Image amplitudes in reverse time migration/inversion

Size: px
Start display at page:

Download "Image amplitudes in reverse time migration/inversion"

Transcription

1 Image amplitudes in reverse time migration/inversion Chris Stolk 1, Tim Op t Root 2, Maarten de Hoop 3 1 University of Amsterdam 2 University of Twente 3 Purdue University TRIP Seminar, October 6, 2010

2 RTM based linearized inversion Seismic imaging is mathematically treated as a linearized inverse problem Kirchhoff migration can correspond to a method for inverting discontinuities (Beylkin, 1985). There are conditions on the background medium. Single source: no multipathing. Multisource: Traveltime Injectivity Condition (Rakesh, 1988; Nolan and Symes 1997; Ten Kroode Et Al., 1998) RTM has the advantage that there are no approximations from ray-theory and one-way methods. We will do linearized inverse scattering by a modified reverse time migration (RTM algorithm

3 The linearized inverse problem Source field u src ( ) 1 v 2 2 t 2 x u src (x, t) = δ(x x src )δ(t) 1 Scattered field: Linearize in the velocity (1 + r(x)). v(x) 2 v the smooth velocity model, r contains singularities ( ) 1 v 2 2 t 2 x u scat (x, t) = r v 2 2 t u src. v(x) 2 1 Problem: Determine r(x) from the following data: u scat (x, t) for x = (x 1, x 2, x 3 ) in a subset of x 3 = 0, t [0, T max ]

4 A new view on Reverse Time Migration Numerically solve wave equation to obtain u src (x, t) = incoming (source) wave field u rtc (x, t) = reverse time continued receiver field New imaging condition I (x) = 2i ω2 û src (x, ω)û rtc (x, ω) v 2 û src (x, ω) û rtc (x, ω) 2πω 3 û src (x, ω) 2 dω. (cf. Kiyashchenko et al., 2007) Characterization of I I (x) = R(x, D x )r, Here R is a pseudodifferential operator that describes the aperture effect, i.e. R(x, ξ) = 1 for visible reflectors (cf. Beylkin, 1985).

5 Table of contents Model problem: constant coefficients Extension to variable background Numerical examples Conclusion and discussion

6 Model problem Notation x = (x 1, x 2, x 3 ). Source field is plane wave with velocity (0, 0, v) Scattered field slightly simplified u src (x, t) = A δ(t x 3 v ) ( 1 v 2 2 t 2 x)u scat (t, x) = A δ(t x 3 v )r(x). Perfect backpropagation: u rtc solution of a final value problem ( 1 v 2 2 t 2 x)u rtc (x, t) = 0 u rtc (x, T 1 ) = u scat (x, T 1 ), t u rtc (x, T 1 ) = t u scat (x, T 1 ), x R 3.

7 Solving the wave equation Spatial Fourier transform (v 2 2 t + ξ 2 ) û(ξ, t) = f (ξ, t). Duhamel s principle: Let ŵ(ξ, t, s) Result û(ξ, t) = (v 2 2 t + ξ 2 )ŵ(ξ, t, s, ) = 0, ŵ(ξ, s, s) = 0 t 0 t ŵ(ξ, s, s) = v 2 f (s, ξ). ( e iv ξ (t s) e iv ξ (t s)) v 2 f (ξ, s) 2iv ξ ds Needed: Fourier transform of r.h.s. A δ(t x 3 v )r(x)

8 Fourier transform f (x, t) = A δ(t x 3 v )r(x) f (ξ, t) = A δ(t x 3 v )r(x)e ix ξ dx = va F (x1,x 2 ) (ξ 1,ξ 2 )r(ξ 1, ξ 2, v 0 t)e iξ 3vt. Computations involve two similar terms, take only one of those. û scat (ξ, t) = t 0 v 3 2iv ξ e iv ξ (t s) iξ 3vs A F (x1,x 2 ) (ξ 1,ξ 2 )r(ξ 1, ξ 2, vs) ds + pos. freq. term = Av 2 2iv ξ e iv ξ t r(ξ 1, ξ 2, ξ 3 ξ ) + pos. freq. term, if t is after the incoming has passed supp(r) Back to space domain u scat (x, t) = 2 Re 1 (2π) 3 Av 2 2iv ξ eix ξ iv ξ t r(ξ (0, 0, ξ )) dξ

9 Interpretation Scattered field u scat (x, t) = 2 Re 1 (2π) 3 Av 2 2iv ξ eix ξ iv ξ t r(ξ (0, 0, ξ )) dξ Wave vectors ξ outgoing wave number (0, 0, ξ ) incoming wave number ξ (0, 0, ξ ) reflectivity wave number in!!"(0,! ) refl (0,! )

10 Modified excitation time imaging condition Same formula for the backpropagated field! Valid for all t u rtc (x, t) = 2 Re 1 (2π) 3 Basic image: I 0 (x) = u rtc (x, x 3 /v). Linearized inverse scattering: Try Av 2 2iv ξ eix ξ iv ξ t r(ξ (0, 0, ξ )) dξ I (x) = 2 v 2 A ( t + v x3 ) u rtc (x, x 3 /v) (meaning first take derivatives then insert (x, t) = (x, x 3 /v) ) Straightforward calculation yields ( 1 I (x) = 2 Re (2π) 3 1 ξ ) 3 r(ξ (0, 0, ξ )) dξ ξ R 3

11 A change of variables Copy from previous slide: 1 I (x) = 2 Re (2π) 3 R 3 ( 1 ξ ) 3 r(ξ (0, 0, ξ )) dξ ξ Change of variables Jacobian 1 ξ 3 ξ ξ = ξ (0, 0, ξ ) in!!"(0,! ) refl Domain ξ R 2 R <0 (0,! ) Result: I (x) = 2 Re 1 (2π) 3 r( ξ)e ix ξ d ξ = 1 R 2 R <0 (2π) 3 r( ξ)e ix ξ d ξ. R 2 R 0 Reconstruction except for ξ 3 = 0, corresponding to reflection over 180 degrees.

