Chromosomes and Inheritance

Size: px
Start display at page:

Download "Chromosomes and Inheritance"

Transcription

1 Chromosomes and Inheritance Overview Number of instructional days: 14 (1 day = 50 minutes) Content to be learned Describe the structure of DNA as a way to demonstrate an understanding of the molecular basis for heredity. Diagram or model the relationship between chromosomes, genes, and DNA, including histones and nucleosomes. Distinguish the stages of mitosis and meiosis and how each contributes to the production of offspring with varying traits. Explain how alteration of the DNA sequence may produce new gene combinations that make little difference, enhance capabilities, or can be harmful to the organism. Understand how humans are affected by environmental factors, such as radiation or chemicals, and how such factors can cause gene mutations. Given a scenario, provide evidence that demonstrates how sexual reproduction results in a great variety of possible gene combinations. Essential questions What are the major components of DNA? How do they relate to the overall function of DNA? How does the molecular structure and packaging of DNA allow for its function in heredity and cell reproduction? How can alteration of chromosomes produce changes that could enhance capabilities or be harmful to the organism? Science processes to be integrated Predict, question, and hypothesize. Use tools and techniques to collect data. Represent, analyze, and interpret data. Use evidence to draw conclusions. Communicate understanding and ideas. Describe how structure affects function. Examine patterns of change. How can environmental factors cause gene mutations in humans? How can mitosis and meiosis each contribute to the production of offspring with varying traits? How does sexual reproduction (meiosis) result in a great variety of possible gene combinations and contribute to natural selection? Bristol-Warren, Little Compton, Portsmouth, Tiverton Public Schools, C-21

2 Chromosomes and Inheritance (14 days) Written Curriculum Grade-Span Expectations LS1 - All living organisms have identifiable structures and characteristics that allow for survival (organisms, populations, & species). LS1 (9-11) FAF+ POC -2 Explain or justify with evidence how the alteration of the DNA sequence may produce new gene combinations that make little difference, enhance capabilities, or can be harmful to the organism (e.g., selective breeding, genetic engineering, mutations). LS1 (9-11) 2 Students demonstrate an understanding of the molecular basis for heredity by 2a describing the DNA structure and relating the DNA sequence to the genetic code. LS1 (Ext) 2 Students demonstrate an understanding of the molecular basis for heredity by 2aa diagramming or modeling the relationship between chromosomes, genes and DNA, including histones and nucleosomes. LS3 - Groups of organisms show evidence of change over time (structures, behaviors, and biochemistry). LS3 (9-11) INQ POC-7 Given a scenario, provide evidence that demonstrates how sexual reproduction results in a great variety of possible gene combinations and contributes to natural selection (e.g., Darwin s finches, isolation of a species, Tay Sach s disease). LS3 (Ext) -7 Students demonstrate an understanding of Natural Selection/ evolution by 7aa distinguishing the stages of mitosis and meiosis and how each contributes to the production of offspring with varying traits LS 4 - Humans are similar to other species in many ways, and yet are unique among LS4 (9-11) NOS+INQ -9 Use evidence to make and support conclusions about the ways that humans or other organisms are affected by environmental factors or heredity (e.g., pathogens, diseases, medical advances, pollution, mutations). LS4 (9-11) 9 Students demonstrate an understanding of how humans are affected by environmental factors and/or heredity by 9a researching scientific information to explain how such things as radiation, chemicals, C-22 Bristol-Warren, Little Compton, Portsmouth, Tiverton Public Schools,

3 Chromosomes and Inheritance (14 days) Biology, Quarter 3, Unit 3.1 Clarifying the Standards Prior Learning In grades K 4, students learned that plants and animals need resources in order to reproduce. They labeled and used pictures to sequence the stages in life cycles of plants and/or animals. They observed changes and recorded data to scientifically draw and label the stages in a life cycle of a familiar plant or animal. In grades 5 6, students compared and contrasted asexual and sexual reproduction. They defined reproduction as a process through which organisms produce offspring. Students described reproduction as being essential for the continuation of a species. They also compared a variety of plant and animal life cycles. By grades 7 8, students furthered their understanding to include genetics. They described and gave examples of various types of asexual reproduction, such as binary fission and fragmentation. Students learned that sexual reproduction involves the combination of genetic material from two parents (e.g., egg/sperm). They described the major changes that occur over time in human development from single cell through embryonic development to new born. Students demonstrated this by identifying the stages of human embryonic development and describing the changes from one stage to the next. They compared and contrasted embryonic development in various life forms, such as humans and chickens. Students went on to compare the patterns of human development after birth to life stages in other species. Current Learning The level of instruction for this unit is both development and reinforcement of previous knowledge. Students demonstrate an understanding of the molecular basis for heredity by describing the structure of DNA. They accomplish this by diagramming or modeling the relationship between chromosomes, genes, and DNA, including histones and nucleosomes. Students go on to explain how alterations in chromosomes may cause changes that make little difference, enhance capabilities or can be harmful to the organism. After establishing this foundational knowledge of DNA structure and packaging, students distinguish the stages of mitosis and meiosis and how each contributes to the production of offspring with varying traits. Given a scenario, students provide evidence that demonstrates how sexual reproduction results in a great variety of possible gene combinations and contributes to natural selection. Students are expected to predict, question, and hypothesize possible outcomes of alteration to the DNA sequence and/or errors that could occur during mitosis/meiosis. They use tools and techniques to collect data regarding the stages of mitosis/meiosis. Students then represent, analyze, and interpret data, using evidence to draw conclusions about cycles (life cycle of cells and/or life cycle of multicellular organisms) in the natural world. All students should be able to communicate understanding and ideas. Early in this unit, students need to establish a clear understanding of the structure and packaging of DNA. Students apply this knowledge as they learn the cell cycle, in particular when they learn about DNA replication prior to mitosis and meiosis. During this unit, students should use their knowledge of DNA structure to understand DNA replication. This knowledge could then be applied to diagram or model a chromosome and to understand the relationship between DNA and chromosomes. As the unit progresses, students apply their knowledge of chromosomes to understanding the stages of mitosis and meiosis. Students could use microscopes with prepared slides of onion root tip or fish blastula Bristol-Warren, Little Compton, Portsmouth, Tiverton Public Schools, C-23

