Cell Reproduction Mitosis & Meiosis

Size: px
Start display at page:

Download "Cell Reproduction Mitosis & Meiosis"

Transcription

1 Cell Reproduction Mitosis & Meiosis

2 Outcomes 1. Describe mitosis in detail ( ) interphase, mitosis and cytokinesis (the cell cycle) explain the importance of maintaining chromosome number through the processes of cell and organism reproduction. ( ) Observe, identify and describe the events of the cell cycle. Include: growth, cytokinesis, chromosome behaviour.

3

4 Cell Cycle G1 (Gap 1)- cells carry out normal metabolic activities for day to day functions. S (Synthesis)- DNA is replicated (duplicated, copied). G2 (Gap 2)- cell prepares for cell division by doubling cell organelles.

5 Mitosis (Asexual Reproduction) A stage of the cell cycle that involves the division of the nucleus into two new nuclei that contain identical copies of the genetic information. Mitosis is divided into 4 stages based on the cellular events: Prophase, Metaphase, Anaphase, Telophase. (PMAT) (PMAT - Please Make A Twin) If you include Interphase The Full Cell Cycle (IPMAT I ll Produce Me A Twin)

6 Functions of Mitosis 1. Growth 2. Repair regenerate damaged tissues. 3. Regeneration of entire body parts simpler organisms. 4. Maintenance of the body. Mitosis and cytokinesis occur in our body cells (aka somatic cells)

7 Stages of the Cell Cycle

8 G2 Cell prepared to divide by increasing size and number of organelles. Interphase - G1, S, G2 G1 - Normal period of growth & development for a cell. S- DNA/Chromatin becomes Synthesized or copied (replicated/duplicated)

9 Replication of Chromosomes Replication is the process of duplicating a chromosome Occurs prior to division Replicated copies are called sister chromatids Held together at centromere Occurs in Interphase 9

10 Key Features: 1. A sharp, round nucleus. 2. Any dark staining regions (nucleolus) 3. A more uniform color background for the nucleus Cells that do not divide (like neurons) are always in interphase.

11 Prophase DNA begins to shorten & thicken Now called chromatids/chromosomes Centromeres form Nuclear membrane breaks apart Spindle fibers begin to form

12 Key Features: 1. Nucleus is breaking up, not as circular. 2. The DNA becomes clumpy. Clumpy & Bumpy

13 Metaphase Sister Chromatids (Chromosomes) line up in the Middle Spindle fibers attach to the Centromere (visible)

14 Key Features: 1. Chromosomes are lined up at the Middle.

15 Anaphase Centromeres divide Spindle fibers shorten Sister chromatids separate to opposite ends of the cell.

16 Key Features: 1. The sister chromatids are being pulled apart. They look as though they are reaching for each other. (Help me sister, I don t want to go!!!)

17 Telophase Spindle fibers begin to disappear Chromosomes begin to uncoil Nuclear membrane starts to re-form For the Cell Membrane: Cell plate (plant cell) or Cleavage furrow (animal cell) becomes highly noticeable.

18

19 Cytokinesis (Cell Cutting) The division of the cytoplasm is know as cell cutting. This signals the end of Mitosis. After the cells membrane or wall forms a complete new barrier between the two sister cells. We would say cytokinesis has just occurred. Note: Cytokinesis is therefore not a technical stage in Mitosis/Meiosis; it is a process ends telophase.

20

21 Interphase Prophase Metaphase Anaphase Telophase Interphase

22

23 Mitosis Animation

24 Results of Mitosis Division of nucleus Nuclei are identical to each other Same number & type of chromosomes

25 Asexual Reproduction Offspring are produced from one original organism The DNA between the parent and offspring is identical Mitosis is one form of asexual reproduction Link to Curriculum appendix

26 Cellular Sexual Reproduction Meiosis

27 Sexual Reproduction A type of reproduction in which two sex cells, usually an egg and a sperm, join to form a zygote, which will develop into a new organism with a unique identity.

28 Sexual reproduction results in a great variety, or diversity, of offspring.

29

30

31 Why Do we Need Meiosis? It is the fundamental basis of sexual reproduction Two haploid (n) gametes are brought together through fertilization to form a diploid (2n) zygote 31

32 Fertilization Putting it all together 2n = 6 1n =3 32

33 Facts About Meiosis Follows normal Interphase (G 1, S, G 2 ) Two stages Meiosis I (Reduction Division) Meiosis II Know as: Original cell is diploid (2n) (full number of chromosomes) Four daughter cells produced that are haploid (n) (half the number of X-somes 33

34 More Meiosis Facts Start with 46 duplicated chromosomes (2n) After 1 division - 23 duplicated chromosomes (n) After 2nd division - 23 single chromosomes (n) Occurs in our germ cells that produce gametes 34

35 Produces gametes through gametogenesis (eggs & sperm) Occurs in the testes in males to make sperm (Spermatogenesis) Occurs in the ovaries in females ova/eggs (Oogenesis) 35

36 Meiosis Forms Haploid Gametes Meiosis must reduce the chromosome number by half Fertilization then restores the 2n number from mom from dad child meiosis reduces genetic content too much! The right number! 36

37

38

39 Interphase Same as in Mitosis. Normal life cycle functions of the cell Divided into 3 stages: G1 (Gap 1)- Growth and development S (Synthesis Phase) - DNA is duplicated G2 (Gap 2)- Organelles double in preparation for separation

40 Prophase I DNA begins to shorten & thicken Chromatin now called sister chromatids or chromosomes Centromeres form Nuclear membrane breaks apart Spindle fibers begin to form NEW from Mitosis Sister chromatids find their match (similar chromosome from your other parent) and CROSSING OVER may occur.

