Seasons and Phases Grade 8 Pre-Visit Materials Howard B. Owens Science Center

Size: px
Start display at page:

Download "Seasons and Phases Grade 8 Pre-Visit Materials Howard B. Owens Science Center"

Transcription

1 Seasons and Phases Grade 8 Pre-Visit Materials Howard B. Owens Science Center Prince George s County Public Schools Upper Marlboro, Md

2 Seasons and Phases (8 th grade) Program Description: Students will discover how observations of the sky teach us about the seasons and the causes of moon phases. Look beyond textbook diagrams and learn how to experience this information directly! Textbooks show us the phases of the moon from the point of view of an observer from outer space looking at the Sun/Earth/Moon system. While that is helpful for some concepts, we seek to understand what we see from the point of view of observers on planet Earth! The same can be said about the seasons. Diagrams are great, but how do we make sense of it all from just looking up? The unique environment of the planetarium allows us to immerse ourselves into making these observations that normally would take months and even a year to complete. In the course of two hours, we will move beyond the textbooks and allow students to build their own conceptual understanding of what they see by making and recording realisitic observations of the sky Interwoven into the science are threads of history from how ancient cultures interpreted and applied the knowledge gained from the sky, to how we as modern day scientists interpret and apply that same knowledge! Pre-Visit Activity 1: Knowing the Moon Knowing the Moon is designed to be a warm-up activity to provide students with some basic moon facts that will be helpful in their understanding of some of the more complex Earth-moon interactions to be explored in further activities. Problem 1 involves a simple mathematical calculation of average, but introduces the concept of perigee, or the Moon s closest distance to the Earth, and apogee, the Moon s furthest distance from the Earth. From simply viewing the diagram, students will be aware that the Moon s orbit is an ellipse rather than a circle, and that the Moon is located at one of the two foci of the ellipse. To calculate the average distance, they simply average the apogee and perigee distances (estimates provided from NASA). Problem 2 involves making a judgment by comparing two pictures; students should be able to reason that Picture A is the full moon at perigee, closest approach, since it is larger than Picture B, taken at apogee, its furthest distance away. Pre-Visit Activity 2: Lunar Phases This activity is designed to have students become familiar with resources that provide information on when various moon phases occur, asking students to recognize the patterns. This can also be used as a pre-assessment to determine student understanding of moon phases as a repeating pattern. 2

3 Program Title: Seasons and Phases Grade Level: 8 Science/Mathematics Standard: Date: Quarter 3 Program Lesson Planner Statement of Objective: What should students know and be able to do as a result of the lesson? 15 min. Students will develop an understanding of how the tilt of the Earth causes the seasons by observing the changing sunpaths of the Sun through key times of the year (the Equinoxes and Solstices). Students will develop an understanding of the phases of the Moon by observing the rising and/or setting positions of the Moon with respect to the Sun and interpreting the angle between the two celestial objects. Engagement Exploration Warm-Up: How will you engage students in learning? How will you connect the lesson to their prior knowledge? Students will observe a first quarter Moon in the planetarium sky and asked to identify the moon phase. The host teacher will direct them to correctly identify it as a first quarter moon and ask the students how they would draw this/record this in a journal or when taking a test. Once students had discovered it looks like a letter D. Now tell them they are going to take the same test in Australia. The planetarium will keep the same time/date, but change latitude to that of Melbourne, Australia (about 40 degrees South latitude). Students will be asked to describe the differences and similarities between the observations in Maryland and Australia. (Students will note the difference in appearance: the Moon now looks like a BACKWARDS letter D. The similarity: it is still in the Western part of the sky, with the lighted side facing towards its source of light, the Sun.) Teacher Monitored Activities: What will students do together to use new concepts or skills? How will you assist them in this process? 60 min. Part I: Moon Phases Each student will be provided with a worksheet and asked to record their observations individually. They will observe the relative positions of the Sun and Moon in Earth s sky using the planetarium to show these positions for the full moon phase, third quarter moon phase, waning crescent phase, and new moon phase. After recording their discoveries, students will be asked to write and share a prediction about the relative position of the Sun and Moon in Earth s sky for the first quarter moon phase. They will then observe using the planetarium to confirm or disprove their predictions. Part II: Seasons Students will be asked to predict the rising position of the Sun for the first day of Autumn (Autumnal Equinox). They will pair-share to refine their predictions, then observe and record the actual rising position of the Sun for the Autumnal Equinox. Next they will be asked to predict the height the Sun will cross the Noon Meridian and the setting position of the Sun. After observing both, the students will record the results. This procedure will be followed for the Winter Solstice, the Vernal Equinox, and the Summer Solstice.

4 Program Title: Seasons and Phases Grade Level: 8 Science/Mathematics Standard: Date: Quarter 3 Program Lesson Planner Explanation Elaboration (part of 60 min. explora tion) min. Teacher Directed Activities: How will you aid students in constructing the meaning of new concepts? How will you introduce/model new skills or procedures? Part I: The host teacher will explain how the angle between the Sun and Moon in Earth s sky determines how much of the lighted half of the Moon we can actually see from Earth. The host teacher will then bring up three students to model the motions of the Earth/Moon system and interpret the moon phases with the human model. Part II: The host teacher will have students access their prior knowledge of the length of days during the different seasons to make their predictions. The teacher will help the students analyze the sunpaths for the various seasons to discuss the relationship between the sunpaths and the temperature during the seasons. Finally, the planetarium coordinate system will be used to show students how to interpret the tilt of the Earth and the point when the Equinoxes occur by showing the separation between the Celestial Equator and the Ecliptic. Extension, Refinement, and Practice Activities: What opportunities will students have to use the new skills and concepts in a meaningful way? How will students expand and solidify their understanding of the concept and apply it to a real-world situation? How will students demonstrate their mastery of the essential learning outcomes? Part I: The host teacher will share how Native Americans named each Full Moon in their calendars, as well as lead the students through an exploration through how the Moon has been viewed through history (full moons vs. insanity; blue moon ; blood moon ). Part II: The host teacher will take students to the Equator and the Poles to observe the sunpaths at these locations. Students will determine that some locations on Earth experience very little seasonal change based upon latitude. 4