4 Chromosomes and Inheritance (14 days) or view images online or otherwise. In terms of mitosis, they should understand that without mutations the resulting daughter cells are identical (clones). This could be modeled using beads, pipe cleaners, etc. Students should learn about cancer and its relationship to the cell cycle. There are many different ways to introduce this, from viewing slides to investigating checkpoints in interphase. There are even several short videos available that help students to understand and make connections to real-life situations dealing with cancer. In terms of meiosis, the resulting daughter cells are not only haploid, but also contain a variety of gene combinations due to independent assortment and crossing over. This could also be modeled using the same materials. Students should also understand that the combination of two haploid cells (gametes) results in additional genetic variation making sexual reproduction a tremendous source of genetic variety with contributes to natural selection. To wrap up this unit, it might be helpful to allow students the opportunity to compare and contrast these two processes. This could be done in groups or independently though a product such as a poster, brochure, or other visual. During this unit, students might begin to understand the role of mutations in both mitosis and meiosis. This is a good opportunity to introduce the difference between basic DNA mutations (point, frameshift, etc.) and chromosomal mutations (nondisjunction, translocation, etc.). However, they will learn about mutations formally in Unit 3.2. At this time, students should learn how environmental factors, such as radiation or chemicals, could result in such mutations. Coming into high school, students had only a basic understanding of genetic material knowing that it is housed in the nucleus of a (eukaryotic) cell. They had an understanding of asexual versus sexual reproduction, but not at the molecular level. This is the main priority in high school understanding the nature of DNA and chromosomes and their role in reproduction. Future Learning In Unit 3.2, students will explore how DNA can be altered and how this affects genes and heredity. They will apply their knowledge of DNA structure to transcription and translation, looking more specifically at genes and their resulting proteins. Students will also apply this foundational knowledge to their future understanding of selective breeding, genetic engineering, and how genetic mutations occur. Students will rely on the knowledge from this unit throughout upcoming units. They will apply this foundational knowledge in their study of DNA to protein, genetics, and evolution. If students have not yet taken chemistry, they will use their knowledge of hydrogen bonds, covalent bonds, and biological molecules during the course. Additional Findings Although implied, it is not clearly stated that students must understand DNA replication. However, in order to understand the structure of a chromosome, they must understand that DNA has been copied and further that the cell cycle consists of more than just mitosis/meiosis (interphase and cytokinesis must be addressed). The same genetic information is copied in each cell of the new organism is shown as prior knowledge (to cell division / reproduction) on pp. 69, 71, 73, and 75 of Atlas of Science Literacy, Vol. I. Complex interactions among the different kinds of molecules in the cell cause distinct cycles of activities, such as growth and division (Atlas, Vol. 1, p. 73). Commonly held ideas about mutation often carry some misconceptions, such as the whole organism can mutate during their own lifetime. Although this is not inconceivable, it is not what is usually meant by mutation and is irrelevant to the origin of variation and heredity. (Atlas, Vol. 1, p. 70) C-24 Bristol-Warren, Little Compton, Portsmouth, Tiverton Public Schools,

5 Chromosomes and Inheritance (14 days) Biology, Quarter 3, Unit 3.1 There are several incorrect ideas among middle school and high school students regarding sexual reproduction. Students often equate sexual reproduction with copulation (e.g., many students consider in vitro fertilization an example of asexual reproduction). They do not understand that sexual reproduction is the fusion of specialized cells from two parents that does not necessarily require physical contact between the parents. Students often also assume that males of all species are larger and stronger than females and that the offspring produced by asexual reproduction are weaker than those produced by sexual reproduction. Students also assume that mutation and recessive have negative connotations. Using a modeling activity for meiosis that begins with a small set of chromosomes, introduces students to crossing over, and ends after fertilization can help students recognize that genes are discrete entities inherited from both parents. (The Biology Teacher s Handbook, 4th Edition, pp ) Students do not believe that plants are capable of sexual reproduction. Asexual reproduction was thought to be restricted to microorganisms. Students recognize that variation between species occurs, but regard it as a response to environmental conditions rather than due to inheritance. Lack of a precise concept distinguishing sexual reproduction from asexual reproduction appears to preclude an understanding of the origins of variation. Sexual reproduction is not recognized as a source of genetic variation within a population. There was a study done (with 15 year olds) in which only 1% of students gave an accurate explanation of variation, correctly involving reproduction. Several researchers have found that pupils, even before specific teaching, know the word gene and less frequently chromosome. However, pupils appear to understand little of the nature or function of genes and chromosomes, not appreciating that there is a chemical basis to inheritance. (Making Sense of Secondary Science, pp ) Bristol-Warren, Little Compton, Portsmouth, Tiverton Public Schools, C-25

Science 9 Unit 2 pack: Reproduction

Science 9 Unit 2 pack: Reproduction Science 9 Unit 2 pack: Reproduction Name Ch 4: The Nucleus Ch 5: Mitosis Ch 6: Meiosis Students will develop an understanding of the processes of cell division as they pertain to reproduction. 0 Section

More information

Name: Period: EOC Review Part F Outline

Name: Period: EOC Review Part F Outline Name: Period: EOC Review Part F Outline Mitosis and Meiosis SC.912.L.16.17 Compare and contrast mitosis and meiosis and relate to the processes of sexual and asexual reproduction and their consequences

More information

CELL REPRODUCTION NOTES

CELL REPRODUCTION NOTES CELL REPRODUCTION NOTES CELL GROWTH AND DIVISION The adult human body produces roughly cells every day. WHY DO CELLS REPRODUCE? So that the organism can and As multicellular organisms grow larger, its

More information

Heredity and Human Development

Heredity and Human Development Grade 7 Science, Quarter 4, Unit 4.1 Heredity and Human Development Overview Number of instructional days: 15 (1 day = 45 minutes) Content to be learned Select evidence that supports the concept that human

More information

Meiosis & Sexual Reproduction

Meiosis & Sexual Reproduction Meiosis & Sexual Reproduction 2007-2008 Turn in warm ups to basket! Prepare for your test! Get out your mitosis/meiosis foldable After the test: New vocabulary! 2/23/17 Draw and label the parts of the

More information

Cell Division: the process of copying and dividing entire cells The cell grows, prepares for division, and then divides to form new daughter cells.

