Towards a framework for multi-level modelling in Computational Biology

Size: px
Start display at page:

Download "Towards a framework for multi-level modelling in Computational Biology"

Transcription

1 Towards a framework for multi-level modelling in Computational Biology Sara Montagna sara.montagna@unibo.it Alma Mater Studiorum Università di Bologna PhD in Electronics, Computer Science and Telecommunications - XXIII Ciclo Second Year Ending Seminar Bologna, Italy, October 14, 2009 Montagna (UniBo) Multi-level Models in Computational Biology 14/10/ / 33

2 Outline 1 Context Computational Biology for modelling and simulating 2 Problem modelling the hierarchical organisation of biological systems 3 Contribution a multilevel modelling framework computational model specification language simulation engine 4 Evaluation analysis of Drosophila Melanogaster as a case study 5 Further application synthesis of an artificial system 6 Up-coming works Montagna (UniBo) Multi-level Models in Computational Biology 14/10/ / 33

3 Outline 1 Computational Biology 2 Modelling the Hierarchy of Biological Systems 3 A Multi-level Modelling Framework 4 Evaluation on the Drosophila Melanogaster Morphogenesis 5 Further Application Towards the Synthesis of Artificial Systems 6 Up-coming Work Montagna (UniBo) Multi-level Models in Computational Biology 14/10/ / 33

4 Computational Biology Computational biology is an interdisciplinary field that applies the techniques of computer science, applied mathematics and statistics to address biological problems. By these means it addresses scientific research topics with their theoretical and experimental questions without a laboratory. Molecular structural modelling kinetics and thermodynamics of protein functions Protein structure prediction Interpretation, classification and understanding of biological data-sets DNA, RNA, or protein sequences Modelling and simulating biological processes gene networks, metabolic pathways, tissue patterning Montagna (UniBo) Multi-level Models in Computational Biology 14/10/ / 33

5 Outline 1 Computational Biology 2 Modelling the Hierarchy of Biological Systems 3 A Multi-level Modelling Framework 4 Evaluation on the Drosophila Melanogaster Morphogenesis 5 Further Application Towards the Synthesis of Artificial Systems 6 Up-coming Work Montagna (UniBo) Multi-level Models in Computational Biology 14/10/ / 33

6 Biological Systems as Complex Systems 1 Non-linear dynamics and feedbacks interactions among components 2 Openness interaction among components and the environment 3 Hierarchy (different level of structural organization) from sequences, molecules... to pathways (such as metabolic or signaling) and networks (collection of cross-interacting pathways)... to cells, tissues, organs 4 Emergent phenomena Montagna (UniBo) Multi-level Models in Computational Biology 14/10/ / 33

7 An Example: On the Morphogenesis of Living Systems Developmental Biology researches the mechanisms of development, differentiation, and growth in animals and plants at the molecular, cellular, and genetic levels. Animal developmental steps 1 Fertilisation of one egg 2 Mitotic division 3 Cellular differentiation diverse gene expression 4 Morphogenesis control of the organised spatial distribution of the cell diversity Montagna (UniBo) Multi-level Models in Computational Biology 14/10/ / 33

8 Each region of the developing organism expresses a given set of genes Figure: Drosophila M. segments Figure: Zebrafish regionalisation Developmental Biology recognise as important actors in the emergence of embryonic patterning self-organised structures transcriptional control mechanisms signalling pathways cell-to-cell direct interaction short and long range signals (morphogenes) interplay between cells internal activity and cell-to-cell interactions Figure by: [1] On-line [2] An Automatic Quantification and Registration Strategy to Create a Genetic Expression Atlas of Zebrafish Embryogenesis. C. Castro et all. Accepted at IEEE Engineering in Medicine and Biology Society (EMBC 09) Montagna (UniBo) Multi-level Models in Computational Biology 14/10/ / 33

9 A Computational Model for Addressing these Scenarios Computational model requirements 1 Multi-compartment / multi-level model for reproducing the interactions and integrations of the systems components at cellular and intracellular level 2 Diffusion / Transfer for studying the effects of short and long range signals for modelling the compartment membrane 3 Stochasticity for capturing the aleatory behaviour characteristic of those systems involving few entities Montagna (UniBo) Multi-level Models in Computational Biology 14/10/ / 33

10 Brief Survey on Existing Frameworks Systems Biology Tools: See Based on classical mathematical models (ODE or PDE) CellDesigner, CellWare, COPASI, Dizzy, JDesigner, Virtual Cell,... mainly thought for intracellular aspects (biochemical pathways) do not scale well with the system complexity (e.g. number of cells) Computational Systems Biology Tools Based on computational models (stochastic process-algebras, Petri-Nets) SPIM (stochastic π-calculus), BlenX, Bio-PEPA ground on Gillespie s characterisation of chemistry as CTMC promote a view of molecules as concurrent processes recent preliminary extensions towards multi-compartimentalisation Montagna (UniBo) Multi-level Models in Computational Biology 14/10/ / 33

11 Outline 1 Computational Biology 2 Modelling the Hierarchy of Biological Systems 3 A Multi-level Modelling Framework 4 Evaluation on the Drosophila Melanogaster Morphogenesis 5 Further Application Towards the Synthesis of Artificial Systems 6 Up-coming Work Montagna (UniBo) Multi-level Models in Computational Biology 14/10/ / 33

12 A Multi-level Modelling Framework Framework s Conceptual Parts 1 Computational Model: Graph of compartments, with transfer reactions 2 Surface Language: Systems as logic-oriented description programs system structure inner chemical behaviours 3 Simulation Engine: Known O(logN) version of Gillespie SSA reproducing the exact chemical evolution/diffusion of substances Montagna (UniBo) Multi-level Models in Computational Biology 14/10/ / 33

13 Part 1: the Computational Model Structure A multi-compartment version of standard CMSB view A system is a graph-like network of compartments Each compartment hosts a chemical solution Mobility and mitotic division will be supported in future versions Montagna (UniBo) Multi-level Models in Computational Biology 14/10/ / 33

14 Part 1: The Computational Model Chemical Transfer Transfer Model Some chemical reactions can produce so-called firing molecules They are sent to a neighbouring compartment picked probabilistically Montagna (UniBo) Multi-level Models in Computational Biology 14/10/ / 33