5 Program Title: Seasons and Phases Grade Level: 8 Science/Mathematics Standard: Date: Quarter 3 Program Lesson Planner Evaluation Closure (throug hout class) 5-10 min min. Ongoing Assessment: How will you monitor student progress throughout the lesson? Students will be evaluated on their participation in question/answering sessions, as well as assessing their worksheets (to be done by the classroom teacher). Culminating Assessment: How will you ensure that all students have mastered the identified learning indicators? How will you assess their learning? Post-Visit activities will be provided to assist the teacher in assessing student mastery of key indicators. Closure Activities: Through this teacher-guided activity, how will you assist students in reflecting upon what they learned today and preparing for tomorrow s lesson? What homework will be assigned to help students practice, prepare, or elaborate on a concept or skill taught? The host teacher will take the students on a guided tour of the current night sky, identifying the current moon phase. 5

6 NGSS Alignment: MS. Space Systems MS-ESS1-1. Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon, and seasons. ESS1.B: Earth and the Solar System: This model of the solar system can explain eclipses of the sun and the moon. Earth s spin axis is fixed in direction over the short-term but tilted relative to its orbit around the sun. The seasons are a result of that tilt and are caused by the differential intensity of sunlight on different areas of Earth across the year. (MS- ESS1-1) MCCRS- RELA & Math: ELA/Literacy - SL.8.5 Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. Mathematics - MP.4 Model with mathematics. 6.RP.A.1 Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. 7.RP.A.2 Recognize and represent proportional relationships between quantities. 6

7 Pre-Visit Activity 1: Knowing the Moon Teacher Materials: NONE Student Materials: Student Worksheet Procedure: Knowing the Moon is designed to be a warm-up activity to provide students with some basic moon facts that will be helpful in their understanding of some of the more complex Earth-moon interactions to be explored in further activities. Problem 1 involves a simple mathematical calculation of average, but introduces the concept of perigee, or the Moon s closest distance to the Earth, and apogee, the Moon s furthest distance from the Earth. From simply viewing the diagram, students will be aware that the Moon s orbit is an ellipse rather than a circle, and that the Moon is located at one of the two foci of the ellipse. To calculate the average distance, they simply average the apogee and perigee distances (estimates provided from NASA). Problem 2 involves making a judgment by comparing two pictures; students should be able to reason that Picture A is the full moon at perigee, closest approach, since it is larger than Picture B, taken at apogee, its furthest distance away.

8 Pre-Visit Activity 1: Knowing the Moon STUDENT WORKSHEET MOON 360,000 km 405,000 km 1. Using the information provided in the diagram above, calculate the average distance to the moon. A B 2. Looking at the images of the full moon above, which was taken at perigee (closest distance to Earth)? at apogee (furthest distance from Earth)? What evidence do you have to support your claim? 8

9 Pre-Visit Activity 2: (Web 2.0) Lunar Cycle Challenge Materials: Computer with Internet Access 1. Open up the following page to begin your lunar cycle challenge: 2. The instructions come up automatically (and are also read out loud to you). 3. Begin at level 1. You will use the pattern of the lunar cycle providing to fill in the missing moon phase (drag and drop): 9

10 ENJOY! 10

Unlocking the Solar System

Unlocking the Solar System Unlocking the Solar System Grade 5 Pre-Visit Activities Howard B. Owens Science Center Unlocking the Solar System (5 th grade) DESCRIPTION What *IS* a solar system? What does it look like? What SHOULD

More information

4th Grade Planetarium Program Howard B. Owens Science Center PRE-VISIT MATERIALS

4th Grade Planetarium Program Howard B. Owens Science Center PRE-VISIT MATERIALS Heroes of the Sky 4th Grade Planetarium Program Howard B. Owens Science Center PRE-VISIT MATERIALS Heroes of the Sky Walk through the doors of the planetarium, and the transformation is complete: you are

More information

NGSS UNIT OVERVIEW SOLAR SYSTEM AND BEYOND

NGSS UNIT OVERVIEW SOLAR SYSTEM AND BEYOND NGSS UNIT OVERVIEW SOLAR SYSTEM AND BEYOND Performance Expectation MS-ESS1-1: Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and

More information

Science and Engineering Practices DRAFT. Interpreting Data. and Applications of system and beyond. Students consider the

Science and Engineering Practices DRAFT. Interpreting Data. and Applications of system and beyond. Students consider the Solar System and Beyond Overview NGSS Performance Expectation MS-ESS1-1: Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon,

More information

Seasons and Phases. Grade 8 Post-Visit Materials Howard B. Owens Science Center

Seasons and Phases. Grade 8 Post-Visit Materials Howard B. Owens Science Center Seasons and Phases Challenge question: Are these sun paths shown for the Northern or Southern hemisphere? How do you know (cite your evidence)? Grade 8 Post-Visit Materials Howard B. Owens Science Center

More information

7.RP.A.2 Recognize and represent proportional relationships between quantities.

