 When the cell divides, the sister chromatids separate from each other. Once separated, each chromatid is: Considered a full-fledged chromosome Identical to the original chromosome

18 Chromosome duplication Sister chromatids Chromosome distribution to daughter cells Figure 8.5

19 The Cell Cycle A cell cycle is the orderly sequence of events that extend from the time a cell is first formed from a dividing parent cell to its own division into two cells. The cell cycle consists of two distinct phases: Interphase The mitotic phase

20 S phase (DNA synthesis; chromosome duplication) G1 Interphase: metabolism and growth (90% of time) Mitotic (M) phase: cell division (10% of time) G2 Cytokinesis (division of cytoplasm) Mitosis (division of nucleus) Figure 8.6

21 Most of a cell cycle is spent in interphase. During interphase, a cell: Performs its normal functions Doubles everything in its cytoplasm Grows in size

22 The mitotic (M) phase includes two overlapping processes: Mitosis, in which the nucleus and its contents divide evenly into two daughter nuclei Cytokinesis, in which the cytoplasm is divided in two

23 Mitosis and Cytokinesis During mitosis the mitotic spindle, a football-shaped structure of microtubules, guides the separation of two sets of daughter chromosomes. Spindle microtubules grow from two centrosomes, clouds of cytoplasmic material that in animal cells contain centrioles. Mitosis consists of four distinct phases: (A) Prophase (B) Metaphase (C) Anaphase (D) Telophase and cytokinesis

24 LM INTERPHASE Centrosomes (with centriole pairs) Chromatin Early mitotic spindle PROPHASE Fragments of Centrosome nuclear envelope Centromere Nuclear envelope Plasma membrane Chromosome, consisting of two sister chromatids Spindle microtubules Figure 8.7.a

25 METAPHASE ANAPHASE TELOPHASE AND CYTOKINESIS Nuclear envelope forming Cleavage furrow Spindle Daughter chromosomes Figure 8.7b

26 Interphase Period of growth Cell makes new molecules Centrosomes are duplicated Chromosomes are duplicated (cannot be distinguished individually because they are in the form of loosely packed chromatin fibers)

27 Prophase Chromatin fibers coil and condense into chromosomes Each chromosome appears as two identical sister chromatids joined together at the narrow waist of the centromere. The mitotic spindle begins to form, microtubules grow out of the centrosomes Centrosomes begin to move apart Later, the nuclear envelope breaks up. The spindle microtubules attach to the centromeres of the chromosomes and move the chromosomes toward the center of the cell

28 Metaphase Mitotic spindle is fully formed Chromosomes line up on the imaginary plate between the two poles of the spindle.

29 Anaphase Sister chromatids separate Each is now a daughter chromosome The chromosomes move toward the opposite poles of the cell. Cell elongates as the microtubules not attached to chromosomes lengthen.

30 Telophase and Cytokinesis Two groups of chromosomes reach the opposite ends of the cell Nuclear envelope forms Chromosomes uncoil Spindle disappears Cytokinesis division of cytoplasm occurs with telophase In animal cells, a cleavage furrow pinches the cell into two daughter cells In plant cells, formation of cell plate occurs during cytokinesis Mitosis the division of one cell into two genetically identical cells is now complete

31 SEM Cleavage furrow Cleavage furrow Contracting ring of microfilaments Daughter cells Figure 8.8a

32 LM Wall of parent cell Cell plate forming Daughter nucleus Cell wall Vesicles containing cell wall material Cell plate New cell wall Daughter cells Figure 8.8b

33 BioFlix: Mitosis

34 Animation: Cytokinesis

35 Cancer Cells: Growing Out of Control Normal plant and animal cells have a cell cycle control system that consists of specialized proteins, which send stop and go-ahead signals at certain key points during the cell cycle.

36 What Is Cancer? Cancer is a disease of the cell cycle. Cancer cells do not respond normally to the cell cycle control system. They divide excessively and can invade other tissues of the body. A single cell undergoes transformation a process whereby a normal cell converts to a cancer cell. Transformation can occur because of a genetic change (mutation) in one or more genes that encode for proteins in the cell cycle.

37 Our immune system normally recognizes and destroys it. However, if it evades destruction, it can proliferate and form a tumor. Cancer cells can form tumors, abnormally growing masses of body cells. If the abnormal cells remain at the original site, the lump is called a benign tumor. The spread of cancer cells beyond their original site of origin is metastasis.

38 Malignant tumors can: Spread to other parts of the body Interrupt normal body functions A person with a malignant tumor is said to have cancer.

39 Growth and metastasis of a malignant tumor of the breast Lymph vessels Tumor A tumor grows from a single cancer cell. Glandular tissue Cancer cells invade neighboring tissue. Blood vessel Metastasis: Cancer cells spread through lymph and blood vessels to other parts of the body. Figure 8.9

40 Cancer Treatment Cancer treatment can involve: Radiation therapy, which damages DNA and disrupts cell division Chemotherapy, which uses drugs that disrupt cell division

41 Cancer Prevention and Survival Certain behaviors can decrease the risk of cancer: Not smoking Exercising adequately Avoiding exposure to the sun Eating a high-fiber, low-fat diet Performing self-exams Regularly visiting a doctor to identify tumors early

42 Meiosis, the Basis of Sexual Reproduction Sexual reproduction: Uses meiosis Uses fertilization Produces offspring that contain a unique combination of genes from the parents

43 Homologous Chromosomes Different individuals of a single species have the same number and types of chromosomes. A human somatic cell: Is a typical body cell Has 46 chromosomes A karyotype is an image that reveals an orderly arrangement of chromosomes. Homologous chromosomes are matching pairs of chromosomes that can possess different versions of the same genes.

44 LM Pair of homologous chromosomes Centromere Sister chromatids One duplicated chromosome Figure 8.11

45 Homologous chromosome carry genes controlling the same inherited characteristics. For example, if a gene controlling eye color is on one homologous chromosome, then the second pair will also have a gene controlling eye color at the same position.

46 Humans have: Two different sex chromosomes, X and Y Twenty-two pairs of matching chromosomes, called autosomes Females: 22 pairs of autosomes + XX sex chromosomes Males: 22 pairs of autosomes + XY sex chromosome

47 Gametes and the Life Cycle of a Sexual Organism The life cycle of a multicellular organism is the sequence of stages leading from the adults of one generation to the adults of the next.

