Yi Ming Lai. Rachel Nicks. Pedro Soares. Dynamical Systems with Noise from Renewal Processes. Synchrony Branching Lemma for Regular Networks

Size: px
Start display at page:

Download "Yi Ming Lai. Rachel Nicks. Pedro Soares. Dynamical Systems with Noise from Renewal Processes. Synchrony Branching Lemma for Regular Networks"

Transcription

1 Yi Ming Lai Dynamical Systems with Noise from Renewal Processes One important area in the area of dynamics on networks is the study of temporal patterns of edges, for example, when edges appear or disappear due to a time-dependent or stochastic process. While there has been much progress using the assumption that such stochasticity is Poisson in nature, many systems deviate from this by being non-stationary or even non-markovian. There has been recent work studying such networks using a generalization of the Montroll-Weiss equation (which was originally used in the context of anomalous diffusion). By adapting this formalism, we have been able to find a new way to study stochastic dynamical systems subject to noise from an arbitrary renewal process. We draw examples from neuronal population modelling and queuing theory. Rachel Nicks Clusters in nonsmooth oscillator networks For coupled oscillator networks with Laplacian coupling the Master Stability Function (MSF) has proven a particularly powerful tool for assessing the stability of the synchronous state. Using tools from group theory this approach has recently been extended to treat more general cluster states. However, the MSF and its generalisations require the determination of a set of Floquet multipliers from variational equations obtained by linearisation around a periodic orbit. Since closed form solutions for periodic orbits are invariably hard to come by the framework is often explored using numerical techniques. Here we show that further insight into network dynamics can be obtained by focusing on piece-wise linear (pwl) oscillator models. Not only do these allow for the explicit construction of periodic orbits, their variational analysis can also be explicitly performed. The price for adopting such nonsmooth systems is that many of the notions from smooth dynamical systems, and in particular linear stability, need to be modified to take into account possible jumps in the components of Jacobians. This is naturally accommodated with the use of saltation matrices. By augmenting the variational approach for studying smooth dynamical system with such matrices we show that, for a wide variety of networks that have been used as models of biological systems, cluster states can be explicitly investigated. By way of illustration we analyse an integrate-and-fire network model with event-driven synaptic coupling as well as a diffusively coupled networks built from planar pwl nodes. We use these examples to emphasise that the stability of network cluster states depend as much on the choice of single node dynamics as it does on the form of network structural connectivity. Pedro Soares Synchrony Branching Lemma for Regular Networks Coupled cell systems are dynamical systems associated to a network and synchrony subspaces, given by balanced colorings of the network, are invariant subspaces for every coupled cell systems associated to that network. Golubitsky and Lauterbach (SIAM J. Applied Dynamical Systems, 8 (1) 2009, 40-75) prove an analogue of the Equivariant Branching Lemma in the context of regular

2 networks. We generalize this result proving the generic existence of steady-state bifurcation branches for regular networks with maximal synchrony. We also give necessary and sufficient conditions for the existence of steady-state bifurcation branches with some submaximal synchrony. Those conditions only depend on the network structure, but the lattice structure of the balanced colorings is not sufficient to decide which synchrony subspaces support a steady-state bifurcation branch. Manuela Aguiar The lattice of synchrony subspaces for networks with asymmetric inputs One of the main aims in the study of coupled cell systems is to understand the dynamics forced by the associated network structure. A relevant example are the synchrony subspaces for a network - subspaces defined by equalities of cell coordinates and that are flow-invariant by all the coupled cell systems that are compatible with the network structure. The existence of synchrony subspaces can have a strong impact on the dynamics, for example, in terms of bifurcation and robust heteroclinic phenomena. As proved by Ian Stewart, the set of synchrony subspaces for a coupled cell network is a complete lattice. We show how to obtain that lattice for the particular case of coupled cell networks with asymmetric inputs - each cell receives at most one input edge of each type. This involves, in particular, results about the lattice of synchrony subspaces for the disjoint union of networks and for 1-input networks. Peter Ashwin Noisy network attractors: design and computational properties Networks in physical space can give rise to networks (of different structures) in phase space in a robust and attracting manner, although it is not always easy to see how which networks in phase space may arise from a given physical network. This talk will look at an approach to "reverse engineer" or design physical networks that have explicit network attractors, and to explore their computation properties. In doing so we are able to embed finite state models for computational systems (Turing machines) into the dynamics of networks with noise and non-autonomous inputs. Joint work with Claire Postlethwaite (Auckland). Stephen Coombes Networks of Nonsmooth Neural Oscillators "The tools of weakly coupled phase oscillator theory have had a profound impact on the neuroscience community, providing insight into a variety of network behaviours ranging from central pattern generation to synchronisation [1]. However, there are many instances where this theory is expected to break down, say in the presence of strong coupling. To gain insight into the behaviour of neural networks when phase-oscillator descriptions are not appropriate we turn instead to the study

3 of tractable piece-wise linear (pwl) systems. There has been an appreciation for some time in the applied sciences, and particularly in electrical engineering, of the benefits of studying caricatures of complex systems built from pwl and possibly discontinuous dynamical systems. Although a beautifully simplistic modelling perspective the necessary loss of smoothness precludes the use of many results from the standard toolkit of smooth dynamical systems, and one must be careful to correctly determine conditions for existence, uniqueness and stability of solutions. In this talk I will describe a variety of pwl neural oscillators, and show how to analyse periodic orbits. Building on this approach I will show how to analyse network states, with a focus on synchrony. I will make use of an extension of the master stability function approach (popular in the Physics community), and show how this framework is very amenable to explicit calculations when considering networks of pwl oscillators [2]. To highlight the usefulness of such an approach (to determine possible bifurcations of network states) I will discuss an inverse period-doubling route to synchrony, under variation in coupling strength, in gap-junction (linearly) coupled networks for which the node dynamics is poised near a homoclinic bifurcation. I will contrast this with node dynamics poised near a non-smooth Andronov-Hopf bifurcation and also a saddle node bifurcation of limit cycles, for which no such bifurcation of synchrony occurs. I will also show how the framework can treat integrate-and-fire neuron models with balanced synaptic coupling, as well as networks of Wilson-Cowan population models. [1] P Ashwin, S Coombes and R Nicks 2016 Mathematical frameworks for oscillatory network dynamics in neuroscience, Journal of Mathematical Neuroscience, 6:2 [2] S Coombes and R Thul 2016 Synchrony in networks of coupled nonsmooth dynamical systems: Extending the master stability function, European Journal of Applied Mathematics, Vol 27(6), Ana Dias Networks: weighted or not? Coupled cell systems are networks of dynamical systems (the cells), where the links between the cells are described through the network structure, the coupled cell network. Synchrony subspaces are spaces defined in terms of equalities of certain cell coordinates that are flow-invariant for all coupled cell systems associated with a given network structure. The enumeration method for networks with a given quotient network and the lifting bifurcation problem, the lattice of synchrony subspaces of a network and the possible synchrony- breaking bifurcations are some of the problems that have been addressed in the last years for networks where the weights are zero or positive integers. In this talk we plan to review some of the results that have been achieved in this setup and to question those issues in the setup of weighted networks networks where the connections have an associated weight which does not have to be zero neither a positive integer.

