Complex Population Dynamics in Heterogeneous Environments: Effects of Random and Directed Animal Movements

Size: px
Start display at page:

Download "Complex Population Dynamics in Heterogeneous Environments: Effects of Random and Directed Animal Movements"

Transcription

1 Int. J. Nonlinear Sci. Numer. Simul., Vol.13 (2012), pp Copyright 2012 De Gruyter. DOI /ijnsns Complex Population Dynamics in Heterogeneous Environments: Effects of Random and Directed Animal Movements Vikas Rai, 1 Ranjit Kumar Upadhyay 2; and Nilesh Kumar Thakur 2 1 Department of Mathematics, Faculty of Science, Jazan University, Jazan, Kingdom of Saudi Arabia 2 Department of Applied Mathematics, Indian School of Mines, Dhanbad, India Abstract. In this paper, we have investigated the complex dynamics of a one-dimensional spatial nonlinear coupled reaction-diffusion system with a Holling type IV functional response, akin to standard Michaelis-Menten inhibitory kinetics. Prey-taxis is included in a general reaction-diffusion equation to incorporate the active movement of predator species towards regions with high prey concentrations or if the predator is following some sort of cue (such as odor) to find the prey. We have carried out stability analysis of both the non-spatial model without diffusive spreading and of the spatial model. We performed extensive computer simulations to identify various parameter ranges for stable homogeneous solution. Our findings specifically elucidate the role of predator diffusion and prey-taxis in controlling emergent structures, and transitions towards spatiotemporal chaos. We observe that the increasing predator random movement and moderate value of prey-taxis stabilize the system. Keywords. Spatial plankton system, heterogeneous environment, prey-taxis, spatiotemporal pattern, directional movement. PACS (2010). 92B05, 92C16. 1 Introduction Reaction-diffusion equations have been the subject of intense research due to their rich variety of patterns. Conceptual predator- prey models have successfully been used to elucidate mechanisms of spatiotemporal pattern formation [1 3]. Wolpert [4] gave a clear and non-technical description of mechanisms of pattern formation in animals. * Corresponding author: Ranjit Kumar Upadhyay, Department of Applied Mathematics, Indian School of Mines, Dhanbad, India; ranjit_ism@yahoo.com. Received: January 18, Accepted: March 19, Lee et al. [5, 6] investigate the necessary conditions for pattern formation in prey-taxis systems. They have also detected continuous travelling wave for prey-taxis in a model with Allee effect. One of the most efficient approaches for modeling the spatio-temporal dynamics of the interacting populations is based on the reaction-diffusion- advection equation [7]. The appearance of advection-driven heterogeneity in relation to multispecies interaction was studied by many authors [8 9]. Sapoukhina et al. [10] consider a reaction-diffusion-advection model for the dynamics of populations and investigated the role of prey-taxis in biological control. The advection term represents the movement of predator according to a basic prey-taxis assumption i.e., acceleration of predators is proportional to the prey density gradient. The predation process is divided into random movement described by diffusion and directed movement represented by prey-taxis. Random movement of plankton populations with different velocities can give rise to spatial patterns [11] and the directional movement of zooplankton plays a role in generating patterns in a plankton community model [12] due to the foraging behavior of zooplankton that move towards high phytoplankton density. Lewis [13] studied pattern formation in plant and herbivore dynamics and herbivore-taxis were seen to reduce the likelihood of pattern formation. The pattern formation in prey taxis models is still open to wide investigations. Recently, spatial heterogeneity of species has attracted much attention because it is closely related to the stability and coexistence of species in ecological systems. Two factors concern spatial heterogeneity as well as spatial pattern in which population distributed spatially and individuals interact locally. The first is internal noise which induce spatio-temporal pattern of species in concerning range. The second is predation intensity of species. Spatial heterogeneity and diffusion introduce qualitatively new types of behavior in predator-prey interaction [14]. Random diffusion alone does not usually explain well the movement of animals. Rapid dispersal of predators, modeled as random diffusion, has a stabilizing effect on community dynamics. Spatial heterogeneities [15 19] such as prey density gradients, give rise to prey-taxis. This phenomenon has been found to have a stabilizing effect on the dynamics [6] although these authors employ a different modeling approach. Many biological factors ought to alter the form of predator s functional response and thereby alter the dynamics of the predator and prey populations. The functional response

2 300 V. Rai, R. K. Upadhyay and N. K. Thakur encapsulates attributes of both the prey and predator biology. Hence, the handling time, search efficiency, encounter rate, prey escape ability, etc. should alter, in general, the functional responses [20]. Therefore, predator s functional response may be different when a particular predator preys different prey having different escape ability and in situations a prey is predated by different predators having different hunting ability. The structure of prey habitat is also responsible for changes in the functional responses. We have considered the Holling type IV functional response (also known as Monod Haldane function) which is similar to the Monod (i.e., the Michaelis-Menten) function for low concentrations but includes the inhibitory effect at high concentrations. For large value of predator s immunity from or tolerance of the prey the type IV functional response reduces to type II functional response. Therefore, a model could be more realistic from ecological point of view and interesting from mathematical point of view if one considers different predators functional responses and compares the dynamic effects of these functional responses on spatio temporal patterns. A prey-taxis model was derived by Kareiva and Odell [21], and they studied predator aggregation in high prey density areas. Later the model was applied to estimate the mean travel time of a predator to reach a prey resource [22]. The effect of prey-taxis on biological control and the formation of spatial patterns in two-spotted spider mites have been studied numerically by Chakraborty et al. [23 25]. It has been observed that for different values of prey-taxis the solutions are periodic, quasi-periodic and chaotic. In the present work, prey-taxis is included in a general reaction-diffusion equation to describe the active movement of predator species towards regions with high prey concentration or if the predator is following some sort of cue (such as odor) to find the prey [26]. Animals often use their sense of smell to locate food, identify mates and predators, and find suitable habitats. In both terrestrial and aquatic environments, the instantaneous temporal and spatial distribution of odors is complex and the predator is following some sort of odor to find the prey [27]. The recent work of Koehl [28] helps us in framing the model equations on the basis of empirical grounding. We extend the seminal work of Kareiva and Odell [21] to develop a theory of general movement mechanisms that can be used to address questions about if and how organism can achieve any other spatiotemporal distribution. We have investigated the contribution of prey and predator movements to spatial pattern formation. In particular, we consider foraging behavior of predators moving towards high prey density. We have assumed that the movement of predator is induced by the heterogeneity in the prey distribution and predator tends to aggregate in regions of high prey density. We have explored a new Lotka-Volterra type model system for spatio-temporal patterns and temporal dynamics in heterogeneous environment together with predator acceleration which is proportional to the prey density gradient. The predator s functional response is described by a standard Michaelis-Menten inhibitory kinetics i.e., Holling type IV functional response. Type IV functional responses have not been explored for their effect on pattern formation in reaction-diffusion -advection systems earlier. We specifically elucidate the role of predator diffusion and prey-taxis in controlling emergent structures, and transitions towards spatio-temporal chaos. 2 Model System We consider the dynamics of a general predator-prey model where at any location xand time t, the prey density is denoted by u.x; t/, that of predator by v.x; t/ and w.x; t/ denotes the velocity of predator. The directed component of the predator movement is described by prey-taxis according to the following assumption: the acceleration is proportional to the gradient of prey density. The random movement is represented by diffusion term. It is assumed that the variation of the predator velocity (i.e. acceleration) is determined by the prey density C w:r w D ru; where is the non-negative taxis coefficient. The interactions, e.g., intra-specific competition for space equalize the velocities of neighboring predators [29]. Thus, introducing diffusion in the predator velocity equation, above C w:r w D ru C d 3 r 2 w; where d 3 is the non-negative diffusivity constant of the predator velocity. Since the velocity or its gradient, is sufficiently small, thus neglecting w:rw in the above equation, @x C 2 w ; 2 where u.x; t/ can be thought of the prey density at the position x 2 Œ0; L at time t. w.x; t/ is the instantaneous velocity of the predator population movement defined at each spatial coordinate, is the taxis coefficient of the prey which represents the sensitivity of predators to heterogeneity of the prey density distribution. d 3 the diffusion coefficient for velocity of predator which is interpreted as an effect of social behavior: arrayal forces equalize speeds and directions of neighbors [30]. In the real world setting, above equations describe the gradual speeding up of the directed movement when a prey aggregate is being approached.

