The Celestial Sphere. Chapter 1. Constellations. Models and Science. Constellations. Diurnal vs. Annular Motion 9/16/2010
|
|
- Harry Roger Johnston
- 3 years ago
- Views:
Transcription
1 The Celestial Sphere Chapter 1 Cycles of the Sky Vast distances to stars prevent us from sensing their true 3-D arrangement Naked eye observations treat all stars at the same distance, on a giant celestial sphere with the Earth at its center Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. The celestial sphere is a model, which does not necessarily match physical reality Models provide a means to enhance our understanding of nature Models and Science Constellations Constellations are fixed arrangements of stars that resemble animals, objects, and mythological figures Stars in a constellation are not physically related Constellations Diurnal vs. Annular Motion Positions of stars change very slowly; constellations will look the same for thousands of years Origin of the ancient constellations is unknown although they probably served as mnemonic tools for tracking seasons and navigation Diurnal Motion Daily Motion Sun, Moon, planets, and stars rise in the east and set in the west Due to the Earth s rotation Ancient astronomers took all celestial motion to be diurnal The Celestial Sphere! Annual Motion Yearly Motion Due to the Earth s revolution Is the sky different from day to day? Month to month? Year to year? 1
2 Daily motion can be explained by the rotation of the celestial sphere about the north and south celestial poles located directly above the Earth s north and south poles The celestial equator, which lies directly above the Earth s equator, provides another astronomical reference marker Diurnal Motion Annual Motion For a given time (say 10:00 PM), as the months proceed, constellations do not appear in the same part of the sky A given star rises 3 minutes 56 seconds earlier each night This annual motion is caused by the Earth s motion around the Sun, the result of projection The ancients used the periodic annual motion to mark the seasons Annual Motion The Ecliptic The path of the Sun through the stars on the celestial sphere is called the ecliptic The ecliptic is a projection of the Earth s orbit onto the celestial sphere and is tipped relative to the celestial equator The Earth is closest to the Sun in January, which is winter in the northern hemisphere Therefore, the seasons cannot be caused by the Sun s proximity to the Earth The Earth s rotation axis is tilted 23.5º from a line perpendicular to the Earth s orbital plane The rotation axis of the Earth maintains nearly the same tilt and direction from year to year The northern and southern hemispheres alternate receiving (on a yearly cycle) the majority of direct light from the Sun This leads to the seasons! 2
3 Seasons and The Ecliptic The tilt of the Earth s rotation axis causes the ecliptic not to be aligned with the celestial equator Sun is above celestial equator in June when the Northern Hemisphere is tipped toward the Sun, and is below the equator in December when tipped away Tilting explains seasonal altitude of Sun at noon, highest in summer and lowest in winter The Ecliptic s Tilt Solstices and Equinoxes Points on horizon where Sun rises and sets changes periodically throughout year In summer months of Northern hemisphere, the Sun rises north of east and sets north of west In winter months of Northern hemisphere, the Sun rises south of east and sets south of west The solstices (about June 21 and December 21) are when the Sun rises at the most extreme north and south points The equinoxes (equal day and night and about March 21 and September 23) are when the Sun rises directly east Ancients marked position of Sun rising and setting to determine the seasons (e.g., Stonehenge) Solstices and Equinoxes The Moon Rises in the east and sets in the west Like the planets and Sun, the Moon moves from west to east relative to the stars (roughly the width of the Moon in one hour) 3
4 The Phases of the Moon During a period of about 30 days, the Moon goes through a complete set of phases: new, waxing crescent, first quarter, waxing gibbous, full, waning gibbous, third quarter, waning crescent The Phases of the Moon The phase cycle is the origin of the month (derived from the word moon) as a time period The phases of the Moon are caused by the relative positions of the Sun, Earth, and Moon Lunar Rise and Set Times Eclipses The Moon rises roughly 50 minutes later each day An eclipse occurs when the Sun, Earth, and Moon are directly in line with each other A solar eclipse occurs when the Moon passes between the Sun and Earth, with the Moon casting its shadow on the Earth causing a midday sky to become dark as night for a few minutes Solar Eclipse from Space Lunar Eclipses A lunar eclipse occurs when the Earth passes between the Sun and Moon, with the Earth casting its shadow on the Moon giving it a dull red color 4