12 Modified ratio imaging condition We had I (x) = 2 v 2 A ( t + (0, 0, v) x ) u rtc (x, x 3 /v) Rewrite into modified ratio imaging condition Use that (0, 0, v) = v 2 T (x), and that Insert factors v 2 ω 2 This results in I (x) = 2i 2πω 3 û src (x, ω) = Ae iωt (x), x û src (x, ω) iω x T (x)ae iωt (x). left out in model problem ω2 û src (x, ω)û rtc (x, ω) v 2 û src (x, ω) û rtc (x, ω) û src (x, ω) 2 dω.

13 Extension to variable background Local vs. global analysis A local analysis generalizes the explicit formulas to variable coefficients, and leads to explicit inversion formulas A global analysis takes into account the of global effect of curved rays. No source-multipathing is allowed to exclude kinematic artifacts ( cross talk ). Cf. Rakesh (1988), Nolan and Symes (1997). Tools: microlocal analysis Fourier integral operators (FIO s), pseudodifferential operators (ΨDO s) Description of the mapping properties of operators for localized plane wave components. Work in (x, ξ) or (x, t, ξ, ω) domain.

14 Variable coefficients: The wave equation Local analysis Solve the wave equation using WKB with plane wave initial values. Result is an FIO u(y, t) = 1 (2π) 3 e iα(y,t s,ξ) a(y, t s, ξ) f (ξ, s) ds dξ+pos. freq. term, α satisfies the eikonal equation; a a transport equation. Formula is valid for t, s in a bounded time interval Global analysis Propagation of localized plane wave components along rays, properly described as curves in (x, t, ξ, ω) space Time reversal property is globally valid

15 Continued scattered field and linearized forward map Define the continued scattered field u h, as the perfect backpropagated field from a fixed time, full position space Local result For a localized contribution to r u h,a (y, t) = 1 (2π) 3 e iϕ T (y,t,x,ξ) A(y, t, x, ξ) r(x) dξ dx. With phase function ϕ T (y, t, x, ξ) = α(y, t T (x), ξ) ξ x Global result The map F : r u h is a FIO. Mapping of wave components (x, ζ) (y, t, η, ω): see picture ξ n s (x, T s(x)) ζ ξ n s ξ (y, t 1) η

16 RT continuation from the boundary Preprocess data: ΨDO cutoff Ψ M (y 1, y 2, t, η 1, η 2, ω) with three effects Smooth taper near acquisition boundary Remove direct waves Remove tangently incoming waves Normalize wave field to get true amplitude time reversal Characterize mathematically the aperture effect Result There are ΨDO s P, P +, such that u rtc (x, t) = P (t, x, D x )u h, + P + (t, x, D x )u h,+ in which u h,± is the part of u h with ±ω > 0. To highest order P ± (s, x, ξ) = Ψ M (y 1, y 2, t, η 1, η 2, ω) if there is a ray with ±ω > 0, connecting (x, s, ξ, ω) with (y 1, y 2, t, η 1, η 2, ω) reverse time cont. acquisition

17 Inverse scattering Modified excitation time imaging condition 2 I (x) = A src (x) t n+1 2 [ t + v 2 T x ] urtc (x, t) From the global analysis, there are no nonlocal contributions and I (x) = ΨDO r(x) From the local analysis To highest order I (x) = (R (x, D x ) + R + (x, D x )) r(x) R ± (x, ζ) = P ± (x, ξ) if ζ and ξ are related through ζ = ξ ± ω T (x). " x #!! inc y Modified ratio imaging condition derived similarly as above

18 Example: A vertical gradient medium stolkcc, Sun Apr 5 13:57 stolkcc, Sun Apr 5 14:02 Example 1: Velocity perturbation, reconstructed velocity perturbation, and three traces for background medium v = z (z in meters and v in km/s). Error 8-10 %. stolkcc, Sun Apr 5 14:27 stolkcc, Sun Apr 5 14:27 stolkcc, Sun Apr 5 14:27

19 Example: Horizontal reflector with receiver side caustics Velocity, rays and fronts z (m) x (m) stolkcc, Tue Apr 7 16:04 stolkcc, Sun Apr 5 18:11 stolkcc, Sun Apr 5 18:11 Example 2: (a) A velocity model with some rays; (b) Simulated data, with direct arrival removed; (c) Velocity perturbation; (d) Reconstructed velocity perturbation. Error 0-10%

20 Conclusion and discussion We modified reverse time migration to become a linearized inverse scattering method We characterized the resolution operator as a partial inverse, a ΨDO with symbol describing aperture effects The modified imaging condition suppresses low-frequency artifacts Good numerical results in (bandlimited) examples Straightforward generalization of the imaging condition to downward propagation methods

Seismic inverse scattering by reverse time migration

Seismic inverse scattering by reverse time migration Seismic inverse scattering by reverse time migration Chris Stolk 1, Tim Op t Root 2, Maarten de Hoop 3 1 University of Amsterdam 2 University of Twente 3 Purdue University MSRI Inverse Problems Seminar,

More information

An Approximate Inverse to the Extended Born Modeling Operator Jie Hou, William W. Symes, The Rice Inversion Project, Rice University

An Approximate Inverse to the Extended Born Modeling Operator Jie Hou, William W. Symes, The Rice Inversion Project, Rice University Jie Hou, William W. Symes, The Rice Inversion Project, Rice University SUMMARY We modify RTM to create an approximate inverse to the extended Born modeling operator in 2D. The derivation uses asymptotic

More information

Introduction to Seismic Imaging

Introduction to Seismic Imaging Introduction to Seismic Imaging Alison Malcolm Department of Earth, Atmospheric and Planetary Sciences MIT August 20, 2010 Outline Introduction Why we image the Earth How data are collected Imaging vs

More information

Can There Be a General Theory of Fourier Integral Operators?

