A. The Ecliptic. A. The Ecliptic. Ecliptic and Annual Motion. A1. The Zodiac. II. Ecliptic and Annual Motion. A. The Ecliptic, (Path of the Sun)

Size: px
Start display at page:

Download "A. The Ecliptic. A. The Ecliptic. Ecliptic and Annual Motion. A1. The Zodiac. II. Ecliptic and Annual Motion. A. The Ecliptic, (Path of the Sun)"

Transcription

1 Ecliptic and Annual Motion II. Ecliptic and Annual Motion 2 Dr. Bill Pezzaglia A. The Ecliptic, (Path of the Sun) B. Annual Motion, the Calendar Topic 02 Updated 8/22/2006 C. Daily Path of Sun & Archeoastronomy A. The Ecliptic 3 A. The Ecliptic 4 1. The Zodiac Constellations 2. Ecliptic Coordinates 3. Precession Perhaps 5000 BC people changed from a nomadic culture to agrarian, settling in Sumer. Sumerians needed a calendar to tell them when to plant food. A1. The Zodiac 3000 BC Babylonians in Early Bronze Age start with 4 constellations for 4 seasons Spring started on the first day that Aldebaran could be seen in the morning sky before sunrise. 5 1a. Helical Rise: The first day a star is visible in east rising just before sunrise Season Spring Summer Fall Winter Starts on Helical Constellation Rise of star Aldebaran Taurus Regulus Antares? Leo Scorpio Ibex (Aquarius) 6 1

2 1b.1 Surviving Babylonian Cuneiform Clay Tablets of astronomical positions of sun & planets 7 1b BC Babylonians refined it to 12 months associated with constellations (each 30 wide) 8 x 0 Great Bull 30 Great Twins 60 Worker in River Bed (cancer) 90 Great Lion 120 Furrow (Woman holding wheat) 150 Weighing Scales 180 Scorpion 210 Soldier 240 Goat Fish (Capricorn) 270 Great Man of Heavens (Aquarius) 300 Fish Tails 330 Hired Farm Laborer (Aries) 1b.3 Zodiac: Circle of Animals c.1 Egyptians got it from Babylon Temple of Hathor at Dendera c.2 Dendera: Zodiac on Roof 1c.3 Dendera: Zodiac on Roof 2

3 2. Ecliptic Coordinates 13 At first, positions of sun, moon and planets were measured relative to the bright stars in the zodiac constellations. 2a. Hammurabi [ BC] school of scribes defines sexagessimal numbers (base 60). 14 The Babylonians invented the method of measuring the sky in degrees 15 2b. The Ecliptic 2b.1 Ecliptic is the dashed line on your Starwheel 16 The Babylonians determined the exact path of the sun through the zodiac constellations Its NOT the same as the equator! 2b.2 Obliquity of the Ecliptic The Ecliptic is tilted 23½ to the equator ( obliquity ) 17 2b.3 Obliquity of the Ecliptic 18 This is because the earth s axis of rotation is tilted by 23½ degrees relative to the axis of its orbital revolution around the sun. This is what gives us seasons. 3

4 2b.4 From Earth s point of view 19 2b.5 Ecliptic on Mercator Map Ascending Node of Sun (blue) is start of spring 20 Plane of the Earth s orbit Around the sun Yellow Red is equator Black Blue is ecliptic Fig 1-6, p.24 2c.1 Ecliptic Longitude 21 Ecliptic Longitude is measured eastward along the ecliptic, starting at 0 degrees at the First Point of Aries. Solstitial Colure Equinoctial Colure 90 Solstitial Colure Equinoctial Colure 0 2c.2 Ecliptic Longitude on Polar Map 22 The sun moves about 1 degree east along the ecliptic each day. 0 Spring Equinox 90 Summer Solstice 180 Fall Equinox 270 Winter Solstice North Ecliptic Pole 270 Solstitial Colure Equinoctial Colure c.3 Ecliptic Longitude by Date 23 Each Zodiac Sign was 30 wide in longitude (one month) 3a.1 Precession of Equinoxes 24 Hipparchus 130 BC finds position of ascending solar node moves 1 west in 78 years (more exact 50 per year) 4

5 3a.2 Precession of Equinoxes a.3 Precession of Equinoxes This causes the First Point of Aries (the place where the sun causes Ascending Node of Sun to slide through zodiac constellations crosses the equator) to move relative to the zodiac constellations. 3b.1 Source of Precession Reason: Moon & Sun tug on equatorial bulge of earth, trying to make it sit up straight. Causes rotating earth to precesses like a top, making one complete cycle every Chaldean Period of 25,800 years. 27 3b.2 Precession Circle The North Star will change! 28 In Egyptian times it was Thuban in Draco! Center of circle is the Ecliptic Pole 3b.3 Precession Circle 29 3c.1 Nodal Precession The zodiac sign associated with spring changes every 2000 years Year Sign Symbol Note BC Taurus Bull Babylonians 2000 BC Aries Ram Rome! 5

6 3c.2 Nodal Precession Astrologers start with Aries at spring even though its really should be Pisces! Your birthsign is off by one constellation! Year Sign Symbol Note 31 3c.3 Nodal Precession Today we are at the dawning of the Age of Aquarius Year Sign Symbol Note BC Taurus Bull Babylonians 4000 BC Taurus Bull Babylonians 2000 BC Aries Ram Rome! 2000 BC Aries Ram Rome! 0 Pisces Fish Christianity 0 Pisces Fish Christianity 2000 AD Aquarius new age 3c.4 Nodal Precession At the dawn of history is the myth of Atlantis, ruled by Mercurial mentants 33 B. Annual Motion 34 Year 6000 BC 4000 BC Sign Gemini Taurus Symbol Atlantis? Bull Note Babylonians 1. Solar Calendars 2. Definition of the Year 3. Seasons 2000 BC Aries Ram Rome! 0 Pisces Fish Christianity 2000 AD Aquarius new age 1. Solar Calendars Earliest Calendars (Babylonian) are based instead on phases moon (we ll do later) 35 -early calendars continued BC Egyptian Solar Calendar starts with helical rise of Sirius, as floods come 25 days later. Has 3 seasons (Flood, Plant, Harvest) of 4 lunar months (30 days) long (e.g. 360 days). Every few years, if Sirius is late a leap month has to be added to keep in phase with floods BC Egyptians have two calendars. One has 7 day weeks, 4 weeks to the lunar month, but the civil calendar has 10 day weeks, 30 day months, 12 months to the year with 5 holidays added, so 365 days. The calendar gets off by ¼ day a year, but they just let it slip, knowing that it will be back in phase with seasons in 1 Sothic Cycle of 1461 years. 6