48 Haploid gametes (n 23) Egg cell n n Sperm cell MEIOSIS FERTILIZATION Multicellular diploid adults (2n 46) 2n Diploid zygote (2n 46) MITOSIS and development Key Haploid (n) Diploid (2n) Figure 8.12

49 Humans are diploid organisms in which: Their somatic cells contain two sets of chromosomes Their gametes are haploid, having only one set of chromosomes In humans, a haploid sperm fuses with a haploid egg during fertilization to form a diploid zygote. Sexual life cycles involve an alternation of diploid and haploid stages. Meiosis produces haploid gametes, which keeps the chromosome number from doubling every generation.

50 How meiosis halves the chromosome number Chromosomes duplicate. Pair of homologous chromosomes in diploid parent cell Duplicated pair of homologous chromosomes Sister chromatids INTERPHASE BEFORE MEIOSIS Figure

51 How meiosis halves the chromosome number Chromosomes duplicate. Homologous chromosomes separate. Pair of homologous chromosomes in diploid parent cell Duplicated pair of homologous chromosomes Sister chromatids INTERPHASE BEFORE MEIOSIS MEIOSIS I Figure

52 How meiosis halves the chromosome number Chromosomes duplicate. Homologous chromosomes separate. Sister chromatids separate. Pair of homologous chromosomes in diploid parent cell Duplicated pair of homologous chromosomes Sister chromatids INTERPHASE BEFORE MEIOSIS MEIOSIS I MEIOSIS II Figure

53 The Process of Meiosis In meiosis: Four haploid daughter cells are produced in diploid organisms Interphase is followed by two consecutive divisions, meiosis I and meiosis II DNA is duplicated during interphase Crossing over occurs exchange of genetic material between the homologous chromosomes

54 MEIOSIS I: HOMOLOGOUS CHROMOSOMES SEPARATE INTERPHASE PROPHASE I METAPHASE I ANAPHASE I Centrosomes (with centriole pairs) Sites of crossing over Spindle Microtubules attached to chromosome Sister chromatids remain attached Nuclear envelope Chromatin Sister chromatids Pair of homologous chromosomes Centromere Chromosomes duplicate. Homologous chromosomes pair up and exchange segments. Pairs of homologous chromosomes line up. Pairs of homologous chromosomes split up. Figure 8.14a

55 MEIOSIS II: SISTER CHROMATIDS SEPARATE TELOPHASE I AND CYTOKINESIS PROPHASE II METAPHASE II ANAPHASE II TELOPHASE II AND CYTOKINESIS Cleavage furrow Sister chromatids separate Haploid daughter cells forming Two haploid cells form; chromosomes are still doubled. During another round of cell division, the sister chromatids finally separate; four haploid daughter cells result, containing single chromosomes. Figure 8.14b

56 Review: Comparing Mitosis and Meiosis In mitosis and meiosis, the chromosomes duplicate only once, during the preceding interphase. The number of cell divisions varies: Mitosis uses one division and produces two diploid cells Meiosis uses two divisions and produces four haploid cells All the events unique to meiosis occur during meiosis I.

57 MITOSIS MEIOSIS Prophase Chromosome duplication Prophase I Chromosome duplication MEIOSIS I Duplicated chromosome (two sister chromatids) Metaphase Parent cell (before chromosome duplication) 2n 4 Homologous chromosomes come together in pairs. Metaphase I Site of crossing over between homologous (nonsister) chromatids Chromosomes align at the middle of the cell. Homologous pairs align at the middle of the cell. Anaphase Telophase Anaphase I Telophase I Chromosome with two sister chromatids 2n Sister chromatids separate during anaphase. 2n Homologous chromosomes separate during anaphase I; sister chromatids remain together. Daughter cells of meiosis I Haploid n 2 Daughter cells of mitosis Sister chromatids separate during anaphase II. MEIOSIS II n n n n Daughter cells of meiosis II Figure 8.15

58 The Origins of Genetic Variation Offspring of sexual reproduction are genetically different from their parents and one another. Independent assortment of chromosomes Random fertilization Crossing over in Prophase I

59 Independent Assortment of Chromosomes When aligned during metaphase I of meiosis, the side-byside orientation of each homologous pair of chromosomes is a matter of chance. Every chromosome pair orients independently of the others during meiosis.

60 For any species the total number of chromosome combinations that can appear in the gametes due to independent assortment is: 2 n where n is the haploid number. For a human: n = = 8,388,608 different chromosome combinations possible in a gamete

61 POSSIBILITY 1 POSSIBILITY 2 2n = 4 Metaphase of meiosis I Figure

62 POSSIBILITY 1 POSSIBILITY 2 2n = 4 Metaphase of meiosis I Metaphase of meiosis II Figure

63 POSSIBILITY 1 POSSIBILITY 2 2n = 4 Metaphase of meiosis I Metaphase of meiosis II Gametes n = 2 Combination a Combination b Combination c Combination d Figure

64 Random Fertilization A human egg cell is fertilized randomly by one sperm, leading to genetic variety in the zygote. If each gamete represents one of 8,388,608 different chromosome combinations, at fertilization, humans would have 8,388,608 8,388,608, or more than 70 trillion, different possible chromosome combinations.

65 Crossing Over In crossing over: Homologous chromosomes exchange genetic information Genetic recombination, the production of gene combinations different from those carried by parental chromosomes, occurs

66 Prophase I of meiosis Duplicated pair of homologous chromosomes Figure

67 Prophase I of meiosis Duplicated pair of homologous chromosomes Homologous chromatids exchange corresponding segments. Chiasma, site of crossing over (X-shaped region) Figure

68 Prophase I of meiosis Duplicated pair of homologous chromosomes Homologous chromatids exchange corresponding segments. Chiasma, site of crossing over (X-shaped region) Metaphase I Sister chromatids remain joined at their centromeres. Spindle microtubule Figure

69 Prophase I of meiosis Duplicated pair of homologous chromosomes Homologous chromatids exchange corresponding segments. Chiasma, site of crossing over Metaphase I Sister chromatids remain joined at their centromeres. Metaphase II Spindle microtubule Figure

70 Prophase I of meiosis Duplicated pair of homologous chromosomes Homologous chromatids exchange corresponding segments. Chiasma, site of crossing over Metaphase I Sister chromatids remain joined at their centromeres. Metaphase II Spindle microtubule Gametes Recombinant chromosomes combine genetic information from different parents. Recombinant chromosomes Figure

71 When Meiosis Goes Awry What happens when errors occur in meiosis? Such mistakes can result in genetic abnormalities that range from mild to fatal.