Can There Be a General Theory of Fourier Integral Operators? Can There Be a General Theory of Fourier Integral Operators? Allan Greenleaf University of Rochester Conference on Inverse Problems in Honor of Gunther Uhlmann UC, Irvine June 21, 2012 How I started working

More information

5. A step beyond linearization: velocity analysis

5. A step beyond linearization: velocity analysis 5. A step beyond linearization: velocity analysis 1 Partially linearized seismic inverse problem ( velocity analysis ): given observed seismic data S obs, find smooth velocity v E(X), X R 3 oscillatory

More information

Reverse Time Shot-Geophone Migration and

Reverse Time Shot-Geophone Migration and Reverse Time Shot-Geophone Migration and velocity analysis, linearizing, inverse problems, extended models, etc. etc. William W. Symes PIMS Geophysical Inversion Workshop Calgary, Alberta July 2003 www.trip.caam.rice.edu

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction In a seismic experiment one tries to obtain information about the subsurface from measurements at the surface, using elastic waves. To this end elastic waves in the subsurface are

More information

Mathematics of Seismic Imaging Part II

Mathematics of Seismic Imaging Part II Mathematics of Seismic Imaging Part II William W. Symes PIMS, June 2005 Review: Normal Operators and imaging If d = F[v]r, then F[v] d = F[v] F[v]r Recall: In the layered case, F[v] F[v] is an operator

More information

Wave equation techniques for attenuating multiple reflections

Wave equation techniques for attenuating multiple reflections Wave equation techniques for attenuating multiple reflections Fons ten Kroode a.tenkroode@shell.com Shell Research, Rijswijk, The Netherlands Wave equation techniques for attenuating multiple reflections

More information

Seismic Imaging. William W. Symes. C. I. M. E. Martina Franca September

Seismic Imaging. William W. Symes. C. I. M. E. Martina Franca September Seismic Imaging William W. Symes C. I. M. E. Martina Franca September 2002 www.trip.caam.rice.edu 1 0 offset (km) -4-3 -2-1 1 2 time (s) 3 4 5 How do you turn lots of this... (field seismogram from the

More information

Linearized inverse scattering based on seismic reverse time migration

Linearized inverse scattering based on seismic reverse time migration Available online at www.sciencedirect.com J. Math. Pures Appl. 98 01) 11 38 www.elsevier.com/locate/matpur Linearized inverse scattering based on seismic reverse time migration Tim J.P.M. Op t Root a,

More information

When is the single-scattering approximation valid? Allan Greenleaf

When is the single-scattering approximation valid? Allan Greenleaf When is the single-scattering approximation valid? Allan Greenleaf University of Rochester, USA Mathematical and Computational Aspects of Radar Imaging ICERM October 17, 2017 Partially supported by DMS-1362271,

More information

1.4 Kirchhoff Inversion

1.4 Kirchhoff Inversion 1.4 Kirchhoff Inversion 1 Recall: in layered case, F [v]r(h, t) A(z(h, t), h) 1 dr (z(h, t)) 2dz F [v] d(z) z dh A(z, h) t (z, h)d(t(z, h), h) z [ F [v] F [v]r(z) = dh dt z dz (z, h)a2 (z, h) z r(z) thus

More information

Extended isochron rays in prestack depth (map) migration

Extended isochron rays in prestack depth (map) migration Extended isochron rays in prestack depth (map) migration A.A. Duchkov and M.V. de Hoop Purdue University, 150 N.University st., West Lafayette, IN, 47907 e-mail: aduchkov@purdue.edu (December 15, 2008)

More information

Overview Avoiding Cycle Skipping: Model Extension MSWI: Space-time Extension Numerical Examples

Overview Avoiding Cycle Skipping: Model Extension MSWI: Space-time Extension Numerical Examples Overview Avoiding Cycle Skipping: Model Extension MSWI: Space-time Extension Numerical Examples Guanghui Huang Education University of Chinese Academy of Sciences, Beijing, China Ph.D. in Computational

More information

Introduction to Seismic Imaging

Introduction to Seismic Imaging Introduction to Seismic Imaging Alison Malcolm Department of Earth, Atmospheric and Planetary Sciences MIT August 20, 2010 Outline Introduction Why we image the Earth How data are collected Imaging vs

More information

2. High frequency asymptotics and imaging operators

2. High frequency asymptotics and imaging operators 2. High frequency asymptotics and imaging operators 1 Importance of high frequency asymptotics: when linearization is accurate, properties of F [v] dominated by those of F δ [v] (= F [v] with w = δ). Implicit

More information

3. Wave equation migration. (i) Reverse time. (ii) Reverse depth

3. Wave equation migration. (i) Reverse time. (ii) Reverse depth 3. Wave equation migration (i) Reverse time (ii) Reverse depth 1 Reverse time computation of adjoint F [v] : Start with the zero-offset case - easier, but only if you replace it with the exploding reflector

More information

44 CHAPTER 3. CAVITY SCATTERING

44 CHAPTER 3. CAVITY SCATTERING 44 CHAPTER 3. CAVITY SCATTERING For the TE polarization case, the incident wave has the electric field parallel to the x 3 -axis, which is also the infinite axis of the aperture. Since both the incident

More information

The downward continuation approach to modeling and inverse scattering of seismic data in the Kirchhoff approximation

The downward continuation approach to modeling and inverse scattering of seismic data in the Kirchhoff approximation 6 & CWP-42P The downward continuation approach to modeling and inverse scattering of seismic data in the Kirchhoff approximation Maarten V de Hoop Center for Wave Phenomena, Colorado School of Mines, olden

More information

COMMON MIDPOINT VERSUS COMMON OFFSET ACQUISITION GEOMETRY IN SEISMIC IMAGING. Raluca Felea. Venkateswaran P. Krishnan. Clifford J.

