November 06, Chapter 7 Atomic Struture. CHAPTER 7 Atomic Structure. Oct 27 9:34 AM ATOMIC STRUCTURE. Oct 27 9:34 AM

Size: px
Start display at page:

Download "November 06, Chapter 7 Atomic Struture. CHAPTER 7 Atomic Structure. Oct 27 9:34 AM ATOMIC STRUCTURE. Oct 27 9:34 AM"

Transcription

1 CHAPTER 7 Atomic Structure ATOMIC STRUCTURE 1

2 The Wave Nature of Light Most subatomic particles behave as PARTICLES and obey the physics of waves. Visible light Ultravioletlight Wavelength Frequency (Hertz or s 1 ) (lambda) crest to crest or trough to trough (meters) (nu) the # of wave cycles that pass a given point. Wave motion: wave length and nodes 2

3 Electromagnetic Spectrum C = = 2.99 x 10 8 m/s speed of light Note that long wavelength > small frequency Short wavelength > high frequency Oct 6 2:14 PM Electromagnetic Radiation 3

4 Electromagnetic Radiation All radiation: λ. ν = c c = 2.99 x 10 8 m/s speed of light Indirect relationship Long wavelength = small frequency Short wavelength = high frequency Electromagnetic Spectrum Note the wavelength of visible light 4

5 Quantization of Energy Max Planck ( ) Solved the ultraviolet catastrophe The wave nature of light does not explain how an object can glow when its temperature increases. Quantization of Energy An object can gain or lose energy by absorbing or emitting radiant energy in QUANTA. Energy of radiation is proportional to frequency E = h ν h = Planck s constant = x J s 5

6 Photoelectric Effect Photoelectric Effect Classical theory said that E of ejected electron should increase with increase in light intensitynot observed! No e observed until light of a certain minimum E is used. Number of e ejected depends on light intensity. 6

7 Understand experimental observations if light consists of particles called PHOTONS of discrete energy. Therefore, if one knows the wavelength of light, one can calculate the energy in one photon, or packet, of that light: c = λν E = hν Energy of Radiation Calculate the Energy of 1.00 mol of photons of red light. 7

8 Another mystery involved the emission spectra observed from energy emitted by atoms and molecules. Classical Theory any amount of E could be gained or lost by an object this would result in a continuous line spectrum. NOT SO! When atoms or molecules change states, it absorbs or emits an amount of Energy Quantum Theory Ground state the state of lowest energy Excited state any state of higher E than ground state excited state Absorbs Emits Heat energy Light energy ground state Atomic Emission Spectrum produced when an e drops from higher energy to lower energy (fingerprints of elements) When absorption or emission from one energy state to another takes place, light with a certain is given off. Photon Streams of light particles (A quanta of light) Quantum Packet of energy If e s are in quantized energy states, then E of states can have only certain values. This explain sharp line spectra. Emission Spectrum 8

9 9

10 Excited atoms emit light of only certain wavelengths The wavelengths of emitted light depend on the element. Excited atoms can emit light. Here the solution in a pickle is excited electrically. The Na + ions in the pickle juice give off light characteristic of that element. 10

11 The energy absorbed or emitted from the process of electron promotion or demotion can be calculated by the equation: where R H is the Rydberg constant, J, and n i and n f are the initial and final energy levels of the electron. Note that emitting energy is exothermic 11

12 The Wave Nature of Matter If light can have material properties, matter should exhibit wave properties. For light: E = mc 2 E = hν = hc / λ Therefore, mc= h / λ For particles (mass)(velocity) = h / λ 12

13 Baseball (115 g) at 100 mph λ = 1.3 x cm e with velocity = 1.9 x 10 8 cm/sec λ = nm Uncertainty Principle W. Heisenberg Heisenberg showed that the more precisely the momentum (m x v)of a particle is known, the less precisely is its position known: In many cases, our uncertainty of the whereabouts of an electron is greater than the size of the atom itself! 13

14 Quantum or Wave Mechanics E. Schrodinger Erwin Schrödinger developed a mathematical treatment into which both the wave and particle nature of matter could be incorporated. It is known as quantum mechanics. Quantum Numbers Solving the wave equation gives a set of wave functions, or orbitals, and their corresponding energies. Each orbital describes a spatial distribution of electron density. An orbital is described by a set of three quantum numbers. Nov 3 1:38 PM 14