41 Tetrads Form in Prophase I Homologous chromosomes (each with sister chromatids) Join to form a TETRAD Called Synapsis 41

42 Homologous Chromosomes Crossing over happens in Prophase 1

43 Crossing-Over Crossing-over multiplies the already huge number of different gamete types produced by independent assortment 43

44 A Replicated Chromosome - Tetrad Gene X Homologs (same genes, different alleles) Sister Chromatids (same genes, same alleles) Homologs separate in meiosis I and therefore different alleles separate. 44

45

46 Metaphase I Homologous Chromosomes (AKA Tetrads two matching pairs of sister chromatids) - line up in middle of cell in HOMOLOGOUS PAIRS Centromeres attach to spindle fibers

47

48 Anaphase I Homologous chromosome pairs separate and move to the poles. NOTE: Sister chromatids are NOT pulled apart The sisters DO NOT separate A pair of sister chromatids move to each ends of cell

49

50 Telophase I May or May Not occur. BUT Cytokinesis does! If it does: Normal telophase, X-somes uncoil, nucleus appears, cell divides. No INTERPHASE i.e. there is No further replication of the DNA

51

52 What we have at this Point - Two new cells are created, each carrying ½ the original # of chromosomes. - These cells are now HAPLOID (n) - normal somatic cells are diploid (2n) - This means each cells now carries only one (duplicated) copy of a homologous chromosome pair.

53 The two new cells are not normally or necessarily the same. They can carry different combinations of genetic information from the parent cell or the other sister cell because of crossing over. Because the chromosome number has decreased at this point meiosis 1 is known as Reduction Division stage of meiosis.

54 Prophase II Similar to mitosis but: Starts with TWO cells instead of one Spindle fibers appear Nucleus disappears (if it reformed)»(just like Mitosis)

55 Prophase II Nuclear envelope fragments. Spindle forms. 55

56 Metaphase II Now - Duplicated sister chromatids/chromosomes line up in middle of cell Spindle fibers attach to centromeres (just like Mitosis)

57 Metaphase II Chromosomes align along equator of cell. 57

58 Anaphase II Centromere divides Sister chromatids separate & move to ends of cell Chromatids are now individual chromosomes»(just like Mitosis)

59 Equator Anaphase II Pole Sister chromatids separate and move to opposite poles. 59

60 Telophase II Spindle fibers disappear Nuclear membranes reform and cytokinesis takes place.»(just like Mitosis) Results in 4 NEW cells Each with ½ the original number of chromosomes and all are unique (NOT like Mitosis)

61 Telophase II Nuclear envelope assembles. Chromosomes decondense. Spindle disappears. Cytokinesis divides cell into two. 61

62 Meiosis Animation

63 In summary: Meiosis Two cells form during meiosis I with half the original number of chromosomes, then in meiosis II both of these cells divide again to separate sister chromatids. These two divisions result in four sex cells (gametes), each with one-half the original number of chromosomes as the parents cell.

64 Gametogenesis Oogenesis or Spermatogenesis 64

65 Spermatogenesis Occurs in the testes Two divisions produce 4 spermatids Spermatids mature into sperm Men produce about 250,000,000 sperm per day 65

66 Spermatogenesis Begins as a diploid (2n) germ cell called a spermatogonium. This cell enlarges and undergoes Meiosis 1 & 2 Final product is 4 haploid (n) spermatid cells. Each cell has equal amount of cytoplasm and the same number of chromosomes Spermatids then move off to the epididymis for maturation. 66

67 Spermatogenesis in the Testes Spermatid 67

68 Spermatogenesis 68

69 Oogenesis Occurs in the ovaries Immature Begins as a diploid (2n) germ cell called an oogonium and then through the two meiotic divisions will create 3 polar bodies that die and 1 healthy egg. Polar bodies die because of unequal division of cytoplasm Immature eggs at the time of birth are called locked in Prophase 1 and called Primary oocytes. 69

70 Starting at puberty, one primary oocyte is selected to mature and be ovulated as a secondary oocyte. Only if fertilization occurs will the final round of meiosis be completed. NOTE: The stages of Meiosis 1 & 2 are not continuous. 70

71 Why the unequal distribution?? To provide the ovum with sufficient nutrients to support the developing zygote in the first few days following fertilization. 71

72 Oogenesis in the Ovaries 72

73 73

74 Comparing Mitosis and Meiosis 74

75 See Page 478 in Text Make Sure you are able to describe and compare the structure differences between sperm and egg. Sizes, energy reserves, mitochondria, numbers produced, motility, and additional structures (acrosomes) 75

76 Comparison of Divisions Mitosis Meiosis Number of divisions 1 2 Number of daughter cells 2 4 Genetically identical? Yes No Chromosome # Same as parent Half of parent Where Somatic cells Germ cells When Throughout life At sexual maturity Role Growth and repair Sexual reproduction 76

Cellular Division. copyright cmassengale

Cellular Division. copyright cmassengale Cellular Division 1 Cell Division All cells are derived from pre- existing cells New cells are produced for growth and to replace damaged or old cells Differs in prokaryotes (bacteria) and eukaryotes (protists,

More information

KEY CONCEPT Cells have distinct phases of growth, reproduction, and normal functions.

KEY CONCEPT Cells have distinct phases of growth, reproduction, and normal functions. 5.1 10.1 The Cell Cell Growth Cycle KEY CONCEPT Cells have distinct phases of growth, reproduction, and normal functions. 5.1 10.1 The Cell Cell Growth Cycle Why must cells divide? Growth and Repair -

More information

Meiosis. Section 8-3

Meiosis. Section 8-3 Meiosis Section 8-3 Meiosis process of nuclear division that reduces the number of chromosomes in new cells to half the number in the original cell For example, in humans, meiosis produces haploid reproductive

More information

CELL GROWTH AND DIVISION. Chapter 10

CELL GROWTH AND DIVISION. Chapter 10 CELL GROWTH AND DIVISION Chapter 10 Cell division = The formation of 2 daughter cells from a single parent cell Increases ratio of surface area to volume for each cell Allows for more efficient exchange

More information

MEIOSIS. KEY CONCEPT Gametes have half the number of chromosomes that body cells have.