COMMON MIDPOINT VERSUS COMMON OFFSET ACQUISITION GEOMETRY IN SEISMIC IMAGING. Raluca Felea. Venkateswaran P. Krishnan. Clifford J. Manuscript submitted to AIMS Journals Volume X, Number 0X, XX 200X doi:0.3934/xx.xx.xx.xx pp. X XX COMMON MIDPOINT VERSUS COMMON OFFSET ACQUISITION GEOMETRY IN SEISMIC IMAGING RALUCA FELEA, VENKATESWARAN

More information

Comparison of three Kirchhoff integral formulas for true amplitude inversion

Comparison of three Kirchhoff integral formulas for true amplitude inversion Three Kirchhoff true amplitude inversion Comparison of three Kirchhoff integral formulas for true amplitude inversion Hassan Khaniani, Gary F. Margrave and John C. Bancroft ABSTRACT Estimation of reflectivity

More information

Model Extensions and Inverse Scattering: Inversion for Seismic Velocities

Model Extensions and Inverse Scattering: Inversion for Seismic Velocities Model Extensions and Inverse Scattering: Inversion for Seismic Velocities William W. Symes Rice University October 2007 William W. Symes ( Rice University) Model Extensions and Inverse Scattering: Inversion

More information

MICROLOCAL ANALYSIS METHODS

MICROLOCAL ANALYSIS METHODS MICROLOCAL ANALYSIS METHODS PLAMEN STEFANOV One of the fundamental ideas of classical analysis is a thorough study of functions near a point, i.e., locally. Microlocal analysis, loosely speaking, is analysis

More information

Seismic Inverse Scattering

Seismic Inverse Scattering Seismic Inverse Scattering Bill Symes and Fons ten Kroode MGSS Stanford August 2002 www.trip.caam.rice.edu 1 0 offset (km) -4-3 -2-1 1 2 time (s) 3 4 5 How do you turn lots of this... (field seismogram

More information

Mathematics of Seismic Imaging

Mathematics of Seismic Imaging Mathematics of Seismic Imaging William W. Symes University of Utah July 2003 www.trip.caam.rice.edu 1 0 offset (km) -4-3 -2-1 1 2 time (s) 3 4 5 How do you turn lots of this... (field seismogram from the

More information

Full Waveform Inversion via Matched Source Extension

Full Waveform Inversion via Matched Source Extension Full Waveform Inversion via Matched Source Extension Guanghui Huang and William W. Symes TRIP, Department of Computational and Applied Mathematics May 1, 215, TRIP Annual Meeting G. Huang and W. W. Symes

More information

Microlocal Analysis : a short introduction

Microlocal Analysis : a short introduction Microlocal Analysis : a short introduction Plamen Stefanov Purdue University Mini Course, Fields Institute, 2012 Plamen Stefanov (Purdue University ) Microlocal Analysis : a short introduction 1 / 25 Introduction

More information

Mathematics of Seismic Imaging Part II - addendum on Wave Equation Migration

Mathematics of Seismic Imaging Part II - addendum on Wave Equation Migration Mathematics of Seismic Imaging Part II - addendum on Wave Equation Migration William W. Symes PIMS, July 2005 Wave Equation Migration Techniques for computing F[v] : (i) Reverse time (ii) Reverse depth

More information

Microlocal analysis of a seismic linearized. inverse problem. Abstract: The seismic inverse problem is to determine the wavespeed c(x)

Microlocal analysis of a seismic linearized. inverse problem. Abstract: The seismic inverse problem is to determine the wavespeed c(x) Christiaan C. Stolk Mathematics Department, Utrecht University, Budapestlaan 6, 3584 CD Utrecht, The Netherlands, email: stolkmath.uu.nl March 12, 1999 Microlocal analysis of a seismic linearized inverse

More information

Progress and Prospects for Wave Equation MVA

Progress and Prospects for Wave Equation MVA Progress and Prospects for Wave Equation MVA William W. Symes TRIP Annual Review, January 007 Agenda MVA, Nonlinear Inversion, and Extended Modeling MVA with two different extensions: the coherent noise

More information

Imaging with Multiply Scattered Waves: Removing Artifacts

Imaging with Multiply Scattered Waves: Removing Artifacts Imaging with Multiply Scattered Waves: Removing Artifacts Alison Malcolm Massachusetts Institute of Technology Collaborators: M. de Hoop, Purdue University B. Ursin, Norwegian University of Science and

More information

Amplitude preserving AMO from true amplitude DMO and inverse DMO

Amplitude preserving AMO from true amplitude DMO and inverse DMO Stanford Exploration Project, Report 84, May 9, 001, pages 1 167 Amplitude preserving AMO from true amplitude DMO and inverse DMO Nizar Chemingui and Biondo Biondi 1 ABSTRACT Starting from the definition

More information

Title: Exact wavefield extrapolation for elastic reverse-time migration

Title: Exact wavefield extrapolation for elastic reverse-time migration Title: Exact wavefield extrapolation for elastic reverse-time migration ummary: A fundamental step of any wave equation migration algorithm is represented by the numerical projection of the recorded data

More information

Decoupling of modes for the elastic wave equation in media of limited smoothness

Decoupling of modes for the elastic wave equation in media of limited smoothness Decoupling of modes for the elastic wave equation in media of limited smoothness Valeriy Brytik 1 Maarten V. de Hoop 1 Hart F. Smith Gunther Uhlmann September, 1 1 Center for Computational and Applied

More information

Boundary problems for fractional Laplacians

Boundary problems for fractional Laplacians Boundary problems for fractional Laplacians Gerd Grubb Copenhagen University Spectral Theory Workshop University of Kent April 14 17, 2014 Introduction The fractional Laplacian ( ) a, 0 < a < 1, has attracted

More information

ENHANCED IMAGING FROM MULTIPLY SCATTERED WAVES. Romina Gaburro and Clifford J Nolan. (Communicated by Margaret Cheney)