72 How Accidents during Meiosis Can Alter Chromosome Number In nondisjunction, the members of a chromosome pair fail to separate during anaphase, producing gametes with an incorrect number of chromosomes. Nondisjunction can occur during meiosis I or II.

73 NONDISJUNCTION IN MEIOSIS I NONDISJUNCTION IN MEIOSIS II Meiosis I Nondisjunction: Pair of homologous chromosomes fails to separate. Figure

74 NONDISJUNCTION IN MEIOSIS I NONDISJUNCTION IN MEIOSIS II Meiosis I Nondisjunction: Pair of homologous chromosomes fails to separate. Meiosis II Nondisjunction: Pair of sister chromatids fails to separate. Figure

75 NONDISJUNCTION IN MEIOSIS I NONDISJUNCTION IN MEIOSIS II Meiosis I Nondisjunction: Pair of homologous chromosomes fails to separate. Meiosis II Nondisjunction: Pair of sister chromatids fails to separate. Gametes n 1 n 1 n 1 n 1 Number of chromosomes n 1 n 1 n n Abnormal gametes Abnormal gametes Normal gametes Figure

76 If nondisjunction occurs, and a normal sperm fertilizes an egg with an extra chromosome, the result is a zygote with a total of 2n + 1 chromosomes. If the organism survives, it will have an abnormal number of genes.

77 Abnormal egg cell with extra chromosome n 1 Normal sperm cell n (normal) Abnormal zygote with extra chromosome 2n 1 Figure 8.21

78 Down Syndrome: An Extra Chromosome 21 Down Syndrome: Is also called trisomy 21 Is a condition in which an individual has an extra chromosome 21 Affects about one out of every 700 children The incidence of Down Syndrome increases with the age of the mother.

79 LM Chromosome 21 Figure 8.22

80 Abnormal Numbers of Sex Chromosomes Nondisjunction can also affect the sex chromosomes.

81 Evolution Connection: The Advantages of Sex Asexual reproduction conveys an evolutionary advantage when plants are: Sparsely distributed Superbly suited to a stable environment Sexual reproduction may convey an evolutionary advantage by: Speeding adaptation to a changing environment Allowing a population to more easily rid itself of harmful genes

82 LM (a) (b) (c) (d) Figure 8.UN6

Chapter 8. Cellular Reproduction: Cells from Cells. Lectures by Edward J. Zalisko

Chapter 8. Cellular Reproduction: Cells from Cells. Lectures by Edward J. Zalisko Chapter 8 Cellular Reproduction: Cells from Cells PowerPoint Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential Biology with Physiology, Fourth Edition Eric J. Simon, Jean L.

More information

Cellular Reproduction: Cells from Cells

Cellular Reproduction: Cells from Cells 1 Chapter 8 Cellular Reproduction: Cells from Cells PowerPoint Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential Biology with Physiology, Fourth Edition Eric J. Simon, Jean

More information

Fertilization of sperm and egg produces offspring

Fertilization of sperm and egg produces offspring In sexual reproduction Fertilization of sperm and egg produces offspring In asexual reproduction Offspring are produced by a single parent, without the participation of sperm and egg CONNECTIONS BETWEEN

More information

THE CELL CYCLE & MITOSIS. Asexual Reproduction: Production of genetically identical offspring from a single parent.

THE CELL CYCLE & MITOSIS. Asexual Reproduction: Production of genetically identical offspring from a single parent. THE CELL CYCLE & MITOSIS Asexual Reproduction: Production of genetically identical offspring from a single parent. Sexual Reproduction: The fusion of two separate parent cells that produce offspring with

More information

Roles of Cell Division. Reproduction - Like begets like, more or less. Examples of Cell Numbers. Outline Cell Reproduction

Roles of Cell Division. Reproduction - Like begets like, more or less. Examples of Cell Numbers. Outline Cell Reproduction Outline Cell Reproduction 1. Overview of Cell Reproduction 2. Cell Reproduction in Prokaryotes 3. Cell Reproduction in Eukaryotes 1. Chromosomes 2. Cell Cycle 3. Mitosis and Cytokinesis 4. Sexual Life

More information

BIOLOGY 111. CHAPTER 5: Chromosomes and Inheritance

BIOLOGY 111. CHAPTER 5: Chromosomes and Inheritance BIOLOGY 111 CHAPTER 5: Chromosomes and Inheritance Chromosomes and Inheritance Learning Outcomes 5.1 Differentiate between sexual and asexual reproduction in terms of the genetic variation of the offspring.

More information

8.8 Growth factors signal the cell cycle control system

8.8 Growth factors signal the cell cycle control system The Cellular Basis of Reproduction and Inheritance : part II PowerPoint Lectures for Campbell Biology: Concepts & Connections, Seventh Edition Reece, Taylor, Simon, and Dickey Biology 1408 Dr. Chris Doumen

More information

The Cellular Basis of Inheritance

The Cellular Basis of Inheritance CHAPTER 9 The Cellular Basis of Inheritance Summary of Key Concepts Concept 9.1 All cells come from cells. (pp. 180 181) Cell reproduction is an important process. Three functions of cell reproduction

More information

Chapter 8. Introduction. Introduction. The Cellular Basis of Reproduction and Inheritance. Cancer cells. In a healthy body, cell division allows for

Chapter 8. Introduction. Introduction. The Cellular Basis of Reproduction and Inheritance. Cancer cells. In a healthy body, cell division allows for Chapter 8 The Cellular Basis of Reproduction and Inheritance PowerPoint Lectures for Campbell Biology: Concepts & Connections, Seventh Edition Reece, Taylor, Simon, and Dickey Lecture by Edward J. Zalisko

More information

Chapter 8 The Cellular Basis of Reproduction and Inheritance

Chapter 8 The Cellular Basis of Reproduction and Inheritance Chapter 8 The Cellular Basis of Reproduction and Inheritance PowerPoint Lectures Campbell Biology: Concepts & Connections, Eighth Edition REECE TAYLOR SIMON DICKEY HOGAN Lecture by Edward J. Zalisko Introduction

More information

Meiosis and Sexual Life Cycles

Meiosis and Sexual Life Cycles Chapter 13 Meiosis and Sexual Life Cycles PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Chapter 8 The Cellular Basis of Reproduction and Inheritance