MEIOSIS. KEY CONCEPT Gametes have half the number of chromosomes that body cells have. MEIOSIS MEIOSIS KEY CONCEPT Gametes have half the number of chromosomes that body cells have. MEIOSIS : CELL TYPES You have Body cells and Gametes Body cells are also called somatic cells. Germ cells develop

More information

Asexual vs. Sexual. Biology 3201 Unit II Reproduction How Reproductive Cells are Produced. two parents offspring is unique

Asexual vs. Sexual. Biology 3201 Unit II Reproduction How Reproductive Cells are Produced. two parents offspring is unique Biology 3201 Unit II Reproduction 14.2 How Reproductive Cells are Produced Asexual vs single parent offspring identical to parent parent passes on ALL its genes results in a clone Sexual two parents offspring

More information

CELL DIVISION: MEIOSIS

CELL DIVISION: MEIOSIS CELL DIVISION: MEIOSIS How do Organisms Reproduce? Option 1: Asexual Reproduction Can be done by a single organism without the involvement of gametes (sperm or egg) Offspring are clones of the parent,

More information

Biology Unit 6 Chromosomes and Mitosis

Biology Unit 6 Chromosomes and Mitosis Biology Unit 6 Chromosomes and Mitosis 6:1 Chromosomes DNA GENES CHROMATIN/CHROMOSOMES CHROMOSOMES/CHROMATIN are made of units called GENES. GENES are made of a compound called deoxyribonucleic acid or

More information

Mitosis & Meiosis. PPT Questions. 4. Why must each new cell get a complete copy of the original cell s DNA?

Mitosis & Meiosis. PPT Questions. 4. Why must each new cell get a complete copy of the original cell s DNA? 1. From where do new cells arise? Mitosis & Meiosis PPT Questions 2. Why does the body constantly make new cells? 3. Is cell division the same in all cells? Explain. 4. Why must each new cell get a complete

More information

Reproduction & Cell Types

Reproduction & Cell Types Reproduction & Cell Types TYPES OF REPRODUCTION Asexual Relies on MITOSIS All of the parent s DNA goes to the offspring Sexual Relies on MEIOSIS Used to create sex cells TYPES OF CELLS Body Cells Includes

More information

Sexual Reproduction. The two parent cells needed for sexual reproduction are called gametes. They are formed during a process known as meiosis.

Sexual Reproduction. The two parent cells needed for sexual reproduction are called gametes. They are formed during a process known as meiosis. Sexual Reproduction Recall that asexual reproduction involves only one parent cell. This parent cell divides to produce two daughter cells that are genetically identical to the parent. Sexual reproduction,

More information

Cell Reproduction Review

Cell Reproduction Review Name Date Period Cell Reproduction Review Explain what is occurring in each part of the cell cycle --- G 0, G1, S, G2, and M. 1 CELL DIVISION Label all parts of each cell in the cell cycle and explain

More information

gametes Gametes somatic cells diploid (2n) haploid (n)

gametes Gametes somatic cells diploid (2n) haploid (n) Overview of Meiosis Meiosis is a form of cell division that leads to the production of gametes. Gametes: egg cells and sperm cells (reproductive) -contain half the number of chromosomes of an adult body

More information

You have body cells and gametes Body cells are known as somatic cells. Germ cells develop into gametes or sex cells. Germ cells are located in the

You have body cells and gametes Body cells are known as somatic cells. Germ cells develop into gametes or sex cells. Germ cells are located in the MEIOSIS You have body cells and gametes Body cells are known as somatic cells. Germ cells develop into gametes or sex cells. Germ cells are located in the ovaries and testes. Gametes are sex cells: egg

More information

2:1 Chromosomes DNA Genes Chromatin Chromosomes CHROMATIN: nuclear material in non-dividing cell, composed of DNA/protein in thin uncoiled strands

2:1 Chromosomes DNA Genes Chromatin Chromosomes CHROMATIN: nuclear material in non-dividing cell, composed of DNA/protein in thin uncoiled strands Human Heredity Chapter 2 Chromosomes, Mitosis, and Meiosis 2:1 Chromosomes DNA Genes Chromatin Chromosomes CHROMATIN: nuclear material in non-dividing cell, composed of DNA/protein in thin uncoiled strands

More information

Cell Cycle (mitosis and meiosis) Test Review

Cell Cycle (mitosis and meiosis) Test Review Cell Cycle (mitosis and meiosis) Test Review Name: Chapter 10 1. What problems are caused when a cell becomes too large? When a cell becomes too large the cell is strained and has a hard time moving enough

More information

Biology 067 Section 14 Cell Division. A. Definitions:

Biology 067 Section 14 Cell Division. A. Definitions: Biology 067 Section 14 Cell Division A. Definitions: In a human cell, a nucleus holds all the chromatin that condenses to form chromosomes when cells divide every cell in the body has the same set of chromosomes

More information

Human biology Laboratory. Cell division. Lecturer Maysam A Mezher

Human biology Laboratory. Cell division. Lecturer Maysam A Mezher Human biology Laboratory Cell division Lecturer Maysam A Mezher CHROMOSOME STRUCTURE 1. During nuclear division, the DNA (as chromatin) in a Eukaryotic cell's nucleus is coiled into very tight compact

More information

Meiosis. The form of cell division by which gametes, with half the regular number of chromosomes, are produced.