4 Michael Field Functional Asynchronous Networks of feed-forward type After a discussion of some of the issues involved in modelling dynamical phenomena using networks of coupled dynamical systems, we present (1) a result (joint with Chris Bick, Oxford and Exeter) giving a natural feed-forward structure on a class of functional asynchronous networks, and (2) a model of unsupervised adaptive learning that involves local times, weight dynamics and a feed-forward functional asynchronous network that can be viewed as a dynamical version of a neural net (related to current work with Manuel Aguiar and Ana Dias, Porto). Marty Golubitsky Binocular Rivalry and Patterns of Rigid Phase Shifts This talk reviews work on models for generalized rivalry proposed by Hugh Wilson. Wilson's proposal includes the specification of a class of coupled cell networks that we call "Wilson networks." We use these networks to model experiments in binocular rivalry. The specific application shows how rigid phase-shifts in periodic solutions of admissible maps for Wilson networks can predict observed percepts in many binocular rivalry experiments. Ernest Montbrió Synchronization patterns in firing rate models with synaptic delay Population models of neuronal activity have become an standard tool of analysis in computational neuroscience. Rather than focus on the microscopic dynamics of neurons, these models describe the collective properties of large numbers of neurons, typically in terms of the mean firing rate of a neuronal ensemble. In general, such population models, often called firing rate equations (FRE) are obtained using heuristic mean-field arguments. Despite their heuristic nature, Heuristic-FRE often show remarkable qualitative agreement with the dynamics in equivalent networks of spiking neurons. However, this agreement breaks down once a significant fraction of the neurons in the population fires spikes synchronously. In my presentation, I will introduce a recent theory to derive the exact FRE for a large population of heterogeneous Quadratic Integrate and Fire (QIF) neurons. In contrast with traditional H-FRE, these QIF-FRE adequately capture collective synchronization. To illustrate this, I will use the QIF-FRE to investigate the emergence of synchronous oscillations in a population of identical inhibitory neurons with synaptic delays. The analysis reveals the presence of an intriguing class of partially synchronized states, which display periodic and even chaotic collective dynamics. Finally, the relationship of the model s dynamics with fast neuronal oscillations will be discussed.

5 David Spivak Sheaf-theoretic analysis of networked dynamical systems "We discuss a ""behavioral approach"" to dynamical systems using the category-theoretic notion of sheaves. Each sort of dynamical system including discrete, continuous, and hybrid has an associated behavior type, by which we mean a set of possible behaviors over any duration of time. Such behavior types are formalized as sheaves, a notion which includes far more variety than the three sorts of dynamical systems mentioned above. For instance, the set of rational numbers forms a sheaf, as does our internal model of Time itself. We consider a system to be a behavior type together with an interface, which gives the ports by which the internal behavior is made known to the environment. As various interfaces are linked into a network, the behaviors of the inhabiting systems interact and constrain each other, and together these behaviors combine to form a global behavior of the system of systems. For example, in the National Airspace System, airplanes, pilots, traffic collision avoidance systems, and radars interact to ensure that the whole airspace enjoys the property called ""safe separation"". Such a guarantee of safe separation can be made as a formal statement in a new sort of higher-order temporal logic for behaviors, based on topos theory. This language is fully compositional, even when the subsystems are dynamical systems of very different natures, as in the example mentioned above. We assume no category-theoretic background for this talk." Erik Steur Emergence of oscillations in networks of time-delay coupled inert systems We consider networks of single-input-single-output systems that interact via linear, time-delay coupling functions. The systems itself are inert, that is, their solutions converge to a globally stable equilibrium. However, in the presence of coupling, the network of systems exhibits ongoing oscillatory activity. We study the emergence of these oscillations by finding conditions for 1. the solutions of the time-delay coupled systems to be bounded, 2. the network equilibrium to be unique, and 3. the network equilibrium to be unstable. The network of time-delay coupled inert systems is oscillatory if the aforementioned three conditions are satisfied. In addition, we identify the patterns of synchronized oscillation that may emerge. This is joint work with Alexander Pogromsky. Ian Stewart Networks and the Perception of Visual Illusions "Marty Golubitsky plans to talk on binocular rivalry, where the two eyes are presented with conflicting information. This is a companion talk on a similar phenomenon, illusions, where one or both eyes are presented with ambiguous information. The classic example is the Necker cube, a line drawing of a skeletal cube that is perceived in two alternating orientations. In both cases, the visual system has to decide which image it perceives, and percepts switch between different alternatives. The decision process has been modelled using Wilson networks and their generalisations, in which

6 attributes of the image (colour, orientation, and so on) are represented by mutually inhibitory nodes corresponding to levels or values of those attributes (red, blue, green, and so on). Learned or perceived patterns are represented by adding excitatory connections between nodes associated in the patterns. The dynamics of these networks determines the outcome of the decision process. The talk will introduce a number of standard illusions, construct associated networks, and analyse their dynamics." Sören Schwenker Generic steady state bifurcations in monoid equivariant dynamical systems Rink, Sanders and Nijholt have proved a number of striking results on dynamics in homogeneous coupled cell networks in the last couple of years. Using their methods, one can present network ODEs as (sub-systems of) systems that are symmetric with respect to a monoid representation. In the past most studies on equivariant dynamics were based on group representation theory. The work of Rink et al. draws attention to very exciting generalizations of representation theory and equivariant dynamics. The type of generic steady state bifurcations has so far been clearified only in parts: either in the direct context of the networks or in a special case of the monoid representation. It was anticipated however, that generic steady state bifurcations are connected to subrepresentations of the monoid not only in that special case but for all suitable monoid representations. We employ techniques based on the work by Rink, Sanders and Nijholt to prove this generalization. Kyle Wedgwood Coherent behaviour in spiking neural networks "Spatially coherent behaviour, in various guises, has been shown to be important in a variety of aspects of neural processing. For example, persistent localised activity, colloquially known as bumps, are associated with working memory. Propagating, but localised, is associated with switching visual perceptions, but are also associated with seizure generation in epilepsy. There is thus a desire to understand the origin of such patterned neural behaviour. Neural field models have provided great insight into the mechanisms giving rise to this behaviour, and in particular, in showing what conditions are necessary for them. However, these represent averaged activity, giving by the firing rate of a population of neurons, and as such, they ignore the important spiking activity of the neutrons, which may contribute significantly to the overall information processing in neural tissue. Here, I will present work which extends the use of interface dynamics, commonly used in neural field models to quantify localised activity, to spiking neural networks, and demonstrate how tools from non-smooth analysis and equation-free modelling can be used to capture patterned behaviour in these networks." Matthias Wolfrum Chimera states in systems of coupled phase oscillators