Chapter 8 The Cellular Basis of Reproduction and Inheritance Chapter 8 The Cellular Basis of Reproduction and Inheritance PowerPoint Lectures Campbell Biology: Concepts & Connections, Eighth Edition REECE TAYLOR SIMON DICKEY HOGAN Lecture by Edward J. Zalisko Introduction

More information

Chapter 13: Meiosis and Sexual Life Cycles Overview: Hereditary Similarity and Variation

Chapter 13: Meiosis and Sexual Life Cycles Overview: Hereditary Similarity and Variation Chapter 13: Meiosis and Sexual Life Cycles Overview: Hereditary Similarity and Variation Living organisms Are distinguished by their ability to reproduce their own kind Biology, 7 th Edition Neil Campbell

More information

Cellular Reproduction = Cell Division. Passes on Genes from Cells to Cells Reproduction of Organisms

Cellular Reproduction = Cell Division. Passes on Genes from Cells to Cells Reproduction of Organisms Cellular Reproduction = Cell Division Passes on Genes from Cells to Cells Reproduction of Organisms Genes DNA Chromatin fiber Chromosomes Fig. 9.6 Genes, the segments of DNA, are part of chromatin fiber

More information

Meiosis and Sexual Life Cycles

Meiosis and Sexual Life Cycles Chapter 13 Meiosis and Sexual Life Cycles PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Reading Assignments. A. Systems of Cell Division. Lecture Series 5 Cell Cycle & Cell Division

Reading Assignments. A. Systems of Cell Division. Lecture Series 5 Cell Cycle & Cell Division Lecture Series 5 Cell Cycle & Cell Division Reading Assignments Read Chapter 18 Cell Cycle & Cell Death Read Chapter 19 Cell Division Read Chapter 20 pages 659-672 672 only (Benefits of Sex & Meiosis sections)

More information

Lecture Series 5 Cell Cycle & Cell Division

Lecture Series 5 Cell Cycle & Cell Division Lecture Series 5 Cell Cycle & Cell Division Reading Assignments Read Chapter 18 Cell Cycle & Cell Death Read Chapter 19 Cell Division Read Chapter 20 pages 659-672 672 only (Benefits of Sex & Meiosis sections)

More information

Unit 6 Test: The Cell Cycle

Unit 6 Test: The Cell Cycle Name Date Class Mrs. Knight Biology EHS Unit 6 Test: The Cell Cycle 1. What are the four main stages of the cell cycle (correct order)? A. G 1, S, G 0, M C. G 2, S, G 1, M B. G 1, S, G 2, M D. M, G 2,

More information

Meiosis and Sexual Life Cycles

Meiosis and Sexual Life Cycles Chapter 13 Meiosis and Sexual Life Cycles PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Cell Reproduction. Objectives

Cell Reproduction. Objectives Cell Reproduction Lecture 10 Objectives At the end of this series of lectures you should be able to: Define terms. Describe the functions of cellular reproduction. Compare the parent offspring relationship

More information

Meiosis and Sexual Life Cycles

Meiosis and Sexual Life Cycles CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 10 Meiosis and Sexual Life Cycles Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

Chapter 11: The Continuity of Life: Cellular Reproduction. What is Cellular Reproduction?

Chapter 11: The Continuity of Life: Cellular Reproduction. What is Cellular Reproduction? Chapter 11: The Continuity of Life: Cellular Reproduction What is Cellular Reproduction? Answer: The division of a parent cell into two daughter cells Requirements of Each Daughter Cell: 1) Necessary genomic

More information

Biology Unit 6 Chromosomes and Mitosis

Biology Unit 6 Chromosomes and Mitosis Biology Unit 6 Chromosomes and Mitosis 6:1 Chromosomes DNA GENES CHROMATIN/CHROMOSOMES CHROMOSOMES/CHROMATIN are made of units called GENES. GENES are made of a compound called deoxyribonucleic acid or

More information

Meiosis and Sexual Life Cycles

Meiosis and Sexual Life Cycles LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 13 Meiosis and Sexual Life Cycles

More information

Anaphase, Telophase. Animal cells divide their cytoplasm by forming? Cleavage furrow. Bacteria, Paramecium, Amoeba, etc. reproduce by...

Anaphase, Telophase. Animal cells divide their cytoplasm by forming? Cleavage furrow. Bacteria, Paramecium, Amoeba, etc. reproduce by... The 4 phases of mitosis Animal cells divide their cytoplasm by forming? Bacteria, Paramecium, Amoeba, etc. reproduce by... Cell which after division is identical to the original is called a Prophase, Metaphase,

More information

Human biology Laboratory. Cell division. Lecturer Maysam A Mezher

Human biology Laboratory. Cell division. Lecturer Maysam A Mezher Human biology Laboratory Cell division Lecturer Maysam A Mezher CHROMOSOME STRUCTURE 1. During nuclear division, the DNA (as chromatin) in a Eukaryotic cell's nucleus is coiled into very tight compact

More information

Chapter 11: The Continuity of Life: Cellular Reproduction

Chapter 11: The Continuity of Life: Cellular Reproduction Chapter 11: The Continuity of Life: Cellular Reproduction Chapter 11: Cellular Reproduction What is Cellular Reproduction? Answer: The division of a parent cell into two daughter cells Requirements of

More information

CELL REPRODUCTION NOTES

CELL REPRODUCTION NOTES CELL REPRODUCTION NOTES CELL GROWTH AND DIVISION The adult human body produces roughly cells every day. WHY DO CELLS REPRODUCE? So that the organism can and As multicellular organisms grow larger, its

More information

Meiosis and Sexual Life Cycles

Meiosis and Sexual Life Cycles 13 Meiosis and Sexual Life Cycles Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Variations on a Theme Living

More information

Cellular Division. copyright cmassengale

Cellular Division. copyright cmassengale Cellular Division 1 Cell Division All cells are derived from pre- existing cells New cells are produced for growth and to replace damaged or old cells Differs in prokaryotes (bacteria) and eukaryotes (protists,

More information

BIOLOGY. Meiosis and Sexual Life Cycles CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. Meiosis and Sexual Life Cycles CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 13 Meiosis and Sexual Life Cycles Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Variations on a Theme Living

More information

KEY CONCEPT Cells have distinct phases of growth, reproduction, and normal functions.