Meiosis. The form of cell division by which gametes, with half the regular number of chromosomes, are produced. MEIOSIS Meiosis The form of cell division by which gametes, with half the regular number of chromosomes, are produced. diploid (2n) haploid (n) (complete set of chromosomes) (half the regular number of

More information

MGC New Life Christian Academy

MGC New Life Christian Academy A. Meiosis Main Idea: Meiosis produces haploid gametes. Key Concept: Asexual reproduction involves one parent and produces offspring that are genetically identical to each other and to the parent. Sexual

More information

Almost all human cells contain 46 chromosomes, and are diploid (2n). Q: If a sperm cell has 46 chromosomes (2n) & an egg cell has 46 chromosomes

Almost all human cells contain 46 chromosomes, and are diploid (2n). Q: If a sperm cell has 46 chromosomes (2n) & an egg cell has 46 chromosomes Almost all human cells contain 46 chromosomes, and are diploid (2n). Q: If a sperm cell has 46 chromosomes (2n) & an egg cell has 46 chromosomes (2n), when they combine during fertilization, how many chromosomes

More information

Mitosis and. Meiosis. Presented by Kesler Science

Mitosis and. Meiosis. Presented by Kesler Science Mitosis and Meiosis Presented by Kesler Science Essential Questions: 1. What are mitosis and meiosis? 2. What occurs at different phases in cell division? 3. How are mitosis and meiosis similar and different?

More information

Meiosis and Sexual Reproduction

Meiosis and Sexual Reproduction Meiosis and Sexual Reproduction Asexual Reproduction Single parent produces offspring All offspring are genetically identical to one another and to parent Produces identical somatic (body) cells Sexual

More information

Mitosis and Meiosis for AP Biology

Mitosis and Meiosis for AP Biology Mitosis and Meiosis for AP Biology by Mark Anestis Practice problems for these concepts can be found at : Cell Division Review Questions for AP Biology Mitosis During mitosis, the fourth stage of the cell

More information

Meiosis B-4.5. Summarize the characteristics of the phases of meiosis I and meiosis II.

Meiosis B-4.5. Summarize the characteristics of the phases of meiosis I and meiosis II. Meiosis B-4.5 Summarize the characteristics of the phases of meiosis I and meiosis II. Key Concepts Daughter cells Diploid Haploid Zygote Gamete Meiosis I vs. Meiosis II What You Already Know This concept

More information

MEIOSIS CELL DIVISION Chapter

MEIOSIS CELL DIVISION Chapter Section 6.1: Meiosis MEIOSIS CELL DIVISION Chapter 6.1 6.2 WHAT DETERMINES WHAT YOU LOOK LIKE? Meiosis Animation Meiosis creates 4 genetically different gametes (haploid) Mitosis creates 2 identical daughter

More information

MEIOSIS LAB INTRODUCTION PART I: MEIOSIS

MEIOSIS LAB INTRODUCTION PART I: MEIOSIS MEIOSIS LAB INTRODUCTION Meiosis involves two successive nuclear divisions that produce four haploid cells. Meiosis I is the reduction division. It is this first division that reduces the chromosome number

More information

Purposes of Cell Division

Purposes of Cell Division Purposes of Cell Division Increase the number of cells for growth and repair of worn out tissues What examples in the human body can you think of? Transmit genetic information to later generations Why

More information

Meiosis. Two distinct divisions, called meiosis I and meiosis II

Meiosis. Two distinct divisions, called meiosis I and meiosis II Meiosis A process in which the number of chromosomes per cell is cut in half through the separation of homologous chromosomes to form gametes, or sex cells Two distinct divisions, called meiosis I and

More information

The Cell Cycle & Cell Division

The Cell Cycle & Cell Division The Cell Cycle & Cell Division http://www.nobel.se/medicine/laureates/2001/press.html The Cell Cycle Animated Cycle http://www.cellsalive.com/cell_cycle.htm MITOSIS Mitosis The process of cell division

More information

Biology. Chapter 10 Cell Reproduction. I. Chromosomes

Biology. Chapter 10 Cell Reproduction. I. Chromosomes Biology Chapter 10 Cell Reproduction I. Chromosomes Long thin molecules that store genetic information. A. Chromosome Structure 1. Rod shaped structure composed of DNA and protein. 2. DNA is wrapped around

More information

CELL GROWTH & DIVISION. Preview (Honors)

CELL GROWTH & DIVISION. Preview (Honors) CELL GROWTH & DIVISION Mitosis & Meiosis Preview (Honors) Read: Chapter 10-1 Page 256: Define ALL vocabulary Page 257: #1-10 & 14 Page 282: Define Section 11-4 vocabulary 1 Preview (Academic) Read: Chapter

More information

GENERAL SAFETY: Follow your teacher s directions. Do not work in the laboratory without your teacher s supervision.

GENERAL SAFETY: Follow your teacher s directions. Do not work in the laboratory without your teacher s supervision. Name: Bio AP Lab: Cell Division B: Mitosis & Meiosis (Modified from AP Biology Investigative Labs) BACKGROUND: One of the characteristics of living things is the ability to replicate and pass on genetic

More information

11-4 Meiosis Meiosis. Slide 1 of 35. Copyright Pearson Prentice Hall

11-4 Meiosis Meiosis. Slide 1 of 35. Copyright Pearson Prentice Hall 11-4 Meiosis 1 of 35 Each organism must inherit a single copy of every gene from each of its parents. Gametes are formed by a process that separates the two sets of genes so that each gamete ends up with

More information

What is Mitosis? What is the purpose of Mitosis? Growth Repair Asexual reproduction What is the ultimate result of Mitosis?