15 Part 2: The Surface Specification Language Structure A program as a set of logic declarations Declaring molecules, reactions, compartments, links Configuring the simulation (initial state and parameters) Stating output commands Declarations can have variables and be equipped with fully expressive preconditions, acting as constraints on declarations Compiler Supporting flexibility Specifications are parsed by a Prolog interpreter An intermediate file of commands is created which will feed the simulation engine Montagna (UniBo) Multi-level Models in Computational Biology 14/10/ / 33

16 Example specification Diffusion of a substance into a grid-like tissue const size(20). molecule M where (M in [pump,field]). reaction r(pump) : [pump] --> [pump,field] rate reaction r(diff) : [field] --> [field,firing(field)] rate 0.2. reaction r(decay) : [field] --> [] rate 0.1. compartment c(x,y) where (const size(n), X in {1..N}, Y in {1..N}). link c(x,y) >>> c(x,y1) molecule field rate where ( Y1 in [Y-1,Y+1] ). link c(x,y) >>> c(x1,y) molecule field rate where ( X1 in [X-1,X+1] ). concentration 1 of pump into c(m,m) where (const size(n), M is N//2). place AnyReaction into AnyCompartment. final_steps sample_steps 100. out [molecule(c(x,y),field),delimiter] where ( const size(n), inspect(compartment c(x,y)), (Y=N -> Delimiter=end_of_line ; Delimiter=space) ). Montagna (UniBo) Multi-level Models in Computational Biology 14/10/ / 33

17 Part 3: The Simulation Engine Under the hood Main Elements An available chemical reaction in a compartment is picked up probabilistically based on its rate selected in O(logN) time, via a special binary search tree The transition modifies a small portion of data structures The transition duration is drawn with exponential distribution exactly modelling chemical dynamics according to [1] Based on: [1] D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem., 81(25), [2] M. A. Gibson and J. Bruck. Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. A, 104(9), Montagna (UniBo) Multi-level Models in Computational Biology 14/10/ / 33

18 Part 3: The Simulation Engine Output (1) Produces a textual result from out commands Montagna (UniBo) Multi-level Models in Computational Biology 14/10/ / 33

19 Part 3: The Simulation Engine Output (2) Produces a textual result from out commands Montagna (UniBo) Multi-level Models in Computational Biology 14/10/ / 33

20 Part 3: The Simulation Engine Output (3) Produces a textual result from out commands Montagna (UniBo) Multi-level Models in Computational Biology 14/10/ / 33

21 Part 3: The Simulation Engine Drawing Charts Charting using any existing tool (Matlab, gnuplot,..) Montagna (UniBo) Multi-level Models in Computational Biology 14/10/ / 33

22 Outline 1 Computational Biology 2 Modelling the Hierarchy of Biological Systems 3 A Multi-level Modelling Framework 4 Evaluation on the Drosophila Melanogaster Morphogenesis 5 Further Application Towards the Synthesis of Artificial Systems 6 Up-coming Work Montagna (UniBo) Multi-level Models in Computational Biology 14/10/ / 33

23 Goals of the Model 1 To obtain a self-organised patterning such as the D.M segments regions with a different genetic expression (plig1 and plig2) boundary regions with a gradient of activity of the expressed genes Protein Number plig2 plig1 Space 2 To demonstrate the fundamental dependency between the intracellular dynamics and the extracellular ones For more details see: [1] S. Montagna and M. Viroli A computational framework for modelling multicellular biochemistry 2009 IEEE Congress on Evolutionary Computation (CEC 2009), May 2009 Montagna (UniBo) Multi-level Models in Computational Biology 14/10/ / 33

24 Working Hypotheses of the Model The maternal products activate either plig1 or plig2 Two regions where only one of the two pathways is active Two signalling pathways composed by 1 Receptors prec1 & prec2 2 Ligands plig1 & plig2 3 Intracellular cascades that transmit the signal cascade1 & cascade2 4 Genes lig1 & lig2 plig1 enhances itself production while inhibits the production of plig2 plig2 enhances itself production while inhibits the production of plig1 Montagna (UniBo) Multi-level Models in Computational Biology 14/10/ / 33

25 First Experiment pre-imposed regionalisation Initial configuration 4500 cells forming a 30x150 grid Few copies of the two ligands already regionalised at the beginning of zygotic expression (left) Discussion The initial pattern is strongly reinforced (right) thanks to mutual inhibition + local reinforcement Montagna (UniBo) Multi-level Models in Computational Biology 14/10/ / 33

26 Second Experiment spontaneous regionalisation Initial configuration 4500 cells forming a 30x150 grid same number of ligands uniformly placed Discussion regions tend to form (left) and consolidate (right) dynamics is not very stable: Some further mechanism is needed Montagna (UniBo) Multi-level Models in Computational Biology 14/10/ / 33

27 Outline 1 Computational Biology 2 Modelling the Hierarchy of Biological Systems 3 A Multi-level Modelling Framework 4 Evaluation on the Drosophila Melanogaster Morphogenesis 5 Further Application Towards the Synthesis of Artificial Systems 6 Up-coming Work Montagna (UniBo) Multi-level Models in Computational Biology 14/10/ / 33

28 Pervasive Computing Scenarios Distributed infrastructures large-scale distribution opennes context-awareness self-organisation and self-adaptation How to support and engineer this scenario? Montagna (UniBo) Multi-level Models in Computational Biology 14/10/ / 33

29 A nature-inspired coordination model Mapping individuals into biochemical species One individual is modelled as a chemical substance into a solution An individual activity level is modelled as the concentration of the chemical substance an integer value measuring the strenght or health of the individual Mapping the space into the network One location is modelled as a well-mixed chemical solution of a compartment it occurs within the boundary of a biological membrane it contains several substances, modelling interacting individuals The whole system is modelled as a network-like structure of compartments individuals move to the neighbourhood as chemical substances cross membranes Montagna (UniBo) Multi-level Models in Computational Biology 14/10/ / 33

30 An Example: Creating a Service-Request Path Self-adaptation to topology and their changes The path adapts to the introduction of an obstacle For more details see: [1] M. Viroli and M. Casadei. Biochemical Tuple Spaces for Self-Organising Coordination. Coordination Languages and Models, LNCS 5521, jun 2009 [2] M. Viroli, F. Zambonelli, M. Casadei and S. Montagna. A Biochemical Metaphor for Developing Eternally Adaptive Service Ecosystems.24th Annual ACM Symposium on Applied Computing (SAC 2009), March, Montagna (UniBo) Multi-level Models in Computational Biology 14/10/ / 33