7 JULIAN CALENDAR Definitions of Year BC Roman calendar has 12 months, but wrong length. 46 BC Julius Caesar has to decree the year will have 445 days to reset calendar. Thereafter, it starts on March 1 at the spring equinox (corresponding to Aries) Every 4 th year a leap day will be added to the last day of the year February 29 (month of atonement) a) Sidereal year: days one orbit of earth about sun, relative to the stars b) Tropical year: days spring equinox to spring equinox you want to base calendar on this c). Gregorian Calendar is longer than Pope Gregory drops 11 days from year to reset calendar Leap Century Rule: centuries are NOT leap years, unless divisible by 400 (1900 was not a leap year!) This calendar is off by 1 day in 2500 years 365+1/4-3/400= a. The Seasons, and what causes them 40 The Earth s axis of rotation is tilted 23 with respect to the Earth s orbital plane. The orientation of the tilted axis remains the same as the Earth revolves around the Sun Fig 3-4, p.64 3a.2 Seasons vs Hemisphere The seasons are opposite in the southern hemisphere. 41 3a.3 Summer Solstice June 22 Above Arctic Circle have 24 hours of sunlight At tropic of Cancer sun is directly overhead Below Antarctic Circle has 24 hours of night 42 7

8 3a.4 Winter Solstice Dec b.1 Solar Altitude Angle and Heat 44 Above Arctic Circle have 24 hours of night At tropic of Capricorn sun is directly overhead Below Antarctic Circle has 24 hours of daylight Tropic of Cancer-- Tropic of Capricorn--- Sunlight coming in at a low altitude angle will have its energy spread out over more area. Summer in Northern Hemisphere Winter in Southern Hemisphere 3b.2 Why is it hotter in summer 45 3c.1 Seasons Not the Same Length! 430 BC Meton & Euktemon of Athens measure the length of the seasons. 46 The sun is also up longer (more time to heat up earth) Day is also shorter (less time to heat up earth) 94.1 days Spring 92.3 days Summer 88.6 days Fall 90.4 days Winter 330 BC: Callippus of Cyzicus develops a complicated theory of spheres within spheres to explain why the sun would speed up and slow down. 3c.2: Hipparchus (130 BC): The sun is assumed to travel on a perfect circle at constant speed. The earth is eccentric (off-center). From the earth s point of view, the seasons divide the sky into four 90 degree segments. However, because of the eccentric, the path of the sun in each segment is a different length, hence seasons have different length of time. Surprisingly, the Greeks did not verify this theory by trying to measure a change in apparent diameter of the sun (due to distance to sun not being constant!). 47 3c.3 Earth s Orbit is Elliptical 2000 years later Copernicus will realize the earth goes around the sun, and Kepler will show that the orbit is an ellipse with varying speed. Aphelion (furthest) is around July 3, moves slower Perihelion (closest) is around Jan 3, moves faster DANGER: common misconception is that this is the reason for the seasons. Why is this wrong? 48 8

9 3c.4 Precession of Perihelion Elliptical shape does influence climate, and the Position of the Perihelion changes slowly. Today, winter and summer in northern hemisphere are milder than in the southern hemisphere In 10,500 years the opposite will occur, we ll be at perihelion during summer, northern hemisphere seasons will be severe, southern mild. 49 3c.5 Milutin Milankovitch ( ) 50 He proposed that these cyclic changes in the orbit of the earth might cyclical variations in long term climate, i.e. explain periodic ice ages and global warming. 1. Precession of Perihelion (last slide) 2. Obliquity of Earth (tilt of earth) changes by a few degrees over years. When its tilted more, the seasons will be more severe 3. Orbital Eccentricity: changes with cycle of 100,000 years. When orbit is more eccentric, seasons will be more severe. C. Daily Motion of Sun 51 C.1a The Local Sky looks like a hemisphere Local Sky 2. Diurnal Path of the Sun 3. Archeoastronomy Fig 1-1, p.20 C.1b Local Horizon 53 C.1c Local Horizon System 54 Prime Meridian is line from North to South through Zenith Fig 1-1, p.20 9

10 C.2a Daily Path of Sun 55 C.2b The Equinoctial Sun 56 Spring (and Fall) Equinox, the sun is on the equator Sunrise is due East Sunset is due West Transit is when sun crosses prime meridian Sun Transits at local noon, at 52 above the horizon C.2b The Summer Sun 57 Sun is on Tropic of Cancer, highest declination 23.5 Sunrise is in North-East Sunset is in the North-West Transit is at 52+23=75 altitude angle (above horizon) Length of day is around 15 hours C.2b The Winter Sun 58 Sun is on Tropic of Capricorn, lowest declination Sunrise is in South-East Sunset is in South-West Transit is at 52-23=29 altitude angle (above horizon) Length of day is about 9 hours Tropic of Cancer Tropic of Capricorn 59 2c.2 Transit Times Note Sun transits 12:08 pm on average at Santa Clara, because we are 8 minutes west of the center of the pacific time zone. Equation of Time: Sun is as much as 20 minutes early/late due to elliptical orbit of earth, and obliquity of ecliptic. 60 2c.1 The Analemma Analemma: is the figure 8 plot of declination of sun vs equation of time 10

11 2c.3 Sun is a poor timekeeper Archeoastronomy 62 Sun moves further in Right Ascension near solstices than at equinoxes, makes sun get behind clock after both solstices Also the day is longer than 24 hours when we are near the perihelion (sun moves faster on ecliptic). This is why the lower loop of the figure 8 is bigger in the analemma Stonehenge ( B.C.) Fig 3-11, p.70 3a.1 Rising and Setting Points Ancient astronomers would naturally put a rock on the ground to mark the extreme points on the horizon where the sun rises/sets each summer and winter 63 3a.2 El Caracol Observatory, Chichen Itza, Yucatan 64 (1000 A.D.) Doors aligned to vernal equinox! Fig 3-12, p.70 3b.1 Stonehenge 3100 BC 65 3b.2 the avenue points towards summer sunrise 66 The stone circle was added 1000 years later! 11