7 Chimera states are self-organized patterns of coherence and incoherence that can be observed in systems of coupled oscillators. We give an overview over different types of such patterns in one and two dimensional arrays of oscillators with non-local coupling. In the continuum limit, they appear as relative equilibria of a continuity equation and their stability can be studied in the framework of the Ott-Antonsen reduction. In finite oscillator systems they have the properties of spatially extensive chaos and show additional finite size effects. In very small systems, classical chimera states are unstable, but can be stabilized by adding a control term. Their dynamics can be described as selflocalized excitability, inducing a variety of stationary, propagating regular and chaotic excitation patterns.

8

Hopf bifurcation in coupled cell networks with abelian symmetry 1

Hopf bifurcation in coupled cell networks with abelian symmetry 1 Hopf bifurcation in coupled cell networks with abelian symmetry 1 Ana Paula S. Dias e Rui C. Paiva CMUP Departamento de Matemática Universidade do Porto CMUP Instituto Politécnico de Leiria Abstract We

More information

QUOTIENTS AND LIFTS OF SYMMETRIC DIRECTED GRAPHS

QUOTIENTS AND LIFTS OF SYMMETRIC DIRECTED GRAPHS QUOTIENTS AND LIFTS OF SYMMETRIC DIRECTED GRAPHS MANUELA AGUIAR, ANA DIAS, AND MIRIAM MANOEL Abstract. Given a directed graph, an equivalence relation on the graph vertex set is said to be balanced if,

More information

Dynamical Systems in Neuroscience: Elementary Bifurcations

Dynamical Systems in Neuroscience: Elementary Bifurcations Dynamical Systems in Neuroscience: Elementary Bifurcations Foris Kuang May 2017 1 Contents 1 Introduction 3 2 Definitions 3 3 Hodgkin-Huxley Model 3 4 Morris-Lecar Model 4 5 Stability 5 5.1 Linear ODE..............................................

More information

Dynamical modelling of systems of coupled oscillators

Dynamical modelling of systems of coupled oscillators Dynamical modelling of systems of coupled oscillators Mathematical Neuroscience Network Training Workshop Edinburgh Peter Ashwin University of Exeter 22nd March 2009 Peter Ashwin (University of Exeter)

More information

The Mixed States of Associative Memories Realize Unimodal Distribution of Dominance Durations in Multistable Perception

The Mixed States of Associative Memories Realize Unimodal Distribution of Dominance Durations in Multistable Perception The Mixed States of Associative Memories Realize Unimodal Distribution of Dominance Durations in Multistable Perception Takashi Kanamaru Department of Mechanical Science and ngineering, School of Advanced

More information

B5.6 Nonlinear Systems

B5.6 Nonlinear Systems B5.6 Nonlinear Systems 5. Global Bifurcations, Homoclinic chaos, Melnikov s method Alain Goriely 2018 Mathematical Institute, University of Oxford Table of contents 1. Motivation 1.1 The problem 1.2 A

More information

= F ( x; µ) (1) where x is a 2-dimensional vector, µ is a parameter, and F :

= F ( x; µ) (1) where x is a 2-dimensional vector, µ is a parameter, and F : 1 Bifurcations Richard Bertram Department of Mathematics and Programs in Neuroscience and Molecular Biophysics Florida State University Tallahassee, Florida 32306 A bifurcation is a qualitative change

More information

arxiv: v1 [math.ds] 27 Nov 2012

arxiv: v1 [math.ds] 27 Nov 2012 COMPUTATION OF BALANCED EQUIVALENCE RELATIONS AND THEIR LATTICE FOR A COUPLED CELL NETWORK HIROKO KAMEI AND PETER J A COCK arxiv:26334v [mathds] 27 Nov 202 Abstract A coupled cell network describes interacting

More information

arxiv: v1 [nlin.ao] 3 May 2015

arxiv: v1 [nlin.ao] 3 May 2015 UNI-DIRECTIONAL SYNCHRONIZATION AND FREQUENCY DIFFERENCE LOCKING INDUCED BY A HETEROCLINIC RATCHET arxiv:155.418v1 [nlin.ao] 3 May 215 Abstract A system of four coupled oscillators that exhibits unusual

More information

Pattern Formation in Coupled Systems

Pattern Formation in Coupled Systems . p.1/35 Pattern Formation in Coupled Systems Martin Golubitsky Ian Stewart Houston Warwick Fernando Antoneli Ana Dias Toby Elmhirst Maria Leite Matthew Nicol Marcus Pivato Andrew Török Yunjiao Wang Sao

More information

An Introductory Course in Computational Neuroscience

An Introductory Course in Computational Neuroscience An Introductory Course in Computational Neuroscience Contents Series Foreword Acknowledgments Preface 1 Preliminary Material 1.1. Introduction 1.1.1 The Cell, the Circuit, and the Brain 1.1.2 Physics of

More information

FEEDFORWARD NETWORKS: ADAPTATION, FEEDBACK, AND SYNCHRONY

FEEDFORWARD NETWORKS: ADAPTATION, FEEDBACK, AND SYNCHRONY FEEDFORWARD NETWORKS: ADAPTATION, FEEDBACK, AND SYNCHRONY MANUELA AGUIAR, ANA DIAS, AND MICHAEL FIELD Abstract. In this article we investigate the effect on synchrony of adding feedback loops and adaptation