31 Outline 1 Computational Biology 2 Modelling the Hierarchy of Biological Systems 3 A Multi-level Modelling Framework 4 Evaluation on the Drosophila Melanogaster Morphogenesis 5 Further Application Towards the Synthesis of Artificial Systems 6 Up-coming Work Montagna (UniBo) Multi-level Models in Computational Biology 14/10/ / 33

32 Up-coming Work Agenda Tool side re-engineer the tool towards a community release support dynamic networks and mitotic division improve chemical transfer model perform parameter tuning Biological systems model side analyse Zebrafish morphogenesis using real biological data (not still fully available) inferring the gene networks from literature Artificial design side program clustering, gradients, paths, self-composition find applications for patterns of natural/artificial biochemistry implement real-life systems: Pervasive Displays Infrastructure Montagna (UniBo) Multi-level Models in Computational Biology 14/10/ / 33

33 Towards a framework for multi-level modelling in Computational Biology Sara Montagna sara.montagna@unibo.it Alma Mater Studiorum Università di Bologna PhD in Electronics, Computer Science and Telecommunications - XXIII Ciclo Second Year Ending Seminar Bologna, Italy, October 14, 2009 Montagna (UniBo) Multi-level Models in Computational Biology 14/10/ / 33

SPA for quantitative analysis: Lecture 6 Modelling Biological Processes

SPA for quantitative analysis: Lecture 6 Modelling Biological Processes 1/ 223 SPA for quantitative analysis: Lecture 6 Modelling Biological Processes Jane Hillston LFCS, School of Informatics The University of Edinburgh Scotland 7th March 2013 Outline 2/ 223 1 Introduction

More information

Computational Biology Course Descriptions 12-14

Computational Biology Course Descriptions 12-14 Computational Biology Course Descriptions 12-14 Course Number and Title INTRODUCTORY COURSES BIO 311C: Introductory Biology I BIO 311D: Introductory Biology II BIO 325: Genetics CH 301: Principles of Chemistry

More information

Molecules of Knowledge: a Novel Perspective over Knowledge Management

Molecules of Knowledge: a Novel Perspective over Knowledge Management Molecules of Knowledge: a Novel Perspective over Knowledge Management 23 Stefano Mariani Supervisor: Andrea Omicini Alma Mater Studiorum Università di Bologna via Venezia 52 47521 Cesena, Italy s.mariani@unibo.it

More information

AP Biology Essential Knowledge Cards BIG IDEA 1

AP Biology Essential Knowledge Cards BIG IDEA 1 AP Biology Essential Knowledge Cards BIG IDEA 1 Essential knowledge 1.A.1: Natural selection is a major mechanism of evolution. Essential knowledge 1.A.4: Biological evolution is supported by scientific

More information

Enduring understanding 1.A: Change in the genetic makeup of a population over time is evolution.

Enduring understanding 1.A: Change in the genetic makeup of a population over time is evolution. The AP Biology course is designed to enable you to develop advanced inquiry and reasoning skills, such as designing a plan for collecting data, analyzing data, applying mathematical routines, and connecting

More information

A A A A B B1

A A A A B B1 LEARNING OBJECTIVES FOR EACH BIG IDEA WITH ASSOCIATED SCIENCE PRACTICES AND ESSENTIAL KNOWLEDGE Learning Objectives will be the target for AP Biology exam questions Learning Objectives Sci Prac Es Knowl

More information

86 Part 4 SUMMARY INTRODUCTION

86 Part 4 SUMMARY INTRODUCTION 86 Part 4 Chapter # AN INTEGRATION OF THE DESCRIPTIONS OF GENE NETWORKS AND THEIR MODELS PRESENTED IN SIGMOID (CELLERATOR) AND GENENET Podkolodny N.L. *1, 2, Podkolodnaya N.N. 1, Miginsky D.S. 1, Poplavsky

More information

Big Idea 1: The process of evolution drives the diversity and unity of life.

Big Idea 1: The process of evolution drives the diversity and unity of life. Big Idea 1: The process of evolution drives the diversity and unity of life. understanding 1.A: Change in the genetic makeup of a population over time is evolution. 1.A.1: Natural selection is a major

More information

Cellular Systems Biology or Biological Network Analysis

Cellular Systems Biology or Biological Network Analysis Cellular Systems Biology or Biological Network Analysis Joel S. Bader Department of Biomedical Engineering Johns Hopkins University (c) 2012 December 4, 2012 1 Preface Cells are systems. Standard engineering

More information

AP Curriculum Framework with Learning Objectives

AP Curriculum Framework with Learning Objectives Big Ideas Big Idea 1: The process of evolution drives the diversity and unity of life. AP Curriculum Framework with Learning Objectives Understanding 1.A: Change in the genetic makeup of a population over

More information

Biological Pathways Representation by Petri Nets and extension

Biological Pathways Representation by Petri Nets and extension Biological Pathways Representation by and extensions December 6, 2006 Biological Pathways Representation by and extension 1 The cell Pathways 2 Definitions 3 4 Biological Pathways Representation by and

More information

Lectures on Medical Biophysics Department of Biophysics, Medical Faculty, Masaryk University in Brno. Biocybernetics

Lectures on Medical Biophysics Department of Biophysics, Medical Faculty, Masaryk University in Brno. Biocybernetics Lectures on Medical Biophysics Department of Biophysics, Medical Faculty, Masaryk University in Brno Norbert Wiener 26.11.1894-18.03.1964 Biocybernetics Lecture outline Cybernetics Cybernetic systems Feedback

More information

Field 045: Science Life Science Assessment Blueprint

Field 045: Science Life Science Assessment Blueprint Field 045: Science Life Science Assessment Blueprint Domain I Foundations of Science 0001 The Nature and Processes of Science (Standard 1) 0002 Central Concepts and Connections in Science (Standard 2)

More information

Essential knowledge 1.A.2: Natural selection

Essential knowledge 1.A.2: Natural selection Appendix C AP Biology Concepts at a Glance Big Idea 1: The process of evolution drives the diversity and unity of life. Enduring understanding 1.A: Change in the genetic makeup of a population over time

More information

Reception The target cell s detection of a signal coming from outside the cell May Occur by: Direct connect Through signal molecules