KEY CONCEPT Cells have distinct phases of growth, reproduction, and normal functions. 5.1 10.1 The Cell Cell Growth Cycle KEY CONCEPT Cells have distinct phases of growth, reproduction, and normal functions. 5.1 10.1 The Cell Cell Growth Cycle Why must cells divide? Growth and Repair -

More information

Topic 8 Mitosis & Meiosis Ch.12 & 13. The Eukaryotic Genome. The Eukaryotic Genome. The Eukaryotic Genome

Topic 8 Mitosis & Meiosis Ch.12 & 13. The Eukaryotic Genome. The Eukaryotic Genome. The Eukaryotic Genome Topic 8 Mitosis & Meiosis Ch.12 & 13 The Eukaryotic Genome pp. 244-245,268-269 Genome All of the genes in a cell. Eukaryotic cells contain their DNA in long linear pieces. In prokaryotic cells, there is

More information

Purposes of Cell Division

Purposes of Cell Division Purposes of Cell Division Increase the number of cells for growth and repair of worn out tissues What examples in the human body can you think of? Transmit genetic information to later generations Why

More information

The division of a unicellular organism reproduces an entire organism, increasing the population. Here s one amoeba dividing into 2.

The division of a unicellular organism reproduces an entire organism, increasing the population. Here s one amoeba dividing into 2. 1. Cell division functions in 3 things : reproduction, growth, and repair The division of a unicellular organism reproduces an entire organism, increasing the population. Here s one amoeba dividing into

More information

Lecture Series 5 Cell Cycle & Cell Division

Lecture Series 5 Cell Cycle & Cell Division Lecture Series 5 Cell Cycle & Cell Division Reading Assignments Read Chapter 18 Cell Cycle & Cell Division Read Chapter 19 pages 651-663 663 only (Benefits of Sex & Meiosis sections these are in Chapter

More information

gametes Gametes somatic cells diploid (2n) haploid (n)

gametes Gametes somatic cells diploid (2n) haploid (n) Overview of Meiosis Meiosis is a form of cell division that leads to the production of gametes. Gametes: egg cells and sperm cells (reproductive) -contain half the number of chromosomes of an adult body

More information

Biology. Chapter 10 Cell Reproduction. I. Chromosomes

Biology. Chapter 10 Cell Reproduction. I. Chromosomes Biology Chapter 10 Cell Reproduction I. Chromosomes Long thin molecules that store genetic information. A. Chromosome Structure 1. Rod shaped structure composed of DNA and protein. 2. DNA is wrapped around

More information

Cellular Reproduction

Cellular Reproduction Cellular Reproduction Ratio of Surface Area to Volume As the cell grows, its volume increases much more rapidly than the surface area. The cell might have difficulty supplying nutrients and expelling enough

More information

CELL GROWTH AND DIVISION. Chapter 10

CELL GROWTH AND DIVISION. Chapter 10 CELL GROWTH AND DIVISION Chapter 10 Cell division = The formation of 2 daughter cells from a single parent cell Increases ratio of surface area to volume for each cell Allows for more efficient exchange

More information

CELL DIVISION IN EUKARYOTES. Professor Andrea Garrison Biology 11 Illustrations 2010 Pearson Education, Inc.

CELL DIVISION IN EUKARYOTES. Professor Andrea Garrison Biology 11 Illustrations 2010 Pearson Education, Inc. CELL DIVISION IN EUKARYOTES Professor Andrea Garrison Biology 11 Illustrations 2010 Pearson Education, Inc. PURPOSE: Reproduction of new cells from previously existing cells 2 of Genetically Identical

More information

Concept 9.1: All Cells come from Cells Asexual Reproduction = Sexual Reproduction = Concept 9.2: The Cell Cycle multiplies Cells Chromatin =

Concept 9.1: All Cells come from Cells Asexual Reproduction = Sexual Reproduction = Concept 9.2: The Cell Cycle multiplies Cells Chromatin = Honors Biology Chapter 9 The Cellular Basis of Inheritance p. 178-203 (How does 1 fertilized egg become the trillions of diff. types of cells in our bodies?) Concept 9.1: All Cells come from Cells (Char.

More information

Answers to Review for Unit Test #3: Cellular Reproduction: Mitosis, Meiosis, Karyotypes and Non-disjunction Disorders

Answers to Review for Unit Test #3: Cellular Reproduction: Mitosis, Meiosis, Karyotypes and Non-disjunction Disorders Answers to Review for Unit Test #3: Cellular Reproduction: Mitosis, Meiosis, Karyotypes and Non-disjunction Disorders 1. Clearly explain the difference between the following: a) chromosomes and chromatin

More information

Overview. Overview: Variations on a Theme. Offspring acquire genes from parents by inheriting chromosomes. Inheritance of Genes

Overview. Overview: Variations on a Theme. Offspring acquire genes from parents by inheriting chromosomes. Inheritance of Genes Chapter 13 Meiosis and Sexual Life Cycles Overview I. Cell Types II. Meiosis I. Meiosis I II. Meiosis II III. Genetic Variation IV. Reproduction Overview: Variations on a Theme Figure 13.1 Living organisms

More information

MGC New Life Christian Academy

MGC New Life Christian Academy A. Meiosis Main Idea: Meiosis produces haploid gametes. Key Concept: Asexual reproduction involves one parent and produces offspring that are genetically identical to each other and to the parent. Sexual

More information

Meiosis. Bởi: OpenStaxCollege

Meiosis. Bởi: OpenStaxCollege Meiosis Bởi: OpenStaxCollege Sexual reproduction requires fertilization, a union of two cells from two individual organisms. If those two cells each contain one set of chromosomes, then the resulting cell

More information

Sexual Cell Reproduction Chapter 17

Sexual Cell Reproduction Chapter 17 Sexual Cell Reproduction Chapter 17 1 The Importance of Meiosis Meiosis is a two stage cell division in which the chromosome number of the parental cell is reduced by half. Meiosis is the process by which

More information

Mitosis. Meiosis MP3. Why do cells divide? Why Do Cells Need To Divide? Vocab List Chapter 10 & 11. What has to happen before a cell divides? divides?