12 3b.3 Heelstone in the Avenue 67 3b.4 Summer Solstice Sunrise 68 3c.1 Sillbury Hill, England 69 3c.2 Avebury Circle 70 First begun around 2,660 BC. It is 130 feet high with base circumference of 1640 feet (about the size of the smaller Egyptian pyramids). It is just outside of Avebury The large ditch and embankment is clearly visible. Many of the stones have been removed. 3c.3 Avebury Circle 71 3c.4 Avebury Circle In the past 72 12

13 3c.5 Today there is little left 73 3c.6 Except it s a good tourist attraction Ring of Brogar of the Orkney Islands Ring of Brogar of the Orkney Islands 77 References Babylonian: On Avebury: Ring of Brogar of the Orkney Islands 13

14 79 Things to do Fix movies (slide 5, 23). 14

A Warm Up Exercise. The Motion of the Sun. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise

A Warm Up Exercise. The Motion of the Sun. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise A Warm Up Exercise The Motion of the Sun Which of the following is NOT true of a circumpolar star? a) It rises and sets from my latitude b) Its direction can be far North c) Its direction can be far South

More information

Knowing the Heavens. Chapter Two. Guiding Questions. Naked-eye (unaided-eye) astronomy had an important place in ancient civilizations

Knowing the Heavens. Chapter Two. Guiding Questions. Naked-eye (unaided-eye) astronomy had an important place in ancient civilizations Knowing the Heavens Chapter Two Guiding Questions 1. What role did astronomy play in ancient civilizations? 2. Are the stars that make up a constellation actually close to one another? 3. Are the same

More information

Discovering the Night Sky

Discovering the Night Sky Discovering the Night Sky Guiding Questions 1. What role did astronomy play in ancient civilizations? 2. Are the stars that make up a constellation actually close to one another? 3. Are the same stars

More information

Discovering the Night Sky

Discovering the Night Sky Guiding Questions Discovering the Night Sky 1. What role did astronomy play in ancient civilizations? 2. Are the stars that make up a constellation actually close to one another? 3. Are the same stars

More information

Seasons ASTR 101 2/12/2018

Seasons ASTR 101 2/12/2018 Seasons ASTR 101 2/12/2018 1 What causes the seasons? Perihelion: closest to Sun around January 4 th Northern Summer Southern Winter 147 million km 152 million km Aphelion (farthest to Sun) around July

More information

Introduction To Modern Astronomy I: Solar System

Introduction To Modern Astronomy I: Solar System ASTR 111 003 Fall 2007 Lecture 02 Sep. 10, 2007 Introduction To Modern Astronomy I: Solar System Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-15) Chap. 16: Our Sun Chap. 28: Search for

More information

Chapter S1 Lecture. The Cosmic Perspective Seventh Edition. Celestial Timekeeping and Navigation Pearson Education, Inc.

Chapter S1 Lecture. The Cosmic Perspective Seventh Edition. Celestial Timekeeping and Navigation Pearson Education, Inc. Chapter S1 Lecture The Cosmic Perspective Seventh Edition Celestial Timekeeping and Navigation 2014 Pearson Education, Inc. Celestial Timekeeping and Navigation 2014 Pearson Education, Inc. S1.1 Astronomical

More information

Aileen A. O Donoghue Priest Associate Professor of Physics

Aileen A. O Donoghue Priest Associate Professor of Physics SOAR: The Sky in Motion Life on the Tilted Teacup Ride The Year Aileen A. O Donoghue Priest Associate Professor of Physics Celestial Coordinates Right Ascension RA or From prime meridian (0 h ) to 23 h

More information

2. Knowing the Heavens

2. Knowing the Heavens 2. Knowing the Heavens Ancient naked-eye astronomy Eighty-eight constellations The sky s ever-changing appearance The celestial sphere Celestial coordinates Seasons: Earth s axial tilt Precession of Earth

More information

Seasons. What causes the seasons?

Seasons. What causes the seasons? Questions: Seasons What causes the seasons? How do we mark the progression of the seasons? What is the seasonal motion of the sun in the sky? What could cause the seasonal motion of the sun to change over

More information

Astronomy 291. Professor Bradley M. Peterson

Astronomy 291. Professor Bradley M. Peterson Astronomy 291 Professor Bradley M. Peterson The Sky As a first step, we need to understand the appearance of the sky. Important points (to be explained): The relative positions of stars remain the same

More information

Chapter 1: Discovering the Night Sky. The sky is divided into 88 unequal areas that we call constellations.

Chapter 1: Discovering the Night Sky. The sky is divided into 88 unequal areas that we call constellations. Chapter 1: Discovering the Night Sky Constellations: Recognizable patterns of the brighter stars that have been derived from ancient legends. Different cultures have associated the patterns with their

More information

Knowing the Heavens. Goals: Constellations in the Sky

Knowing the Heavens. Goals: Constellations in the Sky Goals: Knowing the Heavens To see how the sky changes during a night and from night to night. To measure the positions of stars in celestial coordinates. To understand the cause of the seasons. Constellations

More information

Knowing the Heavens. Goals: Constellations in the Sky

Knowing the Heavens. Goals: Constellations in the Sky Goals: Knowing the Heavens To see how the sky changes during a night and from night to night. To measure the positions of stars in celestial coordinates. To understand the cause of the seasons. Constellations

More information

Chapter S1 Celestial Timekeeping and Navigation. How do we define the day, month, year, and planetary time periods?

Chapter S1 Celestial Timekeeping and Navigation. How do we define the day, month, year, and planetary time periods? Chapter S1 Celestial Timekeeping and Navigation S1.1 Astronomical Time Periods Our goals for learning:! How do we define the day, month, year, and planetary time periods?! How do we tell the time of day?!

More information

Summary Sheet #1 for Astronomy Main Lesson

Summary Sheet #1 for Astronomy Main Lesson Summary Sheet #1 for Astronomy Main Lesson From our perspective on earth The earth appears flat. We can see half the celestial sphere at any time. The earth s axis is always perpendicular to the equator.