Reception The target cell s detection of a signal coming from outside the cell May Occur by: Direct connect Through signal molecules Why Do Cells Communicate? Regulation Cells need to control cellular processes In multicellular organism, cells signaling pathways coordinate the activities within individual cells that support the function

More information

Map of AP-Aligned Bio-Rad Kits with Learning Objectives

Map of AP-Aligned Bio-Rad Kits with Learning Objectives Map of AP-Aligned Bio-Rad Kits with Learning Objectives Cover more than one AP Biology Big Idea with these AP-aligned Bio-Rad kits. Big Idea 1 Big Idea 2 Big Idea 3 Big Idea 4 ThINQ! pglo Transformation

More information

Course plan Academic Year Qualification MSc on Bioinformatics for Health Sciences. Subject name: Computational Systems Biology Code: 30180

Course plan Academic Year Qualification MSc on Bioinformatics for Health Sciences. Subject name: Computational Systems Biology Code: 30180 Course plan 201-201 Academic Year Qualification MSc on Bioinformatics for Health Sciences 1. Description of the subject Subject name: Code: 30180 Total credits: 5 Workload: 125 hours Year: 1st Term: 3

More information

BEFORE TAKING THIS MODULE YOU MUST ( TAKE BIO-4013Y OR TAKE BIO-

BEFORE TAKING THIS MODULE YOU MUST ( TAKE BIO-4013Y OR TAKE BIO- 2018/9 - BIO-4001A BIODIVERSITY Autumn Semester, Level 4 module (Maximum 150 Students) Organiser: Dr Harriet Jones Timetable Slot:DD This module explores life on Earth. You will be introduced to the major

More information

Valley Central School District 944 State Route 17K Montgomery, NY Telephone Number: (845) ext Fax Number: (845)

Valley Central School District 944 State Route 17K Montgomery, NY Telephone Number: (845) ext Fax Number: (845) Valley Central School District 944 State Route 17K Montgomery, NY 12549 Telephone Number: (845)457-2400 ext. 18121 Fax Number: (845)457-4254 Advance Placement Biology Presented to the Board of Education

More information

ADVANCED PLACEMENT BIOLOGY

ADVANCED PLACEMENT BIOLOGY ADVANCED PLACEMENT BIOLOGY Description Advanced Placement Biology is designed to be the equivalent of a two-semester college introductory course for Biology majors. The course meets seven periods per week

More information

Biology Assessment. Eligible Texas Essential Knowledge and Skills

Biology Assessment. Eligible Texas Essential Knowledge and Skills Biology Assessment Eligible Texas Essential Knowledge and Skills STAAR Biology Assessment Reporting Category 1: Cell Structure and Function The student will demonstrate an understanding of biomolecules

More information

AP Biology Curriculum Framework

AP Biology Curriculum Framework AP Biology Curriculum Framework This chart correlates the College Board s Advanced Placement Biology Curriculum Framework to the corresponding chapters and Key Concept numbers in Campbell BIOLOGY IN FOCUS,

More information

STAAR Biology Assessment

STAAR Biology Assessment STAAR Biology Assessment Reporting Category 1: Cell Structure and Function The student will demonstrate an understanding of biomolecules as building blocks of cells, and that cells are the basic unit of

More information

Science Online Instructional Materials Correlation to the 2010 Biology Standards of Learning and Curriculum Framework

Science Online Instructional Materials Correlation to the 2010 Biology Standards of Learning and Curriculum Framework and Curriculum Framework Provider York County School Divison Course Title Biology Last Updated 2010-11 Course Syllabus URL http://yorkcountyschools.org/virtuallearning/coursecatalog.aspx BIO.1 The student

More information

RCPS Curriculum Pacing Guide Subject: Biology. Remembering, Understanding, Applying, Analyzing, Evaluating, Creating

RCPS Curriculum Pacing Guide Subject: Biology. Remembering, Understanding, Applying, Analyzing, Evaluating, Creating RCPS Curriculum Pacing Guide 2013 2014 Subject: Biology Week of: SOL # Unit Bloom s Objectives Week 1 and throughout the semester #BIO1 Scientific reasoning, logic and the nature of science Chapter 1 Biology:

More information

1 of 13 8/11/2014 10:32 AM Units: Teacher: APBiology, CORE Course: APBiology Year: 2012-13 Chemistry of Life Chapters 1-4 Big Idea 1, 2 & 4 Change in the genetic population over time is feedback mechanisms

More information

Berg Tymoczko Stryer Biochemistry Sixth Edition Chapter 1:

Berg Tymoczko Stryer Biochemistry Sixth Edition Chapter 1: Berg Tymoczko Stryer Biochemistry Sixth Edition Chapter 1: Biochemistry: An Evolving Science Tips on note taking... Remember copies of my lectures are available on my webpage If you forget to print them

More information

TEST SUMMARY AND FRAMEWORK TEST SUMMARY

TEST SUMMARY AND FRAMEWORK TEST SUMMARY Washington Educator Skills Tests Endorsements (WEST E) TEST SUMMARY AND FRAMEWORK TEST SUMMARY BIOLOGY Copyright 2014 by the Washington Professional Educator Standards Board 1 Washington Educator Skills

More information

Science Textbook and Instructional Materials Correlation to the 2010 Biology Standards of Learning and Curriculum Framework. Publisher Information

Science Textbook and Instructional Materials Correlation to the 2010 Biology Standards of Learning and Curriculum Framework. Publisher Information Publisher Information Copyright date 2013 Contact Carol Kornfeind Phone# 847-486-2065 E-mail carol.kornfeind@pearson.com Biology 1 of 12 Virginia Department of Education Text Miller Levine Biology, Virginia

More information

Performance Indicators: Students who demonstrate this understanding can:

Performance Indicators: Students who demonstrate this understanding can: OVERVIEW The academic standards and performance indicators establish the practices and core content for all Biology courses in South Carolina high schools. The core ideas within the standards are not meant

More information

A Multiscale Agent-based Model of Morphogenesis in Biological Systems

A Multiscale Agent-based Model of Morphogenesis in Biological Systems A Multiscale Agent-based Model of Morphogenesis in Biological Systems Sara Montagna DEIS Università di Bologna via Venezia 52, 4723 Cesena, Italy Email: sara.montagna@unibo.it Andrea Omicini DEIS Università