3 Complex Population Dynamics in Heterogeneous Environments 301 Our model that describes the dynamics of a predatorprey system with prey-taxis is the following reaction diffusion-advection uv D u.1 2 = / C u C 1 C 2 u 1 2 D 2 v v C d.u 2 2 (1b) = / C u C 2 w 3 2 With zero flux boundary conditions wj xd0;l ˇ ˇ D 0: ˇxD0;L The zero flux boundary condition (2) imply that no external input is imposed from outside. is the parameter measuring the ratio of the predator s immunity from or tolerance of the prey to the half-saturation constant in the absence of any inhibitory effect. At high prey densities, it becomes difficult for predators to identify and catch a prey because of excessive crowding. Half saturation constant is the prey density at which per capita predation rate becomes half its maximum. The predator s immunity results from group defenses or certain activities of the prey. ˇ is the parameter measuring the ratio of product of conversion coefficient with grazing rate to the product of intensity of competition among individuals of prey with carrying capacity, be the per capita predator death rate, d 1 and d 2 are diffusion coefficients of prey and predator. d 3 represents the diffusion coefficient for velocity of predator. 3 Non-spatial Model and its Stability Analysis In this section, we restrict ourselves to the stability analysis of the model system in the absence of diffusion in which only the interaction part of the model system is taken into account. We find the non-negative equilibrium states of the model system and discuss their stability properties with respect to variation of several parameters. We first analyze model System (1a) (1b) without diffusion. In this case, the model system reduces to the form du dt dv dt D ˇ D u.1 u/ uv.u 2 = / C u C 1 (3a) uv v (3b).u 2 = / C u C 1 The non-trivial points.u ;v / are given by u D S ps 2 4 =2; v D.1 u /.u 2 = / C u C 1 ; where S D Œ1.ˇ=/. The non-trivial points exist if S<0in the biologically meaningful domain u 0; v 0 under the constraints (i) ˇ>; (ii) Œ1.ˇ=/ 2 >.4= / and (iii) u <1: (4) The point E 0 is always unstable. E 1 is locally asymptotically stable in uv-plane provided the inequality ˇ=.1 C 2 / < is satisfied. If ˇ=.1 C 2 / >, then the equilibrium point E 1 is a saddle point with stable manifold locally in the u-direction and with unstable manifold locally in the v-direction or a saddle node if ˇ=.1 C 2 / D. In the following theorem, we present the necessary and sufficient conditions for the non-trivial positive equilibrium points E to be locally asymptotically stable. Denote, A D u 1 v. C 2u / ; (5)..u 2 = / C u C 1/ 2 B D ˇu v.1 u 2 = /..u 2 = / C u C 1/ : (6) 3 We present the results in the following Theorem. Theorem 1. The unique non-trivial positive equilibrium point E is locally asymptotically stable if and only if the following inequalities hold: (i) v.2u C / <.u 2 C u C / 2 ; (7) (ii) u 2 < : (8) The proof of this theorem follows from the Routh-Hurwitz criteria, and is omitted. The conditions in eq. (7) and (8) are obtained using the inequalities A>0and B>0. Applying the limit cycle theorem [31] in the model System (3a) (3b), yields the following conditions:..ˇ=/ 1/ 2 >4= and ˇ>: (9) Figure 1 shows the area in.1= /.ˇ=/ plane (as given by eq. (9)) which produces the stable limit cycle solutions. The parameter values for simulation experiments are derived from the shaded area. An oscillatory dynamics in model system for a typical set of parameter values D 0:3; ˇ D 2:33 and D 0:3 is presented in Figure 1. 4 Spatio-temporal Model and its Linear Stability Analysis In this section, we study the effect of diffusion on the model system about the interior equilibrium point. In order to derive the condition of stability for the point of

4 302 V. Rai, R. K. Upadhyay and N. K. Thakur Figure 1. Shaded region which produces stable limit cycle solutions (reproduced from Upadhyay et al. [32]), Time series displaying oscillatory dynamics in model System (3) for a typical set of parameter values drawn from the region marked by shaded area in Figure 1. The parameter values for which oscillatory dynamics was obtained are D 0:3, ˇ D 2:33 and D 0:3. equilibrium with prey-taxis and diffusion, we have considered the lineralized form of the model System (1) about E D.u ;v ;0/with small perturbations U.x;t/;V.x;t/ and W.x;t/ 2 U D a 11 U C a 12 V C 2 D a 21 U C a 22 @x C 2 V 2 C 2 W : 2 (10c) where, a 11 D u 1 v 2 1C2u = = u 2 = Cu C1 ; a 12 D u = u 2 = Cu C1 ; 2 a 21 D ˇv 1 u 2 = = u 2 = Cu C1 ; a22 D 0: Let us assume the Fourier series solutions of system of eq. (10) of the form U.x;t/D X k U k exp.t/ cos kx; (11a) where p D k 2.d 1 C d 2 C d 3 / a 11 q D k 4.d 1 d 2 C d 2 d 3 C d 3 d 1 / k 2.d 2 C d 3 /a 11 a 12 a 21 r D k 2.d 1 d 2 d 3 k 4 a 11 d 2 d 3 k 2 a 12 a 21 d 3 a 12 v /: (13a) (13b) (13c) From Routh Hurwitz criteria, the stability of the equilibrium E in the presence of diffusion and taxis depend on the following conditions. p>0; r>0; pq r>0: (14a) (14b) (14c) From eqs. (12) (13) and using the Routh-Hurwitz criteria, the following theorem follows immediately. Theorem 2. If the conditions (7) and (8) are satisfied the positive equilibrium E is locally asymptotically stable in the presence of diffusion and taxis if and only if V.x;t/D X k W.x;t/D X k V k exp.t/ cos kx; W k exp.t/ sin kx: (11b) (11c) 0 <.u2 C u C / k 2 u v.s C pq/; (15) where s D k 2.a 12 a 21 d 3 C d 2 d 3 k 2.a 11 d 1 k 2 //. where k D n=l is the wave number for the mode n D 0; 1; 2;:::. The characteristic equation of the linearized system is given by 3 C p 2 C q C r D 0 (12) 5 Numerical Simulations The dynamics of the model System (1) is studied with the help of numerical simulation. The step lengths x

5 Complex Population Dynamics in Heterogeneous Environments 303 (c) (d) Figure 2. Space series generated for different values of prey-taxis D 0.05, 0.08, (c) 0.2, (d) 0.4 at fixed set of parameters values D 0:45, ˇ D 0:9, D 0:2, d 1 D 0:01, d 2 D 0:2, d 3 D 0:001. and t of the numerical grid are chosen sufficiently small so that the results are numerically stable. In this section we perform numerical simulations to illustrate the results obtained in previous sections. We choose the set of parameters D 0:45, ˇ D 0:9, D 0:2 for the model System (1). With the above set of parameters, we note that the positive equilibrium E exists, and it is given by.u ;v ;0/ D.0:375; 1:0546; 0:0/. The dynamics of the model System (1) is studied with the help of numerical simulation for one dimensional case. The plots (space vs. population densities) are obtained to study the spatial dynamics of the model systems. The temporal dynamics is studied by observing the effect of time on space vs. density plot of prey and predator populations. Spatiotemporal chaos is generated as a result of breaking the homogeneity and the formation of a non-stationary irregular spatial pattern when the local kinetics of the system is oscillatory for a wide class of initial conditions. In the absence of any spatial gradient, period-doubling bifurcations serve as the generating mechanism for chaos in these model systems. In order to observe the development of chaotic dynamics, we have chosen the value of prey-taxis coefficient greater than its critical value. The stability of the equilibrium point for the model System (1) under such condition is examined. We have studied the influence of prey-taxis parameter and diffusion coefficient d 2 for predator population. For the fixed values of parameters D 0:45, ˇ D 0:9, D 0:2, d 1 D 0:01, d 2 D 0:2, d 3 D 0:001, k D 3=5 the critical value of prey taxis parameter D 0:0741. In Figure 2, we have studied the spatial patterns generated by directed and random movement of predator population at fixed time t D 200. Figures 3 and 4 reflect the temporal dynamics of the model System (1). Finally Figures 5 and 6 show the spatiotemporal evolution of the model System (1). In Figure 2, we have studied the spatial pattern of model System (1) with increasing value of directed movement i.e.,