ENHANCED IMAGING FROM MULTIPLY SCATTERED WAVES. Romina Gaburro and Clifford J Nolan. (Communicated by Margaret Cheney) Volume 2, No. 2, 28, 1 XX Web site: http://www.aimsciences.org ENHANCED IMAGING FROM MULTIPLY SCATTERED WAVES Romina Gaburro and Clifford J Nolan Department of Mathematics and Statistics, University of

More information

arxiv: v1 [math.na] 1 Apr 2015

arxiv: v1 [math.na] 1 Apr 2015 Nonlinear seismic imaging via reduced order model backprojection Alexander V. Mamonov, University of Houston; Vladimir Druskin and Mikhail Zaslavsky, Schlumberger arxiv:1504.00094v1 [math.na] 1 Apr 2015

More information

Matrix formulation of adjoint Kirchhoff datuming

Matrix formulation of adjoint Kirchhoff datuming Stanford Exploration Project, Report 80, May 15, 2001, pages 1 377 Matrix formulation of adjoint Kirchhoff datuming Dimitri Bevc 1 ABSTRACT I present the matrix formulation of Kirchhoff wave equation datuming

More information

AppliedMathematics. Iterative Methods for Photoacoustic Tomography with Variable Sound Speed. Markus Haltmeier, Linh V. Nguyen

AppliedMathematics. Iterative Methods for Photoacoustic Tomography with Variable Sound Speed. Markus Haltmeier, Linh V. Nguyen Nr. 29 7. December 26 Leopold-Franzens-Universität Innsbruck Preprint-Series: Department of Mathematics - Applied Mathematics Iterative Methods for Photoacoustic Tomography with Variable Sound Speed Markus

More information

Chapter 7. Seismic imaging. 7.1 Assumptions and vocabulary

Chapter 7. Seismic imaging. 7.1 Assumptions and vocabulary Chapter 7 Seismic imaging Much of the imaging procedure was already described in the previous chapters. An image, or a gradient update, is formed from the imaging condition by means of the incident and

More information

Wave-equation reflection tomography: annihilators and sensitivity kernels

Wave-equation reflection tomography: annihilators and sensitivity kernels Geophys. J. Int. (2006 167, 1332 1352 doi: 10.1111/j.1365-246X.2006.03132.x Wave-equation reflection tomography: annihilators and sensitivity kernels Maarten V. de Hoop, 1 Robert D. van der Hilst 2 and

More information

Part 2 Introduction to Microlocal Analysis

Part 2 Introduction to Microlocal Analysis Part 2 Introduction to Microlocal Analysis Birsen Yazıcı & Venky Krishnan Rensselaer Polytechnic Institute Electrical, Computer and Systems Engineering August 2 nd, 2010 Outline PART II Pseudodifferential

More information

Radar Imaging with Independently Moving Transmitters and Receivers

Radar Imaging with Independently Moving Transmitters and Receivers Radar Imaging with Independently Moving Transmitters and Receivers Margaret Cheney Department of Mathematical Sciences Rensselaer Polytechnic Institute Troy, NY 12180 Email: cheney@rpi.edu Birsen Yazıcı

More information

Extensions and Nonlinear Inverse Scattering

Extensions and Nonlinear Inverse Scattering Extensions and Nonlinear Inverse Scattering William W. Symes CAAM Colloquium, September 2004 Data parameters: time t, source location x s, and receiver location x r, (vector) half offset h = x r x s, scalar

More information

Faraday Transport in a Curved Space-Time

Faraday Transport in a Curved Space-Time Commun. math. Phys. 38, 103 110 (1974) by Springer-Verlag 1974 Faraday Transport in a Curved Space-Time J. Madore Laboratoire de Physique Theorique, Institut Henri Poincare, Paris, France Received October

More information

c. Better work with components of slowness vector s (or wave + k z 2 = k 2 = (ωs) 2 = ω 2 /c 2. k=(kx,k z )

c. Better work with components of slowness vector s (or wave + k z 2 = k 2 = (ωs) 2 = ω 2 /c 2. k=(kx,k z ) .50 Introduction to seismology /3/05 sophie michelet Today s class: ) Eikonal equation (basis of ray theory) ) Boundary conditions (Stein s book.3.0) 3) Snell s law Some remarks on what we discussed last

More information

Math 342 Partial Differential Equations «Viktor Grigoryan

Math 342 Partial Differential Equations «Viktor Grigoryan Math 342 Partial Differential Equations «Viktor Grigoryan 15 Heat with a source So far we considered homogeneous wave and heat equations and the associated initial value problems on the whole line, as

More information

Matrix Probing and Simultaneous Sources: A New Approach for Preconditioning the Hessian

Matrix Probing and Simultaneous Sources: A New Approach for Preconditioning the Hessian Matrix Probing and Simultaneous Sources: A New Approach for Preconditioning the Hessian Curt Da Silva 1 and Felix J. Herrmann 2 1 Dept. of Mathematics 2 Dept. of Earth and Ocean SciencesUniversity of British

More information

Fractional order operators on bounded domains

Fractional order operators on bounded domains on bounded domains Gerd Grubb Copenhagen University Geometry seminar, Stanford University September 23, 2015 1. Fractional-order pseudodifferential operators A prominent example of a fractional-order pseudodifferential

More information

Oscillatory integrals

Oscillatory integrals Chapter Oscillatory integrals. Fourier transform on S The Fourier transform is a fundamental tool in microlocal analysis and its application to the theory of PDEs and inverse problems. In this first section

More information

AVO inversion in V (x, z) media

AVO inversion in V (x, z) media Stanford Exploration Project, Report 97, July 8, 998, pages 75 94 AVO inversion in V (x, z) media Yalei Sun and Wenjie Dong keywords:.5-d Kirchhoff integral, AVO inversion, fluid-line section ABSTRACT