More information

IN THIS turorial paper we exploit the relationship between

IN THIS turorial paper we exploit the relationship between 508 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 3, MAY 1999 Weakly Pulse-Coupled Oscillators, FM Interactions, Synchronization, Oscillatory Associative Memory Eugene M. Izhikevich Abstract We study

More information

Influence of Criticality on 1/f α Spectral Characteristics of Cortical Neuron Populations

Influence of Criticality on 1/f α Spectral Characteristics of Cortical Neuron Populations Influence of Criticality on 1/f α Spectral Characteristics of Cortical Neuron Populations Robert Kozma rkozma@memphis.edu Computational Neurodynamics Laboratory, Department of Computer Science 373 Dunn

More information

Delayed and Higher-Order Transfer Entropy

Delayed and Higher-Order Transfer Entropy Delayed and Higher-Order Transfer Entropy Michael Hansen (April 23, 2011) Background Transfer entropy (TE) is an information-theoretic measure of directed information flow introduced by Thomas Schreiber

More information

AN ELECTRIC circuit containing a switch controlled by

AN ELECTRIC circuit containing a switch controlled by 878 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 46, NO. 7, JULY 1999 Bifurcation of Switched Nonlinear Dynamical Systems Takuji Kousaka, Member, IEEE, Tetsushi

More information

Mathematical Foundations of Neuroscience - Lecture 7. Bifurcations II.

Mathematical Foundations of Neuroscience - Lecture 7. Bifurcations II. Mathematical Foundations of Neuroscience - Lecture 7. Bifurcations II. Filip Piękniewski Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland Winter 2009/2010 Filip

More information

Collective behavior in networks of biological neurons: mathematical modeling and software development

Collective behavior in networks of biological neurons: mathematical modeling and software development RESEARCH PROJECTS 2014 Collective behavior in networks of biological neurons: mathematical modeling and software development Ioanna Chitzanidi, Postdoctoral Researcher National Center for Scientific Research

More information

A higher-order temporal logic for dynamical systems

A higher-order temporal logic for dynamical systems A higher-order temporal logic for dynamical systems David I. Spivak and Patrick Schultz Mathematics Department Massachusetts Institute of Technology AMS Fall Sectional, Riverside CA November 4, 2017 0

More information

Toward a Better Understanding of Complexity

Toward a Better Understanding of Complexity Toward a Better Understanding of Complexity Definitions of Complexity, Cellular Automata as Models of Complexity, Random Boolean Networks Christian Jacob jacob@cpsc.ucalgary.ca Department of Computer Science

More information

Localized Excitations in Networks of Spiking Neurons

Localized Excitations in Networks of Spiking Neurons Localized Excitations in Networks of Spiking Neurons Hecke Schrobsdorff Bernstein Center for Computational Neuroscience Göttingen Max Planck Institute for Dynamics and Self-Organization Seminar: Irreversible

More information

CONTROLLING CHAOS. Sudeshna Sinha. The Institute of Mathematical Sciences Chennai

CONTROLLING CHAOS. Sudeshna Sinha. The Institute of Mathematical Sciences Chennai CONTROLLING CHAOS Sudeshna Sinha The Institute of Mathematical Sciences Chennai Sinha, Ramswamy and Subba Rao: Physica D, vol. 43, p. 118 Sinha, Physics Letts. A vol. 156, p. 475 Ramswamy, Sinha, Gupte:

More information

arxiv: v1 [math.ds] 22 Jan 2019

arxiv: v1 [math.ds] 22 Jan 2019 Noname manuscript No. (will be inserted by the editor The uncoupling limit of identical Hopf bifurcations with an application to perceptual bistability Alberto Pérez-Cervera Peter Ashwin Gemma Huguet Tere

More information

Synfire Waves in Small Balanced Networks

Synfire Waves in Small Balanced Networks Synfire Waves in Small Balanced Networks Yuval Aviel 1,3, David Horn 2 and Moshe Abeles 1 1 Interdisciplinary Center for Neural Computation, Hebrew University, Jerusalem, Israel. 2 School of Physics and

More information

Lecture 4: Feed Forward Neural Networks

Lecture 4: Feed Forward Neural Networks Lecture 4: Feed Forward Neural Networks Dr. Roman V Belavkin Middlesex University BIS4435 Biological neurons and the brain A Model of A Single Neuron Neurons as data-driven models Neural Networks Training

More information

2 1. Introduction. Neuronal networks often exhibit a rich variety of oscillatory behavior. The dynamics of even a single cell may be quite complicated

2 1. Introduction. Neuronal networks often exhibit a rich variety of oscillatory behavior. The dynamics of even a single cell may be quite complicated GEOMETRIC ANALYSIS OF POPULATION RHYTHMS IN SYNAPTICALLY COUPLED NEURONAL NETWORKS J. Rubin and D. Terman Dept. of Mathematics; Ohio State University; Columbus, Ohio 43210 Abstract We develop geometric

More information

Dynamical systems in neuroscience. Pacific Northwest Computational Neuroscience Connection October 1-2, 2010

Dynamical systems in neuroscience. Pacific Northwest Computational Neuroscience Connection October 1-2, 2010 Dynamical systems in neuroscience Pacific Northwest Computational Neuroscience Connection October 1-2, 2010 What do I mean by a dynamical system? Set of state variables Law that governs evolution of state

More information

Neural Networks 1 Synchronization in Spiking Neural Networks

Neural Networks 1 Synchronization in Spiking Neural Networks CS 790R Seminar Modeling & Simulation Neural Networks 1 Synchronization in Spiking Neural Networks René Doursat Department of Computer Science & Engineering University of Nevada, Reno Spring 2006 Synchronization

More information

HOPF BIFURCATION AND HETEROCLINIC CYCLES IN A CLASS OF D 2 EQUIVARIANT SYSTEMS

HOPF BIFURCATION AND HETEROCLINIC CYCLES IN A CLASS OF D 2 EQUIVARIANT SYSTEMS HOPF BIFURCATION AND HETEROCLINIC CYCLES IN A CLASS OF D 2 EQUIVARIANT SYSTEMS ADRIAN C. MURZA Communicated by Vasile Brînzănescu In this paper, we analyze a generic dynamical system with D 2 constructed

More information

Fundamentals of Dynamical Systems / Discrete-Time Models. Dr. Dylan McNamara people.uncw.edu/ mcnamarad