More information

Campbell Biology AP Edition 11 th Edition, 2018

Campbell Biology AP Edition 11 th Edition, 2018 A Correlation and Narrative Summary of Campbell Biology AP Edition 11 th Edition, 2018 To the AP Biology Curriculum Framework AP is a trademark registered and/or owned by the College Board, which was not

More information

Population models from PEPA descriptions

Population models from PEPA descriptions Population models from PEPA descriptions Jane Hillston LFCS, The University of Edinburgh, Edinburgh EH9 3JZ, Scotland. Email: jeh@inf.ed.ac.uk 1 Introduction Stochastic process algebras (e.g. PEPA [10],

More information

CHAPTER 1 BIOLOGY THE SCIENCE OF LIFE

CHAPTER 1 BIOLOGY THE SCIENCE OF LIFE CHAPTER 1 BIOLOGY THE SCIENCE OF LIFE BIOLOGICAL THEMES 1. Cell Structure & Function cell is the basic unit of life all organisms are composed of at least one cell Unicellular single celled ; bacteria,

More information

PREREQUISITE CHECKLIST

PREREQUISITE CHECKLIST PREREQUISITE CHECKLIST UNIVERSITY OF CALIFORNIA, BERKELEY SCHOOL OF OPTOMETRY ADMISSIONS AND STUDENT AFFAIRS OFFICE Name: Date: Email: Status (complete, in progress, or planned) Prerequisite Course Requirements

More information

Biology Unit Overview and Pacing Guide

Biology Unit Overview and Pacing Guide This document provides teachers with an overview of each unit in the Biology curriculum. The Curriculum Engine provides additional information including knowledge and performance learning targets, key

More information

Cells in silico: a Holistic Approach

Cells in silico: a Holistic Approach Cells in silico: a Holistic Approach Pierpaolo Degano Dipartimento di Informatica, Università di Pisa, Italia joint work with a lot of nice BISCA people :-) Bertinoro, 7th June 2007 SFM 2008 Bertinoro

More information

Missouri Educator Gateway Assessments

Missouri Educator Gateway Assessments Missouri Educator Gateway Assessments June 2014 Content Domain Range of Competencies Approximate Percentage of Test Score I. Science and Engineering Practices 0001 0003 21% II. Biochemistry and Cell Biology

More information

Developmental Biology Lecture Outlines

Developmental Biology Lecture Outlines Developmental Biology Lecture Outlines Lecture 01: Introduction Course content Developmental Biology Obsolete hypotheses Current theory Lecture 02: Gametogenesis Spermatozoa Spermatozoon function Spermatozoon

More information

Bio 101 General Biology 1

Bio 101 General Biology 1 Revised: Fall 2016 Bio 101 General Biology 1 COURSE OUTLINE Prerequisites: Prerequisite: Successful completion of MTE 1, 2, 3, 4, and 5, and a placement recommendation for ENG 111, co-enrollment in ENF

More information

Modelling Biochemical Pathways with Stochastic Process Algebra

Modelling Biochemical Pathways with Stochastic Process Algebra Modelling Biochemical Pathways with Stochastic Process Algebra Jane Hillston. LFCS, University of Edinburgh 13th April 2007 The PEPA project The PEPA project started in Edinburgh in 1991. The PEPA project

More information

Big Idea 3: Living systems store, retrieve, transmit and respond to information essential to life processes. Tuesday, December 27, 16

Big Idea 3: Living systems store, retrieve, transmit and respond to information essential to life processes. Tuesday, December 27, 16 Big Idea 3: Living systems store, retrieve, transmit and respond to information essential to life processes. Enduring understanding 3.B: Expression of genetic information involves cellular and molecular

More information

Drosophila melanogaster- Morphogen Gradient

Drosophila melanogaster- Morphogen Gradient NPTEL Biotechnology - Systems Biology Drosophila melanogaster- Morphogen Gradient Dr. M. Vijayalakshmi School of Chemical and Biotechnology SASTRA University Joint Initiative of IITs and IISc Funded by

More information

EASTERN OREGON UNIVERSITY Chemistry-Biochemistry

EASTERN OREGON UNIVERSITY Chemistry-Biochemistry EASTERN OREGON UNIVERSITY Chemistry-Biochemistry PROGRAM OBJECTIVES The chemistry-biochemistry degree offered by the Department of Chemistry-Biochemistry prepares chemistry majors for graduate work in

More information

Chapter 18 Lecture. Concepts of Genetics. Tenth Edition. Developmental Genetics

Chapter 18 Lecture. Concepts of Genetics. Tenth Edition. Developmental Genetics Chapter 18 Lecture Concepts of Genetics Tenth Edition Developmental Genetics Chapter Contents 18.1 Differentiated States Develop from Coordinated Programs of Gene Expression 18.2 Evolutionary Conservation

More information

Unit 5: Cell Division and Development Guided Reading Questions (45 pts total)

Unit 5: Cell Division and Development Guided Reading Questions (45 pts total) Name: AP Biology Biology, Campbell and Reece, 7th Edition Adapted from chapter reading guides originally created by Lynn Miriello Chapter 12 The Cell Cycle Unit 5: Cell Division and Development Guided

More information

38050 Povo Trento (Italy), Via Sommarive 14 CAUSAL P-CALCULUS FOR BIOCHEMICAL MODELLING

38050 Povo Trento (Italy), Via Sommarive 14  CAUSAL P-CALCULUS FOR BIOCHEMICAL MODELLING UNIVERSITY OF TRENTO DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY 38050 Povo Trento (Italy), Via Sommarive 14 http://www.dit.unitn.it CAUSAL P-CALCULUS FOR BIOCHEMICAL MODELLING M. Curti, P.

More information

BSc MATHEMATICAL SCIENCE

BSc MATHEMATICAL SCIENCE Overview College of Science Modules Electives May 2018 (2) BSc MATHEMATICAL SCIENCE BSc Mathematical Science Degree 2018 1 College of Science, NUI Galway Fullscreen Next page Overview [60 Credits] [60

More information

FUNDAMENTALS of SYSTEMS BIOLOGY From Synthetic Circuits to Whole-cell Models

FUNDAMENTALS of SYSTEMS BIOLOGY From Synthetic Circuits to Whole-cell Models FUNDAMENTALS of SYSTEMS BIOLOGY From Synthetic Circuits to Whole-cell Models Markus W. Covert Stanford University 0 CRC Press Taylor & Francis Group Boca Raton London New York Contents /... Preface, xi

More information

Advanced Higher Biology. Unit 1- Cells and Proteins 2c) Membrane Proteins

Advanced Higher Biology. Unit 1- Cells and Proteins 2c) Membrane Proteins Advanced Higher Biology Unit 1- Cells and Proteins 2c) Membrane Proteins Membrane Structure Phospholipid bilayer Transmembrane protein Integral protein Movement of Molecules Across Membranes Phospholipid

More information

Unicellular: Cells change function in response to a temporal plan, such as the cell cycle.