6 304 V. Rai, R. K. Upadhyay and N. K. Thakur (c) (d) Figure 3. Time series of model System (1) with D 0.05, 0.08, (c) 0.2, (d) 0.4 at fixed set of parameters values D 0:45, ˇ D 0:9, D 0:2, d 1 D 0:01, d 2 D 0:2, d 3 D 0:001. prey-taxis parameter, starting from D 0:05, belowthe critical value to the D 0:4, above the critical value of prey-taxis parameter. We observed that for < 0:0741 the system is stable in the presence of diffusion and prey-taxis and as we go above the critical value the system predicts instability towards a concentration density wave. In Figure 3, we have presented the time series of the model System (1) to observe the effect of prey-taxis starting from stable to unstable range of prey-taxis and for increasing value of predator random movement. The irregular spatial and temporal behaviors of the prey and predator densities of the model system are illustrated in first and second column. From Figure 3 we observed that for the increasing value of prey-taxis system appears to show the emergence of regular temporal oscillation. In Figure 4, we have studied the spatial activity for the model System (1a) (1c). As we increased the value of system size (i.e., x D 4 to 25) and plotted the corresponding time series and phase trajectories for the fixed set of parameters, we observed that the limit cycle changed into irregular temporal oscillations. In the homogeneous environment, population densities experience spatio-temporal chaos (Figures 5 and 6). Once again predator diffusion coefficient acts as a regularizing factor; but the predator species temporal evolution remains irregular even at higher values. The simulation study of the model system in the heterogeneous environment reveals that the prey-taxis and random movement of animal (i.e., predator population) affect the spatial distribution of species. Space-time plots of prey and predator densities display the irregular and complex nature of the dynamics of the model system. These spatiotemporal patterns reflect the effect of prey-taxis at both spatial and temporal scales, and at last we studied the spatial dynamics of the model systems for different value of diffusion coefficients d 2 D 0:1, 0.3, 0.5.

7 Complex Population Dynamics in Heterogeneous Environments 305 (c) Figure 4. Time series (first column) and phase trajectories (second column) of the model System (1) at the fixed set of parameters values D 0:45, ˇ D 0:9, D 0:2, d 1 D 0:01, d 2 D 0:1, d 3 D 0:001, D 0:2 for increasing value of system size x D 4, 10, (c) 25.

8 306 V. Rai, R. K. Upadhyay and N. K. Thakur (c) (d) Figure 5. Complex spatiotemporal patterns of predator density for model System (1) with D 0.05, 0.08, (c)0.2, (d) 0.4 at fixed set of parameters values D 0:45, ˇ D 0:9, D 0:2, d 1 D 0:01, d 2 D 0:2, d 3 D 0:001. In Figure 5, we have shown space-time plots of predator densities which display the irregular and complex nature of the dynamics of the model system with the increase of prey-taxis. These spatiotemporal patterns reflect the effect of environmental heterogeneity at both spatial and temporal scales. In Figure 6, we have studied the complex spatiotemporal patterns of the model systems for different values of diffusion coefficients of the predator population. The diffusion coefficient of predator has an influence over temporal evolution of species. Higher values of diffusion coefficient make the evolution of densities stationary. Lower values favour chaotic dynamics. Higher value of predator random movement is needed to transform irregular and chaotic dynamics into regular one. 6 Discussions and Conclusions Motivated by the competitive/cooperative dynamics of marine plankton, we have considered reaction-diffusionadvection equations for the general predator-prey interaction. We have studied the reaction-diffusion model with prey-taxis in one dimension and investigated its stability. The nontrivial equilibrium state E of prey- predator model is locally asymptotically stable in non-spatial as well as spatial case in the presence of prey-taxis under certain conditions. We observed that prey-taxis affect the predator s ability to maintain the prey density within some economic threshold. The expression in the right hand side of eq. (15) constitutes the critical prey taxis strength. We observed that

9 Complex Population Dynamics in Heterogeneous Environments 307 (c) Figure 6. Complex spatiotemporal patterns of prey density (first column) and predator density (second column) for model System (1) with d 2 D 0.1, 0.3, (c) 0.5 at fixed set of the parameters values D 0:45, ˇ D 0:9, D 0:2, D 0:2, d 1 D 0:01, d 3 D 0:001.

10 308 V. Rai, R. K. Upadhyay and N. K. Thakur for the fixed set of parameters the model System (1) is locally asymptotically stable for < 0:0741. Numericalsimulations suggest that for the moderate value of prey taxis (as D 0:08) the system is even stable. As we increase the value of prey-taxis ( D 0:2; 0:4) the stability is destroyed. Our results reflect that the prey taxis acts as a biological control. It has also been observed that the predator random movement acts as a regularizing factor. Very few reactiondiffusion models consider the effect of active animal movements i.e., movements which are executed by individuals of species in search of better food choices or to optimize the foraging gain (ratio of capture success to energy expenditure). Therefore, directed and random movement of animals acts as a controlling agent of the system. When the gradient of prey density increases, that of predator decreases in the opposite direction. Individuals of prey and predator move in groups. If predator s acceleration is proportional to prey gradient, stable heterogeneous solutions are obtained due to predator searching and feeding activities [33]. In fact, predator acceleration is a function of prey density gradient and also depends on how this function changes in space and time. Still more mechanistically plausible representations of interactions of spatial processes can be thought of and resulting models can be explored. Acknowledgments The authors are grateful to the anonymous referees for their critical review and suggestions that improved the paper. References [1] L. A. Segel, J. L. Jackson, Dissipative structure: An explanation and an ecological example, Journal of Theoretical Biology, 37 (1972), [2] M. Pascual, Diffusion-induced chaos in a spatial predatorprey system, Proceedings of the Royal Society of London Series, B251 (1993), 1 7. [3] H. Malchow, S. V. Petrovskii, E. Venturino, Spatiotemporal Patterns in Ecology and Epidemiology: Theory, Models and Simulation, CRC Press, UK, [4] L. Wolpert, The development of pattern and form in animals, Carolina Biology Readers, 1 (1977), [5] J. M. Lee, T. Hillen, M. A. Lewis, Pattern formation in preytaxis systems, Journal of Biological Dynamics, 3 (2009), [6] J. M. Lee, T. Hillen, M. A. Lewis, Continuous Traveling Waves for Prey-Taxis, Bulletin of Mathematical Biology, 70 (2008), [7] T. Czárán, Spatiotemporal models of population and community dynamics, Chapman & Hall, London, [8] M. Mimura, M. Yamaguti, Pattern formation in interacting and diffusive systems in population biology, Adv. Biophys., 15 (1982), [9] A. Okubo, Diffusion and ecological problems: mathematical models, Biomathematics, 10 (1980), Springer, Berlin. [10] N. Sapoukhina, Y. Tyutyunov, R. Arditi, The Role of Prey Taxis in Biological Control: A Spatial Theoretical Model, American Naturalist, 162 (2003), [11] H. Malchow, Motion instabilities in prey-predator systems, Journal of Theoretical Biology, 204 (2000), [12] H. Malchow, Flow- and locomotion-induced spatial pattern formation in nonlinear population dynamics, Ecological Modelling, 82 (1995), [13] M. A. Lewis, Spatial coupling of plant and herbivore dynamics: the contribution of herbivore dispersal to transient and persistent wave of damage, Theor. Population Biol., 45 (1994), [14] R. K. Upadhyay, N. Kumari, V. Rai, Modeling spatiotemporal dynamics of Vole population in Europe and America, Mathematical Biosciences, 223 (2010), [15] R. S. Cantrell, C. Cosner, Y. Lou, Movement towards better environments and the evolution of rapid diffusion. Math. Biosci., 204 (2006), [16] R. S. Cantrell, C. Cosner, Y. Lou, Evolution of dispersal in heterogeneous landscapes. Spatial Ecology. Editors: R. S. Cantrell, Ch. Cosner, Y. Lou, Chapman and Hall/ CRC (2010), [17] S. M. Flaxman, Y. Lou, F. G. Meyer, Evolutionary Ecology of Movement by predators and prey, Theoretical Ecology, 4 (2011), [18] R. Hambrock, Y. Lou, The Evolution of conditional dispersal strategy in spatially heterogeneous habitats, Bull. Math. Biol., 71 (2009), [19] V. Hutson, Y. Lou, K. Mischaikow. Spatial heterogeneity of resources versus Lotka Volterra Dynamics, J. Diff. Eqs., 185 (2002), [20] D. Alstad, Basic populous models of ecology, Prentice Hall (2001), Englewood Cliffs, New Jersey. [21] P. Kareiva, G. Odell, Swarms of predators exhibit prey taxis if individual predators use area-restricted search, American Naturalist, 130 (1987), [22] D. Grünbaum, Using spatially explicit model to characterize performance in heterogeneous landscape, American Naturalist, 151 (1998), [23] A. Chakraborty, M. Singh, D. Lucy, P. Ridland, Predator prey model with prey-taxis and diffusion, Mathematical and Computer Modelling, 46 (2007), [24] A. Chakraborty, M. Singh, Effect of prey-taxis on the periodicity of predator-prey dynamics, Canadian Applied Mathematics Quarterly, 16 (2008), [25] A. Chakraborty, M. Singh, P. Ridland, Effect of prey-taxis on biological control of the two-spotted spider mite A numerical approach, Mathematical and Computer Modelling, 50 (2009), [26] M. A. R. Koehl, Personal communication (2011). [27] M. A. Reidenbach, M. A. R. Koehl, The spatial and temporal patterns of odors sampled by lobsters and crabs in a turbulent plume. The Journal of Experimental Biology, 214 (2011), [28] M. A. R. Koehl, Hydrodynamics of Sniffing by crustaceans, Chemical communication in crustaceans, (2011), T. Breithaupt and M. Theil (eds.) Springer- Verlag. [29] R. Arditi, Y. Tyutyunov, A. Morgulis, V. Govorukhin, I. Senina, Directed movement of predators and the emergence of density-dependence in predator-prey models. Theoretical Population Biology, 59 (2001),