Mitosis. Meiosis MP3. Why do cells divide? Why Do Cells Need To Divide? Vocab List Chapter 10 & 11. What has to happen before a cell divides? divides? MP3 Vocab List Chapter 10 & 11 Mitosis Anaphase Mitosis Cell Cycle Telophase Cytokinesis Cell Division Metaphase 4 Daughter Cells Prophase Meiosis Diploid Somatic Cells Interphase Haploid Parent Cell Gametes

More information

Cell cycle, mitosis & meiosis. Chapter 6

Cell cycle, mitosis & meiosis. Chapter 6 Cell cycle, mitosis & meiosis Chapter 6 Why do cells divide? Asexual reproduction Growth Replacement / repair Cell division: The big picture Two steps Before cells can divide, DNA needs to replicate DNA

More information

Meiosis. The form of cell division by which gametes, with half the regular number of chromosomes, are produced.

Meiosis. The form of cell division by which gametes, with half the regular number of chromosomes, are produced. MEIOSIS Meiosis The form of cell division by which gametes, with half the regular number of chromosomes, are produced. diploid (2n) haploid (n) (complete set of chromosomes) (half the regular number of

More information

Key Concepts. n Cell Cycle. n Interphase. n Mitosis. n Cytokinesis

Key Concepts. n Cell Cycle. n Interphase. n Mitosis. n Cytokinesis The Cell Cycle B-2.6: Summarize the characteristics of the cell cycle: interphase (G 1, S, G 2 ); the phases of mitosis (prophase, metaphase, anaphase, telophase); and plant and animal cytokinesis. Key

More information

You have body cells and gametes Body cells are known as somatic cells. Germ cells develop into gametes or sex cells. Germ cells are located in the

You have body cells and gametes Body cells are known as somatic cells. Germ cells develop into gametes or sex cells. Germ cells are located in the MEIOSIS You have body cells and gametes Body cells are known as somatic cells. Germ cells develop into gametes or sex cells. Germ cells are located in the ovaries and testes. Gametes are sex cells: egg

More information

11-4 Meiosis. Chromosome Number

11-4 Meiosis. Chromosome Number 11-4 Meiosis Chromosome Number Sexual reproduction shuffles and recombines genes from two parents. During gametogenesis, genes are segregated and assorted (shuffled) into gemetes, and at fertilization,

More information

Mitosis and Meiosis for AP Biology

Mitosis and Meiosis for AP Biology Mitosis and Meiosis for AP Biology by Mark Anestis Practice problems for these concepts can be found at : Cell Division Review Questions for AP Biology Mitosis During mitosis, the fourth stage of the cell

More information

Cell Reproduction Review

Cell Reproduction Review Name Date Period Cell Reproduction Review Explain what is occurring in each part of the cell cycle --- G 0, G1, S, G2, and M. 1 CELL DIVISION Label all parts of each cell in the cell cycle and explain

More information

Benchmark Clarification for SC.912.L.16.17

Benchmark Clarification for SC.912.L.16.17 Benchmark Clarification for SC.912.L.16.17 Students will: Differentiate the process of meiosis and meiosis Describe the role of mitosis in asexual reproduction, and/or the role of meiosis in sexual reproduction,

More information

Sexual Reproduction. The two parent cells needed for sexual reproduction are called gametes. They are formed during a process known as meiosis.

Sexual Reproduction. The two parent cells needed for sexual reproduction are called gametes. They are formed during a process known as meiosis. Sexual Reproduction Recall that asexual reproduction involves only one parent cell. This parent cell divides to produce two daughter cells that are genetically identical to the parent. Sexual reproduction,

More information

CELL REPRODUCTION. Mitotic M phase Mitosis. Chromosomes divide. Cytokinesis. Cytoplasm and cell membrane divide. Chromosomes as Packaged Genes

CELL REPRODUCTION. Mitotic M phase Mitosis. Chromosomes divide. Cytokinesis. Cytoplasm and cell membrane divide. Chromosomes as Packaged Genes CELL REPRODUCTION Kimberly Lozano Biology 490 Spring 2010 CELL CYCLE Interphase G1: Growth (1) New organelles form within the cell. S: Synthesis Cell duplicates its DNA. G2: Growth (2) Cell prepares for

More information

Cell Division. Mitosis 11/8/2016

Cell Division. Mitosis 11/8/2016 Cell division consists of two phases, nuclear division followed by cytokinesis. Nuclear division divides the genetic material in the nucleus, while cytokinesis divides the cytoplasm. There are two kinds

More information

The Cell Cycle. Chapter 12

The Cell Cycle. Chapter 12 The Cell Cycle Chapter 12 Why are cells small? As cells get bigger they don t work as well WHY? Difficulties Larger Cells Have: More demands on its DNA Less efficient in moving nutrients/waste across its

More information

GENERAL SAFETY: Follow your teacher s directions. Do not work in the laboratory without your teacher s supervision.

GENERAL SAFETY: Follow your teacher s directions. Do not work in the laboratory without your teacher s supervision. Name: Bio AP Lab: Cell Division B: Mitosis & Meiosis (Modified from AP Biology Investigative Labs) BACKGROUND: One of the characteristics of living things is the ability to replicate and pass on genetic

More information

For a species to survive, it must REPRODUCE! Ch 13 NOTES Meiosis. Genetics Terminology: Homologous chromosomes

For a species to survive, it must REPRODUCE! Ch 13 NOTES Meiosis. Genetics Terminology: Homologous chromosomes For a species to survive, it must REPRODUCE! Ch 13 NOTES Meiosis Genetics Terminology: Autosomes Somatic cell Gamete Karyotype Homologous chromosomes Meiosis Sex chromosomes Diploid Haploid Zygote Synapsis

More information

Cell Division. Mitosis

Cell Division. Mitosis Cell division consists of two phases, nuclear division followed by cytokinesis. Nuclear division divides the genetic material in the nucleus, while cytokinesis divides the cytoplasm. There are two kinds

More information

SCIENCE M E I O S I S

SCIENCE M E I O S I S SCIENCE 9 6. 1 - M E I O S I S OBJECTIVES By the end of the lesson you should be able to: Describe the process of meiosis Compare and contrast meiosis and mitosis Explain why meiosis is needed MEIOSIS

More information

Cell Cycle (mitosis and meiosis) Test Review

Cell Cycle (mitosis and meiosis) Test Review Cell Cycle (mitosis and meiosis) Test Review Name: Chapter 10 1. What problems are caused when a cell becomes too large? When a cell becomes too large the cell is strained and has a hard time moving enough

More information

Learning Objectives Chapter 8

Learning Objectives Chapter 8 Learning Objectives Chapter 8 Brief overview of prokaryotic cell replication The three main phases of eukaryotic cell division: Interphase, M phase, C phase Interphase is broken down into three sub-phases

More information

CELL REPRODUCTION VOCABULARY- CHAPTER 8 (33 words)

CELL REPRODUCTION VOCABULARY- CHAPTER 8 (33 words) CELL REPRODUCTION- CHAPTER 8 CELL REPRODUCTION VOCABULARY- CHAPTER 8 (33 words) 1. Chromosome 2. histone 3. chromatid 4. Centromere 5. chromatin 6. autosome 7. Sex chromosome 8. homologous chromosome 9.