What is Mitosis? What is the purpose of Mitosis? Growth Repair Asexual reproduction What is the ultimate result of Mitosis? Sexual Reproduction What is Mitosis? What is the purpose of Mitosis? Growth Repair Asexual reproduction What is the ultimate result of Mitosis? http://www.youtube.com/watch?v=1fyfdfdrymq Somatic cells

More information

MEIOSIS DR. A. TARAB DEPT. OF BIOCHEMISTRY HKMU

MEIOSIS DR. A. TARAB DEPT. OF BIOCHEMISTRY HKMU MEIOSIS DR. A. TARAB DEPT. OF BIOCHEMISTRY HKMU Meiosis is a special type of cell division necessary for sexual reproduction in eukaryotes such as animals, plants and fungi The number of sets of chromosomes

More information

11.4 Meiosis. Vocabulary: Homologous Diploid Haploid Meiosis Crossing-over Tetrad

11.4 Meiosis. Vocabulary: Homologous Diploid Haploid Meiosis Crossing-over Tetrad 11.4 Meiosis Vocabulary: Homologous Diploid Haploid Meiosis Crossing-over Tetrad Key Concept: What happens during the process of meiosis? How is MEIOSIS different than mitosis? Blast from the past What

More information

Lesson 1. Cell cycle Chromosomes Mitosis phases

Lesson 1. Cell cycle Chromosomes Mitosis phases Lesson 1 Cell cycle Chromosomes Mitosis phases Organism Diploid chromosome # (2n) in body cells Haploid chromosome # (n) in gametes Human *(memorize) 46 23 Goat 60 30 Guinea pig 64 32 Bat 44 22 Squirrel

More information

Agenda. 1. Lesson Learning Goals 2. Meiosis 3. Meiosis Bingo

Agenda. 1. Lesson Learning Goals 2. Meiosis 3. Meiosis Bingo Meiosis SBI 3U Agenda 1. Lesson Learning Goals 2. Meiosis 3. Meiosis Bingo Learning Goals By the end of today s lesson, you will be able: To use proper vocabulary related to this unit, including meiosis,

More information

9-4 Meiosis Meiosis. Slide 1 of 35

9-4 Meiosis Meiosis. Slide 1 of 35 9-4 Meiosis 11-4 Meiosis 1 of 35 11-4 Meiosis Each organism must inherit a single copy of every gene from each of its parents. Gametes are formed by a process that separates the two sets of genes so that

More information

Chapter 11 Meiosis and Sexual Reproduction

Chapter 11 Meiosis and Sexual Reproduction Chapter 11 Meiosis and Sexual S Section 1: S Gamete: Haploid reproductive cell that unites with another haploid reproductive cell to form a zygote. S Zygote: The cell that results from the fusion of gametes

More information

CELL CYCLE, MITOSIS AND MEIOSIS NOTES

CELL CYCLE, MITOSIS AND MEIOSIS NOTES CELL CYCLE, MITOSIS AND MEIOSIS NOTES DNA - Genetic information is stored in the DNA strand in the form of genes. DNA stands for deoxyribose nucleic acid Genes located on the DNA strand 2 Types of DNA

More information

Lesson Overview Meiosis

Lesson Overview Meiosis 11.4 Chromosomes strands of DNA and protein contain the genes. genes are located in specific positions on chromosomes. Humans receive a set (23) of chromosomes from each parent. 23 chromosomes from mom

More information

Cell division / Asexual reproduction

Cell division / Asexual reproduction Cell division / Asexual reproduction Mitosis produces cells with same information identical daughter cells exact copies clones same amount of DNA same number of chromosomes same genetic information Asexual

More information

Topic 8 Mitosis & Meiosis Ch.12 & 13. The Eukaryotic Genome. The Eukaryotic Genome. The Eukaryotic Genome

Topic 8 Mitosis & Meiosis Ch.12 & 13. The Eukaryotic Genome. The Eukaryotic Genome. The Eukaryotic Genome Topic 8 Mitosis & Meiosis Ch.12 & 13 The Eukaryotic Genome pp. 244-245,268-269 Genome All of the genes in a cell. Eukaryotic cells contain their DNA in long linear pieces. In prokaryotic cells, there is

More information

Meiosis. Two distinct divisions, called meiosis I and meiosis II

Meiosis. Two distinct divisions, called meiosis I and meiosis II Meiosis A process in which the number of chromosomes per cell is cut in half through the separation of homologous chromosomes to form gametes, or sex cells Two distinct divisions, called meiosis I and

More information

Sexual Reproduction and Meiosis. Chapter 11

Sexual Reproduction and Meiosis. Chapter 11 Sexual Reproduction and Meiosis Chapter 11 1 Sexual life cycle Made up of meiosis and fertilization Diploid cells Somatic cells of adults have 2 sets of chromosomes Haploid cells Gametes (egg and sperm)

More information

MEIOSIS. Stages of Meiosis, Gametogenesis, Sex Determination, & Abnormalities.

MEIOSIS. Stages of Meiosis, Gametogenesis, Sex Determination, & Abnormalities. MEIOSIS Stages of Meiosis, Gametogenesis, Sex Determination, & Abnormalities. Stages and Steps of Meiosis Interphase Same as in Mitosis 3 stages G1, S, G2 DNA replication and cell growth Meiosis I Prophase

More information

Cellular Reproduction

Cellular Reproduction Cellular Reproduction Ratio of Surface Area to Volume As the cell grows, its volume increases much more rapidly than the surface area. The cell might have difficulty supplying nutrients and expelling enough

More information

Cell Division: the process of copying and dividing entire cells The cell grows, prepares for division, and then divides to form new daughter cells.