11 Complex Population Dynamics in Heterogeneous Environments 309 [30] G. Flierl, D. Grünbaum, S. Levin, D. Olson, From individuals to aggregations: the interplay between behavior and physics. Journal of Theoretical Biology, 196 (1999), [31] R. M. May, Stability and complexity in model ecosystems, Princeton University Press (1973), Princeton, New Jersey. [32] R. K. Upadhyay, N. Kumari, V. Rai, Wave of chaos and pattern formation in a spatial predator-prey system with Holling type IV functional response. Mathematical Modeling of Natural Phenomena, 3 (2008), [33] V. N. Govorukhin, A. B. Morgulis, Y. V. Tyutyunov, Slow taxis in a predator-prey model, Doklady Mathematics, 61 (2000),

Turing and Non-Turing patterns in diffusive plankton model

Turing and Non-Turing patterns in diffusive plankton model Computational Ecology and Software 05 5(): 6-7 Article Turing and Non-Turing patterns in diffusive plankton model N. K. Thakur R. Gupta R. K. Upadhyay National Institute of Technology Raipur India Indian

More information

COMPETITION OF FAST AND SLOW MOVERS FOR RENEWABLE AND DIFFUSIVE RESOURCE

COMPETITION OF FAST AND SLOW MOVERS FOR RENEWABLE AND DIFFUSIVE RESOURCE CANADIAN APPLIED MATHEMATICS QUARTERLY Volume 2, Number, Spring 22 COMPETITION OF FAST AND SLOW MOVERS FOR RENEWABLE AND DIFFUSIVE RESOURCE SILOGINI THANARAJAH AND HAO WANG ABSTRACT. In many studies of

More information

Spatiotemporal pattern induced by self and cross-diffusion in a spatial Holling-Tanner model

Spatiotemporal pattern induced by self and cross-diffusion in a spatial Holling-Tanner model Computational Ecology and Software, 0, ():-5 Article Spatiotemporal pattern induced by self and cross-diffusion in a spatial Holling-Tanner model anjit Kumar Upadhyay, N. K. Thakur Department of Applied

More information

Spatiotemporal pattern formation in a prey-predator model under environmental driving forces

Spatiotemporal pattern formation in a prey-predator model under environmental driving forces Home Search Collections Journals About Contact us My IOPscience Spatiotemporal pattern formation in a prey-predator model under environmental driving forces This content has been downloaded from IOPscience.

More information

TURING AND HOPF PATTERNS FORMATION IN A PREDATOR-PREY MODEL WITH LESLIE-GOWER-TYPE FUNCTIONAL RESPONSE

TURING AND HOPF PATTERNS FORMATION IN A PREDATOR-PREY MODEL WITH LESLIE-GOWER-TYPE FUNCTIONAL RESPONSE Dynamics of Continuous, Discrete and Impulsive Systems Series B: Algorithms and Applications 16 2009) 479-488 Copyright c 2009 Watam Press http://www.watam.org TURING AND HOPF PATTERNS FORMATION IN A PREDATOR-PREY

More information

Pattern formation in three species food web model in spatiotemporal domain with Beddington DeAngelis functional response

Pattern formation in three species food web model in spatiotemporal domain with Beddington DeAngelis functional response Nonlinear Analysis: Modelling and Control, 2014, Vol. 19, No. 2, 155 171 155 Pattern formation in three species food web model in spatiotemporal domain with Beddington DeAngelis functional response Randhir

More information

Bifurcation and Stability Analysis of a Prey-predator System with a Reserved Area

Bifurcation and Stability Analysis of a Prey-predator System with a Reserved Area ISSN 746-733, England, UK World Journal of Modelling and Simulation Vol. 8 ( No. 4, pp. 85-9 Bifurcation and Stability Analysis of a Prey-predator System with a Reserved Area Debasis Mukherjee Department

More information

1.Introduction: 2. The Model. Key words: Prey, Predator, Seasonality, Stability, Bifurcations, Chaos.

1.Introduction: 2. The Model. Key words: Prey, Predator, Seasonality, Stability, Bifurcations, Chaos. Dynamical behavior of a prey predator model with seasonally varying parameters Sunita Gakkhar, BrhamPal Singh, R K Naji Department of Mathematics I I T Roorkee,47667 INDIA Abstract : A dynamic model based

More information

Dynamics of Modified Leslie-Gower Predator-Prey Model with Predator Harvesting

Dynamics of Modified Leslie-Gower Predator-Prey Model with Predator Harvesting International Journal of Basic & Applied Sciences IJBAS-IJENS Vol:13 No:05 55 Dynamics of Modified Leslie-Gower Predator-Prey Model with Predator Harvesting K. Saleh Department of Mathematics, King Fahd

More information

The Dynamic Behaviour of the Competing Species with Linear and Holling Type II Functional Responses by the Second Competitor

The Dynamic Behaviour of the Competing Species with Linear and Holling Type II Functional Responses by the Second Competitor , pp. 35-46 http://dx.doi.org/10.14257/ijbsbt.2017.9.3.04 The Dynamic Behaviour of the Competing Species with Linear and Holling Type II Functional Responses by the Second Competitor Alemu Geleta Wedajo

More information

Biological turbulence as a generic mechanism of plankton patchiness

Biological turbulence as a generic mechanism of plankton patchiness Biological turbulence as a generic mechanism of plankton patchiness Sergei Petrovskii Department of Mathematics, University of Leicester, UK... Lorentz Center, Leiden, December 8-12, 214 Plan of the talk

More information

Existence, Uniqueness Solution of a Modified. Predator-Prey Model

Existence, Uniqueness Solution of a Modified. Predator-Prey Model Nonlinear Analysis and Differential Equations, Vol. 4, 6, no. 4, 669-677 HIKARI Ltd, www.m-hikari.com https://doi.org/.988/nade.6.6974 Existence, Uniqueness Solution of a Modified Predator-Prey Model M.

More information

Global Stability Analysis on a Predator-Prey Model with Omnivores

Global Stability Analysis on a Predator-Prey Model with Omnivores Applied Mathematical Sciences, Vol. 9, 215, no. 36, 1771-1782 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ams.215.512 Global Stability Analysis on a Predator-Prey Model with Omnivores Puji Andayani

More information

Wave of Chaos: New Mechanism of Pattern Formation in Spatio-temporal Population Dynamics

Wave of Chaos: New Mechanism of Pattern Formation in Spatio-temporal Population Dynamics Theoretical Population Biology 59, 157174 (2001) doi:10.1006tpbi.2000.1509, available online at http:www.idealibrary.com on Wave of Chaos: New Mechanism of Pattern Formation in Spatio-temporal Population

More information

Chaos and adaptive control in two prey, one predator system with nonlinear feedback

Chaos and adaptive control in two prey, one predator system with nonlinear feedback Chaos and adaptive control in two prey, one predator system with nonlinear feedback Awad El-Gohary, a, and A.S. Al-Ruzaiza a a Department of Statistics and O.R., College of Science, King Saud University,

More information

Prey-Predator Model with a Nonlocal Bistable Dynamics of Prey. Received: 5 February 2018; Accepted: 5 March 2018; Published: 8 March 2018

Prey-Predator Model with a Nonlocal Bistable Dynamics of Prey. Received: 5 February 2018; Accepted: 5 March 2018; Published: 8 March 2018 mathematics Article Prey-Predator Model with a Nonlocal Bistable Dynamics of Prey Malay Banerjee 1, *,, Nayana Mukherjee 1, and Vitaly Volpert 2, 1 Department of Mathematics and Statistics, IIT Kanpur,