Unicellular: Cells change function in response to a temporal plan, such as the cell cycle. Spatial organization is a key difference between unicellular organisms and metazoans Unicellular: Cells change function in response to a temporal plan, such as the cell cycle. Cells differentiate as a

More information

Written Exam 15 December Course name: Introduction to Systems Biology Course no

Written Exam 15 December Course name: Introduction to Systems Biology Course no Technical University of Denmark Written Exam 15 December 2008 Course name: Introduction to Systems Biology Course no. 27041 Aids allowed: Open book exam Provide your answers and calculations on separate

More information

SCOTCAT Credits: 20 SCQF Level 7 Semester 1 Academic year: 2018/ am, Practical classes one per week pm Mon, Tue, or Wed

SCOTCAT Credits: 20 SCQF Level 7 Semester 1 Academic year: 2018/ am, Practical classes one per week pm Mon, Tue, or Wed Biology (BL) modules BL1101 Biology 1 SCOTCAT Credits: 20 SCQF Level 7 Semester 1 10.00 am; Practical classes one per week 2.00-5.00 pm Mon, Tue, or Wed This module is an introduction to molecular and

More information

Biology. Lessons: 15% Quizzes: 25% Projects: 30% Tests: 30% Assignment Weighting per Unit Without Projects. Lessons: 21% Quizzes: 36% Tests: 43%

Biology. Lessons: 15% Quizzes: 25% Projects: 30% Tests: 30% Assignment Weighting per Unit Without Projects. Lessons: 21% Quizzes: 36% Tests: 43% Biology This course consists of 12 units, which provide an overview of the basic concepts and natural laws of Biology. Unit 1 deals with the organization of living organisms. Unit 2 addresses the chemistry

More information

AP BIOLOGY SUMMER ASSIGNMENT

AP BIOLOGY SUMMER ASSIGNMENT AP BIOLOGY SUMMER ASSIGNMENT Welcome to EDHS Advanced Placement Biology! The attached summer assignment is required for all AP Biology students for the 2011-2012 school year. The assignment consists of

More information

GACE Biology Assessment Test I (026) Curriculum Crosswalk

GACE Biology Assessment Test I (026) Curriculum Crosswalk Subarea I. Cell Biology: Cell Structure and Function (50%) Objective 1: Understands the basic biochemistry and metabolism of living organisms A. Understands the chemical structures and properties of biologically

More information

Control of Gene Expression

Control of Gene Expression Control of Gene Expression Mechanisms of Gene Control Gene Control in Eukaryotes Master Genes Gene Control In Prokaryotes Epigenetics Gene Expression The overall process by which information flows from

More information

Lamar University College of Arts and Sciences. Hayes Building Phone: Office Hours: T 2:15-4:00 R 2:15-4:00

Lamar University College of Arts and Sciences. Hayes Building Phone: Office Hours: T 2:15-4:00 R 2:15-4:00 Fall 2014 Department: Lamar University College of Arts and Sciences Biology Course Number/Section: BIOL 1406/01 Course Title: General Biology I Credit Hours: 4.0 Professor: Dr. Randall Terry Hayes Building

More information

COMPETENCY GOAL 1: The learner will develop abilities necessary to do and understand scientific inquiry.

COMPETENCY GOAL 1: The learner will develop abilities necessary to do and understand scientific inquiry. North Carolina Draft Standard Course of Study and Grade Level Competencies, Biology BIOLOGY COMPETENCY GOAL 1: The learner will develop abilities necessary to do and understand scientific inquiry. 1.01

More information

An introduction to SYSTEMS BIOLOGY

An introduction to SYSTEMS BIOLOGY An introduction to SYSTEMS BIOLOGY Paolo Tieri CNR Consiglio Nazionale delle Ricerche, Rome, Italy 10 February 2015 Universidade Federal de Minas Gerais, Belo Horizonte, Brasil Course outline Day 1: intro

More information

Deducing Interactions in Partially Unspecified Biological Systems

Deducing Interactions in Partially Unspecified Biological Systems Deducing Interactions in Partially Unspecified Biological Systems P. Baldan 1 A. Bracciali 2 L. Brodo 3 R. Bruni 2 1 Università di Padova 2 Università di Pisa 3 Università di Sassari Algebraic Biology

More information

Unit # - Title Intro to Biology Unit 1 - Scientific Method Unit 2 - Chemistry

Unit # - Title Intro to Biology Unit 1 - Scientific Method Unit 2 - Chemistry Intro to Biology Unit 1 - Scientific Method Unit 2 - Chemistry What is Biology? What is Science? What tools, skills, knowledge, and dispositions are needed to conduct scientific inquiry? How do the rules

More information

Virginia Western Community College BIO 101 General Biology I

Virginia Western Community College BIO 101 General Biology I BIO 101 General Biology I Prerequisites Successful completion of MTE 1, 2, 3, 4, and 5; and a placement recommendation for ENG 111, co-enrollment in ENF 3/ENG 111, or successful completion of all developmental

More information

Models and Languages for Computational Systems Biology Lecture 1

Models and Languages for Computational Systems Biology Lecture 1 Models and Languages for Computational Systems Biology Lecture 1 Jane Hillston. LFCS and CSBE, University of Edinburgh 13th January 2011 Outline Introduction Motivation Measurement, Observation and Induction

More information

AP Biology UNIT 1: CELL BIOLOGY. Advanced Placement

AP Biology UNIT 1: CELL BIOLOGY. Advanced Placement Advanced Placement AP Biology builds students' understanding of biology on both the micro and macro scales. After studying cell biology, students move on to understand how evolution drives the diversity

More information

2. Cellular and Molecular Biology

2. Cellular and Molecular Biology 2. Cellular and Molecular Biology 2.1 Cell Structure 2.2 Transport Across Cell Membranes 2.3 Cellular Metabolism 2.4 DNA Replication 2.5 Cell Division 2.6 Biosynthesis 2.1 Cell Structure What is a cell?