7.RP.A.2 Recognize and represent proportional relationships between quantities. Lesson Overview We often observe the Moon in the night sky. Understanding the phases of the Moon requires a clear understanding that the Moon reflects light and rotates around the Earth. In this activity,

More information

NGSS UNIT OVERVIEW SOLAR SYSTEM AND BEYOND

NGSS UNIT OVERVIEW SOLAR SYSTEM AND BEYOND NGSS UNIT OVERVIEW SOLAR SYSTEM AND BEYOND Performance Expectation MS-ESS1-1: Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and

More information

Moon's Orbit ACTIVITY OVERVIEW NGSS CONNECTIONS NGSS CORRELATIONS

Moon's Orbit ACTIVITY OVERVIEW NGSS CONNECTIONS NGSS CORRELATIONS 5 The Moon's Orbit m o d e l i n g 1 2 c l a s s sessions ACTIVITY OVERVIEW NGSS CONNECTIONS Students develop and use a three-dimensional model that illustrates how the Moon s orbital plane is not aligned

More information

The Sun-Earth-Moon System

The Sun-Earth-Moon System Name The Sun-Earth-Moon System Section 28.3 The Sun-Earth-Moon System Date Main Idea Details Read the title of Section 3. List three things that might be discussed in this section. 1. 2. 3. Review Vocabulary

More information

Science 8 th Grade Scope and Sequence

Science 8 th Grade Scope and Sequence Sample Science 8 th Grade Science 8 th Grade Scope and Sequence August - October = ESS1: Earth s Place in the Universe Essential Questions: What is Earth s place in the Universe? What makes up our solar

More information

Introduction to Active Learning: The Night Sky

Introduction to Active Learning: The Night Sky Name(s): Date: Course/Section: Grade: Introduction to Active Learning: The Night Sky Learning Objectives: Students will learn how to work within their assigned teams to complete surveys and experiments

More information

Seasons and Ecliptic Simulator

Seasons and Ecliptic Simulator Overview: In this lesson, students access an online simulator to aid in understanding the relationship between seasons and Earth s tilt and the day/night cycle caused by Earth s rotation. Objectives: The

More information

Chapter 2 Discovering the Universe for Yourself

Chapter 2 Discovering the Universe for Yourself Chapter 2 Discovering the Universe for Yourself 2.1 Patterns in the Night Sky Our goals for learning: What does the universe look like from Earth? Why do stars rise and set? Why do the constellations we

More information

Unit 2: Astronomy. Content Area: Science Course(s): Generic Course Time Period: Marking Period 1 Length: approximately 15days Status: Published

Unit 2: Astronomy. Content Area: Science Course(s): Generic Course Time Period: Marking Period 1 Length: approximately 15days Status: Published Unit 2: Astronomy Content Area: Science Course(s): Generic Course Time Period: Marking Period 1 Length: approximately 15days Status: Published Unit Summary (Content) This unit is broken down into three

More information

Academic Year Second Term. Science Revision Sheet. Grade

Academic Year Second Term. Science Revision Sheet. Grade Academic Year 2017-2018 Second Term Science Revision Sheet Grade 6 Name: Grade Date: Section: Part A. Science Practice. Circle the letter of your answer. 1. When the moon is waxing, its lighted part appears

More information

Day, Night & the Seasons. Lecture 2 1/21/2014

Day, Night & the Seasons. Lecture 2 1/21/2014 Day, Night & the Seasons Lecture 2 1/21/2014 Logistics The following students see me after class: A. Gonzalez, Chen Anyone who was not here on first day see me after class Pin Numbers - if you have not

More information

Chapter 2 Discovering the Universe for Yourself. What does the universe look like from Earth? Constellations. 2.1 Patterns in the Night Sky

Chapter 2 Discovering the Universe for Yourself. What does the universe look like from Earth? Constellations. 2.1 Patterns in the Night Sky Chapter 2 Discovering the Universe for Yourself 2.1 Patterns in the Night Sky Our goals for learning: What does the universe look like from Earth? Why do stars rise and set? Why do the constellations we

More information

Discovering the Night Sky

Discovering the Night Sky Discovering the Night Sky Guiding Questions 1. What role did astronomy play in ancient civilizations? 2. Are the stars that make up a constellation actually close to one another? 3. Are the same stars

More information

Discovering the Night Sky

Discovering the Night Sky Guiding Questions Discovering the Night Sky 1. What role did astronomy play in ancient civilizations? 2. Are the stars that make up a constellation actually close to one another? 3. Are the same stars

More information

Free Lunar Phases Interactive Organizer

Free Lunar Phases Interactive Organizer Free Lunar Phases Interactive Organizer Created by Gay Miller Gay Miller Page 1 Lunar Phases MS-ESS1-1. Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases,

More information

Chapter 2 Discovering the Universe for Yourself. Copyright 2012 Pearson Education, Inc.

Chapter 2 Discovering the Universe for Yourself. Copyright 2012 Pearson Education, Inc. Chapter 2 Discovering the Universe for Yourself 1 2.1 Patterns in the Night Sky Our goals for learning: What does the universe look like from Earth? Why do stars rise and set? Why do the constellations

More information

Objectives. Duration: one week

Objectives. Duration: one week Objectives At the conclusion of the lesson, students will be able to: 1. Analyze data to describe the motion of the sun including equinox and solstice paths in the sky for an Ancient Culture 2. Use alt-azimuth

More information

ASTR 1P01 Test 1, September 2018 Page 1 BROCK UNIVERSITY

ASTR 1P01 Test 1, September 2018 Page 1 BROCK UNIVERSITY ASTR 1P01 Test 1, September 2018 Page 1 BROCK UNIVERSITY Test 1: Fall 2018 Number of pages: 9 Course: ASTR 1P01, Section 2 Number of students: 1300 Examination date: 29 September 2018 Time limit: 50 min

More information

Chapter 2 Discovering the Universe for Yourself

Chapter 2 Discovering the Universe for Yourself Chapter 2 Discovering the Universe for Yourself 2.1 Patterns in the Night Sky Our goals for learning: What does the universe look like from Earth? Why do stars rise and set? Why do the constellations we

More information

1-2. What is the name given to the path of the Sun as seen from Earth? a.) Equinox b.) Celestial equator c.) Solstice d.) Ecliptic

1-2. What is the name given to the path of the Sun as seen from Earth? a.) Equinox b.) Celestial equator c.) Solstice d.) Ecliptic Chapter 1 1-1. How long does it take the Earth to orbit the Sun? a.) one sidereal day b.) one month c.) one year d.) one hour 1-2. What is the name given to the path of the Sun as seen from Earth? a.)