5 Rarity of Eclipses Eclipse Seasons Because of the Moon s tilt relative to the ecliptic, eclipses will not occur at every new and full Moon Twice a year the Moon s orbit will pass through the Sun giving the possibility of an eclipse these times are called eclipse seasons Since the Moon s orbit tilts nearly in the same direction through the year, twice a year the Moon s orbit will pass through the Sun giving the possibility of an eclipse these times are called eclipse seasons When a solar eclipse occurs at new Moon, conditions are right for a lunar eclipse to occur at the full Moon either before or after the solar eclipse Eclipse Periods Recent and Upcoming Solar Eclipses Eclipses do not occur every 30 days since the Moon s orbit is tipped relative to the Earth s orbit The tipped orbit allows the shadow of the Earth (Moon) to miss the Moon (Earth) 5
Unit 2. Cycles of the Sky
Unit 2 Cycles of the Sky The Celestial Sphere Vast distances to stars prevent us from sensing their true 3-D arrangement Naked eye observations treat all stars at the same distance, on a giant celestial
Chapter 1 Image Slides. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chapter 1 Image Slides Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. CH. 1: CYCLES OF THE SKY CO a 1.1 The Celestial Sphere CO b The nearest star to us is about
Motion of the Sun. motion relative to the horizon. rises in the east, sets in the west on a daily basis. Basis for the unit of time, the DAY
Motion of the Sun motion relative to the horizon rises in the east, sets in the west on a daily basis Basis for the unit of time, the DAY noon: highest point of Sun in sky relative to the horizon 1 altitude:
2.2 The Reason for Seasons
2.2 The Reason for Seasons Our goals for learning: What causes the seasons? How does the orientation of Earth's axis change with time? Thought Question TRUE OR FALSE? Earth is closer to the Sun in summer
Earth is rotating on its own axis
Earth is rotating on its own axis 1 rotation every day (24 hours) Earth is rotating counterclockwise if you are looking at its North pole from other space. Earth is rotating clockwise if you are looking
The Sun-Earth-Moon System
Name The Sun-Earth-Moon System Section 28.3 The Sun-Earth-Moon System Date Main Idea Details Read the title of Section 3. List three things that might be discussed in this section. 1. 2. 3. Review Vocabulary
Chapter 1: Discovering the Night Sky. The sky is divided into 88 unequal areas that we call constellations.
Chapter 1: Discovering the Night Sky Constellations: Recognizable patterns of the brighter stars that have been derived from ancient legends. Different cultures have associated the patterns with their
REVIEW CH #0. 1) Right ascension in the sky is very similar to latitude on the Earth. 1)
REVIEW CH #0 TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) Right ascension in the sky is very similar to latitude on the Earth. 1) 2) Latitude and right ascension
Chapter 2 Discovering the Universe for Yourself
Chapter 2 Discovering the Universe for Yourself 2.1 Patterns in the Night Sky Our goals for learning: What does the universe look like from Earth? Why do stars rise and set? Why do the constellations we
The Cause of the Seasons
The Cause of the Seasons Summer Winter Seasons are caused by the Earth s axis tilt, not the distance from the Earth to the Sun! Axis tilt changes directness of sunlight during the year. Why Does Flux Sunlight
Astronomy 115 Section 4 Week 2. Adam Fries SF State
Astronomy 115 Section 4 Week 2 Adam Fries SF State afries@sfsu.edu Important Notes: Homework #1 is Due at the beginning of class next time. Attendance Sheet is going around one last time! Homework Questions?
Chapter 2 Lecture. The Cosmic Perspective Seventh Edition. Discovering the Universe for Yourself Pearson Education, Inc.
Chapter 2 Lecture The Cosmic Perspective Seventh Edition Discovering the Universe for Yourself Discovering the Universe for Yourself 2.1 Patterns in the Night Sky Our goals for learning: What does the
b. So at 12:00 p.m., are the shadows pointing in the direction you predicted? If they are not, you must explain this observation.