More information

The Cell Cycles Mitosis and Meiosis. Essential question: How do cells reproduce and why?

The Cell Cycles Mitosis and Meiosis. Essential question: How do cells reproduce and why? The Cell Cycles Mitosis and Meiosis Essential question: How do cells reproduce and why? Objectives Section 10.1 Explain why cells divide in terms of growth and cell size Review - Types of Cell Division

More information

Why do we have to cut our hair, nails, and lawn all the time?

Why do we have to cut our hair, nails, and lawn all the time? Chapter 5 Cell Reproduction Mitosis Think about this Why do we have to cut our hair, nails, and lawn all the time? EQ: Why is cell division necessary for the growth & development of living organisms? Section

More information

2:1 Chromosomes DNA Genes Chromatin Chromosomes CHROMATIN: nuclear material in non-dividing cell, composed of DNA/protein in thin uncoiled strands

2:1 Chromosomes DNA Genes Chromatin Chromosomes CHROMATIN: nuclear material in non-dividing cell, composed of DNA/protein in thin uncoiled strands Human Heredity Chapter 2 Chromosomes, Mitosis, and Meiosis 2:1 Chromosomes DNA Genes Chromatin Chromosomes CHROMATIN: nuclear material in non-dividing cell, composed of DNA/protein in thin uncoiled strands

More information

Meiosis and Sexual Life Cycles

Meiosis and Sexual Life Cycles Chapter 13 Meiosis and Sexual Life Cycles Lecture Outline Overview Living organisms are distinguished by their ability to reproduce their own kind. Offspring resemble their parents more than they do less

More information

Chapter 11 Meiosis and Sexual Reproduction

Chapter 11 Meiosis and Sexual Reproduction Chapter 11 Meiosis and Sexual S Section 1: S Gamete: Haploid reproductive cell that unites with another haploid reproductive cell to form a zygote. S Zygote: The cell that results from the fusion of gametes

More information

Essential Knowledge: In eukaryotes, heritable information is passed to the next generation via processes that include the cell cycle and mitosis OR

Essential Knowledge: In eukaryotes, heritable information is passed to the next generation via processes that include the cell cycle and mitosis OR Essential Knowledge: In eukaryotes, heritable information is passed to the next generation via processes that include the cell cycle and mitosis OR meiosis plus fertilization Objective: You will be able

More information

LAB 8 EUKARYOTIC CELL DIVISION: MITOSIS AND MEIOSIS

LAB 8 EUKARYOTIC CELL DIVISION: MITOSIS AND MEIOSIS LAB 8 EUKARYOTIC CELL DIVISION: MITOSIS AND MEIOSIS Name: Date: INTRODUCTION BINARY FISSION: Prokaryotic cells (bacteria) reproduce asexually by binary fission. Bacterial cells have a single circular chromosome,

More information

Mitosis and. Meiosis. Presented by Kesler Science

Mitosis and. Meiosis. Presented by Kesler Science Mitosis and Meiosis Presented by Kesler Science Essential Questions: 1. What are mitosis and meiosis? 2. What occurs at different phases in cell division? 3. How are mitosis and meiosis similar and different?

More information

CHAPTER 6. Chromosomes and Meiosis

CHAPTER 6. Chromosomes and Meiosis CHAPTER 6 Chromosomes and Meiosis CHROMOSOMES DNA (deoxyribonucleic acid) is a long, thin molecule that directs cellular functions and heredity. DNA contains information that is encoded in segments called

More information

This is DUE: Come prepared to share your findings with your group.

This is DUE: Come prepared to share your findings with your group. Biology 160 NAME: Reading Guide 11: Population Dynamics, Humans, Part I This is DUE: Come prepared to share your findings with your group. *As before, please turn in only the Critical Thinking questions

More information

Learning Objectives LO 3.7 The student can make predictions about natural phenomena occurring during the cell cycle. [See SP 6.4]

Learning Objectives LO 3.7 The student can make predictions about natural phenomena occurring during the cell cycle. [See SP 6.4] Big Ideas 3.A.2: In eukaryotes, heritable information is passed to the next generation via processes that include the cell cycle and mitosis or meiosis plus fertilization. CHAPTER 13 MEIOSIS AND SEXUAL

More information

Chapter 8 Lectures by Gregory Ahearn University of North Florida

Chapter 8 Lectures by Gregory Ahearn University of North Florida Chapter 8 The Continuity of Life: How Cells Reproduce Lectures by Gregory Ahearn University of North Florida Copyright 2009 Pearson Education, Inc. 8.1 Why Do Cells Divide? Cells reproduce by cell division.

More information

SEXUAL REPRODUCTION & MEIOSIS

SEXUAL REPRODUCTION & MEIOSIS SEXUAL REPRODUCTION & MEIOSIS Living organisms are distinguished by their ability to reproduce their own kind. Offspring resemble their parents more than they do less closely related individuals of the

More information

Ch. 13 Meiosis & Sexual Life Cycles

Ch. 13 Meiosis & Sexual Life Cycles Introduction Ch. 13 Meiosis & Sexual Life Cycles 2004-05 Living organisms are distinguished by their ability to reproduce their own kind. -Offspring resemble their parents more than they do less closely

More information

Mitosis and Meiosis Cell growth and division

Mitosis and Meiosis Cell growth and division LIMITS TO CELL GROWTH Mitosis and Meiosis Cell growth and division The larger the cell, the more trouble the cell has moving nutrients and waste across the cell membrane. LIMITS TO CELL GROWTH 1. DNA/information

More information

Meiosis and Sexual Reproduction Chapter 11. Reproduction Section 1

Meiosis and Sexual Reproduction Chapter 11. Reproduction Section 1 Meiosis and Sexual Reproduction Chapter 11 Reproduction Section 1 Reproduction Key Idea: An individual formed by asexual reproduction is genetically identical to its parent. Asexual Reproduction In asexual

More information

QQ 10/5/18 Copy the following into notebook:

QQ 10/5/18 Copy the following into notebook: Chapter 13- Meiosis QQ 10/5/18 Copy the following into notebook: Similarities: 1. 2. 3. 4. 5. Differences: 1. 2. 3. 4. 5. Figure 13.1 Living organisms are distinguished by their ability to reproduce their

More information

Name 8 Cell Cycle and Meiosis Test Date Study Guide You must know: The structure of the replicated chromosome. The stages of mitosis.