More information

Regulation and signaling. Overview. Control of gene expression. Cells need to regulate the amounts of different proteins they express, depending on

Regulation and signaling. Overview. Control of gene expression. Cells need to regulate the amounts of different proteins they express, depending on Regulation and signaling Overview Cells need to regulate the amounts of different proteins they express, depending on cell development (skin vs liver cell) cell stage environmental conditions (food, temperature,

More information

I. Molecules & Cells. A. Unit One: The Nature of Science. B. Unit Two: The Chemistry of Life. C. Unit Three: The Biology of the Cell.

I. Molecules & Cells. A. Unit One: The Nature of Science. B. Unit Two: The Chemistry of Life. C. Unit Three: The Biology of the Cell. I. Molecules & Cells A. Unit One: The Nature of Science a. How is the scientific method used to solve problems? b. What is the importance of controls? c. How does Darwin s theory of evolution illustrate

More information

Philipsburg-Osceola Area School District Science Department. Standard(s )

Philipsburg-Osceola Area School District Science Department. Standard(s ) Philipsburg-Osceola Area School District Science Department Course Name: Biology Grade Level: 10 Timelin e Big Ideas Essential Questions Content/ Concepts Skills/ Competencies Standard(s ) Eligible Content

More information

Computational Modelling in Systems and Synthetic Biology

Computational Modelling in Systems and Synthetic Biology Computational Modelling in Systems and Synthetic Biology Fran Romero Dpt Computer Science and Artificial Intelligence University of Seville fran@us.es www.cs.us.es/~fran Models are Formal Statements of

More information

I. Molecules and Cells: Cells are the structural and functional units of life; cellular processes are based on physical and chemical changes.

I. Molecules and Cells: Cells are the structural and functional units of life; cellular processes are based on physical and chemical changes. I. Molecules and Cells: Cells are the structural and functional units of life; cellular processes are based on physical and chemical changes. A. Chemistry of Life B. Cells 1. Water How do the unique chemical

More information

Bundle at a Glance Biology 2015/16

Bundle at a Glance Biology 2015/16 Introduction: Scientific Investigation and Reasoning Skills (3 A/B days) Biology Process TEKS: 1A demonstrate safe practices during laboratory and field investigations. 1B demonstrate an understanding

More information

CENTRO ESCOLAR UNIVERSITY Biological Sciences Department Manila*Malolos*Makati SYLLABUS

CENTRO ESCOLAR UNIVERSITY Biological Sciences Department Manila*Malolos*Makati SYLLABUS CENTRO ESCOLAR UNIVERSITY Biological Sciences Department Manila*Malolos*Makati SYLLABUS PRBS 131 BIOSCI131 CELL BIOLOGY 3 units 3 hours lec Course Number Course Title Descriptive Title Credit Unit(s) Hour(s)/Week

More information

Page 1. Name: UNIT: PHOTOSYNTHESIS AND RESPIRATION TOPIC: PHOTOSYNTHESIS

Page 1. Name: UNIT: PHOTOSYNTHESIS AND RESPIRATION TOPIC: PHOTOSYNTHESIS Name: 4667-1 - Page 1 UNIT: PHOTOSYNTHESIS AND RESPIRATION TOPIC: PHOTOSYNTHESIS 1) The diagram below illustrates the movement of materials involved in a process that is vital for the energy needs of organisms.

More information

Deducing Interactions in Partially Unspecified Biological Systems

Deducing Interactions in Partially Unspecified Biological Systems Deducing Interactions in Partially Unspecified Biological Systems P. Baldan 1 A. Bracciali 2 L. Brodo 3 R. Bruni 2 1 Università di Padova 2 Università di Pisa 3 Università di Sassari Algebraic Biology

More information

Why Flies? stages of embryogenesis. The Fly in History

Why Flies? stages of embryogenesis. The Fly in History The Fly in History 1859 Darwin 1866 Mendel c. 1890 Driesch, Roux (experimental embryology) 1900 rediscovery of Mendel (birth of genetics) 1910 first mutant (white) (Morgan) 1913 first genetic map (Sturtevant

More information

Grade Level: AP Biology may be taken in grades 11 or 12.

Grade Level: AP Biology may be taken in grades 11 or 12. ADVANCEMENT PLACEMENT BIOLOGY COURSE SYLLABUS MRS. ANGELA FARRONATO Grade Level: AP Biology may be taken in grades 11 or 12. Course Overview: This course is designed to cover all of the material included

More information

Molecular Biology Of The Cell 6th Edition Alberts

Molecular Biology Of The Cell 6th Edition Alberts We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer, you have convenient answers with molecular biology of

More information

REQUIREMENTS FOR THE BIOCHEMISTRY MAJOR

REQUIREMENTS FOR THE BIOCHEMISTRY MAJOR REQUIREMENTS FOR THE BIOCHEMISTRY MAJOR Grade Requirement: All courses required for the Biochemistry major (CH, MATH, PHYS, BI courses) must be graded and passed with a grade of C- or better. Core Chemistry

More information

Systems Biology. Edda Klipp, Wolfram Liebermeister, Christoph Wierling, Axel Kowald, Hans Lehrach, and Ralf Herwig. A Textbook

Systems Biology. Edda Klipp, Wolfram Liebermeister, Christoph Wierling, Axel Kowald, Hans Lehrach, and Ralf Herwig. A Textbook Edda Klipp, Wolfram Liebermeister, Christoph Wierling, Axel Kowald, Hans Lehrach, and Ralf Herwig Systems Biology A Textbook WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA v Contents Preface XVII Part One

More information

Chemistry. Faculty Kent Davis, chair; Pablo Hilario, Denise Lee-Haye, Marie Pak, Robert Wilson Departmental Office: 355 Chan Shun Hall; (707)

Chemistry. Faculty Kent Davis, chair; Pablo Hilario, Denise Lee-Haye, Marie Pak, Robert Wilson Departmental Office: 355 Chan Shun Hall; (707) Faculty Kent Davis, chair; Pablo Hilario, Denise Lee-Haye, Marie Pak, Robert Wilson Departmental Office: 355 Chan Shun Hall; (707) 965-7597 Degrees and Programs Chemistry, B.S....77 Chemistry, B.A....78

More information

FAIRBANKS NORTH STAR BOROUGH SCHOOL DISTRICT - SCIENCE CURRICULUM. Prentice Hall Biology (Miller/Levine) 2010 MASTERY CORE OBJECTIVES HIGH SCHOOL

FAIRBANKS NORTH STAR BOROUGH SCHOOL DISTRICT - SCIENCE CURRICULUM. Prentice Hall Biology (Miller/Levine) 2010 MASTERY CORE OBJECTIVES HIGH SCHOOL MASTERY CORE OBJECTIVES HIGH SCHOOL LIFE SCIENCE Overview: Life Science is a one-year course for students who learn best with extra time to approach the subject. The academic focus is to develop student

More information

SPRING GROVE AREA SCHOOL DISTRICT. Course Description. Instructional Strategies, Learning Practices, Activities, and Experiences.