Cell Division: the process of copying and dividing entire cells The cell grows, prepares for division, and then divides to form new daughter cells. Mitosis & Meiosis SC.912.L.16.17 Compare and contrast mitosis and meiosis and relate to the processes of sexual and asexual reproduction and their consequences for genetic variation. 1. Students will describe

More information

Natural Selection: Genetics of Families and Populations

Natural Selection: Genetics of Families and Populations Biology, Quarter 4, Unit 4.1 Natural Selection: Genetics of Families and Populations Overview Number of instructional days: 12 (1 day = 53 minutes) Content to be learned Explain how information is passed

More information

Chapter 13: Meiosis & Sexual Life Cycles

Chapter 13: Meiosis & Sexual Life Cycles Chapter 13: Meiosis & Sexual Life Cycles What you must know The difference between asexual and sexual reproduction. The role of meiosis and fertilization in sexually reproducing organisms. The importance

More information

Cell Division: the process of copying and dividing entire cells The cell grows, prepares for division, and then divides to form new daughter cells.

Cell Division: the process of copying and dividing entire cells The cell grows, prepares for division, and then divides to form new daughter cells. Mitosis & Meiosis SC.912.L.16.17 Compare and contrast mitosis and meiosis and relate to the processes of sexual and asexual reproduction and their consequences for genetic variation. 1. Students will describe

More information

Unit 6 : Meiosis & Sexual Reproduction

Unit 6 : Meiosis & Sexual Reproduction Unit 6 : Meiosis & Sexual Reproduction 2006-2007 Cell division / Asexual reproduction Mitosis produce cells with same information identical daughter cells exact copies clones same number of chromosomes

More information

Reading Assignments. A. Systems of Cell Division. Lecture Series 5 Cell Cycle & Cell Division

Reading Assignments. A. Systems of Cell Division. Lecture Series 5 Cell Cycle & Cell Division Lecture Series 5 Cell Cycle & Cell Division Reading Assignments Read Chapter 18 Cell Cycle & Cell Death Read Chapter 19 Cell Division Read Chapter 20 pages 659-672 672 only (Benefits of Sex & Meiosis sections)

More information

Lecture Series 5 Cell Cycle & Cell Division

Lecture Series 5 Cell Cycle & Cell Division Lecture Series 5 Cell Cycle & Cell Division Reading Assignments Read Chapter 18 Cell Cycle & Cell Death Read Chapter 19 Cell Division Read Chapter 20 pages 659-672 672 only (Benefits of Sex & Meiosis sections)

More information

CHAPTER 13 MEIOSIS AND SEXUAL LIFE CYCLES. Section A: An Introduction to Heredity

CHAPTER 13 MEIOSIS AND SEXUAL LIFE CYCLES. Section A: An Introduction to Heredity CHAPTER 13 MEIOSIS AND SEXUAL LIFE CYCLES Section A: An Introduction to Heredity 1. Offspring acquire genes from parents by inheriting chromosomes 2. Like begets like, more or less: a comparison of asexual

More information

Cell Division: the process of copying and dividing entire cells The cell grows, prepares for division, and then divides to form new daughter cells.

Cell Division: the process of copying and dividing entire cells The cell grows, prepares for division, and then divides to form new daughter cells. Mitosis & Meiosis SC.912.L.16.17 Compare and contrast mitosis and meiosis and relate to the processes of sexual and asexual reproduction and their consequences for genetic variation. 1. Students will describe

More information

1. The diagram below shows two processes (A and B) involved in sexual reproduction in plants and animals.

1. The diagram below shows two processes (A and B) involved in sexual reproduction in plants and animals. 1. The diagram below shows two processes (A and B) involved in sexual reproduction in plants and animals. Which statement best explains how these processes often produce offspring that have traits not

More information

Sexual and Asexual Reproduction. Cell Reproduction TEST Friday, 11/13

Sexual and Asexual Reproduction. Cell Reproduction TEST Friday, 11/13 Sexual and Asexual Reproduction Cell Reproduction TEST Friday, 11/13 How many chromosomes do humans have? What are Chromosomes? How many chromosomes came from your mom? How many chromosomes came from your

More information

Anaphase, Telophase. Animal cells divide their cytoplasm by forming? Cleavage furrow. Bacteria, Paramecium, Amoeba, etc. reproduce by...