More information

Lecture 4: DM: time and Diurnal Motion

Lecture 4: DM: time and Diurnal Motion Dr. W. Pezzaglia Astronomy 10, Fall 2006 Page 8 Lecture 4: DM: time and Diurnal Motion Schedules: Aug 30, Wed (today) o Homework #2 due (see solutions below) o Web Site changed to: http://lpc1.clpccd.cc.ca.us/lpc/astronomy/course_websites/pezzaglia/index.html

More information

Appearance of the Sky Orientation Motion of sky Seasons Precession (?)

Appearance of the Sky Orientation Motion of sky Seasons Precession (?) Today Appearance of the Sky Orientation Motion of sky Seasons Precession (?) The Celestial Sphere Stars at different distances all appear to lie on the celestial sphere. The ecliptic is the Sun s apparent

More information

Astronomy 100 Section 2 MWF Greg Hall

Astronomy 100 Section 2 MWF Greg Hall Astronomy 100 Section 2 MWF 1200-1300 100 Greg Hall Leslie Looney Phone: 217-244-3615 Email: lwl @ uiuc. edu Office: Astro Building #218 Office Hours: MTF 10:30-11:30 a.m. or by appointment Class Web Page

More information

Lecture 2: Motions of the Earth and Moon. Astronomy 111 Wednesday August 30, 2017

Lecture 2: Motions of the Earth and Moon. Astronomy 111 Wednesday August 30, 2017 Lecture 2: Motions of the Earth and Moon Astronomy 111 Wednesday August 30, 2017 Reminders Online homework #1 due Monday at 3pm Labs start next week Motions of the Earth ASTR111 Lecture 2 Observation:

More information

Appearance of the Sky Orientation Motion of sky Seasons Precession (?)

Appearance of the Sky Orientation Motion of sky Seasons Precession (?) Today Appearance of the Sky Orientation Motion of sky Seasons Precession (?) The Celestial Sphere Stars at different distances all appear to lie on the celestial sphere. The ecliptic is the Sun s apparent

More information

James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Chapter 15 Place and Time

James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Chapter 15 Place and Time James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Chapter 15 Place and Time Place & Time Read sections 15.5 and 15.6, but ignore the math. Concentrate on those sections that help explain the slides.

More information

The celestial sphere, the coordinates system, seasons, phases of the moon and eclipses. Chapters 2 and S1

The celestial sphere, the coordinates system, seasons, phases of the moon and eclipses. Chapters 2 and S1 The celestial sphere, the coordinates system, seasons, phases of the moon and eclipses Chapters 2 and S1 The celestial sphere and the coordinates system Chapter S1 How to find our way in the sky? Let s

More information

PHAS 1511: Foundations of Astronomy

PHAS 1511: Foundations of Astronomy PHAS 1511: Foundations of Astronomy Dr Roger Wesson Research interests: deaths of stars. Planetary nebulae, novae and supernovae. Astronomy: some maths You can see that distances in astronomy are huge.

More information

Yr1 Lesson 1. The Great Circles of Astrology, the Angles, Precession,

Yr1 Lesson 1. The Great Circles of Astrology, the Angles, Precession, Yr1 Lesson 1 The Great Circles of Astrology, the Angles, Precession, Cosmic Intelligence Agency 2015 Astro Lesson 1! Signs, Symbols, Glyphs and Charts! The Celestial Sphere Great Circles of Astrology -

More information

2. Modern: A constellation is a region in the sky. Every object in the sky, whether we can see it or not, is part of a constellation.

2. Modern: A constellation is a region in the sky. Every object in the sky, whether we can see it or not, is part of a constellation. 6/14 10. Star Cluster size about 10 14 to 10 17 m importance: where stars are born composed of stars. 11. Galaxy size about 10 21 m importance: provide a stable environment for stars. Composed of stars.

More information

Astronomy 1010 Planetary Astronomy Sample Questions for Exam 1

Astronomy 1010 Planetary Astronomy Sample Questions for Exam 1 Astronomy 1010 Planetary Astronomy Sample Questions for Exam 1 Chapter 1 1. A scientific hypothesis is a) a wild, baseless guess about how something works. b) a collection of ideas that seems to explain

More information

The following terms are some of the vocabulary that students should be familiar with in order to fully master this lesson.

The following terms are some of the vocabulary that students should be familiar with in order to fully master this lesson. Lesson 211: EARTH'S SEASONS Students learn the complex geometry and planetary motions that cause Earth to have four distinct seasons. Fundamental Questions Attempting to give thorough and reasonable answers

More information

The Earth-Moon-Sun System

The Earth-Moon-Sun System chapter 7 The Earth-Moon-Sun System section 2 Time and Seasons What You ll Learn how to calculate time and date in different time zones how to distinguish rotation and revolution what causes seasons Before

More information

Astronomical coordinate systems. ASTR320 Monday January 22, 2018

Astronomical coordinate systems. ASTR320 Monday January 22, 2018 Astronomical coordinate systems ASTR320 Monday January 22, 2018 Special public talk this week: Mike Brown, Pluto Killer Wednesday at 7:30pm in MPHY204 Other news Munnerlyn lab is hiring student engineers

More information

PHSC 1053: Astronomy Time and Coordinates

PHSC 1053: Astronomy Time and Coordinates PHSC 1053: Astronomy Time and Coordinates Astronomical Clocks Earth s Rotation on its Axis Time between two successive meridian transits of the sun 1 solar day (our adopted clock time) 24 hours (86,400

More information

Before you Sit. Please Pick-up: Blue Information Sheet for Evening Observing. 1 Red and 1 Blue ticket for Observing/ Planetarium

Before you Sit. Please Pick-up: Blue Information Sheet for Evening Observing. 1 Red and 1 Blue ticket for Observing/ Planetarium Before you Sit Please Pick-up: Blue Information Sheet for Evening Observing. 1 Red and 1 Blue ticket for Observing/ Planetarium Evening Observing Observing at the Brooks Observatory: Three different weeks

More information

Introduction to the sky

Introduction to the sky Introduction to the sky On a clear, moonless night, far from city lights, the night sky is magnificent. Roughly 2000 stars are visible to the unaided eye. If you know where to look, you can see Mercury,

More information

Time, Seasons, and Tides

Time, Seasons, and Tides Time, Seasons, and Tides Celestial Sphere Imagine the sky as a great, hollow, sphere surrounding the Earth. The stars are attached to this sphere--- some bigger and brighter than others--- which rotates

More information

Lecture 2 Motions in the Sky September 10, 2018

Lecture 2 Motions in the Sky September 10, 2018 1 Lecture 2 Motions in the Sky September 10, 2018 2 What is your year in school? A. New freshman B. Returning freshman C. Sophomore D. Junior E. Senior F. I ve been here, like, forever 3 What is your major?