Astronomy 100 Name(s): Exercise 2: Timekeeping and astronomy The following exercise illustrates some basic ideas about time, and how our position in the solar system uniquely configures the measurement
Chapter 2 Discovering the Universe for Yourself
Chapter 2 Discovering the Universe for Yourself 2.1 Patterns in the Night Sky Our goals for learning: What does the universe look like from Earth? Why do stars rise and set? Why do the constellations we
Observing the Universe for Yourself
Observing the Universe for Yourself Figure 6-20 Solar-System Formation What does the universe look like from Earth? With the naked eye, we can see more than 2,000 stars as well as the Milky Way. A constellation
Name: Date: 5. The bright stars Vega, Deneb, and Altair form A) the summer triangle. B) the winter triangle. C) the Big Dipper. D) Orion, the Hunter.
Name: Date: 1. If there are about 6000 stars in the entire sky that can be seen by the unaided human eye, about how many stars would be seen at a particular instant on a given dark night from a single
Chapter 2 Discovering the Universe for Yourself. What does the universe look like from Earth? Constellations. 2.1 Patterns in the Night Sky
Chapter 2 Discovering the Universe for Yourself 2.1 Patterns in the Night Sky Our goals for learning: What does the universe look like from Earth? Why do stars rise and set? Why do the constellations we
1-2. What is the name given to the path of the Sun as seen from Earth? a.) Equinox b.) Celestial equator c.) Solstice d.) Ecliptic
Chapter 1 1-1. How long does it take the Earth to orbit the Sun? a.) one sidereal day b.) one month c.) one year d.) one hour 1-2. What is the name given to the path of the Sun as seen from Earth? a.)
ASTR 1P01 Test 1, May 2018 Page 1 BROCK UNIVERSITY. Test 1: Spring 2018 Number of pages: 10 Course: ASTR 1P01, Section 1 Number of students: 598
ASTR 1P01 Test 1, May 2018 Page 1 BROCK UNIVERSITY Test 1: Spring 2018 Number of pages: 10 Course: ASTR 1P01, Section 1 Number of students: 598 Examination date: 12 May 2018 Time limit: 50 min Time of
Chapter 2 Discovering the Universe for Yourself. Copyright 2012 Pearson Education, Inc.
Chapter 2 Discovering the Universe for Yourself 1 2.1 Patterns in the Night Sky Our goals for learning: What does the universe look like from Earth? Why do stars rise and set? Why do the constellations
Astro 210 Lecture 3 Jan 22, 2018
Astro 210 Lecture 3 Jan 22, 2018 Announcements HW1 available; due online in pdf at 5:00pm Friday Office hours: Instructor 2-3pm Wed; TA 3:30-4:30pm Thurs register your iclicker; link on course moodle site
Chapter 2 Lecture. The Cosmic Perspective Seventh Edition. Discovering the Universe for Yourself
Chapter 2 Lecture The Cosmic Perspective Seventh Edition Discovering the Universe for Yourself Discovering the Universe for Yourself 2.1 Patterns in the Night Sky Our goals for learning: What does the
The celestial sphere, the coordinates system, seasons, phases of the moon and eclipses. Chapters 2 and S1
The celestial sphere, the coordinates system, seasons, phases of the moon and eclipses Chapters 2 and S1 The celestial sphere and the coordinates system Chapter S1 How to find our way in the sky? Let s
Discovering the Night Sky
Discovering the Night Sky Guiding Questions 1. What role did astronomy play in ancient civilizations? 2. Are the stars that make up a constellation actually close to one another? 3. Are the same stars
Discovering the Night Sky
Guiding Questions Discovering the Night Sky 1. What role did astronomy play in ancient civilizations? 2. Are the stars that make up a constellation actually close to one another? 3. Are the same stars
Brock University. Test 1, October 2017 Number of pages: 9 Course: ASTR 1P01, Section 1 Number of Students: 470 Date of Examination: October 3, 2017
Brock University Test 1, October 2017 Number of pages: 9 Course: ASTR 1P01, Section 1 Number of Students: 470 Date of Examination: October 3, 2017 Number of hours: 50 min Time of Examination: 17:00 17:50
Knowing the Heavens. Chapter Two. Guiding Questions. Naked-eye (unaided-eye) astronomy had an important place in ancient civilizations
Knowing the Heavens Chapter Two Guiding Questions 1. What role did astronomy play in ancient civilizations? 2. Are the stars that make up a constellation actually close to one another? 3. Are the same
Academic Year Second Term. Science Revision Sheet. Grade
Academic Year 2017-2018 Second Term Science Revision Sheet Grade 6 Name: Grade Date: Section: Part A. Science Practice. Circle the letter of your answer. 1. When the moon is waxing, its lighted part appears
Discovering the Universe for Yourself (Chapter 2) Years, Seasons, and Months: The Motions of Sun, Earth, and Moon
Discovering the Universe for Yourself (Chapter 2) Years, Seasons, and Months: The Motions of Sun, Earth, and Moon Based on Chapter 2 This material will be useful for understanding Chapters 3 and 4 on The
Summary Sheet #1 for Astronomy Main Lesson
Summary Sheet #1 for Astronomy Main Lesson From our perspective on earth The earth appears flat. We can see half the celestial sphere at any time. The earth s axis is always perpendicular to the equator.