Anaphase, Telophase. Animal cells divide their cytoplasm by forming? Cleavage furrow. Bacteria, Paramecium, Amoeba, etc. reproduce by... The 4 phases of mitosis Animal cells divide their cytoplasm by forming? Bacteria, Paramecium, Amoeba, etc. reproduce by... Cell which after division is identical to the original is called a Prophase, Metaphase,

More information

Unit 2: Cellular Chemistry, Structure, and Physiology Module 5: Cellular Reproduction

Unit 2: Cellular Chemistry, Structure, and Physiology Module 5: Cellular Reproduction Unit 2: Cellular Chemistry, Structure, and Physiology Module 5: Cellular Reproduction NC Essential Standard: 1.2.2 Analyze how cells grow and reproduce in terms of interphase, mitosis, and cytokinesis

More information

Cell Growth, Division and Reproduction

Cell Growth, Division and Reproduction Cell Growth, Division and Reproduction B1 B1. Basic Biological Principles 1. Describe the events that occur during 3 stages of the cell cycle: interphase, nuclear division, cytokinesis. 2. Compare and

More information

Unit 6 Test: The Cell Cycle

Unit 6 Test: The Cell Cycle Name Date Class Mrs. Knight Biology EHS Unit 6 Test: The Cell Cycle 1. What are the four main stages of the cell cycle (correct order)? A. G 1, S, G 0, M C. G 2, S, G 1, M B. G 1, S, G 2, M D. M, G 2,

More information

Cell Growth and Reproduction Module B, Anchor 1

Cell Growth and Reproduction Module B, Anchor 1 Cell Growth and Reproduction Module B, Anchor 1 Key Concepts: - The larger a cell becomes, the more demands the cell places on its DNA. In addition, a larger cell is less efficient in moving nutrients

More information

Name 8 Cell Cycle and Meiosis Test Date Study Guide You must know: The structure of the replicated chromosome. The stages of mitosis.

Name 8 Cell Cycle and Meiosis Test Date Study Guide You must know: The structure of the replicated chromosome. The stages of mitosis. Name 8 Cell Cycle and Meiosis Test Date Study Guide You must know: The structure of the replicated chromosome. The stages of mitosis. The role of kinases and cyclin in the regulation of the cell cycle.

More information

True or false? Comprehension Section The nucleolus directs and controls all of the cell s activities.

True or false? Comprehension Section The nucleolus directs and controls all of the cell s activities. Use with textbook pages 131 132. True or false? Comprehension Section 4.1 Read the statements given below. If the statement is true, write T on the line in front of the statement. If it is false, write

More information

CELL REPRODUCTION VOCABULARY- CHAPTER 8 (33 words)

CELL REPRODUCTION VOCABULARY- CHAPTER 8 (33 words) CELL REPRODUCTION- CHAPTER 8 CELL REPRODUCTION VOCABULARY- CHAPTER 8 (33 words) 1. Chromosome 2. histone 3. chromatid 4. Centromere 5. chromatin 6. autosome 7. Sex chromosome 8. homologous chromosome 9.

More information

Name: Date: Period: Must-Know: Unit 6 (Cell Division) AP Biology, Mrs. Krouse. Topic #1: The Cell Cycle and Mitosis

Name: Date: Period: Must-Know: Unit 6 (Cell Division) AP Biology, Mrs. Krouse. Topic #1: The Cell Cycle and Mitosis Name: Date: Period: Must-Know: Unit 6 (Cell Division) AP Biology, Mrs. Krouse Topic #1: The Cell Cycle and Mitosis 1. What events take place in the cell during interphase? 2. How does the amount of DNA

More information

Chapter 13: Meiosis & Sexual Life Cycles

Chapter 13: Meiosis & Sexual Life Cycles Chapter 13: Meiosis & Sexual Life Cycles What you must know The difference between asexual and sexual reproduction. The role of meiosis and fertilization in sexually reproducing organisms. The importance

More information

Chapter 13: Meiosis and Sexual Life Cycles

Chapter 13: Meiosis and Sexual Life Cycles Name: AP Biology Chapter 13: Meiosis and Sexual Life Cycles 13.1 Offspring acquire genes from parents by inheriting chromosomes 1. Define the following terms: gene locus gamete male gamete female gamete

More information

Mitosis. Meiosis MP3. Why do cells divide? Why Do Cells Need To Divide? Vocab List Chapter 10 & 11. What has to happen before a cell divides? divides?

Mitosis. Meiosis MP3. Why do cells divide? Why Do Cells Need To Divide? Vocab List Chapter 10 & 11. What has to happen before a cell divides? divides? MP3 Vocab List Chapter 10 & 11 Mitosis Anaphase Mitosis Cell Cycle Telophase Cytokinesis Cell Division Metaphase 4 Daughter Cells Prophase Meiosis Diploid Somatic Cells Interphase Haploid Parent Cell Gametes

More information

This is DUE: Come prepared to share your findings with your group.

This is DUE: Come prepared to share your findings with your group. Biology 160 NAME: Reading Guide 11: Population Dynamics, Humans, Part I This is DUE: Come prepared to share your findings with your group. *As before, please turn in only the Critical Thinking questions

More information

What is a sex cell? How are sex cells made? How does meiosis help explain Mendel s results?

What is a sex cell? How are sex cells made? How does meiosis help explain Mendel s results? CHAPTER 6 3 Meiosis SECTION Heredity BEFORE YOU READ After you read this section, you should be able to answer these questions: What is a sex cell? How are sex cells made? How does meiosis help explain

More information

Module B Unit 5 Cell Growth and Reproduction. Mr. Mitcheltree

Module B Unit 5 Cell Growth and Reproduction. Mr. Mitcheltree Module B Unit 5 Cell Growth and Reproduction Mr. Mitcheltree DNA and Genetics - The Cell and Inheritance Gene = group of codons that code for a specific protein Allele = alternate form of a gene A dominant,

More information

1. CHEMISTRY OF LIFE. Tutorial Outline

1. CHEMISTRY OF LIFE. Tutorial Outline Tutorial Outline North Carolina Tutorials are designed specifically for the Common Core State Standards for English language arts, the North Carolina Standard Course of Study for Math, and the North Carolina

More information

Biology, Quarter 4, Unit 4.1. Evolution. Overview

Biology, Quarter 4, Unit 4.1. Evolution. Overview Evolution Overview Number of instructional days: 21 (1 day = 50 minutes) Content to be learned Distinguish between microevolution and macroevolution. Explain how macroevolution accounts for the speciation,

More information

Mitosis & Meiosis. PPT Questions. 4. Why must each new cell get a complete copy of the original cell s DNA?