More information

The Earth is a Rotating Sphere

The Earth is a Rotating Sphere The Earth is a Rotating Sphere The Shape of the Earth Earth s Rotation ( and relative movement of the Sun and Moon) The Geographic Grid Map Projections Global Time The Earth s Revolution around the Sun

More information

Astronomy 122 Section 1 TR Outline. The Earth is Rotating. Question Digital Computer Laboratory

Astronomy 122 Section 1 TR Outline. The Earth is Rotating. Question Digital Computer Laboratory Astronomy 122 Section 1 TR 1300-1350 Outline 1320 Digital Computer Laboratory Leslie Looney Phone: 244-3615 Email: lwlw@wuiucw. wedu Office: Astro Building #218 Office Hours: T 10:30-11:30 a.m. or by appointment

More information

Lunar Motion. V. Lunar Motion. A. The Lunar Calendar. B. Motion of Moon. C. Eclipses. A. The Lunar Calendar. 1) Phases of the Moon. 2) The Lunar Month

Lunar Motion. V. Lunar Motion. A. The Lunar Calendar. B. Motion of Moon. C. Eclipses. A. The Lunar Calendar. 1) Phases of the Moon. 2) The Lunar Month Lunar Motion Dr. Bill Pezzaglia V. Lunar Motion A. The Lunar Calendar B. Motion of Moon 2 Updated 2014Jan17 C. Eclipses A. The Lunar Calendar 3 1. Phases of Moon 4 1) Phases of the Moon 2) The Lunar Month

More information

Brock University. Test 1, October 2016 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: October 3, 2016

Brock University. Test 1, October 2016 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: October 3, 2016 Brock University Test 1, October 2016 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: October 3, 2016 Number of hours: 50 min Time of Examination: 17:00 17:50 Instructor:

More information

Daily & Annual Motions

Daily & Annual Motions Daily & Annual Motions Key Ideas: Daily Motions Reflection of the Earth's Daily Rotation Circumpolar Stars Annual Motions Reflection of the Earth's Orbital Motion Ecliptic: The Path of the Sun Zodiacal

More information

drinking straw, protractor, string, and rock. observer on Earth. Sun across the sky on March 21 as seen by an

drinking straw, protractor, string, and rock. observer on Earth. Sun across the sky on March 21 as seen by an 1. The diagram below represents some constellations and one position of Earth in its orbit around the Sun. These constellations are visible to an observer on Earth at different times of the year. When

More information

The position of the Sun on the celestial sphere at the solstices and the equinoxes.

The position of the Sun on the celestial sphere at the solstices and the equinoxes. 1 2 3 4 5 6 7 8 9 10 11 12 13 EARTH IN SPACE Tillery, Chapter 18 Artist's concept of the solar system. Shown are the orbits of the planets, Earth being the third planet from the Sun, and the other planets

More information

It s Full of Stars! Outline. A Sky Full of Stars. Astronomy 210. lights), about how many stars can we see with

It s Full of Stars! Outline. A Sky Full of Stars. Astronomy 210. lights), about how many stars can we see with Astronomy 210 Section 1 MWF 1500-1550 134 Astronomy Building Leslie Looney Phone: 244-3615 Email: lwlw@wuiucw. wedu Office: Astro Building #218 Office Hours: MTF 10:30-11:30 a.m. or by appointment This

More information

Lunar Motion. V. Lunar Motion. A. The Lunar Calendar. B. Motion of Moon. C. Eclipses. A. The Lunar Calendar. 1) Phases of the Moon. 2) The Lunar Month

Lunar Motion. V. Lunar Motion. A. The Lunar Calendar. B. Motion of Moon. C. Eclipses. A. The Lunar Calendar. 1) Phases of the Moon. 2) The Lunar Month Lunar Motion Dr. Bill Pezzaglia V. Lunar Motion A. The Lunar Calendar B. Motion of Moon 2 Updated Sep 8, 2009 C. Eclipses A. The Lunar Calendar 3 1. Earth s satellite: The Moon and its Phases 4 1) Phases

More information

Viewed from Earth's north pole, the rotation of Earth and its moon are counter-clockwise.!

Viewed from Earth's north pole, the rotation of Earth and its moon are counter-clockwise.! The Earth rotates around once in 24 hours The time it takes for the Earth to rotate completely around once is what we call a day. It's Earth's rotation that gives us night and day. Viewed from Earth's

More information

Daily Motions. Daily Motions. Solar and Sidereal Days. Annual Motions of the Sun. Coordinate system on Earth. Annual Motion of the Stars.

Daily Motions. Daily Motions. Solar and Sidereal Days. Annual Motions of the Sun. Coordinate system on Earth. Annual Motion of the Stars. Sun: rises in the east sets in the west travels on an arc across the sky 24 hours Daily Motions Solar Day = 24 hours Stars: stars travel on arcs in the sky moving from east to west. some stars rise and

More information

Chapter 2 Lecture. The Cosmic Perspective Seventh Edition. Discovering the Universe for Yourself

Chapter 2 Lecture. The Cosmic Perspective Seventh Edition. Discovering the Universe for Yourself Chapter 2 Lecture The Cosmic Perspective Seventh Edition Discovering the Universe for Yourself Discovering the Universe for Yourself 2.1 Patterns in the Night Sky Our goals for learning: What does the

More information

Astronomy. Unit 2. The Moon

Astronomy. Unit 2. The Moon Astronomy Unit 2 The Moon 1 Traveling on Spaceship Earth Although we imagine ourselves to be at rest, the Earth takes part in the motions outlined below. The Earth spins about its N-S axis, with a period