More information

Earthscope Imaging Science & CIG Seismology Workshop

Earthscope Imaging Science & CIG Seismology Workshop Earthscope Imaging Science & CIG Seismology Introduction to Direct Imaging Methods Alan Levander Department of Earth Science Rice University 1 Two classes of scattered wave imaging systems 1. Incoherent

More information

In a uniform 3D medium, we have seen that the acoustic Green s function (propagator) is

In a uniform 3D medium, we have seen that the acoustic Green s function (propagator) is Chapter Geometrical optics The material in this chapter is not needed for SAR or CT, but it is foundational for seismic imaging. For simplicity, in this chapter we study the variable-wave speed wave equation

More information

Review of Fundamental Equations Supplementary notes on Section 1.2 and 1.3

Review of Fundamental Equations Supplementary notes on Section 1.2 and 1.3 Review of Fundamental Equations Supplementary notes on Section. and.3 Introduction of the velocity potential: irrotational motion: ω = u = identity in the vector analysis: ϕ u = ϕ Basic conservation principles:

More information

The Schrödinger propagator for scattering metrics

The Schrödinger propagator for scattering metrics The Schrödinger propagator for scattering metrics Andrew Hassell (Australian National University) joint work with Jared Wunsch (Northwestern) MSRI, May 5-9, 2003 http://arxiv.org/math.ap/0301341 1 Schrödinger

More information

LECTURE NOTES ON GEOMETRIC OPTICS

LECTURE NOTES ON GEOMETRIC OPTICS LECTURE NOTES ON GEOMETRIC OPTICS PLAMEN STEFANOV We want to solve the wave equation 1. The wave equation (1.1) ( 2 t c 2 g )u = 0, u t=0 = f 1, u t t=0 = f 2, in R t R n x, where g is a Riemannian metric

More information

Zeta Functions and Regularized Determinants for Elliptic Operators. Elmar Schrohe Institut für Analysis

Zeta Functions and Regularized Determinants for Elliptic Operators. Elmar Schrohe Institut für Analysis Zeta Functions and Regularized Determinants for Elliptic Operators Elmar Schrohe Institut für Analysis PDE: The Sound of Drums How Things Started If you heard, in a dark room, two drums playing, a large

More information

Kirchhoff, Fresnel, Fraunhofer, Born approximation and more

Kirchhoff, Fresnel, Fraunhofer, Born approximation and more Kirchhoff, Fresnel, Fraunhofer, Born approximation and more Oberseminar, May 2008 Maxwell equations Or: X-ray wave fields X-rays are electromagnetic waves with wave length from 10 nm to 1 pm, i.e., 10

More information

Statistically stable velocity macro-model estimation

Statistically stable velocity macro-model estimation Statistically stable velocity macro-model estimation Eric Dussaud ABSTRACT Velocity analysis resolves relatively long scales of earth structure, on the order of 1 km. Migration produces images with length

More information

Deconvolution imaging condition for reverse-time migration

Deconvolution imaging condition for reverse-time migration Stanford Exploration Project, Report 112, November 11, 2002, pages 83 96 Deconvolution imaging condition for reverse-time migration Alejandro A. Valenciano and Biondo Biondi 1 ABSTRACT The reverse-time

More information

A Mathematical Tutorial on. Margaret Cheney. Rensselaer Polytechnic Institute and MSRI. November 2001

A Mathematical Tutorial on. Margaret Cheney. Rensselaer Polytechnic Institute and MSRI. November 2001 A Mathematical Tutorial on SYNTHETIC APERTURE RADAR (SAR) Margaret Cheney Rensselaer Polytechnic Institute and MSRI November 2001 developed by the engineering community key technology is mathematics unknown

More information

NONLOCAL DIFFUSION EQUATIONS

NONLOCAL DIFFUSION EQUATIONS NONLOCAL DIFFUSION EQUATIONS JULIO D. ROSSI (ALICANTE, SPAIN AND BUENOS AIRES, ARGENTINA) jrossi@dm.uba.ar http://mate.dm.uba.ar/ jrossi 2011 Non-local diffusion. The function J. Let J : R N R, nonnegative,

More information

The wave front set of a distribution

The wave front set of a distribution The wave front set of a distribution The Fourier transform of a smooth compactly supported function u(x) decays faster than any negative power of the dual variable ξ; that is for every number N there exists

More information

Marchenko redatuming: advantages and limitations in complex media Summary Incomplete time reversal and one-sided focusing Introduction

Marchenko redatuming: advantages and limitations in complex media Summary Incomplete time reversal and one-sided focusing Introduction Marchenko redatuming: advantages and limitations in complex media Ivan Vasconcelos*, Schlumberger Gould Research, Dirk-Jan van Manen, ETH Zurich, Matteo Ravasi, University of Edinburgh, Kees Wapenaar and

More information

THERMO AND PHOTOACOUSTIC TOMOGRAPHY WITH VARIABLE SPEED AND PLANAR DETECTORS

THERMO AND PHOTOACOUSTIC TOMOGRAPHY WITH VARIABLE SPEED AND PLANAR DETECTORS THERMO AND PHOTOACOUSTIC TOMOGRAPHY WITH VARIABLE SPEED AND PLANAR DETECTORS PLAMEN STEFANOV AND YANG YANG Abstract. We analyze the mathematical model of multiwave tomography with a variable speed with

More information

Wave-equation tomography for anisotropic parameters

Wave-equation tomography for anisotropic parameters Wave-equation tomography for anisotropic parameters Yunyue (Elita) Li and Biondo Biondi ABSTRACT Anisotropic models are recognized as more realistic representations of the subsurface where complex geological

More information

Characterization and source-receiver continuation of seismic reflection data

Characterization and source-receiver continuation of seismic reflection data Communications in Mathematical Physics manuscript No. (will be inserted by the editor) Characterization and source-receiver continuation of seismic reflection data Maarten V. de Hoop 1, Gunther Uhlmann