Mitosis & Meiosis. PPT Questions. 4. Why must each new cell get a complete copy of the original cell s DNA? 1. From where do new cells arise? Mitosis & Meiosis PPT Questions 2. Why does the body constantly make new cells? 3. Is cell division the same in all cells? Explain. 4. Why must each new cell get a complete

More information

Biology Kevin Dees. Chapter 13 Meiosis and Sexual Life Cycles

Biology Kevin Dees. Chapter 13 Meiosis and Sexual Life Cycles Chapter 13 Meiosis and Sexual Life Cycles Reproduction Characteristic of all living things Reproduction also involves the transmission of traits from one generation to the next; inheritance Heredity Latin

More information

Chapter 13 Meiosis and Sexual Life Cycles. Reproduction

Chapter 13 Meiosis and Sexual Life Cycles. Reproduction Chapter 13 Meiosis and Sexual Life Cycles Reproduction Characteristic of all living things Reproduction also involves the transmission of traits from one generation to the next; inheritance Heredity Latin

More information

Meiosis produces haploid gametes.

Meiosis produces haploid gametes. Section 1: produces haploid gametes. K What I Know W What I Want to Find Out L What I Learned Essential Questions How does the reduction in chromosome number occur during meiosis? What are the stages of

More information

Cell Growth, Division, and Reproduction

Cell Growth, Division, and Reproduction Cell Growth, Division, and Reproduction Human Development: Mitosis and Meiosis Division of the Cell Before a cell grows too large, it divides into two new daughter cells in a process called cell division.

More information

Cell Division Practice Test

Cell Division Practice Test Cell Division Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. How does a sex cell differ from a body cell? A. A sex cell does not contain

More information

Meiosis and Sexual Reproduction. Chapter 10. Halving the Chromosome Number. Homologous Pairs

Meiosis and Sexual Reproduction. Chapter 10. Halving the Chromosome Number. Homologous Pairs Meiosis and Sexual Reproduction Chapter 10 Outline Reduction in Chromosome Number Homologous Pairs Meiosis Overview Genetic Recombination Crossing-Over Independent Assortment Fertilization Meiosis I Meiosis

More information

Sexual Reproduction and Genetics

Sexual Reproduction and Genetics 10 Sexual Reproduction and Genetics section 1 Meiosis Before You Read Think about the traits that make people unique. Some people are tall, while others are short. People can have brown, blue, or green

More information

Reproduction and Meiosis. Reproduction

Reproduction and Meiosis. Reproduction Chapter Introduction Lesson 1 Lesson 2 Chapter Wrap-Up Sexual Reproduction and Meiosis Asexual Reproduction Digital Vision Ltd./SuperStock Why do living things reproduce? What do you think? Before you

More information

Meiosis. Activity. Procedure Part I:

Meiosis. Activity. Procedure Part I: Activity The purpose of meiosis, a cell division process, is to create gametes with genetic variability for use in sexual reproduction. These gametes, or the sperm and egg, are then used in the process

More information

#2 How do organisms grow?

#2 How do organisms grow? #2 How do organisms grow? Why doesn t a cell keep growing larger and larger? The larger a cell becomes the more demands the cell places on its DNA. The cell also has trouble moving enough nutrients and

More information

Cell Division Unit Objectives

Cell Division Unit Objectives Cell Division Unit Objectives In this second unit of biology, you will be learning how cells divide. Did you know that your body contains over a trillion cells? Where did all of these cells come from?

More information

Chapter 13. Meiosis & Sexual Reproduction. AP Biology

Chapter 13. Meiosis & Sexual Reproduction. AP Biology Chapter 13. Meiosis & Sexual Reproduction Cell division / Asexual reproduction Mitosis produce cells with same information identical daughter cells exact copies clones same amount of DNA same number of

More information

Oklahoma Academic Standards for Biology I

Oklahoma Academic Standards for Biology I A Correlation of Miller & Levine Biology To the Oklahoma Academic Standards A Correlation of, BIOLOGY I HS-LS1 From Molecules to Organisms: Structures and Processes HS-LS1-1 Students who demonstrate for

More information

Lecture Series 5 Cell Cycle & Cell Division

Lecture Series 5 Cell Cycle & Cell Division Lecture Series 5 Cell Cycle & Cell Division Reading Assignments Read Chapter 18 Cell Cycle & Cell Division Read Chapter 19 pages 651-663 663 only (Benefits of Sex & Meiosis sections these are in Chapter

More information

Name Class Date. KEY CONCEPT Gametes have half the number of chromosomes that body cells have.

Name Class Date. KEY CONCEPT Gametes have half the number of chromosomes that body cells have. Section 1: Chromosomes and Meiosis KEY CONCEPT Gametes have half the number of chromosomes that body cells have. VOCABULARY somatic cell autosome fertilization gamete sex chromosome diploid homologous

More information

Chapter 11 Meiosis and Sexual Reproduction

Chapter 11 Meiosis and Sexual Reproduction Chapter 11 Meiosis and Sexual S Section 1: S Gamete: Haploid reproductive cell that unites with another haploid reproductive cell to form a zygote. S Zygote: The cell that results from the fusion of gametes

More information

Meiosis and Sexual Reproduction Chapter 11. Reproduction Section 1

Meiosis and Sexual Reproduction Chapter 11. Reproduction Section 1 Meiosis and Sexual Reproduction Chapter 11 Reproduction Section 1 Reproduction Key Idea: An individual formed by asexual reproduction is genetically identical to its parent. Asexual Reproduction In asexual

More information

Outline for today s lecture (Ch. 13)

Outline for today s lecture (Ch. 13) Outline for today s lecture (Ch. 13) Sexual and asexual life cycles Meiosis Origins of Genetic Variation Independent assortment Crossing over ( recombination ) Heredity Transmission of traits between generations

More information

5.1. Cells have distinct phases of growth, reproduction, and normal functions. G 1. Cell Growth and Division CHAPTER 5 THE CELL CYCLE KEY CONCEPT

5.1. Cells have distinct phases of growth, reproduction, and normal functions. G 1. Cell Growth and Division CHAPTER 5 THE CELL CYCLE KEY CONCEPT SECTION 5.1 THE CELL CYCLE Study Guide KEY CONCEPT Cells have distinct phases of growth, reproduction, and normal functions. VOCABULARY cell cycle mitosis cytokinesis The cell cycle has four main stages.