Fundamentals of Dynamical Systems / Discrete-Time Models. Dr. Dylan McNamara people.uncw.edu/ mcnamarad Fundamentals of Dynamical Systems / Discrete-Time Models Dr. Dylan McNamara people.uncw.edu/ mcnamarad Dynamical systems theory Considers how systems autonomously change along time Ranges from Newtonian

More information

An analysis of how coupling parameters influence nonlinear oscillator synchronization

An analysis of how coupling parameters influence nonlinear oscillator synchronization An analysis of how coupling parameters influence nonlinear oscillator synchronization Morris Huang, 1 Ben McInroe, 2 Mark Kingsbury, 2 and Will Wagstaff 3 1) School of Mechanical Engineering, Georgia Institute

More information

Lecture 4: Importance of Noise and Fluctuations

Lecture 4: Importance of Noise and Fluctuations Lecture 4: Importance of Noise and Fluctuations Jordi Soriano Fradera Dept. Física de la Matèria Condensada, Universitat de Barcelona UB Institute of Complex Systems September 2016 1. Noise in biological

More information

Torus Doubling Cascade in Problems with Symmetries

Torus Doubling Cascade in Problems with Symmetries Proceedings of Institute of Mathematics of NAS of Ukraine 4, Vol., Part 3, 11 17 Torus Doubling Cascade in Problems with Symmetries Faridon AMDJADI School of Computing and Mathematical Sciences, Glasgow

More information

1. Synchronization Phenomena

1. Synchronization Phenomena 1. Synchronization Phenomena In nature synchronization happens all the time. In mechanical systems, in biological systems, in epidemiology, basically everywhere. When we talk about synchronization we usually

More information

arxiv: v2 [physics.optics] 15 Dec 2016

arxiv: v2 [physics.optics] 15 Dec 2016 Bifurcation analysis of the Yamada model for a pulsing semiconductor laser with saturable absorber and delayed optical feedback Abstract Soizic Terrien 1, Bernd Krauskopf 1, Neil G.R. Broderick 2 arxiv:1610.06794v2

More information

An explicit dynamic model of segregation

An explicit dynamic model of segregation An explicit dynamic model of segregation Gian-Italo Bischi Dipartimento di Economia e Metodi Quantitativi Universita di Urbino "Carlo Bo" e-mail:gian.bischi@uniurb.it Ugo Merlone Dip. di Statistica e Matematica

More information

Symmetries constrain dynamics in a family of balanced neural networks

Symmetries constrain dynamics in a family of balanced neural networks Symmetries constrain dynamics in a family of balanced neural networks A.K. Barreiro J.. Kutz E. Shlizerman September 24, 216 Abstract We examine a family of random firing-rate neural networks in which

More information

Phase Locking. 1 of of 10. The PRC's amplitude determines which frequencies a neuron locks to. The PRC's slope determines if locking is stable

Phase Locking. 1 of of 10. The PRC's amplitude determines which frequencies a neuron locks to. The PRC's slope determines if locking is stable Printed from the Mathematica Help Browser 1 1 of 10 Phase Locking A neuron phase-locks to a periodic input it spikes at a fixed delay [Izhikevich07]. The PRC's amplitude determines which frequencies a

More information

HSND-2015, IPR. Department of Physics, University of Burdwan, Burdwan, West Bengal.

HSND-2015, IPR. Department of Physics, University of Burdwan, Burdwan, West Bengal. New kind of deaths: Oscillation Death and Chimera Death HSND-2015, IPR Dr. Tanmoy Banerjee Department of Physics, University of Burdwan, Burdwan, West Bengal. Points to be discussed Oscillation suppression

More information

Nonsmooth systems: synchronization, sliding and other open problems

Nonsmooth systems: synchronization, sliding and other open problems John Hogan Bristol Centre for Applied Nonlinear Mathematics, University of Bristol, England Nonsmooth systems: synchronization, sliding and other open problems 2 Nonsmooth Systems 3 What is a nonsmooth

More information

Elements of Applied Bifurcation Theory

Elements of Applied Bifurcation Theory Yuri A. Kuznetsov Elements of Applied Bifurcation Theory Third Edition With 251 Illustrations Springer Introduction to Dynamical Systems 1 1.1 Definition of a dynamical system 1 1.1.1 State space 1 1.1.2

More information

Stochastic Wilson-Cowan equations for networks of excitatory and inhibitory neurons II

Stochastic Wilson-Cowan equations for networks of excitatory and inhibitory neurons II Stochastic Wilson-Cowan equations for networks of excitatory and inhibitory neurons II Jack Cowan Mathematics Department and Committee on Computational Neuroscience University of Chicago 1 A simple Markov

More information

APPLIED SYMBOLIC DYNAMICS AND CHAOS

APPLIED SYMBOLIC DYNAMICS AND CHAOS DIRECTIONS IN CHAOS VOL. 7 APPLIED SYMBOLIC DYNAMICS AND CHAOS Bai-Lin Hao Wei-Mou Zheng The Institute of Theoretical Physics Academia Sinica, China Vfö World Scientific wl Singapore Sinaaoore NewJersev

More information

Sigrist, Rachel (2010) Bifurcations with spherical symmetry. PhD thesis, University of Nottingham.

Sigrist, Rachel (2010) Bifurcations with spherical symmetry. PhD thesis, University of Nottingham. Sigrist, Rachel (21) Bifurcations with spherical symmetry. PhD thesis, University of Nottingham. Access from the University of Nottingham repository: http://eprints.nottingham.ac.uk/1117/1/thesis_final_version.pdf

More information

Example of a Blue Sky Catastrophe

Example of a Blue Sky Catastrophe PUB:[SXG.TEMP]TRANS2913EL.PS 16-OCT-2001 11:08:53.21 SXG Page: 99 (1) Amer. Math. Soc. Transl. (2) Vol. 200, 2000 Example of a Blue Sky Catastrophe Nikolaĭ Gavrilov and Andrey Shilnikov To the memory of

More information

Cellular Automata. ,C ) (t ) ,..., C i +[ K / 2] Cellular Automata. x > N : C x ! N. = C x. x < 1: C x. = C N+ x.