More information

Traveltime sensitivity kernels: Banana-doughnuts or just plain bananas? a

Traveltime sensitivity kernels: Banana-doughnuts or just plain bananas? a Traveltime sensitivity kernels: Banana-doughnuts or just plain bananas? a a Published in SEP report, 103, 61-68 (2000) James Rickett 1 INTRODUCTION Estimating an accurate velocity function is one of the

More information

Finite-frequency resolution limits of wave path traveltime tomography for smoothly varying velocity models

Finite-frequency resolution limits of wave path traveltime tomography for smoothly varying velocity models Geophys. J. Int. (3) 5, 669 676 Finite-frequency resolution limits of wave path traveltime tomography for smoothly varying velocity models Jianming Sheng and Gerard T. Schuster Department of Geology and

More information

Complex geometrical optics solutions for Lipschitz conductivities

Complex geometrical optics solutions for Lipschitz conductivities Rev. Mat. Iberoamericana 19 (2003), 57 72 Complex geometrical optics solutions for Lipschitz conductivities Lassi Päivärinta, Alexander Panchenko and Gunther Uhlmann Abstract We prove the existence of

More information

The B-Plane Interplanetary Mission Design

The B-Plane Interplanetary Mission Design The B-Plane Interplanetary Mission Design Collin Bezrouk 2/11/2015 2/11/2015 1 Contents 1. Motivation for B-Plane Targeting 2. Deriving the B-Plane 3. Deriving Targetable B-Plane Elements 4. How to Target

More information

Scattering is perhaps the most important experimental technique for exploring the structure of matter.

Scattering is perhaps the most important experimental technique for exploring the structure of matter. .2. SCATTERING February 4, 205 Lecture VII.2 Scattering Scattering is perhaps the most important experimental technique for exploring the structure of matter. From Rutherford s measurement that informed

More information

Sobolev spaces, Trace theorems and Green s functions.

Sobolev spaces, Trace theorems and Green s functions. Sobolev spaces, Trace theorems and Green s functions. Boundary Element Methods for Waves Scattering Numerical Analysis Seminar. Orane Jecker October 21, 2010 Plan Introduction 1 Useful definitions 2 Distributions

More information

MATH3383. Quantum Mechanics. Appendix D: Hermite Equation; Orthogonal Polynomials

MATH3383. Quantum Mechanics. Appendix D: Hermite Equation; Orthogonal Polynomials MATH3383. Quantum Mechanics. Appendix D: Hermite Equation; Orthogonal Polynomials. Hermite Equation In the study of the eigenvalue problem of the Hamiltonian for the quantum harmonic oscillator we have

More information

Magnetic wells in dimension three

Magnetic wells in dimension three Magnetic wells in dimension three Yuri A. Kordyukov joint with Bernard Helffer & Nicolas Raymond & San Vũ Ngọc Magnetic Fields and Semiclassical Analysis Rennes, May 21, 2015 Yuri A. Kordyukov (Ufa) Magnetic

More information

Nonstationary filters, pseudodifferential operators, and their inverses

Nonstationary filters, pseudodifferential operators, and their inverses Nonstationary filters, pseudodifferential operators, and their inverses Gary F. Margrave and Robert J. Ferguson ABSTRACT An inversion scheme for nonstationary filters is presented and explored. Nonstationary

More information

Boundary problems for fractional Laplacians and other mu-transmission operators

Boundary problems for fractional Laplacians and other mu-transmission operators Boundary roblems for fractional Lalacians and other mu-transmission oerators Gerd Grubb Coenhagen University Geometry and Analysis Seminar June 20, 2014 Introduction Consider P a equal to ( ) a or to A

More information

Seismic imaging with the generalized Radon transform: A curvelet transform perspective

Seismic imaging with the generalized Radon transform: A curvelet transform perspective Seismic imaging with the generalized Radon transform: A curvelet transform perspective M V de Hoop 1, H Smith 2, G Uhlmann 2 and R D van der Hilst 3 1 Center for Computational and Applied Mathematics,

More information

Travel Time Tomography and Tensor Tomography, I

Travel Time Tomography and Tensor Tomography, I Travel Time Tomography and Tensor Tomography, I Plamen Stefanov Purdue University Mini Course, MSRI 2009 Plamen Stefanov (Purdue University ) Travel Time Tomography and Tensor Tomography, I 1 / 17 Alternative

More information

A comparison of the imaging conditions and principles in depth migration algorithms

A comparison of the imaging conditions and principles in depth migration algorithms International Journal of Tomography & Statistics (IJTS), Fall 2006, Vol. 4, No. F06; Int. J. Tomogr. Stat.; 5-16 ISSN 0972-9976; Copyright 2006 by IJTS, ISDER A comparison of the imaging conditions and

More information

Part 2 Introduction to Microlocal Analysis

Part 2 Introduction to Microlocal Analysis Part 2 Introduction to Microlocal Analysis Birsen Yazıcı& Venky Krishnan Rensselaer Polytechnic Institute Electrical, Computer and Systems Engineering March 15 th, 2010 Outline PART II Pseudodifferential(ψDOs)

More information

PHY 6347 Spring 2018 Homework #10, Due Friday, April 6

PHY 6347 Spring 2018 Homework #10, Due Friday, April 6 PHY 6347 Spring 28 Homework #, Due Friday, April 6. A plane wave ψ = ψ e ik x is incident from z < on an opaque screen that blocks the entire plane z = except for the opening 2 a < x < 2 a, 2 b < y < 2

More information

SUMMARY ANGLE DECOMPOSITION INTRODUCTION. A conventional cross-correlation imaging condition for wave-equation migration is (Claerbout, 1985)

SUMMARY ANGLE DECOMPOSITION INTRODUCTION. A conventional cross-correlation imaging condition for wave-equation migration is (Claerbout, 1985) Comparison of angle decomposition methods for wave-equation migration Natalya Patrikeeva and Paul Sava, Center for Wave Phenomena, Colorado School of Mines SUMMARY Angle domain common image gathers offer