More information

Mitosis & Meiosis Practice Test

Mitosis & Meiosis Practice Test Name: DO NOT WRITE ON THIS TEST Class: ALL ID: A Mitosis & Meiosis Practice Test Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make

More information

Lesson Overview Meiosis

Lesson Overview Meiosis 11.4 THINK ABOUT IT As geneticists in the early 1900s applied Mendel s laws, they wondered where genes might be located. They expected genes to be carried on structures inside the cell, but which structures?

More information

Learning Objectives LO 3.7 The student can make predictions about natural phenomena occurring during the cell cycle. [See SP 6.4]

Learning Objectives LO 3.7 The student can make predictions about natural phenomena occurring during the cell cycle. [See SP 6.4] Big Ideas 3.A.2: In eukaryotes, heritable information is passed to the next generation via processes that include the cell cycle and mitosis or meiosis plus fertilization. CHAPTER 13 MEIOSIS AND SEXUAL

More information

LAB 8 EUKARYOTIC CELL DIVISION: MITOSIS AND MEIOSIS

LAB 8 EUKARYOTIC CELL DIVISION: MITOSIS AND MEIOSIS LAB 8 EUKARYOTIC CELL DIVISION: MITOSIS AND MEIOSIS Name: Date: INTRODUCTION BINARY FISSION: Prokaryotic cells (bacteria) reproduce asexually by binary fission. Bacterial cells have a single circular chromosome,

More information

Roles of Cell Division. Reproduction - Like begets like, more or less. Examples of Cell Numbers. Outline Cell Reproduction

Roles of Cell Division. Reproduction - Like begets like, more or less. Examples of Cell Numbers. Outline Cell Reproduction Outline Cell Reproduction 1. Overview of Cell Reproduction 2. Cell Reproduction in Prokaryotes 3. Cell Reproduction in Eukaryotes 1. Chromosomes 2. Cell Cycle 3. Mitosis and Cytokinesis 4. Sexual Life

More information

Heredity Variation Genetics Meiosis

Heredity Variation Genetics Meiosis Genetics Warm Up Exercise: -Using your previous knowledge of genetics, determine what maternal genotype would most likely yield offspring with such characteristics. -Use the genotype that you came up with

More information

TIPS TO PREPARE FOR THE BIOLOGY 2 nd SEMESTER FINAL EXAM:

TIPS TO PREPARE FOR THE BIOLOGY 2 nd SEMESTER FINAL EXAM: TIPS TO PREPARE FOR THE BIOLOGY 2 nd SEMESTER FINAL EXAM: FINAL EXAM DETAILS: 80 questions Multiple choice Will assess your mastery of the biological concepts covered in Units 3 and 4 Will assess your

More information

Biology EOC Review Study Questions

Biology EOC Review Study Questions Biology EOC Review Study Questions Microscopes and Characteristics of Life 1. How do you calculate total magnification on a compound light microscope? 2. What is the basic building block of all living

More information

Sexual Reproduction. The two parent cells needed for sexual reproduction are called gametes. They are formed during a process known as meiosis.

Sexual Reproduction. The two parent cells needed for sexual reproduction are called gametes. They are formed during a process known as meiosis. Sexual Reproduction Recall that asexual reproduction involves only one parent cell. This parent cell divides to produce two daughter cells that are genetically identical to the parent. Sexual reproduction,

More information

Teaching unit: Meiosis: The Steps to Creating Life

Teaching unit: Meiosis: The Steps to Creating Life Lesson Title: Meiosis Teacher s Name: I. Identification Course title: Biology/Life Science Teaching unit: Meiosis: The Steps to Creating Life CDE Standards Addressed: Biology/Life Sciences a. Students

More information

11/18/2016. Meiosis. Dr. Bertolotti. How is meiosis different from mitosis?

11/18/2016. Meiosis. Dr. Bertolotti. How is meiosis different from mitosis? Meiosis Dr. Bertolotti How is meiosis different from mitosis? 1 3 Types of Cell Division 1. Binary fission- cell division in prokaryotes 2. Cell Cycle (with Mitosis)- cell division in eukaryotes to form

More information

BIOLOGY 111. CHAPTER 5: Chromosomes and Inheritance

BIOLOGY 111. CHAPTER 5: Chromosomes and Inheritance BIOLOGY 111 CHAPTER 5: Chromosomes and Inheritance Chromosomes and Inheritance Learning Outcomes 5.1 Differentiate between sexual and asexual reproduction in terms of the genetic variation of the offspring.

More information

CHAPTER 3 VOCABULARY (for now)

CHAPTER 3 VOCABULARY (for now) 3.1 Meiosis CHAPTER 3 VOCABULARY (for now) VOCABULARY WORD VOCABULARY WORD diploid number Independent assortment haploid number gametes homologous chromosomes zygote genetic diversity Crossing over Sexual

More information

MGC New Life Christian Academy

MGC New Life Christian Academy A. Meiosis Main Idea: Meiosis produces haploid gametes. Key Concept: Asexual reproduction involves one parent and produces offspring that are genetically identical to each other and to the parent. Sexual

More information

Cellular Division. copyright cmassengale

Cellular Division. copyright cmassengale Cellular Division 1 Cell Division All cells are derived from pre- existing cells New cells are produced for growth and to replace damaged or old cells Differs in prokaryotes (bacteria) and eukaryotes (protists,

More information

Biology Partnership (A Teacher Quality Grant) Lesson Plan Construction Form

Biology Partnership (A Teacher Quality Grant) Lesson Plan Construction Form Biology Partnership (A Teacher Quality Grant) Lesson Plan Construction Form TITLE: COMPARING MITOSIS AND MEIOSIS LENGTH: 110 MINUTES OR 2 CLASS PERIODS COURSE: GENERAL BIOLOGY COURSE LEVEL: REGULAR BIOLOGY

More information

Warm up. sexual life cycle. 1. Compare sexual to asexual reproduction. 2. What are homologous chromosomes?