More information

What causes the seasons? 2/11/09

What causes the seasons? 2/11/09 2/11/09 We can recognize solstices and equinoxes by Sun s path across sky: Summer solstice: Highest path, rise and set at most extreme north of due east. Winter solstice: Lowest path, rise and set at most

More information

Knowing the Heavens. Chapter Two. Guiding Questions. Naked-eye (unaided-eye) astronomy had an important place in ancient civilizations

Knowing the Heavens. Chapter Two. Guiding Questions. Naked-eye (unaided-eye) astronomy had an important place in ancient civilizations Knowing the Heavens Chapter Two Guiding Questions 1. What role did astronomy play in ancient civilizations? 2. Are the stars that make up a constellation actually close to one another? 3. Are the same

More information

Astronomy 100 Section 2 MWF Greg Hall

Astronomy 100 Section 2 MWF Greg Hall Astronomy 100 Section 2 MWF 1200-1300 100 Greg Hall Leslie Looney Phone: 217-244-3615 Email: lwl @ uiuc. edu Office: Astro Building #218 Office Hours: MTF 10:30-11:30 a.m. or by appointment Class Web Page

More information

Astronomy 115 Section 4 Week 2. Adam Fries SF State

Astronomy 115 Section 4 Week 2. Adam Fries SF State Astronomy 115 Section 4 Week 2 Adam Fries SF State afries@sfsu.edu Important Notes: Homework #1 is Due at the beginning of class next time. Attendance Sheet is going around one last time! Homework Questions?

More information

DO NOW HW due Friday; Quiz Wed

DO NOW HW due Friday; Quiz Wed DO NOW HW due Friday; Quiz Wed 1. Draw out a solar eclipse. Write out what a solar eclipse is. 2. Draw out a lunar eclipse. Write out what a lunar eclipse is. 3. Which number moon would give us a solar

More information

Observing the Universe for Yourself

Observing the Universe for Yourself Observing the Universe for Yourself Figure 6-20 Solar-System Formation What does the universe look like from Earth? With the naked eye, we can see more than 2,000 stars as well as the Milky Way. A constellation

More information

Seasons. What causes the seasons?

Seasons. What causes the seasons? Questions: Seasons What causes the seasons? How do we mark the progression of the seasons? What is the seasonal motion of the sun in the sky? What could cause the seasonal motion of the sun to change over

More information

Passwords. ScienceVocabulary

Passwords. ScienceVocabulary Passwords ScienceVocabulary F To the Student Mitosis. Apogee. Ion. Sometimes it seems that scientists speak a language all their own. Passwords: Science Vocabulary will help you learn the words you need

More information

Chapter 1: Discovering the Night Sky. The sky is divided into 88 unequal areas that we call constellations.

Chapter 1: Discovering the Night Sky. The sky is divided into 88 unequal areas that we call constellations. Chapter 1: Discovering the Night Sky Constellations: Recognizable patterns of the brighter stars that have been derived from ancient legends. Different cultures have associated the patterns with their

More information

Summer Solstice. PreK 6 th A FREE RESOURCE PACK FROM EDUCATIONCITY. Topical Teaching Resources. Grade Range

Summer Solstice. PreK 6 th A FREE RESOURCE PACK FROM EDUCATIONCITY. Topical Teaching Resources. Grade Range A FREE RESOURCE PACK FROM EDUCATIONCITY Summer Solstice PreK 6 th Topical Teaching Resources Grade Range Free school resources by EducationCity. This may be reproduced for class use. Topical Teaching Resources

More information

REVIEW CH #0. 1) Right ascension in the sky is very similar to latitude on the Earth. 1)

REVIEW CH #0. 1) Right ascension in the sky is very similar to latitude on the Earth. 1) REVIEW CH #0 TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) Right ascension in the sky is very similar to latitude on the Earth. 1) 2) Latitude and right ascension

More information

The Celestial Sphere. Chapter 1. Constellations. Models and Science. Constellations. Diurnal vs. Annular Motion 9/16/2010

The Celestial Sphere. Chapter 1. Constellations. Models and Science. Constellations. Diurnal vs. Annular Motion 9/16/2010 The Celestial Sphere Chapter 1 Cycles of the Sky Vast distances to stars prevent us from sensing their true 3-D arrangement Naked eye observations treat all stars at the same distance, on a giant celestial

More information

Sun Inclinometer. Curriculum Levels 3-4 Maths. Activity Description

Sun Inclinometer. Curriculum Levels 3-4 Maths. Activity Description Sun Inclinometer Curriculum Levels 3-4 Maths Activity Description Students will transform a protractor into an accurate and reliable instrument that measures the angle of the sun and by taking multiple

More information

Before you Sit. Please Pick-up: Blue Information Sheet for Evening Observing. 1 Red and 1 Blue ticket for Observing/ Planetarium

Before you Sit. Please Pick-up: Blue Information Sheet for Evening Observing. 1 Red and 1 Blue ticket for Observing/ Planetarium Before you Sit Please Pick-up: Blue Information Sheet for Evening Observing. 1 Red and 1 Blue ticket for Observing/ Planetarium Evening Observing Observing at the Brooks Observatory: Three different weeks