Cell Division: the process of copying and dividing entire cells The cell grows, prepares for division, and then divides to form new daughter cells. Mitosis & Meiosis SC.912.L.16.17 Compare and contrast mitosis and meiosis and relate to the processes of sexual and asexual reproduction and their consequences for genetic variation. 1. Students will describe

More information

CELL REPRODUCTION NOTES

CELL REPRODUCTION NOTES CELL REPRODUCTION NOTES CELL GROWTH AND DIVISION The adult human body produces roughly cells every day. WHY DO CELLS REPRODUCE? So that the organism can and As multicellular organisms grow larger, its

More information

MEIOSIS. Making gametes

MEIOSIS.  Making gametes MEIOSIS http://waynesword.palomar.edu/lmexer2a.htm Making gametes Remember from Chapter 1: CHARACTERISTICS OF LIVING THINGS ALL LIVING THINGS REPRODUCE Planaria animation: http://www.t3.rim.or.jp/~hylas/planaria/title.htm

More information

Sexual Cell Reproduction Chapter 17

Sexual Cell Reproduction Chapter 17 Sexual Cell Reproduction Chapter 17 1 The Importance of Meiosis Meiosis is a two stage cell division in which the chromosome number of the parental cell is reduced by half. Meiosis is the process by which

More information

Meiosis Production of Chromosome Hybrids & Gametes. Packet #29

Meiosis Production of Chromosome Hybrids & Gametes. Packet #29 Meiosis Production of Chromosome Hybrids & Gametes Packet #29 Introduction Meiosis, discovered in 1883, was first observed through the fertilized egg and individual gametes, sperm and unfertilized egg,

More information

Sexual Reproduction Science 9- Mr. Klasz

Sexual Reproduction Science 9- Mr. Klasz Sexual Reproduction Science 9- Mr. Klasz Why sexual reproduction? Imagine a world where everyone was IDENTICAL. If we reproduced asexually, that would be our world Boring! Asexual Reproduction vs. Sexual

More information

Intitial Question: How can the mathematically impossible become the biologically possiblenamely,

Intitial Question: How can the mathematically impossible become the biologically possiblenamely, Intitial Question: How can the mathematically impossible become the biologically possiblenamely, a cell with 46 chromosomes splits to form tow cells each with 46 chromosomes/ This means 46 divided by 2

More information

CELL REPRODUCTION VOCABULARY- CHAPTER 8 (33 words)

CELL REPRODUCTION VOCABULARY- CHAPTER 8 (33 words) CELL REPRODUCTION- CHAPTER 8 CELL REPRODUCTION VOCABULARY- CHAPTER 8 (33 words) 1. Chromosome 2. histone 3. chromatid 4. Centromere 5. chromatin 6. autosome 7. Sex chromosome 8. homologous chromosome 9.

More information

Meiosis: M-Phase part 2. How is meiosis different from mitosis? Some terms: Some terms: Some terms:

Meiosis: M-Phase part 2. How is meiosis different from mitosis? Some terms: Some terms: Some terms: M-Phase part 2 Meiosis and Cytokinesis Meiosis: A special type of cell division that produces gametes. Cell division that occurs in sex organs. 2 successive nuclear divisions Genetic mistakes (gene and

More information

MEIOSIS 2 consecutive divisions: meiosis I and meiosis II No DNA synthesis (S phase) between the two divisions

MEIOSIS 2 consecutive divisions: meiosis I and meiosis II No DNA synthesis (S phase) between the two divisions CHAPTER 13 Offspring acquire genes from parents by inheriting chromosomes Fertilization and meiosis alternate in sexual life cycles Meiosis reduces the number of chromosome sets from diploid to haploid

More information

2 points: Easy - Chromosomes. 2 points: Easy - Chromosomes. 2 points: Easy - Chromosomes. 2 points: Easy - Chromosomes. 2 points: Easy - Chromosomes

2 points: Easy - Chromosomes. 2 points: Easy - Chromosomes. 2 points: Easy - Chromosomes. 2 points: Easy - Chromosomes. 2 points: Easy - Chromosomes the cell cycle are these cells in? Be sure to hide the Interphase What are the two Chromatids halves of a called? By definition, which cells have ½ the total number of s? Haploid the cell cycle is this

More information

BW #16. What are the phases of mitosis in order?

BW #16. What are the phases of mitosis in order? BW #16 What are the phases of mitosis in order? COMPARING MITOSIS & MEIOSIS CELL DIVISION! Cell Cycle.how living things GROW!! Interphase Prophase Metaphase Anaphase Telophase --------------- Cytokinesis

More information

Meiosis. Bởi: OpenStaxCollege

Meiosis. Bởi: OpenStaxCollege Meiosis Bởi: OpenStaxCollege Sexual reproduction requires fertilization, a union of two cells from two individual organisms. If those two cells each contain one set of chromosomes, then the resulting cell

More information

Meiosis and Sexual Reproduction Chapter 11. Reproduction Section 1

Meiosis and Sexual Reproduction Chapter 11. Reproduction Section 1 Meiosis and Sexual Reproduction Chapter 11 Reproduction Section 1 Reproduction Key Idea: An individual formed by asexual reproduction is genetically identical to its parent. Asexual Reproduction In asexual

More information

Why mitosis?

Why mitosis? Mitosis occurs only in eukaryotes. Prokaryotes (i.e., archaea and bacteria) divide via binary fission. Mitosis is the process by which the somatic cells of all multicellular organisms multiply. Somatic

More information

biology Slide 1 of 35 End Show Copyright Pearson Prentice Hall

biology Slide 1 of 35 End Show Copyright Pearson Prentice Hall biology 1 of 35 Do Now: Turn in mitosis worksheet Write down your homework http://www.richannel.org/collection s/2013/chromosome#/chromosome -2 http://www.richannel.org/collection s/2013/chromosome#/chromosome

More information

Anaphase, Telophase. Animal cells divide their cytoplasm by forming? Cleavage furrow. Bacteria, Paramecium, Amoeba, etc. reproduce by...