More information

4 Solar System and Time

4 Solar System and Time 4 olar ystem and Time 4.1 The Universe 4.1.1 Introduction The Universe consists of countless galaxies distributed throughout space. The bodies used in astro navigation belong to the Galaxy known as the

More information

Cartesian Coordinates Need two dimensional system 2 number lines perpendicular to each other X-axis is horizontal Y-axis is vertical Position relative

Cartesian Coordinates Need two dimensional system 2 number lines perpendicular to each other X-axis is horizontal Y-axis is vertical Position relative General Physical Science Chapter 15 Place and Time Space and Time Einstein Space and time related Single entity Time is the 4 th dimension! Cartesian Coordinates Need some system to tell us where something

More information

Lunar Motion. V. Lunar Motion. A. The Lunar Calendar. B. Motion of Moon. C. Eclipses. A. The Lunar Calendar. 1) Phases of the Moon. 2) The Lunar Month

Lunar Motion. V. Lunar Motion. A. The Lunar Calendar. B. Motion of Moon. C. Eclipses. A. The Lunar Calendar. 1) Phases of the Moon. 2) The Lunar Month Lunar Motion Dr. Bill Pezzaglia V. Lunar Motion A. The Lunar Calendar B. Motion of Moon 2 Updated 2012Oct03 C. Eclipses A. The Lunar Calendar 3 1. Phases of Moon 4 1) Phases of the Moon 2) The Lunar Month

More information

Chapter 2 Discovering the Universe for Yourself

Chapter 2 Discovering the Universe for Yourself Chapter 2 Discovering the Universe for Yourself 2.1 Patterns in the Night Sky Our goals for learning: What does the universe look like from Earth? Why do stars rise and set? Why do the constellations we

More information

Astronomy 103: First Exam

Astronomy 103: First Exam Name: Astronomy 103: First Exam Stephen Lepp September 21, 2010 Each question is worth 2 points. Write your name on this exam and on the scantron. Short Answer Mercury What is the closest Planet to the

More information

Time and Diurnal Motion

Time and Diurnal Motion Time and Diurnal Motion Time and Diurnal Motion A. Geography: mapping the earth 2 B. Equatorial Coordinates C. Local Horizon System Updated 2014Jan11 A. Geography: mapping the earth Geometry: measure the

More information

Lecture #03. January 20, 2010, Wednesday

Lecture #03. January 20, 2010, Wednesday Lecture #03 January 20, 2010, Wednesday Causes of Earth s Seasons Earth-Sun geometry Day length Solar angle (beam spread) Atmospheric beam depletion Shape and Size of the Earth North Pole E Geoid: not

More information

Observing the Universe for Yourself

Observing the Universe for Yourself Observing the Universe for Yourself Figure 6-20 Solar-System Formation What does the universe look like from Earth? With the naked eye, we can see more than 2,000 stars as well as the Milky Way. A constellation

More information

Chapter 2 Discovering the Universe for Yourself. Copyright 2012 Pearson Education, Inc.

Chapter 2 Discovering the Universe for Yourself. Copyright 2012 Pearson Education, Inc. Chapter 2 Discovering the Universe for Yourself 1 2.1 Patterns in the Night Sky Our goals for learning: What does the universe look like from Earth? Why do stars rise and set? Why do the constellations

More information

CHAPTER 2 A USER'S GUIDE TO THE SKY

CHAPTER 2 A USER'S GUIDE TO THE SKY CHAPTER 2 A USER'S GUIDE TO THE SKY MULTIPLE CHOICE 1. In one way of naming stars, a letter indicates its brightness relative to the other stars in the constellation. a. English b. Arabic c. Greek d. Cyrillic

More information

Earth s Orbit. Sun Earth Relationships Ridha Hamidi, Ph.D. ESCI-61 Introduction to Photovoltaic Technology

Earth s Orbit. Sun Earth Relationships Ridha Hamidi, Ph.D. ESCI-61 Introduction to Photovoltaic Technology 1 ESCI-61 Introduction to Photovoltaic Technology Sun Earth Relationships Ridha Hamidi, Ph.D. Spring (sun aims directly at equator) Winter (northern hemisphere 23.5 tilts away from sun) 2 Solar radiation

More information

PHYS 160 Astronomy Test #1 Fall 2017 Version B

PHYS 160 Astronomy Test #1 Fall 2017 Version B PHYS 160 Astronomy Test #1 Fall 2017 Version B 1 I. True/False (1 point each) Circle the T if the statement is true, or F if the statement is false on your answer sheet. 1. An object has the same weight,

More information

Motions of the Earth

Motions of the Earth Motions of the Earth Our goals for learning: What are the main motions of the Earth in space? How do we see these motions on the ground? How does it affect our lives? How does the orientation of Earth's

More information

Chapter 1 Image Slides. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 1 Image Slides. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 1 Image Slides Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. CH. 1: CYCLES OF THE SKY CO a 1.1 The Celestial Sphere CO b The nearest star to us is about

More information

2. Descriptive Astronomy ( Astronomy Without a Telescope )

2. Descriptive Astronomy ( Astronomy Without a Telescope ) How do we locate stars in the heavens? 2. Descriptive Astronomy ( Astronomy Without a Telescope ) What stars are visible from a given location? Where is the sun in the sky at any given time? Where are

More information

Astronomy = Timekeeping

Astronomy = Timekeeping Astronomy = Timekeeping Day, month, year Important for seasons - hunter gatherer Annual migrations Seasons important for farmers Heliacal rising of Sirius Important for navigation Longitude & GPS Important

More information

Time and Diurnal Motion

Time and Diurnal Motion Time and Diurnal Motion Time and Diurnal Motion A. Geography: mapping the earth 2 B. Equatorial Coordinates C. Local Horizon System Updated Sep 30, 2012 A. Geography: mapping the earth Geometry: measure

More information

Time and Diurnal Motion. 1a. The Earth Is Flat. 1c. Aristotle ( BC) 1b. The Earth Is Round. Time and Diurnal Motion