Warm up. sexual life cycle. 1. Compare sexual to asexual reproduction. 2. What are homologous chromosomes? Warm up 1. Compare sexual to asexual reproduction. 2. What are homologous chromosomes? 1. Describe what major processes occur during a sexual life cycle. Warm up 1. Describe what occurs during crossing

More information

Biology New Jersey 1. NATURE OF LIFE 2. THE CHEMISTRY OF LIFE. Tutorial Outline

Biology New Jersey 1. NATURE OF LIFE 2. THE CHEMISTRY OF LIFE. Tutorial Outline Tutorial Outline New Jersey Tutorials are designed specifically for the New Jersey Core Curriculum Content Standards to prepare students for the PARCC assessments, the New Jersey Biology Competency Test

More information

Chapter 11: The Continuity of Life: Cellular Reproduction. What is Cellular Reproduction?

Chapter 11: The Continuity of Life: Cellular Reproduction. What is Cellular Reproduction? Chapter 11: The Continuity of Life: Cellular Reproduction What is Cellular Reproduction? Answer: The division of a parent cell into two daughter cells Requirements of Each Daughter Cell: 1) Necessary genomic

More information

Cells & Cell Division

Cells & Cell Division Cells & Cell Division An informative presentation by your wacky science teacher! LG4: Explain basic principles of HEREDITY, including CELL DIVISION (MITOSIS & MEIOSIS). A Question.. What do you, an ant,

More information

CELL CYCLE UNIT GUIDE- Due January 19, 2016

CELL CYCLE UNIT GUIDE- Due January 19, 2016 CELL CYCLE UNIT GUIDE- Due January 19, 2016 Monday Tuesday Wednesday Thursday Friday January 4- No School 5-Cell Cycle/Mitosis 6-Cell Cycle/ Mitosis 7-Mitosis 8-Meiosis Reading Check Quiz #1 sections 5.1-5.5

More information

Mitosis and Meiosis Winter Break Assignment

Mitosis and Meiosis Winter Break Assignment Mitosis and Meiosis Winter Break Assignment AP Biology Objective FOLLOW ALL INSTRUCTIONS CAREFULLY AND BE SURE TO COMPLETE ALL PARTS OF THE ASSIGNMENT! This assignment is worth 100 points (the same as

More information

Meiosis & Sexual Life Cycle

Meiosis & Sexual Life Cycle Chapter 13. Meiosis & Sexual Life Cycle 1 Cell reproduction Mitosis produce cells with same information identical daughter cells exact copies (clones) same amount of DNA same number of chromosomes asexual

More information

Answer Key. Cell Growth and Division

Answer Key. Cell Growth and Division Cell Growth and Division Answer Key SECTION 1. THE CELL CYCLE Cell Cycle: (1) Gap1 (G 1): cells grow, carry out normal functions, and copy their organelles. (2) Synthesis (S): cells replicate DNA. (3)

More information

Meiosis & Sexual Reproduction

Meiosis & Sexual Reproduction Meiosis & Sexual Reproduction 2007-2008 Cell division / Asexual reproduction Mitosis produce cells with same information identical daughter cells exact copies clones same amount of DNA same number of chromosomes

More information

Biology 8 Learning Outcomes

Biology 8 Learning Outcomes Biology 8 Learning Outcomes CELLS (Bio 8-1) I can connect the names, diagrams, and functions of organelles in a cell I know the major differences between plant and animal cells I can explain cell theory

More information

Chapter 13: Meiosis and Sexual Life Cycles Overview: Hereditary Similarity and Variation

Chapter 13: Meiosis and Sexual Life Cycles Overview: Hereditary Similarity and Variation Chapter 13: Meiosis and Sexual Life Cycles Overview: Hereditary Similarity and Variation Living organisms Are distinguished by their ability to reproduce their own kind Biology, 7 th Edition Neil Campbell

More information

biology Slide 1 of 35 End Show Copyright Pearson Prentice Hall

biology Slide 1 of 35 End Show Copyright Pearson Prentice Hall biology 1 of 35 Do Now: Turn in mitosis worksheet Write down your homework http://www.richannel.org/collection s/2013/chromosome#/chromosome -2 http://www.richannel.org/collection s/2013/chromosome#/chromosome

More information

6-10 Sexual reproduction requires special cells (gametes) made by meiosis.