Cellular Automata. ,C ) (t ) ,..., C i +[ K / 2] Cellular Automata. x > N : C x ! N. = C x. x < 1: C x. = C N+ x. and beyond Lindenmayer Systems The World of Simple Programs Christian Jacob Department of Computer Science Department of Biochemistry & Molecular Biology University of Calgary CPSC 673 Winter 2004 Random

More information

Neural Nets and Symbolic Reasoning Hopfield Networks

Neural Nets and Symbolic Reasoning Hopfield Networks Neural Nets and Symbolic Reasoning Hopfield Networks Outline The idea of pattern completion The fast dynamics of Hopfield networks Learning with Hopfield networks Emerging properties of Hopfield networks

More information

On oscillating systems of interacting neurons

On oscillating systems of interacting neurons Susanne Ditlevsen Eva Löcherbach Nice, September 2016 Oscillations Most biological systems are characterized by an intrinsic periodicity : 24h for the day-night rhythm of most animals, etc... In other

More information

Dynamical Systems and Deep Learning: Overview. Abbas Edalat

Dynamical Systems and Deep Learning: Overview. Abbas Edalat Dynamical Systems and Deep Learning: Overview Abbas Edalat Dynamical Systems The notion of a dynamical system includes the following: A phase or state space, which may be continuous, e.g. the real line,

More information

+ + ( + ) = Linear recurrent networks. Simpler, much more amenable to analytic treatment E.g. by choosing

+ + ( + ) = Linear recurrent networks. Simpler, much more amenable to analytic treatment E.g. by choosing Linear recurrent networks Simpler, much more amenable to analytic treatment E.g. by choosing + ( + ) = Firing rates can be negative Approximates dynamics around fixed point Approximation often reasonable

More information

Asynchronous and Synchronous Dispersals in Spatially Discrete Population Models

Asynchronous and Synchronous Dispersals in Spatially Discrete Population Models SIAM J. APPLIED DYNAMICAL SYSTEMS Vol. 7, No. 2, pp. 284 310 c 2008 Society for Industrial and Applied Mathematics Asynchronous and Synchronous Dispersals in Spatially Discrete Population Models Abdul-Aziz

More information

Data Mining Part 5. Prediction

Data Mining Part 5. Prediction Data Mining Part 5. Prediction 5.5. Spring 2010 Instructor: Dr. Masoud Yaghini Outline How the Brain Works Artificial Neural Networks Simple Computing Elements Feed-Forward Networks Perceptrons (Single-layer,

More information

Chapter One. Introduction

Chapter One. Introduction Chapter One Introduction With the ever-increasing influence of mathematical modeling and engineering on biological, social, and medical sciences, it is not surprising that dynamical system theory has played

More information

Chapter One. Introduction

Chapter One. Introduction Chapter One Introduction A system is a combination of components or parts that is perceived as a single entity. The parts making up the system may be clearly or vaguely defined. These parts are related

More information

Neural Excitability in a Subcritical Hopf Oscillator with a Nonlinear Feedback

Neural Excitability in a Subcritical Hopf Oscillator with a Nonlinear Feedback Neural Excitability in a Subcritical Hopf Oscillator with a Nonlinear Feedback Gautam C Sethia and Abhijit Sen Institute for Plasma Research, Bhat, Gandhinagar 382 428, INDIA Motivation Neural Excitability

More information

DEVS Simulation of Spiking Neural Networks

DEVS Simulation of Spiking Neural Networks DEVS Simulation of Spiking Neural Networks Rene Mayrhofer, Michael Affenzeller, Herbert Prähofer, Gerhard Höfer, Alexander Fried Institute of Systems Science Systems Theory and Information Technology Johannes

More information

Synchrony in Lattice Differential Equations

Synchrony in Lattice Differential Equations 1 Synchrony in Lattice ifferential Equations Fernando ntoneli epartment of pplied Mathematics, University of São Paulo São Paulo, SP 05508-090, razil E-mail: antoneli@imeuspbr na Paula S ias entro de Matemática,

More information

EEL 851: Biometrics. An Overview of Statistical Pattern Recognition EEL 851 1

EEL 851: Biometrics. An Overview of Statistical Pattern Recognition EEL 851 1 EEL 851: Biometrics An Overview of Statistical Pattern Recognition EEL 851 1 Outline Introduction Pattern Feature Noise Example Problem Analysis Segmentation Feature Extraction Classification Design Cycle

More information

Strange dynamics of bilinear oscillator close to grazing

Strange dynamics of bilinear oscillator close to grazing Strange dynamics of bilinear oscillator close to grazing Ekaterina Pavlovskaia, James Ing, Soumitro Banerjee and Marian Wiercigroch Centre for Applied Dynamics Research, School of Engineering, King s College,

More information

(Feed-Forward) Neural Networks Dr. Hajira Jabeen, Prof. Jens Lehmann

(Feed-Forward) Neural Networks Dr. Hajira Jabeen, Prof. Jens Lehmann (Feed-Forward) Neural Networks 2016-12-06 Dr. Hajira Jabeen, Prof. Jens Lehmann Outline In the previous lectures we have learned about tensors and factorization methods. RESCAL is a bilinear model for

More information

Motivation. Evolution has rediscovered several times multicellularity as a way to build complex living systems

Motivation. Evolution has rediscovered several times multicellularity as a way to build complex living systems Cellular Systems 1 Motivation Evolution has rediscovered several times multicellularity as a way to build complex living systems Multicellular systems are composed by many copies of a unique fundamental

More information

Bifurcations of synchronized responses in synaptically coupled Bonhöffer van der Pol neurons

Bifurcations of synchronized responses in synaptically coupled Bonhöffer van der Pol neurons PHYSICAL REVIEW E, VOLUME 65, 036230 Bifurcations of synchronized responses in synaptically coupled Bonhöffer van der Pol neurons Kunichika Tsumoto, 1, * Tetsuya Yoshinaga, 2, and Hiroshi Kawakami 1, 1

More information

Analysis of Neural Networks with Chaotic Dynamics

Analysis of Neural Networks with Chaotic Dynamics Chaos, Solitonr & Fructals Vol. 3, No. 2, pp. 133-139, 1993 Printed in Great Britain @60-0779/93$6.00 + 40 0 1993 Pergamon Press Ltd Analysis of Neural Networks with Chaotic Dynamics FRANCOIS CHAPEAU-BLONDEAU

More information

Multiscale Analysis of Many Particle Systems with Dynamical Control

Multiscale Analysis of Many Particle Systems with Dynamical Control Michael Herrmann Multiscale Analysis of Many Particle Systems with Dynamical Control joint work with Barbara Niethammer and Juan J.L. Velázquez Kinetic description of multiscale phenomena Archimedes Center