Seasons. What causes the seasons?
Questions: Seasons What causes the seasons? How do we mark the progression of the seasons? What is the seasonal motion of the sun in the sky? What could cause the seasonal motion of the sun to change over
3. a. In the figure below, indicate the direction of the Sun with an arrow.
Astronomy 100, Fall 2005 Name(s): Exercise 2: Seasons in the sun The following exercise illustrates some basic ideas about time, and how our position in the solar system uniquely configures the measurement
Earth s Motion. Lesson Outline LESSON 1. A. Earth and the Sun 1. The diameter is more than 100 times greater than
Lesson Outline Earth s Motion LESSON 1 A. Earth and the Sun 1. The diameter is more than 100 times greater than Earth s diameter. a. In the Sun, atoms combine during, producing huge amounts of energy.
The. Astronomy is full of cycles. Like the day, the month, & the year In this section we will try to understand these cycles.
Understanding The Sky Astronomy is full of cycles Like the day, the month, & the year In this section we will try to understand these cycles. For Example Why do we think of stars as nighttime objects?
STANDARD. S6E1 d. Explain the motion of objects in the day/night sky in terms of relative position.
STANDARD S6E1 d. Explain the motion of objects in the day/night sky in terms of relative position. S6E2 b. Explain the alignment of the earth, moon, and sun during solar and lunar eclipses. c. Relate the
The Ecliptic on the Celestial. Sphere. The Celestial Sphere. Astronomy 210. Section 1 MWF Astronomy Building. celestial equator are not
Astronomy 210 Section 1 MWF 1500-1550 134 Astronomy Building This Class (Lecture 3): Lunar Phases Check Planetarium Schedule Next Class: HW1 Due Friday! Early Cosmology Music: We only Come out at Night
Before you Sit. Please Pick-up: Blue Information Sheet for Evening Observing. 1 Red and 1 Blue ticket for Observing/ Planetarium
Before you Sit Please Pick-up: Blue Information Sheet for Evening Observing. 1 Red and 1 Blue ticket for Observing/ Planetarium Evening Observing Observing at the Brooks Observatory: Three different weeks
ASTR 1P01 Test 1, September 2017 Page 1 BROCK UNIVERSITY
ASTR 1P01 Test 1, September 2017 Page 1 BROCK UNIVERSITY Test 1: Fall 2017 Number of pages: 10 Course: ASTR 1P01, Section 2 Number of students: 1300 Examination date: 30 September 2017 Time limit: 50 min
Name: Earth and Space Assessment Study Guide. Assessment Date : Term Rotation Revolution
Name: Earth and Space Assessment Study Guide Assessment Date : Earth s Rotation and Revolution Term Rotation Revolution Brief Definition Earth s Time to Complete One complete spin on an axis 24 hours (or
b. Assuming that the sundial is set up correctly, explain this observation.
Astronomy 100 Name(s): Exercise 3: Seasons in the sun The following exercise illustrates some basic ideas about time, and how our position in the solar system uniquely configures the measurement of time.