Time and Diurnal Motion. 1a. The Earth Is Flat. 1c. Aristotle ( BC) 1b. The Earth Is Round. Time and Diurnal Motion Time and Diurnal Motion Time and Diurnal Motion A. Geography: mapping the earth 2 B. Equatorial Coordinates C. Local Horizon System A. Geography: mapping the earth Geometry: measure the earth! 1) The earth

More information

FOR DISCUSSION TODAY: THE ANNUAL MOTION OF THE SUN

FOR DISCUSSION TODAY: THE ANNUAL MOTION OF THE SUN ANNOUNCEMENTS Homework #1 due today at end of class. HW #2 due next Thursday. Homework #1 question #1 and Homework #2 meridian slice questions will be discussed in the course of the lecture today. Observing

More information

Brock University. Test 1, September 2014 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: September 29, 2014

Brock University. Test 1, September 2014 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: September 29, 2014 Brock University Test 1, September 2014 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: September 29, 2014 Number of hours: 50 min Time of Examination: 18:00 18:50 Instructor:

More information

November 20, NOTES ES Rotation, Rev, Tilt.notebook. vertically. night. night. counterclockwise. counterclockwise. East. Foucault.

November 20, NOTES ES Rotation, Rev, Tilt.notebook. vertically. night. night. counterclockwise. counterclockwise. East. Foucault. NOTES ES, Rev,.notebook, and Rotates on an imaginary axis that runs from the to the South North Pole Pole vertically North The of the axis points to a point in space near day Pole Polaris night Responsible

More information

Time and Diurnal Motion. 1a. The Earth Is Flat. 1c. Aristotle ( BC) 1b. The Earth Is Round. Time and Diurnal Motion

Time and Diurnal Motion. 1a. The Earth Is Flat. 1c. Aristotle ( BC) 1b. The Earth Is Round. Time and Diurnal Motion Time and Diurnal Motion Time and Diurnal Motion A. Geography: mapping the earth 2 B. Equatorial Coordinates C. Local Horizon System Updated April 12, 2006 A. Geography: mapping the earth Geometry: measure

More information

Chapter 2 Discovering the Universe for Yourself

Chapter 2 Discovering the Universe for Yourself Chapter 2 Discovering the Universe for Yourself 2.1 Patterns in the Night Sky Our goals for learning: What does the universe look like from Earth? Why do stars rise and set? Why do the constellations we

More information

Chapter 2 Discovering the Universe for Yourself. What does the universe look like from Earth? Constellations. 2.1 Patterns in the Night Sky

Chapter 2 Discovering the Universe for Yourself. What does the universe look like from Earth? Constellations. 2.1 Patterns in the Night Sky Chapter 2 Discovering the Universe for Yourself 2.1 Patterns in the Night Sky Our goals for learning: What does the universe look like from Earth? Why do stars rise and set? Why do the constellations we

More information

The Celestial Sphere. Chapter 1. Constellations. Models and Science. Constellations. Diurnal vs. Annular Motion 9/16/2010

The Celestial Sphere. Chapter 1. Constellations. Models and Science. Constellations. Diurnal vs. Annular Motion 9/16/2010 The Celestial Sphere Chapter 1 Cycles of the Sky Vast distances to stars prevent us from sensing their true 3-D arrangement Naked eye observations treat all stars at the same distance, on a giant celestial

More information

Phys Lab #1: The Sun and the Constellations

Phys Lab #1: The Sun and the Constellations Phys 10293 Lab #1: The Sun and the Constellations Introduction Astronomers use a coordinate system that is fixed to Earth s latitude and longitude. This way, the coordinates of a star or planet are the

More information

The Ecliptic on the Celestial. Sphere. The Celestial Sphere. Astronomy 210. Section 1 MWF Astronomy Building. celestial equator are not

The Ecliptic on the Celestial. Sphere. The Celestial Sphere. Astronomy 210. Section 1 MWF Astronomy Building. celestial equator are not Astronomy 210 Section 1 MWF 1500-1550 134 Astronomy Building This Class (Lecture 3): Lunar Phases Check Planetarium Schedule Next Class: HW1 Due Friday! Early Cosmology Music: We only Come out at Night

More information

C) the seasonal changes in constellations viewed in the night sky D) The duration of insolation will increase and the temperature will increase.

C) the seasonal changes in constellations viewed in the night sky D) The duration of insolation will increase and the temperature will increase. 1. Which event is a direct result of Earth's revolution? A) the apparent deflection of winds B) the changing of the Moon phases C) the seasonal changes in constellations viewed in the night sky D) the

More information

Practice Questions: Seasons #1

Practice Questions: Seasons #1 1. Seasonal changes on Earth are primarily caused by the A) parallelism of the Sun's axis as the Sun revolves around Earth B) changes in distance between Earth and the Sun C) elliptical shape of Earth's

More information

Astronomy. The Seasons

Astronomy. The Seasons Astronomy The Seasons The seasons are caused by the inclination of the Earth s axis: when a hemisphere is tipped toward the Sun, the Sun is more directly above it. At the Summer Solstice the tilt is most

More information

Exercise 7.0 THE CHANGING DIURNAL CIRCLES OF THE SUN

Exercise 7.0 THE CHANGING DIURNAL CIRCLES OF THE SUN Exercise 7.0 THE CHANGING DIURNAL CIRCLES OF THE SUN I. The Apparent Annual Motion of the Sun A star always rises and sets at the same place on the horizon and, hence, it is above the horizon for the same

More information

A2 Principi di Astrofisica. Coordinate Celesti

A2 Principi di Astrofisica. Coordinate Celesti A2 Principi di Astrofisica Coordinate Celesti ESO La Silla Tel. 3.6m Celestial Sphere Our lack of depth perception when we look into space creates the illusion that Earth is surrounded by a celestial sphere.