More information

PREDATOR-PREY SYSTEM WITH EXTINCTION DYNAMICS YONG-JUNG KIM

PREDATOR-PREY SYSTEM WITH EXTINCTION DYNAMICS YONG-JUNG KIM PREDATOR-PREY SYSTEM WITH EXTINCTION DYNAMICS YONG-JUNG KIM Abstract. Most of population models, if not all of them, do not have the extinction dynamics. The Lotka-Volterra ordinary differential equations

More information

SPIRAL WAVE GENERATION IN A DIFFUSIVE PREDATOR-PREY MODEL WITH TWO TIME DELAYS

SPIRAL WAVE GENERATION IN A DIFFUSIVE PREDATOR-PREY MODEL WITH TWO TIME DELAYS Bull. Korean Math. Soc. 52 (2015), No. 4, pp. 1113 1122 http://dx.doi.org/10.4134/bkms.2015.52.4.1113 SPIRAL WAVE GENERATION IN A DIFFUSIVE PREDATOR-PREY MODEL WITH TWO TIME DELAYS Wenzhen Gan and Peng

More information

Bifurcations and chaos in a predator prey system with the Allee effect

Bifurcations and chaos in a predator prey system with the Allee effect Received 11 February Accepted 5 February Published online May Bifurcations and chaos in a predator prey system with the Allee effect Andrew Morozov 1,, Sergei Petrovskii 1,* and Bai-Lian Li 1 1 Ecological

More information

Physics: spring-mass system, planet motion, pendulum. Biology: ecology problem, neural conduction, epidemics

Physics: spring-mass system, planet motion, pendulum. Biology: ecology problem, neural conduction, epidemics Applications of nonlinear ODE systems: Physics: spring-mass system, planet motion, pendulum Chemistry: mixing problems, chemical reactions Biology: ecology problem, neural conduction, epidemics Economy:

More information

DYNAMICS OF A PREDATOR-PREY INTERACTION IN CHEMOSTAT WITH VARIABLE YIELD

DYNAMICS OF A PREDATOR-PREY INTERACTION IN CHEMOSTAT WITH VARIABLE YIELD Journal of Sustainability Science Management Volume 10 Number 2, December 2015: 16-23 ISSN: 1823-8556 Penerbit UMT DYNAMICS OF A PREDATOR-PREY INTERACTION IN CHEMOSTAT WITH VARIABLE YIELD SARKER MD SOHEL

More information

ROLE OF TIME-DELAY IN AN ECOTOXICOLOGICAL PROBLEM

ROLE OF TIME-DELAY IN AN ECOTOXICOLOGICAL PROBLEM CANADIAN APPLIED MATHEMATICS QUARTERLY Volume 6, Number 1, Winter 1997 ROLE OF TIME-DELAY IN AN ECOTOXICOLOGICAL PROBLEM J. CHATTOPADHYAY, E. BERETTA AND F. SOLIMANO ABSTRACT. The present paper deals with

More information

Models Involving Interactions between Predator and Prey Populations

Models Involving Interactions between Predator and Prey Populations Models Involving Interactions between Predator and Prey Populations Matthew Mitchell Georgia College and State University December 30, 2015 Abstract Predator-prey models are used to show the intricate

More information

On Prey-Predator with Group Defense

On Prey-Predator with Group Defense ISSN 1749-3889 (print) 1749-3897 (online) International Journal of Nonlinear Science Vol.15(013) No.4pp.91-95 On Prey-Predator with Group Defense Ali A Hashem 1 I. Siddique 1 Department of Mathematics

More information

Biological Invasion: Observations, Theory, Models, Simulations

Biological Invasion: Observations, Theory, Models, Simulations Biological Invasion: Observations, Theory, Models, Simulations Sergei Petrovskii Department of Mathematics University of Leicester, UK. Midlands MESS: Leicester, March 13, 212 Plan of the Talk Introduction

More information

Chemotaxis-induced spatio-temporal heterogeneity in multi-species host-parasitoid systems

Chemotaxis-induced spatio-temporal heterogeneity in multi-species host-parasitoid systems J. Math. Biol. (27) 55:365 388 DOI.7/s285-7-88-4 Mathematical Biology Chemotaxis-induced spatio-temporal heterogeneity in multi-species host-parasitoid systems Ian G. Pearce Mark A. J. Chaplain Pietà G.

More information

NUMERICAL SIMULATION DYNAMICAL MODEL OF THREE-SPECIES FOOD CHAIN WITH LOTKA-VOLTERRA LINEAR FUNCTIONAL RESPONSE

NUMERICAL SIMULATION DYNAMICAL MODEL OF THREE-SPECIES FOOD CHAIN WITH LOTKA-VOLTERRA LINEAR FUNCTIONAL RESPONSE Journal of Sustainability Science and Management Volume 6 Number 1, June 2011: 44-50 ISSN: 1823-8556 Universiti Malaysia Terengganu Publisher NUMERICAL SIMULATION DYNAMICAL MODEL OF THREE-SPECIES FOOD

More information

Key words and phrases. Bifurcation, Difference Equations, Fixed Points, Predator - Prey System, Stability.

Key words and phrases. Bifurcation, Difference Equations, Fixed Points, Predator - Prey System, Stability. ISO 9001:008 Certified Volume, Issue, March 013 Dynamical Behavior in a Discrete Prey- Predator Interactions M.ReniSagaya Raj 1, A.George Maria Selvam, R.Janagaraj 3.and D.Pushparajan 4 1,,3 Sacred Heart

More information

The dynamics of disease transmission in a Prey Predator System with harvesting of prey

The dynamics of disease transmission in a Prey Predator System with harvesting of prey ISSN: 78 Volume, Issue, April The dynamics of disease transmission in a Prey Predator System with harvesting of prey, Kul Bhushan Agnihotri* Department of Applied Sciences and Humanties Shaheed Bhagat

More information

HARVESTING IN A TWO-PREY ONE-PREDATOR FISHERY: A BIOECONOMIC MODEL

HARVESTING IN A TWO-PREY ONE-PREDATOR FISHERY: A BIOECONOMIC MODEL ANZIAM J. 452004), 443 456 HARVESTING IN A TWO-PREY ONE-PREDATOR FISHERY: A BIOECONOMIC MODEL T. K. KAR 1 and K. S. CHAUDHURI 2 Received 22 June, 2001; revised 20 September, 2002) Abstract A multispecies

More information

Application of POD-DEIM Approach on Dimension Reduction of a Diffusive Predator-Prey System with Allee effect

Application of POD-DEIM Approach on Dimension Reduction of a Diffusive Predator-Prey System with Allee effect Application of POD-DEIM Approach on Dimension Reduction of a Diffusive Predator-Prey System with Allee effect Gabriel Dimitriu 1, Ionel M. Navon 2 and Răzvan Ştefănescu 2 1 The Grigore T. Popa University

More information

Oscillatory Turing Patterns in a Simple Reaction-Diffusion System

Oscillatory Turing Patterns in a Simple Reaction-Diffusion System Journal of the Korean Physical Society, Vol. 50, No. 1, January 2007, pp. 234 238 Oscillatory Turing Patterns in a Simple Reaction-Diffusion System Ruey-Tarng Liu and Sy-Sang Liaw Department of Physics,

More information

Final Project Descriptions Introduction to Mathematical Biology Professor: Paul J. Atzberger. Project I: Predator-Prey Equations

Final Project Descriptions Introduction to Mathematical Biology Professor: Paul J. Atzberger. Project I: Predator-Prey Equations Final Project Descriptions Introduction to Mathematical Biology Professor: Paul J. Atzberger Project I: Predator-Prey Equations The Lotka-Volterra Predator-Prey Model is given by: du dv = αu βuv = ρβuv

More information

Harvesting Model for Fishery Resource with Reserve Area and Modified Effort Function

Harvesting Model for Fishery Resource with Reserve Area and Modified Effort Function Malaya J. Mat. 4(2)(2016) 255 262 Harvesting Model for Fishery Resource with Reserve Area and Modified Effort Function Bhanu Gupta and Amit Sharma P.G. Department of Mathematics, JC DAV College, Dasuya

More information

THE SINGLE FIELD PROBLEM IN ECOLOGICAL MONITORING PROGRAM

THE SINGLE FIELD PROBLEM IN ECOLOGICAL MONITORING PROGRAM THE SINGLE FIELD PROBLEM IN ECOLOGICAL MONITORING PROGRAM Natalia Petrovskaya School of Mathematics, University of Birmingham, UK Midlands MESS 2011 November 8, 2011 Leicester, UK I. A brief review of