More information

Amplitude calculations for 3-D Gaussian beam migration using complex-valued traveltimes

Amplitude calculations for 3-D Gaussian beam migration using complex-valued traveltimes CWP-648 Amplitude calculations for 3-D Gaussian beam migration using complex-valued traveltimes Norman Bleistein 1 & S. H. Gray 2 1 Center for Wave Phenomena, Dept. of Geophysics, Colo. Sch. of Mines,

More information

Introduction to PML in time domain

Introduction to PML in time domain Introduction to PML in time domain Alexander Thomann Introduction to PML in time domain - Alexander Thomann p.1 Overview 1 Introduction 2 PML in one dimension Classical absorbing layers One-dimensional

More information

Mathematics of Seismic Imaging Part 2: Linearization, High Frequency Asymptotics, and Imaging

Mathematics of Seismic Imaging Part 2: Linearization, High Frequency Asymptotics, and Imaging Mathematics of Seismic Imaging Part 2: Linearization, High Frequency Asymptotics, and Imaging William W. Symes Rice University 2. Linearization, High frequency Asymptotics and Imaging 2.1 Linearization

More information

Inverse Problem in Quantitative Susceptibility Mapping From Theory to Application. Jae Kyu Choi.

Inverse Problem in Quantitative Susceptibility Mapping From Theory to Application. Jae Kyu Choi. Inverse Problem in Quantitative Susceptibility Mapping From Theory to Application Jae Kyu Choi jaycjk@yonsei.ac.kr Department of CSE, Yonsei University 2015.08.07 Hangzhou Zhe Jiang University Jae Kyu

More information

kg meter ii) Note the dimensions of ρ τ are kg 2 velocity 2 meter = 1 sec 2 We will interpret this velocity in upcoming slides.

kg meter ii) Note the dimensions of ρ τ are kg 2 velocity 2 meter = 1 sec 2 We will interpret this velocity in upcoming slides. II. Generalizing the 1-dimensional wave equation First generalize the notation. i) "q" has meant transverse deflection of the string. Replace q Ψ, where Ψ may indicate other properties of the medium that

More information

Coherent Interferometric Imaging in Clutter

Coherent Interferometric Imaging in Clutter Coherent Interferometric Imaging in Clutter Liliana Borcea, George Papanicolaou, Chrysoula Tsogka (December 9, 2005) ABSTRACT Coherent interferometry is an array imaging method in which we back propagate,

More information

Interferometric array imaging in clutter

Interferometric array imaging in clutter INSTITUTE OF PHYSICS PUBLISHING Inverse Problems 1 005 1419 1460 INVERSE PROBLEMS doi:10.1088/066-5611/1/4/015 Interferometric array imaging in clutter Liliana Borcea 1, George Papanicolaou and Chrysoula

More information

Survey of Inverse Problems For Hyperbolic PDEs

Survey of Inverse Problems For Hyperbolic PDEs Survey of Inverse Problems For Hyperbolic PDEs Rakesh Department of Mathematical Sciences University of Delaware Newark, DE 19716, USA Email: rakesh@math.udel.edu January 14, 2011 1 Problem Formulation

More information

Solutions of Spring 2008 Final Exam

Solutions of Spring 2008 Final Exam Solutions of Spring 008 Final Exam 1. (a) The isocline for slope 0 is the pair of straight lines y = ±x. The direction field along these lines is flat. The isocline for slope is the hyperbola on the left

More information

Attenuation compensation in least-squares reverse time migration using the visco-acoustic wave equation

Attenuation compensation in least-squares reverse time migration using the visco-acoustic wave equation Attenuation compensation in least-squares reverse time migration using the visco-acoustic wave equation Gaurav Dutta, Kai Lu, Xin Wang and Gerard T. Schuster, King Abdullah University of Science and Technology

More information

Nonlinear seismic imaging via reduced order model backprojection

Nonlinear seismic imaging via reduced order model backprojection Nonlinear seismic imaging via reduced order model backprojection Alexander V. Mamonov, Vladimir Druskin 2 and Mikhail Zaslavsky 2 University of Houston, 2 Schlumberger-Doll Research Center Mamonov, Druskin,

More information

SUMMARY. (Sun and Symes, 2012; Biondi and Almomin, 2012; Almomin and Biondi, 2012).

SUMMARY. (Sun and Symes, 2012; Biondi and Almomin, 2012; Almomin and Biondi, 2012). Inversion Velocity Analysis via Differential Semblance Optimization in the Depth-oriented Extension Yujin Liu, William W. Symes, Yin Huang,and Zhenchun Li, China University of Petroleum (Huadong), Rice

More information

Sparsity- and continuity-promoting seismic image recovery. with curvelet frames

Sparsity- and continuity-promoting seismic image recovery. with curvelet frames Sparsity- and continuity-promoting seismic image recovery with curvelet frames Felix J. Herrmann, Peyman Moghaddam and Chris Stolk Seismic Laboratory for Imaging and Modeling, Department of Earth and Ocean

More information

A new class of pseudodifferential operators with mixed homogenities

A new class of pseudodifferential operators with mixed homogenities A new class of pseudodifferential operators with mixed homogenities Po-Lam Yung University of Oxford Jan 20, 2014 Introduction Given a smooth distribution of hyperplanes on R N (or more generally on a

More information

Superposition of electromagnetic waves

Superposition of electromagnetic waves Superposition of electromagnetic waves February 9, So far we have looked at properties of monochromatic plane waves. A more complete picture is found by looking at superpositions of many frequencies. Many

More information

Sparsity- and continuity-promoting seismic image recovery with curvelet frames

Sparsity- and continuity-promoting seismic image recovery with curvelet frames Appl. Comput. Harmon. Anal. 24 (2008) 150 173 www.elsevier.com/locate/acha Sparsity- and continuity-promoting seismic image recovery with curvelet frames Felix J. Herrmann a,, Peyman Moghaddam a, Christiaan

More information