Name 8 Cell Cycle and Meiosis Test Date Study Guide You must know: The structure of the replicated chromosome. The stages of mitosis. Name 8 Cell Cycle and Meiosis Test Date Study Guide You must know: The structure of the replicated chromosome. The stages of mitosis. The role of kinases and cyclin in the regulation of the cell cycle.

More information

BIOLOGY. COLLEGE PHYSICS Chapter 11 MEIOSIS AND SEXUAL REPRODUCTION Chapter # Chapter Title PowerPoint Image Slideshow

BIOLOGY. COLLEGE PHYSICS Chapter 11 MEIOSIS AND SEXUAL REPRODUCTION Chapter # Chapter Title PowerPoint Image Slideshow BIOLOGY COLLEGE PHYSICS Chapter 11 MEIOSIS AND SEXUAL REPRODUCTION Chapter # Chapter Title PowerPoint Image Slideshow CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 13 Meiosis

More information

Bio 105: Cell Division

Bio 105: Cell Division Cell Division Bio 105: Cell Division Starts with DNA Replication Laboratory 8 DNA Replication When does DNA replicate? Just prior to cell division Multicellular Organisms Grow Replace old cells Unicellular

More information

Chapter 13: Meiosis & Sexual Life Cycles

Chapter 13: Meiosis & Sexual Life Cycles Chapter 13: Meiosis & Sexual Life Cycles What you must know The difference between asexual and sexual reproduction. The role of meiosis and fertilization in sexually reproducing organisms. The importance

More information

CELL DIVISION MITOSIS & MEIOSIS

CELL DIVISION MITOSIS & MEIOSIS CELL DIVISION MITOSIS & MEIOSIS Cell Cycle 2 distinct phases S Chromosome duplication Interphase G 2 Mitotic What's the most important event of interphase? What is significant about DNA in the S and G

More information

MEIOSIS DR. A. TARAB DEPT. OF BIOCHEMISTRY HKMU

MEIOSIS DR. A. TARAB DEPT. OF BIOCHEMISTRY HKMU MEIOSIS DR. A. TARAB DEPT. OF BIOCHEMISTRY HKMU Meiosis is a special type of cell division necessary for sexual reproduction in eukaryotes such as animals, plants and fungi The number of sets of chromosomes

More information

Chapter 10.2 Notes. Genes don t exist free in the nucleus but lined up on a. In the body cells of animals and most plants, chromosomes occur in

Chapter 10.2 Notes. Genes don t exist free in the nucleus but lined up on a. In the body cells of animals and most plants, chromosomes occur in Chapter 10.2 Notes NAME Honors Biology Organisms have tens of thousands of genes that determine individual traits Genes don t exist free in the nucleus but lined up on a Diploid and Haploid Cells In the

More information

Unit 2: Cellular Chemistry, Structure, and Physiology Module 5: Cellular Reproduction

Unit 2: Cellular Chemistry, Structure, and Physiology Module 5: Cellular Reproduction Unit 2: Cellular Chemistry, Structure, and Physiology Module 5: Cellular Reproduction NC Essential Standard: 1.2.2 Analyze how cells grow and reproduce in terms of interphase, mitosis, and cytokinesis

More information

Cell Reproduction Page #1. Warm Up. Where are your genes located?

Cell Reproduction Page #1. Warm Up. Where are your genes located? Cell Reproduction Page #1 Warm Up Where are your genes located? http://people.na.infn.it/~nicodem/research/cell_genes.jpg DURING MOST OF THE CELL S LIFE, DNA FORMS A TANGLED MASS CALLED CHROMATIN. CHROMATIN

More information

The Process of Cell Division. Lesson Overview. Lesson Overview The Process of Cell Division

The Process of Cell Division. Lesson Overview. Lesson Overview The Process of Cell Division Lesson Overview 10.2 The Process of Cell Division Chromosomes genetic information passed from parent to offspring is carried by chromosomes. Chromosomes enable precise DNA separation during cell division.

More information

MEIOSIS, THE BASIS OF SEXUAL REPRODUCTION

MEIOSIS, THE BASIS OF SEXUAL REPRODUCTION MEIOSIS, THE BASIS OF SEXUAL REPRODUCTION Why do kids look different from the parents? How are they similar to their parents? Why aren t brothers or sisters more alike? Meiosis A process where the number

More information

Biology 067 Section 14 Cell Division. A. Definitions:

Biology 067 Section 14 Cell Division. A. Definitions: Biology 067 Section 14 Cell Division A. Definitions: In a human cell, a nucleus holds all the chromatin that condenses to form chromosomes when cells divide every cell in the body has the same set of chromosomes

More information

Bell Ringer 02/02/15. Match the stages of mitosis to their descriptions and pictures.

Bell Ringer 02/02/15. Match the stages of mitosis to their descriptions and pictures. Match the stages of mitosis to their descriptions and pictures. 1. Nuclear membrane disappears and chromosomes condense 2. Nuclear membrane reappears and cells begin to fully separate Bell Ringer 02/02/15

More information

Cell Division. Binary Fission, Mitosis & Meiosis 2/9/2016. Dr. Saud Alamri

Cell Division. Binary Fission, Mitosis & Meiosis 2/9/2016. Dr. Saud Alamri Cell Division Binary Fission, Mitosis & Meiosis 1 Prokaryotic cells reproduce asexually by a type of cell division called binary fission 2 Prokaryotic chromosome Division into two daughter cells Plasma

More information

Meiosis * OpenStax. This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0.

Meiosis * OpenStax. This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0. OpenStax-CNX module: m45466 1 Meiosis * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section, you will be able to: Abstract

More information

Mitosis and Meiosis Cell growth and division

Mitosis and Meiosis Cell growth and division Mitosis and Meiosis Cell growth and division The larger the cell, the more trouble the cell has moving nutrients and waste across the cell membrane. 1. DNA/information overload As a cell increases in size,

More information