More information

Predator-Prey Model with Ratio-dependent Food

Predator-Prey Model with Ratio-dependent Food University of Minnesota Duluth Department of Mathematics and Statistics Predator-Prey Model with Ratio-dependent Food Processing Response Advisor: Harlan Stech Jana Hurkova June 2013 Table of Contents

More information

SOME ELEMENTARY MECHANISMS FOR CRITICAL TRANSITIONS AND HYSTERESIS IN SIMPLE PREDATOR PREY MODELS. John Vandermeer i. Abstract

SOME ELEMENTARY MECHANISMS FOR CRITICAL TRANSITIONS AND HYSTERESIS IN SIMPLE PREDATOR PREY MODELS. John Vandermeer i. Abstract SOME ELEMENTARY MECHANISMS FOR CRITICAL TRANSITIONS AND HYSTERESIS IN SIMPLE PREDATOR PREY MODELS John Vandermeer i Abstract Trait-mediated indirect effects are increasingly acknowledged as important components

More information

A NUMERICAL STUDY ON PREDATOR PREY MODEL

A NUMERICAL STUDY ON PREDATOR PREY MODEL International Conference Mathematical and Computational Biology 2011 International Journal of Modern Physics: Conference Series Vol. 9 (2012) 347 353 World Scientific Publishing Company DOI: 10.1142/S2010194512005417

More information

Spatiotemporal Dynamics in a Spatial Plankton System

Spatiotemporal Dynamics in a Spatial Plankton System Math. Model. Nat. Phenom. Vol. 5, No. 5, 2010, pp. 102-122 DOI: 10.1051/mmnp/20105507 Spatiotemporal Dynamics in a Spatial Plankton System R. K. Upadhyay 1, W. Wang 2,3 and N. K. Thakur 1 1 Department

More information

Complex dynamics of a three species food-chain model with Holling type IV functional response

Complex dynamics of a three species food-chain model with Holling type IV functional response Nonlinear Analysis: Modelling and Control, 211, Vol. 16, No. 3, 353 374 353 Complex dynamics of a three species food-chain model with Holling type IV functional response Ranjit Kumar Upadhyay, Sharada

More information

The Role of Prey Taxis in Biological Control: A Spatial Theoretical Model

The Role of Prey Taxis in Biological Control: A Spatial Theoretical Model vol. 16, no. 1 the american naturalist july 003 The Role of Prey Taxis in Biological Control: A Spatial Theoretical Model Natalia Sapoukhina, 1,,* Yuri Tyutyunov, 1, and Roger Arditi, 1. Laboratory of

More information

On a Diffusive Prey-Predator Model which Exhibits Patchiness

On a Diffusive Prey-Predator Model which Exhibits Patchiness J. theor. Biol. (1978) 75, 249-262 On a Diffusive Prey-Predator Model which Exhibits Patchiness M. MIMURA Applied Mathematics, Konan University, Kobe, Japan AND J. D. MURRAY Mathematical Institute, Oxford,

More information

Post-bifurcational dynamics of spatiotemporal patterns in advection-reaction-diffusion systems

Post-bifurcational dynamics of spatiotemporal patterns in advection-reaction-diffusion systems Post-bifurcational dynamics of spatiotemporal patterns in advection-reaction-diffusion systems ANTONIOS ZAGARIS UNIVERSITY OF TWENTE APPLIED MATHEMATICS dynamics of pistachio trees dynamics of pistachio

More information

Parameter Sensitivity In A Lattice Ecosystem With Intraguild Predation

Parameter Sensitivity In A Lattice Ecosystem With Intraguild Predation Parameter Sensitivity In A Lattice Ecosystem With Intraguild Predation N. Nakagiri a, K. Tainaka a, T. Togashi b, T. Miyazaki b and J. Yoshimura a a Department of Systems Engineering, Shizuoka University,

More information

Modeling and Simulation Study of Mutuality Interactions with Type II functional Response and Harvesting

Modeling and Simulation Study of Mutuality Interactions with Type II functional Response and Harvesting American Journal of Applied Mathematics 201; 6(3): 109-116 http://www.sciencepublishinggroup.com/j/ajam doi: 10.116/j.ajam.2010603.12 ISSN: 2330-003 (Print); ISSN: 2330-006X (Online) Modeling and Simulation

More information

Stabilization through spatial pattern formation in metapopulations with long-range dispersal

Stabilization through spatial pattern formation in metapopulations with long-range dispersal Stabilization through spatial pattern formation in metapopulations with long-range dispersal Michael Doebeli 1 and Graeme D. Ruxton 2 1 Zoology Institute, University of Basel, Rheinsprung 9, CH^4051 Basel,

More information

VITA EDUCATION. Arizona State University, , Ph.D. Huazhong Univ. of Sci. and Tech., , M.S. Lanzhou University, , B.S.

VITA EDUCATION. Arizona State University, , Ph.D. Huazhong Univ. of Sci. and Tech., , M.S. Lanzhou University, , B.S. VITA Bingtuan Li Department of Mathematics University of Louisville Louisville, KY 40292 Office phone: (502) 852-6149 Fax: (502) 852-7132 E-mail: bing.li@louisville.edu EDUCATION Arizona State University,

More information

11. S. Jang, Dynamics of a discrete host-parasitoid system with stocking, Discrete Dynamics

11. S. Jang, Dynamics of a discrete host-parasitoid system with stocking, Discrete Dynamics Sophia Jang Department of Mathematics and Statistics Texas Tech University Office: MA202 Phone: (806) 834-7006 Fax: (806) 742-1112 E-mail: sophia.jang@ttu.edu Publications 1. M. De Silva, S. Jang, Period-doubling

More information

Dynamical Systems and Chaos Part II: Biology Applications. Lecture 6: Population dynamics. Ilya Potapov Mathematics Department, TUT Room TD325

Dynamical Systems and Chaos Part II: Biology Applications. Lecture 6: Population dynamics. Ilya Potapov Mathematics Department, TUT Room TD325 Dynamical Systems and Chaos Part II: Biology Applications Lecture 6: Population dynamics Ilya Potapov Mathematics Department, TUT Room TD325 Living things are dynamical systems Dynamical systems theory

More information

Stability of Ecosystem Induced by Mutual Interference between Predators

Stability of Ecosystem Induced by Mutual Interference between Predators Available online at www.sciencedirect.com Procedia Environmental Sciences (00) 4 48 International Society for Environmental Information Sciences 00 Annual Conference (ISEIS) Stability of Ecosystem Induced

More information

x 2 F 1 = 0 K 2 v 2 E 1 E 2 F 2 = 0 v 1 K 1 x 1

x 2 F 1 = 0 K 2 v 2 E 1 E 2 F 2 = 0 v 1 K 1 x 1 ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 20, Number 4, Fall 1990 ON THE STABILITY OF ONE-PREDATOR TWO-PREY SYSTEMS M. FARKAS 1. Introduction. The MacArthur-Rosenzweig graphical criterion" of stability

More information

STUDY OF THE DYNAMICAL MODEL OF HIV

STUDY OF THE DYNAMICAL MODEL OF HIV STUDY OF THE DYNAMICAL MODEL OF HIV M.A. Lapshova, E.A. Shchepakina Samara National Research University, Samara, Russia Abstract. The paper is devoted to the study of the dynamical model of HIV. An application

More information

Behaviour of simple population models under ecological processes

Behaviour of simple population models under ecological processes J. Biosci., Vol. 19, Number 2, June 1994, pp 247 254. Printed in India. Behaviour of simple population models under ecological processes SOMDATTA SINHA* and S PARTHASARATHY Centre for Cellular and Molecular

More information

Pattern formation in prey-taxis systems

Pattern formation in prey-taxis systems Journal of Biological Dynamics Vol. 00, No. 00, Month-Month 00x, 1 8 Pattern formation in prey-taxis systems J. M. Lee, T. Hillen and M. A. Lewis Centre for Mathematical Biology and Department of Mathematical

More information

The Evolution of Animal Grouping and Collective Motion

The Evolution of Animal Grouping and Collective Motion The Evolution of Animal Grouping and Collective Motion Vishwesha Guttal and Iain D. Couzin Department of Ecology and Evolutionary Biology, Princeton University Department of Theoretical Physics, Tata Institute

More information

Dynamical Analysis of a Harvested Predator-prey. Model with Ratio-dependent Response Function. and Prey Refuge