Anaphase, Telophase. Animal cells divide their cytoplasm by forming? Cleavage furrow. Bacteria, Paramecium, Amoeba, etc. reproduce by... The 4 phases of mitosis Animal cells divide their cytoplasm by forming? Bacteria, Paramecium, Amoeba, etc. reproduce by... Cell which after division is identical to the original is called a Prophase, Metaphase,

More information

Cell Reproduction. Objectives

Cell Reproduction. Objectives Cell Reproduction Lecture 10 Objectives At the end of this series of lectures you should be able to: Define terms. Describe the functions of cellular reproduction. Compare the parent offspring relationship

More information

Answers to Review for Unit Test #3: Cellular Reproduction: Mitosis, Meiosis, Karyotypes and Non-disjunction Disorders

Answers to Review for Unit Test #3: Cellular Reproduction: Mitosis, Meiosis, Karyotypes and Non-disjunction Disorders Answers to Review for Unit Test #3: Cellular Reproduction: Mitosis, Meiosis, Karyotypes and Non-disjunction Disorders 1. Clearly explain the difference between the following: a) chromosomes and chromatin

More information

Lesson Overview Meiosis

Lesson Overview Meiosis 11.4 THINK ABOUT IT As geneticists in the early 1900s applied Mendel s laws, they wondered where genes might be located. They expected genes to be carried on structures inside the cell, but which structures?

More information

BIOLOGY 111. CHAPTER 5: Chromosomes and Inheritance

BIOLOGY 111. CHAPTER 5: Chromosomes and Inheritance BIOLOGY 111 CHAPTER 5: Chromosomes and Inheritance Chromosomes and Inheritance Learning Outcomes 5.1 Differentiate between sexual and asexual reproduction in terms of the genetic variation of the offspring.

More information

4/6/2014. Chromosome Number

4/6/2014. Chromosome Number Meiosis 1of 35 Each organism must inherit a single copy of every gene from each of its parents. Gametes are formed by a process that separates the two sets of genes so that each gamete ends up with just

More information

MEIOSIS & SEXUAL LIFE CYCLES CHAPTER 13

MEIOSIS & SEXUAL LIFE CYCLES CHAPTER 13 MEIOSIS & SEXUAL LIFE CYCLES CHAPTER 13 THE PROBLEM In mitosis, 2 diploid (2n) daughter cells are produced exactly like the parent cell. If these 2n cells united through fertilization, the result would

More information

Meiosis produces haploid gametes.

Meiosis produces haploid gametes. Section 1: produces haploid gametes. K What I Know W What I Want to Find Out L What I Learned Essential Questions How does the reduction in chromosome number occur during meiosis? What are the stages of

More information

Cell Division (Meiosis)

Cell Division (Meiosis) Cell Division (Meiosis) Meiosis The form of cell division by which gametes, with half the number of chromosomes, are produced. Diploid (2n) haploid (n) Meiosis is sexual reproduction. Two divisions (meiosis

More information

11-4 Meiosis Chromosome Number Slide 1 of 35

11-4 Meiosis Chromosome Number Slide 1 of 35 Each organism must inherit a single copy of every gene from each of its parents. Gametes are formed by a process that separates the two sets of genes so that each gamete ends up with just one set. Chromosome

More information

Mitosis and Meiosis Cell growth and division

Mitosis and Meiosis Cell growth and division LIMITS TO CELL GROWTH Mitosis and Meiosis Cell growth and division The larger the cell, the more trouble the cell has moving nutrients and waste across the cell membrane. LIMITS TO CELL GROWTH 1. DNA/information

More information

For a species to survive, it must REPRODUCE! Ch 13 NOTES Meiosis. Genetics Terminology: Homologous chromosomes

For a species to survive, it must REPRODUCE! Ch 13 NOTES Meiosis. Genetics Terminology: Homologous chromosomes For a species to survive, it must REPRODUCE! Ch 13 NOTES Meiosis Genetics Terminology: Autosomes Somatic cell Gamete Karyotype Homologous chromosomes Meiosis Sex chromosomes Diploid Haploid Zygote Synapsis

More information

SCIENCE M E I O S I S

SCIENCE M E I O S I S SCIENCE 9 6. 1 - M E I O S I S OBJECTIVES By the end of the lesson you should be able to: Describe the process of meiosis Compare and contrast meiosis and mitosis Explain why meiosis is needed MEIOSIS

More information

Cellular Reproduction. MXMS 7th Grade Science

Cellular Reproduction. MXMS 7th Grade Science Cellular Reproduction MXMS 7th Grade Science What is cell division? 2 primary methods allow for cells to divide and reproduce themselves: A. Mitosis: produces identical offspring B. Meiosis: produces genetically

More information

Sexual Reproduction ( Cell Division ) - Chromosome # s

Sexual Reproduction ( Cell Division ) - Chromosome # s Sexual Reproduction ( Cell Division ) - Chromosome # s somatic cells: all the cells in the body except for specialized sex cells each somatic cell has a specific # of chromosomes - ( humans have 46, 23

More information

CHAPTER 10 : CELL CYCLE AND CELL DIVISION K C MEENA PGT BIOLOGY KVS

CHAPTER 10 : CELL CYCLE AND CELL DIVISION K C MEENA PGT BIOLOGY KVS CHAPTER 10 : CELL CYCLE AND CELL DIVISION K C MEENA PGT BIOLOGY KVS Cell cycle It is a series of events that takes place in a cell, leading to the formation of two daughter cells from a single mother cell.

More information

Question #1 What must occur in order for Mendel s principles to hold true?

Question #1 What must occur in order for Mendel s principles to hold true? 11.4 Question #1 What must occur in order for Mendel s principles to hold true? An organism with two parents must inherit a single copy of every gene from each parent When that organism produces gametes,

More information

Bell Ringer 02/02/15. Match the stages of mitosis to their descriptions and pictures.