1. The pictures below show the Sun at midday. Write winter, spring or summer under the correct picture.
Test 2 1. The pictures below show the Sun at midday. Write winter, spring or summer under the correct picture. 2. Look carefully at the phases of the Moon. Number them (1 to 4) in the order that you would
Brock University. Test 1, September 2014 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: September 29, 2014
Brock University Test 1, September 2014 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: September 29, 2014 Number of hours: 50 min Time of Examination: 18:00 18:50 Instructor:
Introduction to Astronomy
Introduction to Astronomy AST0111-3 (Astronomía) Semester 2014B Prof. Thomas H. Puzia Theme Our Sky 1. Celestial Sphere 2. Diurnal Movement 3. Annual Movement 4. Lunar Movement 5. The Seasons 6. Eclipses
4 th Grade: Sun, Moon, and Earth Unit Assessment Study Guide
Name: Teacher: Test Date: 4 th Grade: Sun, Moon, and Earth Unit Assessment Study Guide Vocabulary: Solar System: A group of objects that revolve around a single star. Sun: The central (and only) star in
ASTR 1P01 Test 1, September 2018 Page 1 BROCK UNIVERSITY
ASTR 1P01 Test 1, September 2018 Page 1 BROCK UNIVERSITY Test 1: Fall 2018 Number of pages: 9 Course: ASTR 1P01, Section 2 Number of students: 1300 Examination date: 29 September 2018 Time limit: 50 min
Name: Exam 1, 9/30/05
Multiple Choice: Select the choice that best answers each question. Write your choice in the blank next to each number. (2 points each) 1. At the North Pole in mid-november, the sun rises at a. North of
Astronomy 11. No, this course isn t all about Star Wars
Astronomy 11 No, this course isn t all about Star Wars Earth s Rotation How fast are people on the equator moving? s=d/t =circumference/24 hours =(40,000 km)/24 hours =1670 km/h That s Mach 1.4! What
Brock University. Test 1, October 2016 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: October 3, 2016
Brock University Test 1, October 2016 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: October 3, 2016 Number of hours: 50 min Time of Examination: 17:00 17:50 Instructor:
ì<(sk$m)=cdfdhh< +^-Ä-U-Ä-U
Standards Preview Earth Sciences Standard Set 4. Earth Sciences 4. Objects in the sky move in regular and predictable patterns. As a basis for understanding this concept: 4.a. Students know the patterns
The Earth-Moon-Sun System. I. Lunar Rotation and Revolution II. Phases of the Moon III. Lunar Eclipses IV. Solar Eclipses
The Earth-Moon-Sun System I. Lunar Rotation and Revolution II. Phases of the Moon III. Lunar Eclipses IV. Solar Eclipses I. Lunar Rotation and Revolution The Moon rotates on its axis as it circles the
Practice Questions: Seasons #1
1. Seasonal changes on Earth are primarily caused by the A) parallelism of the Sun's axis as the Sun revolves around Earth B) changes in distance between Earth and the Sun C) elliptical shape of Earth's
Brock University. Test 1, May 2014 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: May 21, 2014
Brock University Test 1, May 2014 Number of pages: 9 Course: ASTR 1P01 Number of Students: 500 Date of Examination: May 21, 2014 Number of hours: 50 min Time of Examination: 14:00 14:50 Instructor: B.Mitrović
Physical Science. Chapter 22 The Earth in Space
Physical Science Chapter 22 The Earth in Space Earth s Rotation Axis imaginary line passing through the North and South Pole Earth s axis is tilted at 23 ½ degrees Rotation: the Earth spinning on its axis
Physical Science. Chapter 22 The Earth in Space. Earth s Rotation
Physical Science Chapter 22 The Earth in Space Earth s Rotation Axis imaginary line passing through the North and South Pole Earth s axis is tilted at 23 ½ degrees Rotation: the Earth spinning on its axis
The ecliptic and the sidereal motion of the sun Moon and the planets on it.
The ecliptic and the sidereal motion of the sun Moon and the planets on it. The following picture is a picture of the sky as it looks about noon on May 18 2012. The light of the Sun has been erased artificially
[04] Seasons, Phases, and Eclipses (9/7/17)
1 [04] Seasons, Phases, and Eclipses (9/7/17) Upcoming Items Homework #2 due next lecture. Read Ch. 3.3 and do the self-study quizzes for next lecture, and skim 2.4, 3.1, 3.2, & 3.4. https://pbs.twimg.com/media/dh69il_u0aenivq.jpg:large
Earth, Sun, and Stars
Earth, Sun, and Stars Daily Patterns Earth Spins Earth is always moving, even though you don t feel it. One way Earth moves is by spinning around an imaginary line. One end of the line would come out of
Chapter: The Earth-Moon-Sun System
Chapter 7 Table of Contents Chapter: The Earth-Moon-Sun System Section 1: Earth in Space Section 2: Time and Seasons Section 3: Earth s Moon 1 Earth in Space Earth s Size and Shape Ancient Measurements
Dive into Saturn.