6-10 Sexual reproduction requires special cells (gametes) made by meiosis. Do Now Answer the following questions: For every cell undergoing mitosis, how many cells are created? For a cell with 6 chromosomes, how many chromosomes are in the daughter cells? Why are daughter cells

More information

What is mitosis? -Process in which a cell divides, creating TWO complete Sets of the original cell with the same EXACT genetic Material (DNA)

What is mitosis? -Process in which a cell divides, creating TWO complete Sets of the original cell with the same EXACT genetic Material (DNA) What is mitosis? -Process in which a cell divides, creating TWO complete Sets of the original cell with the same EXACT genetic Material (DNA) Cell Division Produces CLONES with the same # of chromosomes

More information

Name: Date: Hour: Unit Four: Cell Cycle, Mitosis and Meiosis. Monomer Polymer Example Drawing Function in a cell DNA

Name: Date: Hour: Unit Four: Cell Cycle, Mitosis and Meiosis. Monomer Polymer Example Drawing Function in a cell DNA Unit Four: Cell Cycle, Mitosis and Meiosis I. Concept Review A. Why is carbon often called the building block of life? B. List the four major macromolecules. C. Complete the chart below. Monomer Polymer

More information

Biology Unit 6 Chromosomes and Mitosis

Biology Unit 6 Chromosomes and Mitosis Biology Unit 6 Chromosomes and Mitosis 6:1 Chromosomes DNA GENES CHROMATIN/CHROMOSOMES CHROMOSOMES/CHROMATIN are made of units called GENES. GENES are made of a compound called deoxyribonucleic acid or

More information

Chapter 6 Meiosis and Mendel

Chapter 6 Meiosis and Mendel UNIT 3 GENETICS Chapter 6 Meiosis and Mendel 1 hairy ears (hypertrichosis)- due to holandric gene. (Y chromosome)-only occurs in males. Appears in all sons. 2 Polydactyly- having extra fingers Wendy the

More information

Example Items. Biology

Example Items. Biology Example Items iology iology Example Items are a representative set of items for the P. Teachers may use this set of items along with the test blueprint as guides to prepare students for the P. On the last

More information

Guided Notes Unit 4: Cellular Reproduction

Guided Notes Unit 4: Cellular Reproduction Name: Date: Block: Chapter 5: Cell Growth and Division I. Background Guided Notes Unit 4: Cellular Reproduction a. "Where a cell exists, there must have been a preexisting cell..." - Rudolf Virchow b.

More information

Sexual Reproduction and Genetics

Sexual Reproduction and Genetics Sexual Reproduction and Genetics Mitosis is a form of asexual reproduction This means that it only requires 1 organism (ex. Skin cells dividing) For growth and repair in somatic (body) cells! Results

More information

genome a specific characteristic that varies from one individual to another gene the passing of traits from one generation to the next

genome a specific characteristic that varies from one individual to another gene the passing of traits from one generation to the next genetics the study of heredity heredity sequence of DNA that codes for a protein and thus determines a trait genome a specific characteristic that varies from one individual to another gene trait the passing

More information

MITOSIS AND MEIOSIS STUDY GUIDE CREATED BY : Alistaire Rauch (Mr. Galego s Class) Definition of Mitosis and Meiosis (Basic):

MITOSIS AND MEIOSIS STUDY GUIDE CREATED BY : Alistaire Rauch (Mr. Galego s Class) Definition of Mitosis and Meiosis (Basic): MITOSIS AND MEIOSIS STUDY GUIDE CREATED BY : Alistaire Rauch (Mr. Galego s Class) Definition of Mitosis and Meiosis (Basic): Mitosis and Meiosis are basically cycles of cells but they are different in

More information

10.1 Cell Growth, Division, and Reproduction

10.1 Cell Growth, Division, and Reproduction 10.1 Cell Growth, Division, and Reproduction Lesson Objectives Explain the problems that growth causes for cells. Compare asexual and sexual reproduction. Lesson Summary Limits to Cell Size There are two

More information

Q1. The diagram shows some of the cell divisions that occur during human reproduction.

Q1. The diagram shows some of the cell divisions that occur during human reproduction. Q. The diagram shows some of the cell divisions that occur during human reproduction. (a) (i) Name the type of cell division that produces cell D from cell B. () Which organ in the male body produces cell

More information

Dr. Ramesh U4L3 Meiosis

Dr. Ramesh U4L3 Meiosis Dr. Ramesh U4L3 Meiosis The Cell Cycle and Cell Division: MEIOSIS The Cell Cycle and Cell Division KEY CONCEPT: Meiosis Halves the Nuclear Chromosome Content and Generates Diversity Organisms have two

More information

1. The process in which ( ) are produced. 2. Males produce cells and females produce cells through meiosis

1. The process in which ( ) are produced. 2. Males produce cells and females produce cells through meiosis Name: Aim 35: What is Meiosis? Date: I. What is Meiosis? What is Meiosis? Which organisms undergo Meiosis? Where does Meiosis occur? What does Meiosis produce? What is Meiosis also known as? 1. The process

More information

The Process of Cell Division. Lesson Overview. Lesson Overview The Process of Cell Division

The Process of Cell Division. Lesson Overview. Lesson Overview The Process of Cell Division Lesson Overview 10.2 The Process of Cell Division Chromosomes genetic information passed from parent to offspring is carried by chromosomes. Chromosomes enable precise DNA separation during cell division.

More information

Chapter 6: Mendel and Meiosis Meiosis Gamete Production Lecture Guide

Chapter 6: Mendel and Meiosis Meiosis Gamete Production Lecture Guide Chromosomes and Meiosis Specialized cells in the body Chromosomes 2 types: Chapter 6: Mendel and Meiosis Meiosis Gamete Production Lecture Guide (body cells) Makes up your DNA in your body cells passed

More information

Chapter 4 and Chapter 5. Chapter 5

Chapter 4 and Chapter 5. Chapter 5 Chapter 4 and Chapter 5 Summary Chapter 4 The nucleus controls the functions of life. Chromosomes found within the nucleus contain the genes that store the information to make proteins. (4.1) Genetic information

More information

Cell division / Asexual reproduction

Cell division / Asexual reproduction Meiosis & Sexual Reproduction 2007-2008 Cell division / Asexual reproduction Mitosis produce cells with same information identical daughter cells exact copies clones same amount of DNA same number of chromosomes

More information

Chapter 13 Meiosis and Sexual Life Cycles

Chapter 13 Meiosis and Sexual Life Cycles Chapter 13 Meiosis and Sexual Life Cycles Question? Does Like really beget Like? The offspring will resemble the parents, but they may not be exactly like them. This chapter deals with reproduction of

More information