More information

Elements of Applied Bifurcation Theory

Elements of Applied Bifurcation Theory Yuri A. Kuznetsov Elements of Applied Bifurcation Theory Second Edition With 251 Illustrations Springer Preface to the Second Edition Preface to the First Edition vii ix 1 Introduction to Dynamical Systems

More information

Computational Explorations in Cognitive Neuroscience Chapter 2

Computational Explorations in Cognitive Neuroscience Chapter 2 Computational Explorations in Cognitive Neuroscience Chapter 2 2.4 The Electrophysiology of the Neuron Some basic principles of electricity are useful for understanding the function of neurons. This is

More information

COMPLEX DYNAMICS AND CHAOS CONTROL IN DUFFING-VAN DER POL EQUATION WITH TWO EXTERNAL PERIODIC FORCING TERMS

COMPLEX DYNAMICS AND CHAOS CONTROL IN DUFFING-VAN DER POL EQUATION WITH TWO EXTERNAL PERIODIC FORCING TERMS International J. of Math. Sci. & Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 9 No. III (September, 2015), pp. 197-210 COMPLEX DYNAMICS AND CHAOS CONTROL IN DUFFING-VAN DER POL EQUATION WITH TWO EXTERNAL

More information

Computational Neuroscience. Session 4-2

Computational Neuroscience. Session 4-2 Computational Neuroscience. Session 4-2 Dr. Marco A Roque Sol 06/21/2018 Two-Dimensional Two-Dimensional System In this section we will introduce methods of phase plane analysis of two-dimensional systems.

More information

Chaos in generically coupled phase oscillator networks with nonpairwise interactions

Chaos in generically coupled phase oscillator networks with nonpairwise interactions Chaos in generically coupled phase oscillator networks with nonpairwise interactions Christian Bick, Peter Ashwin, and Ana Rodrigues Centre for Systems, Dynamics and Control and Department of Mathematics,

More information

MANY scientists believe that pulse-coupled neural networks

MANY scientists believe that pulse-coupled neural networks IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 3, MAY 1999 499 Class 1 Neural Excitability, Conventional Synapses, Weakly Connected Networks, and Mathematical Foundations of Pulse-Coupled Models Eugene

More information

PULSE-COUPLED networks (PCNs) of integrate-and-fire

PULSE-COUPLED networks (PCNs) of integrate-and-fire 1018 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 5, SEPTEMBER 2004 Grouping Synchronization in a Pulse-Coupled Network of Chaotic Spiking Oscillators Hidehiro Nakano, Student Member, IEEE, and Toshimichi

More information

Introduction to Applied Nonlinear Dynamical Systems and Chaos

Introduction to Applied Nonlinear Dynamical Systems and Chaos Stephen Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos Second Edition With 250 Figures 4jj Springer I Series Preface v L I Preface to the Second Edition vii Introduction 1 1 Equilibrium

More information

INTRODUCTION TO CHAOS THEORY T.R.RAMAMOHAN C-MMACS BANGALORE

INTRODUCTION TO CHAOS THEORY T.R.RAMAMOHAN C-MMACS BANGALORE INTRODUCTION TO CHAOS THEORY BY T.R.RAMAMOHAN C-MMACS BANGALORE -560037 SOME INTERESTING QUOTATIONS * PERHAPS THE NEXT GREAT ERA OF UNDERSTANDING WILL BE DETERMINING THE QUALITATIVE CONTENT OF EQUATIONS;

More information

Dynamical Systems and Chaos Part I: Theoretical Techniques. Lecture 4: Discrete systems + Chaos. Ilya Potapov Mathematics Department, TUT Room TD325

Dynamical Systems and Chaos Part I: Theoretical Techniques. Lecture 4: Discrete systems + Chaos. Ilya Potapov Mathematics Department, TUT Room TD325 Dynamical Systems and Chaos Part I: Theoretical Techniques Lecture 4: Discrete systems + Chaos Ilya Potapov Mathematics Department, TUT Room TD325 Discrete maps x n+1 = f(x n ) Discrete time steps. x 0

More information

Simple approach to the creation of a strange nonchaotic attractor in any chaotic system

Simple approach to the creation of a strange nonchaotic attractor in any chaotic system PHYSICAL REVIEW E VOLUME 59, NUMBER 5 MAY 1999 Simple approach to the creation of a strange nonchaotic attractor in any chaotic system J. W. Shuai 1, * and K. W. Wong 2, 1 Department of Biomedical Engineering,

More information

Chapter 24 BIFURCATIONS

Chapter 24 BIFURCATIONS Chapter 24 BIFURCATIONS Abstract Keywords: Phase Portrait Fixed Point Saddle-Node Bifurcation Diagram Codimension-1 Hysteresis Hopf Bifurcation SNIC Page 1 24.1 Introduction In linear systems, responses

More information

Activity types in a neural mass model

Activity types in a neural mass model Master thesis Activity types in a neural mass model Jurgen Hebbink September 19, 214 Exam committee: Prof. Dr. S.A. van Gils (UT) Dr. H.G.E. Meijer (UT) Dr. G.J.M. Huiskamp (UMC Utrecht) Contents 1 Introduction

More information

Ergodicity and Non-Ergodicity in Economics

Ergodicity and Non-Ergodicity in Economics Abstract An stochastic system is called ergodic if it tends in probability to a limiting form that is independent of the initial conditions. Breakdown of ergodicity gives rise to path dependence. We illustrate

More information

Chapter 23. Predicting Chaos The Shift Map and Symbolic Dynamics

Chapter 23. Predicting Chaos The Shift Map and Symbolic Dynamics Chapter 23 Predicting Chaos We have discussed methods for diagnosing chaos, but what about predicting the existence of chaos in a dynamical system. This is a much harder problem, and it seems that the

More information

Does the transition of the interval in perceptional alternation have a chaotic rhythm?