Dive into Saturn http://www.pbs.org/wgbh/nova/space/death-dive-to-saturn.html Read Ch. 3 By next class time Do practice online quiz 01 Axis tilt changes directness of sunlight during the year. Why Does
1/3/12. Chapter: The Earth-Moon-Sun System. Ancient Measurements. Earth s Size and Shape. Ancient Measurements. Ancient Measurements
// Table of Contents Chapter: The Earth-Moon-Sun System Section : Chapter 7 Section : Section : Earth s Size and Shape Ancient Measurements First, no matter where you are on Earth, objects fall straight
Solar Noon The point at which the Sun is highest in the sky (and when shadows are shortest).
Solar Noon The point at which the Sun is highest in the sky (and when shadows are shortest). Rotation The movement of one object as it turns or spins around a central point or axis. Revolution The movement
Astronomy is the oldest science! Eclipses. In ancient times the sky was not well understood! Bad Omens? Comets
Astronomy is the oldest science! In ancient times the sky was not well understood! Eclipses Bad Omens? Comets 1 The Ancient Greeks The Scientific Method Our ideas must always be consistent with our observations!
ASTR 1P01 Test 1, May 2017 Page 1 BROCK UNIVERSITY. Test 1: May 2017 Number of pages: 9 Course: ASTR 1P01, Section 1 Number of students: 614
ASTR 1P01 Test 1, May 2017 Page 1 BROCK UNIVERSITY Test 1: May 2017 Number of pages: 9 Course: ASTR 1P01, Section 1 Number of students: 614 Examination date: 13 May 2017 Time limit: 50 min Time of Examination:
Chapter 22.2 The Earth- Moon-Sun System. Chapter 22.3: Earth s Moon
Chapter 22.2 The Earth- Moon-Sun System Chapter 22.3: Earth s Moon Chapter 22.2 The Earth- Moon-Sun System Motions of the Earth The two main motions of the Earth are rotation and revolution Rotation
Discovering the Universe for Yourself
Constellations: region in the sky with well defined borders; the familiar patterns of stars merely help us locate these constellations. 88 names were chosen by the International Astronomical Union. Every
2.1 Patterns in the Night Sky
2.1 Patterns in the Night Sky Our goals for learning: What are constellations? How do we locate objects in the sky? Why do stars rise and set? Why don t we see the same constellations throughout the year?
2. Modern: A constellation is a region in the sky. Every object in the sky, whether we can see it or not, is part of a constellation.
6/14 10. Star Cluster size about 10 14 to 10 17 m importance: where stars are born composed of stars. 11. Galaxy size about 10 21 m importance: provide a stable environment for stars. Composed of stars.
Astronomy 101: 9/18/2008
Astronomy 101: 9/18/2008 Announcements Pick up a golf ball at the front of the class or get one from Alex; you will need it for an in-class activity today. You will also need the question sheet from Alex.
Reminder: Seasonal Motion
Seasonal Motion Reminder: Seasonal Motion If you observe the sky at the same time, say midnight, but on a different date, you find that the celestial sphere has turned: different constellations are high
Daily Motions. Daily Motions. Solar and Sidereal Days. Annual Motions of the Sun. Coordinate system on Earth. Annual Motion of the Stars.