Dynamical Analysis of a Harvested Predator-prey. Model with Ratio-dependent Response Function. and Prey Refuge Applied Mathematical Sciences, Vol. 8, 214, no. 11, 527-537 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/12988/ams.214.4275 Dynamical Analysis of a Harvested Predator-prey Model with Ratio-dependent

More information

Analysis of a Prey-Predator System with Modified Transmission Function

Analysis of a Prey-Predator System with Modified Transmission Function Research Paper American Journal of Engineering Research (AJER) e-issn : 2320-0847 p-issn : 2320-0936 Volume-3, Issue-9, pp-194-202 www.ajer.org Open Access Analysis of a Prey-Predator System with Modified

More information

Dynamics of Disease Spread. in a Predator-Prey System

Dynamics of Disease Spread. in a Predator-Prey System Advanced Studies in Biology, vol. 6, 2014, no. 4, 169-179 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/asb.2014.4845 Dynamics of Disease Spread in a Predator-Prey System Asrul Sani 1, Edi Cahyono

More information

The relationships between cannibalism and pattern formation in spatially extended preypredator

The relationships between cannibalism and pattern formation in spatially extended preypredator Remarks on cannibalism and pattern formation in spatially extended prey-predator systems Stefano Fasani 1, Sergio Rinaldi 1 3 1 DEI, Politecnico di Milano Via Ponzio 34/5, 20133 Milano, Italy 2 Evolution

More information

Growth models for cells in the chemostat

Growth models for cells in the chemostat Growth models for cells in the chemostat V. Lemesle, J-L. Gouzé COMORE Project, INRIA Sophia Antipolis BP93, 06902 Sophia Antipolis, FRANCE Valerie.Lemesle, Jean-Luc.Gouze@sophia.inria.fr Abstract A chemostat

More information

A Producer-Consumer Model With Stoichiometry

A Producer-Consumer Model With Stoichiometry A Producer-Consumer Model With Stoichiometry Plan B project toward the completion of the Master of Science degree in Mathematics at University of Minnesota Duluth Respectfully submitted by Laura Joan Zimmermann

More information

Stability analysis of a prey-predator model with a reserved area

Stability analysis of a prey-predator model with a reserved area Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 4, 5(3):93-3 ISSN: 976-86 CODEN (USA): AASRFC Stability analysis of a prey-predator model with a reserved area Neelima

More information

3.5 Competition Models: Principle of Competitive Exclusion

3.5 Competition Models: Principle of Competitive Exclusion 94 3. Models for Interacting Populations different dimensional parameter changes. For example, doubling the carrying capacity K is exactly equivalent to halving the predator response parameter D. The dimensionless

More information

Dynamics on a General Stage Structured n Parallel Food Chains

Dynamics on a General Stage Structured n Parallel Food Chains Memorial University of Newfoundland Dynamics on a General Stage Structured n Parallel Food Chains Isam Al-Darabsah and Yuan Yuan November 4, 2013 Outline: Propose a general model with n parallel food chains

More information

A REMARK ON THE GLOBAL DYNAMICS OF COMPETITIVE SYSTEMS ON ORDERED BANACH SPACES

A REMARK ON THE GLOBAL DYNAMICS OF COMPETITIVE SYSTEMS ON ORDERED BANACH SPACES PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000 000 S 0002-9939(XX)0000-0 A REMARK ON THE GLOBAL DYNAMICS OF COMPETITIVE SYSTEMS ON ORDERED BANACH SPACES KING-YEUNG LAM

More information

Stability Analysis of Predator- Prey Models via the Liapunov Method

Stability Analysis of Predator- Prey Models via the Liapunov Method Stability Analysis of Predator- Prey Models via the Liapunov Method Gatto, M. and Rinaldi, S. IIASA Research Memorandum October 1975 Gatto, M. and Rinaldi, S. (1975) Stability Analysis of Predator-Prey

More information

Self-Organization in Nonequilibrium Systems

Self-Organization in Nonequilibrium Systems Self-Organization in Nonequilibrium Systems From Dissipative Structures to Order through Fluctuations G. Nicolis Universite Libre de Bruxelles Belgium I. Prigogine Universite Libre de Bruxelles Belgium

More information

Global Qualitative Analysis for a Ratio-Dependent Predator Prey Model with Delay 1

Global Qualitative Analysis for a Ratio-Dependent Predator Prey Model with Delay 1 Journal of Mathematical Analysis and Applications 266, 401 419 (2002 doi:10.1006/jmaa.2001.7751, available online at http://www.idealibrary.com on Global Qualitative Analysis for a Ratio-Dependent Predator

More information

Dynamics Analysis of Anti-predator Model on Intermediate Predator With Ratio Dependent Functional Responses

Dynamics Analysis of Anti-predator Model on Intermediate Predator With Ratio Dependent Functional Responses Journal of Physics: Conference Series PAPER OPEN ACCESS Dynamics Analysis of Anti-predator Model on Intermediate Predator With Ratio Dependent Functional Responses To cite this article: D Savitri 2018

More information

Effect of various periodic forces on Duffing oscillator

Effect of various periodic forces on Duffing oscillator PRAMANA c Indian Academy of Sciences Vol. 67, No. 2 journal of August 2006 physics pp. 351 356 Effect of various periodic forces on Duffing oscillator V RAVICHANDRAN 1, V CHINNATHAMBI 1, and S RAJASEKAR

More information

Mathematical Modelling of Plankton-Oxygen Dynamics under the Climate Change. Yadigar Sekerci & Sergei Petrovskii 1

Mathematical Modelling of Plankton-Oxygen Dynamics under the Climate Change. Yadigar Sekerci & Sergei Petrovskii 1 Mathematical Modelling of Plankton-Oxygen Dynamics under the Climate Change Yadigar Sekerci & Sergei Petrovskii Department of Mathematics, University of Leicester, University Road, Leicester LE 7RH, U.K.

More information

2D-Volterra-Lotka Modeling For 2 Species

2D-Volterra-Lotka Modeling For 2 Species Majalat Al-Ulum Al-Insaniya wat - Tatbiqiya 2D-Volterra-Lotka Modeling For 2 Species Alhashmi Darah 1 University of Almergeb Department of Mathematics Faculty of Science Zliten Libya. Abstract The purpose

More information

Ecology 302: Lecture VII. Species Interactions.

Ecology 302: Lecture VII. Species Interactions. Ecology 302: Lecture VII. Species Interactions. (Gotelli, Chapters 6; Ricklefs, Chapter 14-15) MacArthur s warblers. Variation in feeding behavior allows morphologically similar species of the genus Dendroica

More information

Stability Analysis of a Population Dynamics Model with Allee Effect

Stability Analysis of a Population Dynamics Model with Allee Effect Stability Analysis of a Population Dynamics Model with Allee Effect Canan Celik Abstract In this study, we focus on the stability analysis of equilibrium points of population dynamics with delay when the

More information

Pattern Formation, Long-Term Transients, and the Turing Hopf Bifurcation in a Space- and Time-Discrete Predator Prey System

Pattern Formation, Long-Term Transients, and the Turing Hopf Bifurcation in a Space- and Time-Discrete Predator Prey System Bull Math Biol DOI 10.1007/s11538-010-9593-5 ORIGINAL ARTICLE Pattern Formation, Long-Term Transients, and the Turing Hopf Bifurcation in a Space- and Time-Discrete Predator Prey System Luiz Alberto Díaz

More information

14.1. KEY CONCEPT Every organism has a habitat and a niche. 38 Reinforcement Unit 5 Resource Book

14.1. KEY CONCEPT Every organism has a habitat and a niche. 38 Reinforcement Unit 5 Resource Book 14.1 HABITAT AND NICHE KEY CONCEPT Every organism has a habitat and a niche. A habitat is all of the living and nonliving factors in the area where an organism lives. For example, the habitat of a frog

More information

On predator-prey models

On predator-prey models Predator-prey On models ddd Department of Mathematics College of William and Mary Math 41/CSUMS Talk February 3, 1 Collaborators Sze-Bi Hsu (Tsinghua University, Hsinchu, Taiwan) Junjie Wei (Harbin Institute

More information

PULSE-SEASONAL HARVESTING VIA NONLINEAR DELAY DIFFERENTIAL EQUATIONS AND APPLICATIONS IN FISHERY MANAGEMENT. Lev V. Idels