More information

ACTIVITY CLASSROOM. Observe the Moon's Phases. General Information

ACTIVITY CLASSROOM. Observe the Moon's Phases. General Information CLASSROOM ACTIVITY Observe the Moon's Phases General Information Grade level: All cycles Students per group: Individual or group activities When: After the Planetarium visit Duration: One 50-minute period,

More information

Earth & Space Science

Earth & Space Science Earth & Space Science Grade 6 Written by Tracy Bellaire The activities in this book have two intentions: to teach concepts related to earth and space science and to provide students the opportunity to

More information

b. So at 12:00 p.m., are the shadows pointing in the direction you predicted? If they are not, you must explain this observation.

b. So at 12:00 p.m., are the shadows pointing in the direction you predicted? If they are not, you must explain this observation. Astronomy 100 Name(s): Exercise 2: Timekeeping and astronomy The following exercise illustrates some basic ideas about time, and how our position in the solar system uniquely configures the measurement

More information

A) M D) The Moon s distance from Earth varies in a cyclic manner.

A) M D) The Moon s distance from Earth varies in a cyclic manner. Base your answers to questions 1 and 2 on the diagram below, which shows Earth in orbit around the Sun, and the Moon in orbit around Earth. M 1, M 2, M 3, and M 4 indicate positions of the Moon in its

More information

Define umbra and penumbra. Then label the umbra and the penumbra on the diagram below. Umbra: Penumbra: Light source

Define umbra and penumbra. Then label the umbra and the penumbra on the diagram below. Umbra: Penumbra: Light source Lesson 3 Eclipses and Tides LA.8.2.2.3, SC.8.E.5.9, SC.8.N.1.1 Skim or scan the heading, boldfaced words, and pictures in the lesson. Identify or predict three facts you will learn from the lesson. Discuss

More information

Summary Sheet #1 for Astronomy Main Lesson

Summary Sheet #1 for Astronomy Main Lesson Summary Sheet #1 for Astronomy Main Lesson From our perspective on earth The earth appears flat. We can see half the celestial sphere at any time. The earth s axis is always perpendicular to the equator.

More information

Unit 7: Partner Resource. Sun and Moon

Unit 7: Partner Resource. Sun and Moon Earth and Space Systems: Relative Positions of Sun, Earth and Moon, Patterns and Seasons Washington University in St. Louis Institute for School Partnership Unit 7: Partner Resource Sun and Moon Additional

More information

Today in Space News: Earth s oldest rock found on the Moon.

Today in Space News: Earth s oldest rock found on the Moon. Today in Space News: Earth s oldest rock found on the Moon https://www.lpi.usra.edu/features/012419/oldest-rock/ Study Points Predict the approximate time of day/night you should look for first quarter

More information

Inquiry Based Instruction Unit. Virginia Kromhout

Inquiry Based Instruction Unit. Virginia Kromhout Inquiry Based Instruction Unit Virginia Kromhout Unit Title: _Exploring the moon Grade level: _2 grade nd Subject Area: _Science Topic: The Universe Key Words: Moon, lunar surface Designed By: Virginia

More information

Lecture 2: Motions of the Earth and Moon. Astronomy 111 Wednesday August 30, 2017

Lecture 2: Motions of the Earth and Moon. Astronomy 111 Wednesday August 30, 2017 Lecture 2: Motions of the Earth and Moon Astronomy 111 Wednesday August 30, 2017 Reminders Online homework #1 due Monday at 3pm Labs start next week Motions of the Earth ASTR111 Lecture 2 Observation:

More information

Today. Solstices & Equinoxes Precession Phases of the Moon Eclipses. Ancient Astronomy. Lunar, Solar FIRST HOMEWORK DUE NEXT TIME

Today. Solstices & Equinoxes Precession Phases of the Moon Eclipses. Ancient Astronomy. Lunar, Solar FIRST HOMEWORK DUE NEXT TIME Today Solstices & Equinoxes Precession Phases of the Moon Eclipses Lunar, Solar Ancient Astronomy FIRST HOMEWORK DUE NEXT TIME Tropic: Latitude where the sun [just] reaches the zenith at noon on the summer

More information

Appearance of the Sky Orientation Motion of sky Seasons Precession (?)

Appearance of the Sky Orientation Motion of sky Seasons Precession (?) Today Appearance of the Sky Orientation Motion of sky Seasons Precession (?) The Celestial Sphere Stars at different distances all appear to lie on the celestial sphere. The ecliptic is the Sun s apparent

More information

The Earth, Moon, and Sky. Lecture 5 1/31/2017

The Earth, Moon, and Sky. Lecture 5 1/31/2017 The Earth, Moon, and Sky Lecture 5 1/31/2017 From Last Time: Stable Orbits The type of orbit depends on the initial speed of the object Stable orbits are either circular or elliptical. Too slow and gravity

More information

Orbital Mechanics. CTLA Earth & Environmental Science

Orbital Mechanics. CTLA Earth & Environmental Science Orbital Mechanics CTLA Earth & Environmental Science The Earth Spherical body that is flattened near the poles due to centrifugal force (rotation of the Earth) 40,074 KM across at the Equator 40,0007 KM

More information

Happy Tuesday! Pull out a half sheet of paper or share a whole with a friend!

Happy Tuesday! Pull out a half sheet of paper or share a whole with a friend! Happy Tuesday! Pull out a half sheet of paper or share a whole with a friend! This is for the lack of NASA Weekly Schedule Today Thursday HW # 0,1 due Quiz # 1 Seasons Moon Phases Eclipses Constellations

More information

Viewed from Earth's north pole, the rotation of Earth and its moon are counter-clockwise.!