Sun: rises in the east sets in the west travels on an arc across the sky 24 hours Daily Motions Solar Day = 24 hours Stars: stars travel on arcs in the sky moving from east to west. some stars rise and
Today. Solstices & Equinoxes Precession Phases of the Moon Eclipses. Ancient Astronomy. Lunar, Solar FIRST HOMEWORK DUE NEXT TIME
Today Solstices & Equinoxes Precession Phases of the Moon Eclipses Lunar, Solar Ancient Astronomy FIRST HOMEWORK DUE NEXT TIME Tropic: Latitude where the sun [just] reaches the zenith at noon on the summer
Introduction To Modern Astronomy I: Solar System
ASTR 111 003 Fall 2007 Lecture 02 Sep. 10, 2007 Introduction To Modern Astronomy I: Solar System Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-15) Chap. 16: Our Sun Chap. 28: Search for
Astronomy 1010 Planetary Astronomy Sample Questions for Exam 1
Astronomy 1010 Planetary Astronomy Sample Questions for Exam 1 Chapter 1 1. A scientific hypothesis is a) a wild, baseless guess about how something works. b) a collection of ideas that seems to explain
Tools of Astronomy Tools of Astronomy
Tools of Astronomy Tools of Astronomy The light that comes to Earth from distant objects is the best tool that astronomers can use to learn about the universe. In most cases, there is no other way to study
Name: Class: Date: ID: A
Name: Class: _ Date: _ Astro Quiz 2 (ch2) Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Star A has an apparent visual magnitude of 13.4 and star B has
Today FIRST HOMEWORK DUE NEXT TIME. Phases of the Moon. Eclipses. Lunar, Solar. Ancient Astronomy
Today FIRST HOMEWORK DUE NEXT TIME Phases of the Moon Eclipses Lunar, Solar Ancient Astronomy Tropic: Latitude where the sun [just] reaches the zenith at noon on the summer solstice Arctic/Antarctic Circle:
Phys Lab #1: The Sun and the Constellations
Phys 10293 Lab #1: The Sun and the Constellations Introduction Astronomers use a coordinate system that is fixed to Earth s latitude and longitude. This way, the coordinates of a star or planet are the
Eclipses September 12th, 2013
Eclipses September 12th, 2013 Who was the favorite Star Wars character of the class? A) Obi-Wan B) Jar Jar C) Luke Skywalker D) Yoda News! Dark matter http://mcdonaldobservatory.org/news/releases/2013/09/10
18.2 Earth Cycles Days and years Calendars Years and days Leap years Calendars throughout human history 20,000 years ago. 7,000 BC. 4,000 BC.
18.2 Reading 18.2 Earth Cycles Do you ever wonder where our calendar comes from? Or why the Moon gradually changes its shape? Or why we have seasons? The answers have to do with the relative positions
Position 3. None - it is always above the horizon. Agree with student 2; star B never crosses horizon plane, so it can t rise or set.
Position 3 None - it is always above the horizon. N E W S Agree with student 2; star B never crosses horizon plane, so it can t rise or set. Imaginary plane No; the Earth blocks the view. Star A at position
Time, coordinates and how the Sun and Moon move in the sky
Time, coordinates and how the Sun and Moon move in the sky Using the colors and magnitudes of quasars drawn from the SDSS Catalog Archive Server to distinguish quasars from stars using the light they emit
3. Lunar Motions & Eclipses. Lunar Phases: Static & Dynamic. Static & Dynamic Lunar Phases. Earth & Moon: Both Show Phases!
3. Lunar Motions & Eclipses Lunar motions & lunar phases Lunar axial rotation & orbital revolution Eclipses & the line of nodes Lunar eclipses Solar eclipses Relative Earth-Moon-Sun distances Lunar Motions
Celestial Sphere & Solar Motion Lab (Norton s Star Atlas pages 1-4)
Name: Date: Celestial Sphere & Solar Motion Lab (Norton s Star Atlas pages 1-4) Italicized topics below will be covered only at the instructor s discretion. 1.0 Purpose: To understand a) the celestial
from The Walrus and the Carpenter Through the Looking-Glass -- Lewis Carroll
The Sun was shining on the sea, Shining with all his might; He did his very best to make The billows smooth and bright- And this was odd because it was The middle of the night. from The Walrus and the
SPI Use data to draw conclusions about the major components of the universe.