PULSE-SEASONAL HARVESTING VIA NONLINEAR DELAY DIFFERENTIAL EQUATIONS AND APPLICATIONS IN FISHERY MANAGEMENT. Lev V. Idels PULSE-SEASONAL HARVESTING VIA NONLINEAR DELAY DIFFERENTIAL EQUATIONS AND APPLICATIONS IN FISHERY MANAGEMENT Lev V. Idels University-College Professor Mathematics Department Malaspina University-College

More information

Numerical Solution of a Fractional-Order Predator-Prey Model with Prey Refuge and Additional Food for Predator

Numerical Solution of a Fractional-Order Predator-Prey Model with Prey Refuge and Additional Food for Predator 66 Numerical Solution of a Fractional-Order Predator-Prey Model with Prey Refuge Additional Food for Predator Rio Satriyantara, Agus Suryanto *, Noor Hidayat Department of Mathematics, Faculty of Mathematics

More information

Bifurcation Analysis of Prey-Predator Model with Harvested Predator

Bifurcation Analysis of Prey-Predator Model with Harvested Predator International Journal of Engineering Research and Development e-issn: 78-67X, p-issn: 78-8X, www.ijerd.com Volume, Issue 6 (June 4), PP.4-5 Bifurcation Analysis of Prey-Predator Model with Harvested Predator

More information

NONSTANDARD NUMERICAL METHODS FOR A CLASS OF PREDATOR-PREY MODELS WITH PREDATOR INTERFERENCE

NONSTANDARD NUMERICAL METHODS FOR A CLASS OF PREDATOR-PREY MODELS WITH PREDATOR INTERFERENCE Sixth Mississippi State Conference on Differential Equations and Computational Simulations, Electronic Journal of Differential Equations, Conference 15 (2007), pp. 67 75. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu

More information

8 Ecosystem stability

8 Ecosystem stability 8 Ecosystem stability References: May [47], Strogatz [48]. In these lectures we consider models of populations, with an emphasis on the conditions for stability and instability. 8.1 Dynamics of a single

More information

A Discrete Model of Three Species Prey- Predator System

A Discrete Model of Three Species Prey- Predator System ISSN(Online): 39-8753 ISSN (Print): 347-670 (An ISO 397: 007 Certified Organization) Vol. 4, Issue, January 05 A Discrete Model of Three Species Prey- Predator System A.George Maria Selvam, R.Janagaraj

More information

Stability and bifurcation in a two species predator-prey model with quintic interactions

Stability and bifurcation in a two species predator-prey model with quintic interactions Chaotic Modeling and Simulation (CMSIM) 4: 631 635, 2013 Stability and bifurcation in a two species predator-prey model with quintic interactions I. Kusbeyzi Aybar 1 and I. acinliyan 2 1 Department of

More information

Lecture 15: Biological Waves

Lecture 15: Biological Waves Lecture 15: Biological Waves Jonathan A. Sherratt Contents 1 Wave Fronts I: Modelling Epidermal Wound Healing 2 1.1 Epidermal Wound Healing....................... 2 1.2 A Mathematical Model.........................

More information

Two-Species Migration and Clustering in Two-Dimensional Domains

Two-Species Migration and Clustering in Two-Dimensional Domains Bull Math Biol (2017) 79:2302 2333 DOI 10.1007/s11538-017-0331-0 ORIGINAL ARTICLE Two-Species Migration and Clustering in Two-Dimensional Domains Lawrence Kurowski 1 Andrew L. Krause 1 Hanako Mizuguchi

More information

Hopf bifurcations, and Some variations of diffusive logistic equation JUNPING SHIddd

Hopf bifurcations, and Some variations of diffusive logistic equation JUNPING SHIddd Hopf bifurcations, and Some variations of diffusive logistic equation JUNPING SHIddd College of William and Mary Williamsburg, Virginia 23187 Mathematical Applications in Ecology and Evolution Workshop

More information

Ch.5 Evolution and Community Ecology How do organisms become so well suited to their environment? Evolution and Natural Selection

Ch.5 Evolution and Community Ecology How do organisms become so well suited to their environment? Evolution and Natural Selection Ch.5 Evolution and Community Ecology How do organisms become so well suited to their environment? Evolution and Natural Selection Gene: A sequence of DNA that codes for a particular trait Gene pool: All

More information

A Comparison of Two Predator-Prey Models with Holling s Type I Functional Response

A Comparison of Two Predator-Prey Models with Holling s Type I Functional Response A Comparison of Two Predator-Prey Models with Holling s Type I Functional Response ** Joint work with Mark Kot at the University of Washington ** Mathematical Biosciences 1 (8) 161-179 Presented by Gunog

More information

Lecture 20/Lab 21: Systems of Nonlinear ODEs

Lecture 20/Lab 21: Systems of Nonlinear ODEs Lecture 20/Lab 21: Systems of Nonlinear ODEs MAR514 Geoffrey Cowles Department of Fisheries Oceanography School for Marine Science and Technology University of Massachusetts-Dartmouth Coupled ODEs: Species

More information

UPPER AND LOWER SOLUTIONS FOR A HOMOGENEOUS DIRICHLET PROBLEM WITH NONLINEAR DIFFUSION AND THE PRINCIPLE OF LINEARIZED STABILITY

UPPER AND LOWER SOLUTIONS FOR A HOMOGENEOUS DIRICHLET PROBLEM WITH NONLINEAR DIFFUSION AND THE PRINCIPLE OF LINEARIZED STABILITY ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 30, Number 4, Winter 2000 UPPER AND LOWER SOLUTIONS FOR A HOMOGENEOUS DIRICHLET PROBLEM WITH NONLINEAR DIFFUSION AND THE PRINCIPLE OF LINEARIZED STABILITY ROBERT

More information

Complex Patterns in a Simple System

Complex Patterns in a Simple System Complex Patterns in a Simple System arxiv:patt-sol/9304003v1 17 Apr 1993 John E. Pearson Center for Nonlinear Studies Los Alamos National Laboratory February 4, 2008 Abstract Numerical simulations of a

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differential Equations Michael H. F. Wilkinson Institute for Mathematics and Computing Science University of Groningen The Netherlands December 2005 Overview What are Ordinary Differential Equations

More information

LOTKA-VOLTERRA SYSTEMS WITH DELAY

LOTKA-VOLTERRA SYSTEMS WITH DELAY 870 1994 133-140 133 LOTKA-VOLTERRA SYSTEMS WITH DELAY Zhengyi LU and Yasuhiro TAKEUCHI Department of Applied Mathematics, Faculty of Engineering, Shizuoka University, Hamamatsu 432, JAPAN ABSTRACT Sufftcient

More information

BIOL 410 Population and Community Ecology. Predation

BIOL 410 Population and Community Ecology. Predation BIOL 410 Population and Community Ecology Predation Intraguild Predation Occurs when one species not only competes with its heterospecific guild member, but also occasionally preys upon it Species 1 Competitor

More information

Gary G. Mittelbach Michigan State University

Gary G. Mittelbach Michigan State University Community Ecology Gary G. Mittelbach Michigan State University Sinauer Associates, Inc. Publishers Sunderland, Massachusetts U.S.A. Brief Table of Contents 1 Community Ecology s Roots 1 PART I The Big

More information

DYNAMICS IN 3-SPECIES PREDATOR-PREY MODELS WITH TIME DELAYS. Wei Feng

DYNAMICS IN 3-SPECIES PREDATOR-PREY MODELS WITH TIME DELAYS. Wei Feng DISCRETE AND CONTINUOUS Website: www.aimsciences.org DYNAMICAL SYSTEMS SUPPLEMENT 7 pp. 36 37 DYNAMICS IN 3-SPECIES PREDATOR-PREY MODELS WITH TIME DELAYS Wei Feng Mathematics and Statistics Department

More information

A DISCRETE-TIME HOST-PARASITOID MODEL

A DISCRETE-TIME HOST-PARASITOID MODEL A DISCRETE-TIME HOST-PARASITOID MODEL SOPHIA R.-J. JANG AND JUI-LING YU We study a discrete-time host-parasitoid model proposed by May et al. In this model, the parasitoid attacks the host first then followed

More information

Analysis of Plankton Populations

Analysis of Plankton Populations Analysis of Plankton Populations Sean Li September 21, 25 Abstract I use numerical and analytical techniques to study the dynamics of various models of plankton food webs with and without resource fluctuations.

More information

Qualitative Analysis of a Discrete SIR Epidemic Model

Qualitative Analysis of a Discrete SIR Epidemic Model ISSN (e): 2250 3005 Volume, 05 Issue, 03 March 2015 International Journal of Computational Engineering Research (IJCER) Qualitative Analysis of a Discrete SIR Epidemic Model A. George Maria Selvam 1, D.

More information