Viewed from Earth's north pole, the rotation of Earth and its moon are counter-clockwise.! The Earth rotates around once in 24 hours The time it takes for the Earth to rotate completely around once is what we call a day. It's Earth's rotation that gives us night and day. Viewed from Earth's

More information

STANDARD. S6E1 d. Explain the motion of objects in the day/night sky in terms of relative position.

STANDARD. S6E1 d. Explain the motion of objects in the day/night sky in terms of relative position. STANDARD S6E1 d. Explain the motion of objects in the day/night sky in terms of relative position. S6E2 b. Explain the alignment of the earth, moon, and sun during solar and lunar eclipses. c. Relate the

More information

Today FIRST HOMEWORK DUE NEXT TIME. Phases of the Moon. Eclipses. Lunar, Solar. Ancient Astronomy

Today FIRST HOMEWORK DUE NEXT TIME. Phases of the Moon. Eclipses. Lunar, Solar. Ancient Astronomy Today FIRST HOMEWORK DUE NEXT TIME Phases of the Moon Eclipses Lunar, Solar Ancient Astronomy Tropic: Latitude where the sun [just] reaches the zenith at noon on the summer solstice Arctic/Antarctic Circle:

More information

Today. Tropics & Arctics Precession Phases of the Moon Eclipses. Ancient Astronomy. Lunar, Solar FIRST HOMEWORK DUE NEXT TIME

Today. Tropics & Arctics Precession Phases of the Moon Eclipses. Ancient Astronomy. Lunar, Solar FIRST HOMEWORK DUE NEXT TIME Today Tropics & Arctics Precession Phases of the Moon Eclipses Lunar, Solar Ancient Astronomy FIRST HOMEWORK DUE NEXT TIME Tropic: Latitude where the sun [just] reaches the zenith at noon on the summer

More information

Earth s Motion. Lesson Outline LESSON 1. A. Earth and the Sun 1. The diameter is more than 100 times greater than

Earth s Motion. Lesson Outline LESSON 1. A. Earth and the Sun 1. The diameter is more than 100 times greater than Lesson Outline Earth s Motion LESSON 1 A. Earth and the Sun 1. The diameter is more than 100 times greater than Earth s diameter. a. In the Sun, atoms combine during, producing huge amounts of energy.

More information

CHAPTER 2 Strand 1: Structure and Motion within the Solar System

CHAPTER 2 Strand 1: Structure and Motion within the Solar System CHAPTER 2 Strand 1: Structure and Motion within the Solar System Chapter Outline 2.1 EARTH, MOON, AND SUN SYSTEM (6.1.1) 2.2 GRAVITY AND INERTIA (6.1.2) 2.3 SCALE OF SOLAR SYSTEM (6.1.3) 2.4 REFERENCES

More information

Appearance of the Sky Orientation Motion of sky Seasons Precession (?)

Appearance of the Sky Orientation Motion of sky Seasons Precession (?) Today Appearance of the Sky Orientation Motion of sky Seasons Precession (?) The Celestial Sphere Stars at different distances all appear to lie on the celestial sphere. The ecliptic is the Sun s apparent

More information

ASTR 1P01 Test 1, September 2017 Page 1 BROCK UNIVERSITY

ASTR 1P01 Test 1, September 2017 Page 1 BROCK UNIVERSITY ASTR 1P01 Test 1, September 2017 Page 1 BROCK UNIVERSITY Test 1: Fall 2017 Number of pages: 10 Course: ASTR 1P01, Section 2 Number of students: 1300 Examination date: 30 September 2017 Time limit: 50 min

More information

ASTRONOMY Merit Badge Requirements

ASTRONOMY Merit Badge Requirements ASTRONOMY Merit Badge Requirements 1) Do the following: A) Sketch the face of the moon, indicating on it the locations of at least five seas and five craters. B) Within a single week, sketch the position

More information

8 th Grade Earth, Moon and Sun Systems Review

8 th Grade Earth, Moon and Sun Systems Review 8 th Grade Earth, Moon and Sun Systems Review #1 Click on the link to learn What causes Seasons? A #2 H G B D C What is season A in this diagram? E F A: Summer B: Fall C: Winter D: Spring D. Spring A #3

More information

The Cause of the Seasons

The Cause of the Seasons The Cause of the Seasons Summer Winter Seasons are caused by the Earth s axis tilt, not the distance from the Earth to the Sun! Axis tilt changes directness of sunlight during the year. Why Does Flux Sunlight

More information

The Sun-Earth-Moon System. Learning Guide. Visit for Online Learning Resources. Copyright NewPath Learning

The Sun-Earth-Moon System. Learning Guide. Visit  for Online Learning Resources. Copyright NewPath Learning The Sun-Earth-Moon System Learning Guide Visit www.newpathlearning.com for Online Learning Resources. Copyright NewPath Learning Table of Contents Lesson 1 - How the Earth Moves... 2 Lesson 2 - Seasons

More information

SC.8.E.5.9. Summer and Winter Gizmo

SC.8.E.5.9. Summer and Winter Gizmo 8 th Grade Science Quarter 1 Recovery Packet SC.8.E.5.9 DAYS/YEARS/SEASONS Go to www.explorelearning.com and search for the Summer and Winter Gizmo. Answer the following questions: Gizmo Warm-up Summer

More information

Tilted Earth Lab Why Do We Have Seasons?

Tilted Earth Lab Why Do We Have Seasons? Name Class Tilted Earth Lab Why Do We Have Seasons? Purpose: In this investigation, you are going to figure out how the axis (or tilt) of the Earth, combined with the revolution (orbit) of Earth around

More information

Physics Lab #5:! Starry Night Student Exercises II!