Does the transition of the interval in perceptional alternation have a chaotic rhythm? Does the transition of the interval in perceptional alternation have a chaotic rhythm? Yasuo Itoh Mayumi Oyama - Higa, Member, IEEE Abstract This study verified that the transition of the interval in perceptional

More information

Neural Networks 2. 2 Receptive fields and dealing with image inputs

Neural Networks 2. 2 Receptive fields and dealing with image inputs CS 446 Machine Learning Fall 2016 Oct 04, 2016 Neural Networks 2 Professor: Dan Roth Scribe: C. Cheng, C. Cervantes Overview Convolutional Neural Networks Recurrent Neural Networks 1 Introduction There

More information

Chapter 2 Chaos theory and its relationship to complexity

Chapter 2 Chaos theory and its relationship to complexity Chapter 2 Chaos theory and its relationship to complexity David Kernick This chapter introduces chaos theory and the concept of non-linearity. It highlights the importance of reiteration and the system

More information

Introduction Biologically Motivated Crude Model Backpropagation

Introduction Biologically Motivated Crude Model Backpropagation Introduction Biologically Motivated Crude Model Backpropagation 1 McCulloch-Pitts Neurons In 1943 Warren S. McCulloch, a neuroscientist, and Walter Pitts, a logician, published A logical calculus of the

More information

Cellular Automata. and beyond. The World of Simple Programs. Christian Jacob

Cellular Automata. and beyond. The World of Simple Programs. Christian Jacob Cellular Automata and beyond The World of Simple Programs Christian Jacob Department of Computer Science Department of Biochemistry & Molecular Biology University of Calgary CPSC / MDSC 605 Fall 2003 Cellular

More information

arxiv: v1 [nlin.ao] 19 May 2017

arxiv: v1 [nlin.ao] 19 May 2017 Feature-rich bifurcations in a simple electronic circuit Debdipta Goswami 1, and Subhankar Ray 2, 1 Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA

More information

arxiv:chao-dyn/ v1 5 Mar 1996

arxiv:chao-dyn/ v1 5 Mar 1996 Turbulence in Globally Coupled Maps M. G. Cosenza and A. Parravano Centro de Astrofísica Teórica, Facultad de Ciencias, Universidad de Los Andes, A. Postal 26 La Hechicera, Mérida 5251, Venezuela (To appear,

More information

Lecture 16: Introduction to Neural Networks

Lecture 16: Introduction to Neural Networks Lecture 16: Introduction to Neural Networs Instructor: Aditya Bhasara Scribe: Philippe David CS 5966/6966: Theory of Machine Learning March 20 th, 2017 Abstract In this lecture, we consider Bacpropagation,

More information

A Three-dimensional Physiologically Realistic Model of the Retina

A Three-dimensional Physiologically Realistic Model of the Retina A Three-dimensional Physiologically Realistic Model of the Retina Michael Tadross, Cameron Whitehouse, Melissa Hornstein, Vicky Eng and Evangelia Micheli-Tzanakou Department of Biomedical Engineering 617

More information

Bursting and Chaotic Activities in the Nonlinear Dynamics of FitzHugh-Rinzel Neuron Model

Bursting and Chaotic Activities in the Nonlinear Dynamics of FitzHugh-Rinzel Neuron Model Bursting and Chaotic Activities in the Nonlinear Dynamics of FitzHugh-Rinzel Neuron Model Abhishek Yadav *#, Anurag Kumar Swami *, Ajay Srivastava * * Department of Electrical Engineering, College of Technology,

More information

Heteroclinic Switching in Coupled Oscillator Networks: Dynamics on Odd Graphs

Heteroclinic Switching in Coupled Oscillator Networks: Dynamics on Odd Graphs Heteroclinic Switching in Coupled Oscillator Networks: Dynamics on Odd Graphs Peter Ashwin, Gábor Orosz, and Jon Borresen Abstract We review some examples of dynamics displaying sequential switching for

More information

In biological terms, memory refers to the ability of neural systems to store activity patterns and later recall them when required.

In biological terms, memory refers to the ability of neural systems to store activity patterns and later recall them when required. In biological terms, memory refers to the ability of neural systems to store activity patterns and later recall them when required. In humans, association is known to be a prominent feature of memory.

More information

Workshop on Heterogeneous Computing, 16-20, July No Monte Carlo is safe Monte Carlo - more so parallel Monte Carlo

Workshop on Heterogeneous Computing, 16-20, July No Monte Carlo is safe Monte Carlo - more so parallel Monte Carlo Workshop on Heterogeneous Computing, 16-20, July 2012 No Monte Carlo is safe Monte Carlo - more so parallel Monte Carlo K. P. N. Murthy School of Physics, University of Hyderabad July 19, 2012 K P N Murthy

More information

Lecture: Local Spectral Methods (1 of 4)

Lecture: Local Spectral Methods (1 of 4) Stat260/CS294: Spectral Graph Methods Lecture 18-03/31/2015 Lecture: Local Spectral Methods (1 of 4) Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still very rough. They provide

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/319/5869/1543/dc1 Supporting Online Material for Synaptic Theory of Working Memory Gianluigi Mongillo, Omri Barak, Misha Tsodyks* *To whom correspondence should be addressed.

More information

Bayes Correlated Equilibrium and Comparing Information Structures

Bayes Correlated Equilibrium and Comparing Information Structures Bayes Correlated Equilibrium and Comparing Information Structures Dirk Bergemann and Stephen Morris Spring 2013: 521 B Introduction game theoretic predictions are very sensitive to "information structure"

More information

arxiv: v1 [q-bio.nc] 25 Jan 2018

arxiv: v1 [q-bio.nc] 25 Jan 2018 Centre for Mathematical Medicine and Biology, University of Nottingham, UK. 1 Networks of piecewise linear neural mass models arxiv:181.8366v1 [q-bio.nc] 25 Jan 218 S. COOMBES, Y. M. LAI, M. ŞAYLI, and

More information

Dynamics of Modified Leslie-Gower Predator-Prey Model with Predator Harvesting

Dynamics of Modified Leslie-Gower Predator-Prey Model with Predator Harvesting International Journal of Basic & Applied Sciences IJBAS-IJENS Vol:13 No:05 55 Dynamics of Modified Leslie-Gower Predator-Prey Model with Predator Harvesting K. Saleh Department of Mathematics, King Fahd

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks What are (Artificial) Neural Networks? Models of the brain and nervous system Highly parallel Process information much more like the brain than a serial computer Learning

More information

Problem Set Number 02, j/2.036j MIT (Fall 2018)

Problem Set Number 02, j/2.036j MIT (Fall 2018) Problem Set Number 0, 18.385j/.036j MIT (Fall 018) Rodolfo R. Rosales (MIT, Math. Dept., room -337, Cambridge, MA 0139) September 6, 018 Due October 4, 018. Turn it in (by 3PM) at the Math. Problem Set

More information

Discrete and Indiscrete Models of Biological Networks

Discrete and Indiscrete Models of Biological Networks Discrete and Indiscrete Models of Biological Networks Winfried Just Ohio University November 17, 2010 Who are we? What are we doing here? Who are we? What are we doing here? A population of interacting

More information