SPRING GROVE AREA SCHOOL DISTRICT. Course Description. Instructional Strategies, Learning Practices, Activities, and Experiences. SPRING GROVE AREA SCHOOL DISTRICT PLANNED COURSE OVERVIEW Course Title: Advanced Placement Biology Grade Level(s): 12 Units of Credit: 1.50 Classification: Elective Length of Course: 30 cycles Periods

More information

Biology Curriculum Pacing Guide MONTGOMERY COUNTY PUBLIC SCHOOLS

Biology Curriculum Pacing Guide MONTGOMERY COUNTY PUBLIC SCHOOLS MONTGOMERY COUNTY PUBLIC SCHOOLS Biology Curriculum Pacing Guide 1 st 9 Weeks SOL Objectives Vocabulary 7 Days 14 Days BIO.1 The student will demonstrate an understanding of scientific reasoning, logic,

More information

Chapter 11. Development: Differentiation and Determination

Chapter 11. Development: Differentiation and Determination KAP Biology Dept Kenyon College Differential gene expression and development Mechanisms of cellular determination Induction Pattern formation Chapter 11. Development: Differentiation and Determination

More information

The performance expectation above was developed using the following elements from A Framework for K-12 Science Education:

The performance expectation above was developed using the following elements from A Framework for K-12 Science Education: HS-LS1-1 HS-LS1-1. Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins which carry out the essential functions of life through systems of specialized

More information

PCAT Test Blueprint for

PCAT Test Blueprint for PCAT Subtest Operational Experimental Time Items / Passages Items / Passages Allowed Part 1: Writing 1 Prompt (operational) 30 min. Part 2: Biological Processes (20 30% of items with passages) 40 Items

More information

Modesto Junior College Course Outline of Record BIO 101

Modesto Junior College Course Outline of Record BIO 101 Modesto Junior College Course Outline of Record BIO 101 I. OVERVIEW The following information will appear in the 2010-2011 catalog BIO 101 Biological Principles 5 Units Prerequisite: Satisfactory completion

More information

Cell Review. 1. The diagram below represents levels of organization in living things.

Cell Review. 1. The diagram below represents levels of organization in living things. Cell Review 1. The diagram below represents levels of organization in living things. Which term would best represent X? 1) human 2) tissue 3) stomach 4) chloroplast 2. Which statement is not a part of

More information

Basic Synthetic Biology circuits

Basic Synthetic Biology circuits Basic Synthetic Biology circuits Note: these practices were obtained from the Computer Modelling Practicals lecture by Vincent Rouilly and Geoff Baldwin at Imperial College s course of Introduction to

More information

Dynamical Modeling in Biology: a semiotic perspective. Junior Barrera BIOINFO-USP

Dynamical Modeling in Biology: a semiotic perspective. Junior Barrera BIOINFO-USP Dynamical Modeling in Biology: a semiotic perspective Junior Barrera BIOINFO-USP Layout Introduction Dynamical Systems System Families System Identification Genetic networks design Cell Cycle Modeling

More information

Morphogens in biological development: Drosophila example

Morphogens in biological development: Drosophila example LSM5194 Morphogens in biological development: Drosophila example Lecture 29 The concept of morphogen gradients The concept of morphogens was proposed by L. Wolpert as a part of the positional information

More information

AP Biology Gene Regulation and Development Review

AP Biology Gene Regulation and Development Review AP Biology Gene Regulation and Development Review 1. What does the regulatory gene code for? 2. Is the repressor by default active/inactive? 3. What changes the repressor activity? 4. What does repressor

More information

Computational Systems Biology

Computational Systems Biology Computational Systems Biology Vasant Honavar Artificial Intelligence Research Laboratory Bioinformatics and Computational Biology Graduate Program Center for Computational Intelligence, Learning, & Discovery

More information

VCE BIOLOGY Relationship between the key knowledge and key skills of the Study Design and the Study Design

VCE BIOLOGY Relationship between the key knowledge and key skills of the Study Design and the Study Design VCE BIOLOGY 2006 2014 Relationship between the key knowledge and key skills of the 2000 2005 Study Design and the 2006 2014 Study Design The following table provides a comparison of the key knowledge (and

More information

Science Unit Learning Summary

Science Unit Learning Summary Learning Summary Inheritance, variation and evolution Content Sexual and asexual reproduction. Meiosis leads to non-identical cells being formed while mitosis leads to identical cells being formed. In

More information

Introduction to Bioinformatics

Introduction to Bioinformatics Systems biology Introduction to Bioinformatics Systems biology: modeling biological p Study of whole biological systems p Wholeness : Organization of dynamic interactions Different behaviour of the individual

More information

Chapter 1 Biology: Exploring Life

Chapter 1 Biology: Exploring Life Chapter 1 Biology: Exploring Life PowerPoint Lectures for Campbell Biology: Concepts & Connections, Seventh Edition Reece, Taylor, Simon, and Dickey Lecture by Edward J. Zalisko Figure 1.0_1 Chapter 1:

More information

Introduction to Bioinformatics

Introduction to Bioinformatics CSCI8980: Applied Machine Learning in Computational Biology Introduction to Bioinformatics Rui Kuang Department of Computer Science and Engineering University of Minnesota kuang@cs.umn.edu History of Bioinformatics

More information

REQUIREMENTS FOR THE BIOCHEMISTRY MAJOR

REQUIREMENTS FOR THE BIOCHEMISTRY MAJOR REQUIREMENTS FOR THE BIOCHEMISTRY MAJOR Grade Requirement: All courses required for the Biochemistry major (CH, MATH, PHYS, BI courses) must be graded and passed with a grade of C- or better. Core Chemistry

More information