Physics Lab #5:! Starry Night Student Exercises II! Physics 10293 Lab #5: Starry Night Student Exercises II Introduction We will continue today exploring some of the useful applications of the Starry Night software to learn about motions in the sky. Step

More information

Name EMS Study Guide. Two important objects that travel around our star are: Planets are not - they don t give off light like stars do

Name EMS Study Guide. Two important objects that travel around our star are: Planets are not - they don t give off light like stars do Name EMS Study Guide Fill in the blank. 1. A is a star and the objects that travel around it. 2. A star is a huge of hydrogen and helium gas that give off its own. 3. Think about our own solar system.

More information

Moon. Grade Level: 1-3. pages 1 2 pages 3 4 pages 5 page 6 page 7 page 8 9

Moon. Grade Level: 1-3. pages 1 2 pages 3 4 pages 5 page 6 page 7 page 8 9 Moon Grade Level: 1-3 Teacher Guidelines Instructional Pages Activity Page Practice Page Homework Page Answer Key pages 1 2 pages 3 4 pages 5 page 6 page 7 page 8 9 Classroom Procedure: Approximate Grade

More information

Georgia Performance Standards Framework for Earth and Moon dancing with our Star 6 TH GRADE

Georgia Performance Standards Framework for Earth and Moon dancing with our Star 6 TH GRADE One Stop Shop For Educators The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved

More information

Moon Phases Weatherguide Calendar Lesson Created By: Melanie Anderson, Leah Nelson, Lisa Kalina, ISD #719, 5/2007

Moon Phases Weatherguide Calendar Lesson Created By: Melanie Anderson, Leah Nelson, Lisa Kalina, ISD #719, 5/2007 Grade: 2 Subjects: Science Moon Phases Weatherguide Calendar Lesson Created By: Melanie Anderson, Leah Nelson, Lisa Kalina, ISD #719, 5/2007 Standards Subject Standard Benchmark Science Raise questions

More information

Astin s Sky Adventure

Astin s Sky Adventure Astin s Sky Adventure Image credit: Stellarium Pre-Visit Activities Howard B. Owens Science Center Contents Introduction... 2 Curriculum Alignments... 2 Next Generation Science Standards (NGSS)... 2 Maryland

More information

Motion of the Sun. motion relative to the horizon. rises in the east, sets in the west on a daily basis. Basis for the unit of time, the DAY

Motion of the Sun. motion relative to the horizon. rises in the east, sets in the west on a daily basis. Basis for the unit of time, the DAY Motion of the Sun motion relative to the horizon rises in the east, sets in the west on a daily basis Basis for the unit of time, the DAY noon: highest point of Sun in sky relative to the horizon 1 altitude:

More information

Chapter 2 Lecture. The Cosmic Perspective Seventh Edition. Discovering the Universe for Yourself Pearson Education, Inc.

Chapter 2 Lecture. The Cosmic Perspective Seventh Edition. Discovering the Universe for Yourself Pearson Education, Inc. Chapter 2 Lecture The Cosmic Perspective Seventh Edition Discovering the Universe for Yourself Discovering the Universe for Yourself 2.1 Patterns in the Night Sky Our goals for learning: What does the

More information

1. The pictures below show the Sun at midday. Write winter, spring or summer under the correct picture.

1. The pictures below show the Sun at midday. Write winter, spring or summer under the correct picture. Test 2 1. The pictures below show the Sun at midday. Write winter, spring or summer under the correct picture. 2. Look carefully at the phases of the Moon. Number them (1 to 4) in the order that you would

More information

The ecliptic and the sidereal motion of the sun Moon and the planets on it.

The ecliptic and the sidereal motion of the sun Moon and the planets on it. The ecliptic and the sidereal motion of the sun Moon and the planets on it. The following picture is a picture of the sky as it looks about noon on May 18 2012. The light of the Sun has been erased artificially

More information

The celestial sphere, the coordinates system, seasons, phases of the moon and eclipses. Chapters 2 and S1

The celestial sphere, the coordinates system, seasons, phases of the moon and eclipses. Chapters 2 and S1 The celestial sphere, the coordinates system, seasons, phases of the moon and eclipses Chapters 2 and S1 The celestial sphere and the coordinates system Chapter S1 How to find our way in the sky? Let s

More information

3. a. In the figure below, indicate the direction of the Sun with an arrow.

3. a. In the figure below, indicate the direction of the Sun with an arrow. Astronomy 100, Fall 2005 Name(s): Exercise 2: Seasons in the sun The following exercise illustrates some basic ideas about time, and how our position in the solar system uniquely configures the measurement

More information

Tools of Astronomy Tools of Astronomy

Tools of Astronomy Tools of Astronomy Tools of Astronomy Tools of Astronomy The light that comes to Earth from distant objects is the best tool that astronomers can use to learn about the universe. In most cases, there is no other way to study

More information

James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Chapter 15 Place and Time

James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Chapter 15 Place and Time James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Chapter 15 Place and Time Place & Time Read sections 15.5 and 15.6, but ignore the math. Concentrate on those sections that help explain the slides.

More information

Astronomy is the oldest science! Eclipses. In ancient times the sky was not well understood! Bad Omens? Comets

Astronomy is the oldest science! Eclipses. In ancient times the sky was not well understood! Bad Omens? Comets Astronomy is the oldest science! In ancient times the sky was not well understood! Eclipses Bad Omens? Comets 1 The Ancient Greeks The Scientific Method Our ideas must always be consistent with our observations!

More information

b. Assuming that the sundial is set up correctly, explain this observation.

b. Assuming that the sundial is set up correctly, explain this observation. Astronomy 100 Name(s): Exercise 3: Seasons in the sun The following exercise illustrates some basic ideas about time, and how our position in the solar system uniquely configures the measurement of time.