SPI 0607.6.1 - Use data to draw conclusions about the major components of the universe. o Stars are huge, hot, brilliant balls of gas trillions of kilometers away. A Galaxy is a collection of billions
Daily & Annual Motions
Daily & Annual Motions Key Ideas: Daily Motions Reflection of the Earth's Daily Rotation Circumpolar Stars Annual Motions Reflection of the Earth's Orbital Motion Ecliptic: The Path of the Sun Zodiacal
Lecture 2: Motions of the Earth and Moon. Astronomy 111 Wednesday August 30, 2017
Lecture 2: Motions of the Earth and Moon Astronomy 111 Wednesday August 30, 2017 Reminders Online homework #1 due Monday at 3pm Labs start next week Motions of the Earth ASTR111 Lecture 2 Observation:
BROCK UNIVERSITY. Test 1: October 2014 Number of pages: 9 Course: ASTR 1P01, Section 2 Number of students: 950
BROCK UNIVERSITY Page 1 of 9 Test 1: October 2014 Number of pages: 9 Course: ASTR 1P01, Section 2 Number of students: 950 Examination date: 3 October 2013 Time limit: 50 min Time of Examination: 20:00
Lecture 2 Motions in the Sky September 10, 2018
1 Lecture 2 Motions in the Sky September 10, 2018 2 What is your year in school? A. New freshman B. Returning freshman C. Sophomore D. Junior E. Senior F. I ve been here, like, forever 3 What is your major?
Chapter 3: Cycles of the Sky
Chapter 3: Cycles of the Sky Motions of the Planets Mercury Venus Earth All planets in almost circular (elliptical) orbits around the sun, in approx. the same plane, the ecliptic plane. The Moon is orbiting
Introduction To Modern Astronomy II
ASTR 111 003 Fall 2006 Lecture 03 Sep. 18, 2006 Introduction To Modern Astronomy II Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-17) Ch1: Astronomy and the Universe Ch2: Knowing the Heavens
Today. Tropics & Arctics Precession Phases of the Moon Eclipses. Ancient Astronomy. Lunar, Solar FIRST HOMEWORK DUE NEXT TIME
Today Tropics & Arctics Precession Phases of the Moon Eclipses Lunar, Solar Ancient Astronomy FIRST HOMEWORK DUE NEXT TIME Tropic: Latitude where the sun [just] reaches the zenith at noon on the summer
Syllabus, Semester Project, Scales/Scale Models. Questions? One comment
Syllabus, Semester Project, Scales/Scale Models Questions? One comment Patterns in the Sky: Traxoline Cardinal Directions (N, S, E, W) Positions in the Sky ( high, low ) Meridian, Zenith, Horizon Noon
Astronomy 122 Section 1 TR Digital Computer Laboratory. Outline. Celestial Sphere. Motions in the Sky
Astronomy 122 Section 1 TR 1300-1350 1320 Digital Computer Laboratory Leslie Looney Phone: 244-3615 Email: lwlw@wuiucw. wedu Office: Astro Building #218 Office Hours: T 10:30-11:30 a.m. or by appointment
Appearance of the Sky Orientation Motion of sky Seasons Precession (?)
Today Appearance of the Sky Orientation Motion of sky Seasons Precession (?) The Celestial Sphere Stars at different distances all appear to lie on the celestial sphere. The ecliptic is the Sun s apparent
Day, Night & the Seasons. Lecture 2 1/21/2014
Day, Night & the Seasons Lecture 2 1/21/2014 Logistics The following students see me after class: A. Gonzalez, Chen Anyone who was not here on first day see me after class Pin Numbers - if you have not
Orbital Mechanics. CTLA Earth & Environmental Science
Orbital Mechanics CTLA Earth & Environmental Science The Earth Spherical body that is flattened near the poles due to centrifugal force (rotation of the Earth) 40,074 KM across at the Equator 40,0007 KM
A2 Principi di Astrofisica. Coordinate Celesti
A2 Principi di Astrofisica Coordinate Celesti ESO La Silla Tel. 3.6m Celestial Sphere Our lack of depth perception when we look into space creates the illusion that Earth is surrounded by a celestial sphere.
8 th Grade Earth, Moon and Sun Systems Review
8 th Grade Earth, Moon and Sun Systems Review #1 Click on the link to learn What causes Seasons? A #2 H G B D C What is season A in this diagram? E F A: Summer B: Fall C: Winter D: Spring D. Spring A #3
Astronomy. What is the force that pulls objects toward the center of the earth, between the earth and the moon and the earth and other planets?
Astronomy Essential Questions and Answers: What is the force that pulls objects toward the center of the earth, between the earth and the moon and the earth and other planets? Students: Gravity is the