More information

Astr 1050 Mon. Jan. 31, 2017

Astr 1050 Mon. Jan. 31, 2017 Astr 1050 Mon. Jan. 31, 2017 Finish Ch. 2: Eclipses & Planetary Motion Seasons Angular Size formula Eclipses Planetary Motion Reading: For Today: Finish Chapter 2 For Monday: Start Chapter 3 Homework on

More information

Planet Earth. Part 2

Planet Earth. Part 2 Planet Earth Part 2 Sun, Earth and Moon Motions The Solar System revolves around the Milky Way galaxy center. The Sun rotates on its own axis. Earth revolves around the Sun (1 year) and rotates on its

More information

Reasons for the seasons - Rebecca Kaplan

Reasons for the seasons - Rebecca Kaplan Reasons for the seasons - Rebecca Kaplan https://www.youtube.com/watch?v=dd_8jm5ptlk https://www.timeanddate.com/worldclock/sunearth.html https://www.time.gov/ https://www.space.com/33790-harvest-moon-guide.html

More information

Chapter 4 Earth, Moon, and Sky 107

Chapter 4 Earth, Moon, and Sky 107 Chapter 4 Earth, Moon, and Sky 107 planetariums around the world. Figure 4.4 Foucault s Pendulum. As Earth turns, the plane of oscillation of the Foucault pendulum shifts gradually so that over the course

More information

What causes the seasons? 2/11/09

What causes the seasons? 2/11/09 2/11/09 We can recognize solstices and equinoxes by Sun s path across sky: Summer solstice: Highest path, rise and set at most extreme north of due east. Winter solstice: Lowest path, rise and set at most

More information

The. Astronomy is full of cycles. Like the day, the month, & the year In this section we will try to understand these cycles.

The. Astronomy is full of cycles. Like the day, the month, & the year In this section we will try to understand these cycles. Understanding The Sky Astronomy is full of cycles Like the day, the month, & the year In this section we will try to understand these cycles. For Example Why do we think of stars as nighttime objects?

More information

A User s Guide to the Sky

A User s Guide to the Sky A User s Guide to the Sky Constellations Betelgeuse Rigel Stars are named by a Greek letter ( ) according to their relative brightness within a given constellation plus the possessive form of the name

More information

Astronomy 101: 9/18/2008

Astronomy 101: 9/18/2008 Astronomy 101: 9/18/2008 Announcements Pick up a golf ball at the front of the class or get one from Alex; you will need it for an in-class activity today. You will also need the question sheet from Alex.

More information

Name: Exam 1, 9/30/05

Name: Exam 1, 9/30/05 Multiple Choice: Select the choice that best answers each question. Write your choice in the blank next to each number. (2 points each) 1. At the North Pole in mid-november, the sun rises at a. North of

More information

PHYSICS 107. Lecture 4 Ancient Astronomy

PHYSICS 107. Lecture 4 Ancient Astronomy PHYSICS 107 Lecture 4 Ancient Astronomy Introduction Astronomy is the oldest science. There are astronomical artifacts going back 8000 years. Many ancient cultures on every continent seem to have had examples

More information

Time, coordinates and how the Sun and Moon move in the sky

Time, coordinates and how the Sun and Moon move in the sky Time, coordinates and how the Sun and Moon move in the sky Using the colors and magnitudes of quasars drawn from the SDSS Catalog Archive Server to distinguish quasars from stars using the light they emit

More information

Oberth: Energy vs. Momentum

Oberth: Energy vs. Momentum 1 2 The Oberth Effect 3 Oberth: Energy vs. Momentum 4 The Celestial Sphere From our perspective on Earth the stars appear embedded on a distant 2-dimensional surface the Celestial Sphere. 5 The Celestial

More information

Aim: What causes Seasons?

Aim: What causes Seasons? Notepack 28 Aim: What causes Seasons? Do Now: What is the difference between revolution and rotation? Earth s rotation The Earth rotates on its axis (imaginary vertical line around which Earth spins) every

More information

Introduction to Astronomy

Introduction to Astronomy Introduction to Astronomy AST0111-3 (Astronomía) Semester 2014B Prof. Thomas H. Puzia Theme Our Sky 1. Celestial Sphere 2. Diurnal Movement 3. Annual Movement 4. Lunar Movement 5. The Seasons 6. Eclipses

More information

Name: Date: 5. The bright stars Vega, Deneb, and Altair form A) the summer triangle. B) the winter triangle. C) the Big Dipper. D) Orion, the Hunter.

Name: Date: 5. The bright stars Vega, Deneb, and Altair form A) the summer triangle. B) the winter triangle. C) the Big Dipper. D) Orion, the Hunter. Name: Date: 1. If there are about 6000 stars in the entire sky that can be seen by the unaided human eye, about how many stars would be seen at a particular instant on a given dark night from a single

More information

12.1. The Night Sky. Earth s Motions

12.1. The Night Sky. Earth s Motions 12.1 The Night Sky LEARNING TIP Skim Section 12.1. Consider information gathered from the title, headings, figures, and words in bold. What do you expect to learn in this section? Astronomy is the branch

More information

18.2 Earth Cycles Days and years Calendars Years and days Leap years Calendars throughout human history 20,000 years ago. 7,000 BC. 4,000 BC.

18.2 Earth Cycles Days and years Calendars Years and days Leap years Calendars throughout human history 20,000 years ago. 7,000 BC. 4,000 BC. 18.2 Reading 18.2 Earth Cycles Do you ever wonder where our calendar comes from? Or why the Moon gradually changes its shape? Or why we have seasons? The answers have to do with the relative positions

More information

Chapter 2 Lecture. The Cosmic Perspective Seventh Edition. Discovering the Universe for Yourself Pearson Education, Inc.

Chapter 2 Lecture. The Cosmic Perspective Seventh Edition. Discovering the Universe for Yourself Pearson Education, Inc. Chapter 2 Lecture The Cosmic Perspective Seventh Edition Discovering the Universe for Yourself Discovering the Universe for Yourself 2.1 Patterns in the Night Sky Our goals for learning: What does the

More information

Astronomy is the oldest science! Eclipses. In ancient times the sky was not well understood! Bad Omens? Comets

Astronomy is the oldest science! Eclipses. In ancient times the sky was not well understood! Bad Omens? Comets Astronomy is the oldest science! In ancient times the sky was not well understood! Eclipses Bad Omens? Comets 1 The Ancient Greeks The Scientific Method Our ideas must always be consistent with our observations!

More information

Geography Class 6 Chapters 3 and

Geography Class 6 Chapters 3 and CHAPTER 3 MOTIONS OF THE EARTH The Earth is always travelling in Space. That makes each person on Earth, a Space Traveller. No one feels the movement of the Earth because humans are too tiny when compared

More information