Bell Ringer 02/02/15. Match the stages of mitosis to their descriptions and pictures. Match the stages of mitosis to their descriptions and pictures. 1. Nuclear membrane disappears and chromosomes condense 2. Nuclear membrane reappears and cells begin to fully separate Bell Ringer 02/02/15

More information

Module B Unit 5 Cell Growth and Reproduction. Mr. Mitcheltree

Module B Unit 5 Cell Growth and Reproduction. Mr. Mitcheltree Module B Unit 5 Cell Growth and Reproduction Mr. Mitcheltree DNA and Genetics - The Cell and Inheritance Gene = group of codons that code for a specific protein Allele = alternate form of a gene A dominant,

More information

SEXUAL REPRODUCTION MEIOSIS SPERMATOGENESIS & OOGENESIS 2/6/2011. Asexual Reproduction:

SEXUAL REPRODUCTION MEIOSIS SPERMATOGENESIS & OOGENESIS 2/6/2011. Asexual Reproduction: Asexual Reproduction: SEXUAL REPRODUCTON & MEOSS Many single-celled organisms reproduce by splitting, budding, parthenogenesis. Some multicellular organisms can reproduce asexually, produce clones (offspring

More information

Ch. 10 Sexual Reproduction and Genetics. p

Ch. 10 Sexual Reproduction and Genetics. p Ch. 10 Sexual Reproduction and Genetics p. 270 - 10.1 Meiosis p. 270-276 Essential Question Main Idea! Meiosis produces haploid gametes Where are the instructions for each trait located in a cell?! On

More information

The Cell Cycles Mitosis and Meiosis. Essential question: How do cells reproduce and why?

The Cell Cycles Mitosis and Meiosis. Essential question: How do cells reproduce and why? The Cell Cycles Mitosis and Meiosis Essential question: How do cells reproduce and why? Objectives Section 10.1 Explain why cells divide in terms of growth and cell size Review - Types of Cell Division

More information

CELL DIVISION MITOSIS & MEIOSIS

CELL DIVISION MITOSIS & MEIOSIS CELL DIVISION MITOSIS & MEIOSIS Cell Cycle 2 distinct phases S Chromosome duplication Interphase G 2 Mitotic What's the most important event of interphase? What is significant about DNA in the S and G

More information

Cell Cycle and Mitosis

Cell Cycle and Mitosis Cell Cycle and Mitosis THE CELL CYCLE The cell cycle, or cell-division cycle, is the series of events that take place in a eukaryotic cell between its formation and the moment it replicates itself. These

More information

CLASS XI CHAPTER 10 CELL CYCLE AND CELL DIVISION

CLASS XI CHAPTER 10 CELL CYCLE AND CELL DIVISION CLASS XI CHAPTER 10 CELL CYCLE AND CELL DIVISION Cell cycle It is a series of events that takes place in a cell, leading to the formation of two daughter cells from a single mother cell. Phases of cell

More information

Unit 6 Test: The Cell Cycle

Unit 6 Test: The Cell Cycle Name Date Class Mrs. Knight Biology EHS Unit 6 Test: The Cell Cycle 1. What are the four main stages of the cell cycle (correct order)? A. G 1, S, G 0, M C. G 2, S, G 1, M B. G 1, S, G 2, M D. M, G 2,

More information

http://abiogenisis.deviantart.com http://commons.wikimedia.org Ascaris http://commons.wikimedia.org 1. Why don t people give birth to chickens or cats? 2. How many kids could your parents have before two

More information

Cell Growth, Division and Reproduction

Cell Growth, Division and Reproduction Cell Growth, Division and Reproduction B1 B1. Basic Biological Principles 1. Describe the events that occur during 3 stages of the cell cycle: interphase, nuclear division, cytokinesis. 2. Compare and

More information

Review of Terms. Haploid cells (1n) with one copy of each chromosome. Diploid cells (2n) with two copies of each chromosome

Review of Terms. Haploid cells (1n) with one copy of each chromosome. Diploid cells (2n) with two copies of each chromosome Review of Terms Haploid cells (1n) with one copy of each chromosome Diploid cells (2n) with two copies of each chromosome Somatic non-germline cells Gametes sex cells (eggs and sperm) Reductional division

More information

What is mitosis? -Process in which a cell divides, creating TWO complete Sets of the original cell with the same EXACT genetic Material (DNA)

What is mitosis? -Process in which a cell divides, creating TWO complete Sets of the original cell with the same EXACT genetic Material (DNA) What is mitosis? -Process in which a cell divides, creating TWO complete Sets of the original cell with the same EXACT genetic Material (DNA) Cell Division Produces CLONES with the same # of chromosomes

More information

THE PROCESS OF LIVING THINGS CREATING OFFSPRING.

THE PROCESS OF LIVING THINGS CREATING OFFSPRING. REPRODUCTION 1 THE PROCESS OF LIVING THINGS CREATING OFFSPRING. Offspring are the next generation. It happens on multiple levels for multicellular organisms 2 SPECIES SURVIVAL Think back to 7th grade Organisms

More information

Chapter 11 - Concept Mapping

Chapter 11 - Concept Mapping Chapter 11 - Concept Mapping Using the terms and phrases provided below, complete the concept map showing the process of meiosis. chromatids crossing-over haploid sperm and ovum homologous chromosomes

More information

Key Concepts. n Cell Cycle. n Interphase. n Mitosis. n Cytokinesis

Key Concepts. n Cell Cycle. n Interphase. n Mitosis. n Cytokinesis The Cell Cycle B-2.6: Summarize the characteristics of the cell cycle: interphase (G 1, S, G 2 ); the phases of mitosis (prophase, metaphase, anaphase, telophase); and plant and animal cytokinesis. Key

More information

Sexual Reproduction and Meiosis. Outline. Random?? fertilization. Chapter 13

Sexual Reproduction and Meiosis. Outline. Random?? fertilization. Chapter 13 Sexual Reproduction and Meiosis Chapter 13 Outline Reduction Division Unique Features of Meiosis Prophase I Metaphase I Completing Meiosis Second Meiotic Division Sexual Reproduction Origin and Maintenance

More information

biology Slide 1 of 35 End Show Copyright Pearson Prentice Hall

biology Slide 1 of 35 End Show Copyright Pearson Prentice Hall biology 1 of 35 Why do you look a little like your mom and your dad? Why do you look a little like your grandma but your brother or sister looks a little like your grandpa? How is the way you look and

More information