More information

Chapter 22.2 The Earth- Moon-Sun System. Chapter 22.3: Earth s Moon

Chapter 22.2 The Earth- Moon-Sun System. Chapter 22.3: Earth s Moon Chapter 22.2 The Earth- Moon-Sun System Chapter 22.3: Earth s Moon Chapter 22.2 The Earth- Moon-Sun System Motions of the Earth The two main motions of the Earth are rotation and revolution Rotation

More information

November 20, NOTES ES Rotation, Rev, Tilt.notebook. vertically. night. night. counterclockwise. counterclockwise. East. Foucault.

November 20, NOTES ES Rotation, Rev, Tilt.notebook. vertically. night. night. counterclockwise. counterclockwise. East. Foucault. NOTES ES, Rev,.notebook, and Rotates on an imaginary axis that runs from the to the South North Pole Pole vertically North The of the axis points to a point in space near day Pole Polaris night Responsible

More information

WORKING DRAFT COHORT I & II

WORKING DRAFT COHORT I & II Timeline > Quarter Four (12 lessons) Science: How do the interactions between the earth, moon and sun produce night and day? How can we use the scientific method to investigate: moonlight and sunlight,

More information

Unit: Climate and Weather General Task Effects of Earth s Tilt on Climate

Unit: Climate and Weather General Task Effects of Earth s Tilt on Climate The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are

More information

Physical Science. Chapter 22 The Earth in Space. Earth s Rotation

Physical Science. Chapter 22 The Earth in Space. Earth s Rotation Physical Science Chapter 22 The Earth in Space Earth s Rotation Axis imaginary line passing through the North and South Pole Earth s axis is tilted at 23 ½ degrees Rotation: the Earth spinning on its axis

More information

Physical Science. Chapter 22 The Earth in Space

Physical Science. Chapter 22 The Earth in Space Physical Science Chapter 22 The Earth in Space Earth s Rotation Axis imaginary line passing through the North and South Pole Earth s axis is tilted at 23 ½ degrees Rotation: the Earth spinning on its axis

More information

Term Info Picture. A celestial body that orbits a bigger celestial body (a moon) Earth s only natural satellite. It causes all of the tides.

Term Info Picture. A celestial body that orbits a bigger celestial body (a moon) Earth s only natural satellite. It causes all of the tides. Astronomy (Earth, Moon and Sun) S6E2. Obtain, evaluate, and communicate information about the effets of the relative positions of the sun, Earth and moon. A. Develop and use a model to demonstrate the

More information

Motions of the Earth

Motions of the Earth Motions of the Earth Our goals for learning: What are the main motions of the Earth in space? How do we see these motions on the ground? How does it affect our lives? How does the orientation of Earth's

More information

GRADE 8: Earth and space 1. UNIT 8E.1 8 hours. The Solar System. Resources. About this unit. Previous learning. Expectations

GRADE 8: Earth and space 1. UNIT 8E.1 8 hours. The Solar System. Resources. About this unit. Previous learning. Expectations GRADE 8: Earth and space 1 The Solar System UNIT 8E.1 8 hours About this unit This is the only unit on Earth and Space in Grade 8. This unit builds on work done in Grade 6 and leads into work on the wider

More information

Eclipses September 12th, 2013

Eclipses September 12th, 2013 Eclipses September 12th, 2013 Who was the favorite Star Wars character of the class? A) Obi-Wan B) Jar Jar C) Luke Skywalker D) Yoda News! Dark matter http://mcdonaldobservatory.org/news/releases/2013/09/10

More information

Earth, Sun, and Moon Systems

Earth, Sun, and Moon Systems Science Grade 7, Quarter 4, Unit 4.1 Earth, Sun, and Moon Systems Overview Number of instructional days: 25 (1 day = 50 minutes) Content to be learned Use and create a model of the earth, sun and moon

More information

Name: Date: 5. The bright stars Vega, Deneb, and Altair form A) the summer triangle. B) the winter triangle. C) the Big Dipper. D) Orion, the Hunter.

Name: Date: 5. The bright stars Vega, Deneb, and Altair form A) the summer triangle. B) the winter triangle. C) the Big Dipper. D) Orion, the Hunter. Name: Date: 1. If there are about 6000 stars in the entire sky that can be seen by the unaided human eye, about how many stars would be seen at a particular instant on a given dark night from a single

More information

Dive into Saturn.

Dive into Saturn. Dive into Saturn http://www.pbs.org/wgbh/nova/space/death-dive-to-saturn.html Read Ch. 3 By next class time Do practice online quiz 01 Axis tilt changes directness of sunlight during the year. Why Does

More information

Explain how Earth's movement and the moon's orbit cause the phases of the moon. Explain the difference between a solar eclipse and a lunar eclipse.

Explain how Earth's movement and the moon's orbit cause the phases of the moon. Explain the difference between a solar eclipse and a lunar eclipse. Explain how Earth's movement and the moon's orbit cause the phases of the moon. Explain the difference between a solar eclipse and a lunar eclipse. The Earth- Moon System Have you ever wondered why the

More information

ASTRO Fall 2012 LAB #5: Observing the Moon

ASTRO Fall 2012 LAB #5: Observing the Moon ASTRO 1050 - Fall 2012 LAB #5: Observing the Moon ABSTRACT In this lab we will create a model of the earth-moon-sun system. This will allow us to explain the moon s rotation, why the moon has phases, and

More information

The following terms are some of the vocabulary that students should be familiar with in order to fully master this lesson.

The following terms are some of the vocabulary that students should be familiar with in order to fully master this lesson. Lesson 211: EARTH'S SEASONS Students learn the complex geometry and planetary motions that cause Earth to have four distinct seasons. Fundamental Questions Attempting to give thorough and reasonable answers

More information