15 Principle Quantum Number,n tells how far an e is from the nucleus Energy Level The larger the n, the further away the electron is from the nucleus, creating less attraction forces toward the nucleus. Outside e are likely to be the "bonding" e called valence e. n are integers 0. Principle quantum Number Orbital Quantum Number, Sublevels, l Describes the shape of the orbital (Area where e might be) Allowed values of l are integers ranging from 0 to n 1 & tells the number of nodal planes in the orbital Orbital Quantum Number 15

16 Orientation Quantum Number, m l Describes how the orbital is arranged/positioned in space s p d f Values are integers ranging from l to l: l,...+1,0, 1,... l orientations ml l Orbitals with the same value of n form a shell. Different orbital types within a shell are subshells. Orientation Quantum Number Electron Spin Magnetic Quantum Number,m s Describes the direction the e is spinning In the 1920s, it was discovered that two electrons in the same orbital do not have exactly the same energy. The spin of an electron describes its magnetic field, which affects its energy. Pauli Exclusion Principle Only 2 e can have the same set of 4 quantum numbers, they must have opposite spins paramagnetic ferromagnetic diamagnetic Spin Quantum Number 16

17 17

18 18

19 19

20 20

21 21

22 Energies of Orbitals For a one electron hydrogen atom, orbitals on the same energy level have the same energy. That is, they are degenerate. As the number of electrons increases, though, so does the repulsion between them. Therefore, in many electron atoms, orbitals on the same energy level are no longer degenerate. Nov 3 9:16 PM 22

23 Attachments 07M08AN2.avi

Electromagnetic Radiation All electromagnetic radiation travels at the same velocity: the speed of light (c), m/s.

Electromagnetic Radiation All electromagnetic radiation travels at the same velocity: the speed of light (c), m/s. Chapter 6 Electronic Structure of Atoms Waves To understand the electronic structure of atoms, one must understand the nature of electromagnetic radiation. The distance between corresponding points on

More information

Chapter 6: The Electronic Structure of the Atom Electromagnetic Spectrum. All EM radiation travels at the speed of light, c = 3 x 10 8 m/s

Chapter 6: The Electronic Structure of the Atom Electromagnetic Spectrum. All EM radiation travels at the speed of light, c = 3 x 10 8 m/s Chapter 6: The Electronic Structure of the Atom Electromagnetic Spectrum V I B G Y O R All EM radiation travels at the speed of light, c = 3 x 10 8 m/s Electromagnetic radiation is a wave with a wavelength

More information

Chapter 7 QUANTUM THEORY & ATOMIC STRUCTURE Brooks/Cole - Thomson

Chapter 7 QUANTUM THEORY & ATOMIC STRUCTURE Brooks/Cole - Thomson Chapter 7 QUANTUM THEORY & ATOMIC STRUCTURE 1 7.1 The Nature of Light 2 Most subatomic particles behave as PARTICLES and obey the physics of waves. Light is a type of electromagnetic radiation Light consists

More information

Electronic structure of atoms

Electronic structure of atoms Chapter 1 Electronic structure of atoms light photons spectra Heisenberg s uncertainty principle atomic orbitals electron configurations the periodic table 1.1 The wave nature of light Much of our understanding

More information

Chapter 6. Electronic Structure of Atoms. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 6. Electronic Structure of Atoms. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 6 John D. Bookstaver St. Charles Community College Cottleville, MO Waves To understand the electronic structure of atoms, one must understand the nature of electromagnetic

More information

Chapter 6: Electronic Structure of Atoms

Chapter 6: Electronic Structure of Atoms Chapter 6: Electronic Structure of Atoms Learning Outcomes: Calculate the wavelength of electromagnetic radiation given its frequency or its frequency given its wavelength. Order the common kinds of radiation

More information

Chapter 6. of Atoms. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

Chapter 6. of Atoms. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 6 John D. Bookstaver St. Charles Community College St. Peters, MO 2006, Prentice Hall,

More information

Chapter 6. of Atoms. Waves. Waves 1/15/2013

Chapter 6. of Atoms. Waves. Waves 1/15/2013 Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 6 John D. Bookstaver St. Charles Community College St. Peters, MO 2006, Prentice Hall,

More information

CHAPTER 4 10/11/2016. Properties of Light. Anatomy of a Wave. Components of a Wave. Components of a Wave

CHAPTER 4 10/11/2016. Properties of Light. Anatomy of a Wave. Components of a Wave. Components of a Wave Properties of Light CHAPTER 4 Light is a form of Electromagnetic Radiation Electromagnetic Radiation (EMR) Form of energy that exhibits wavelike behavior and travels at the speed of light. Together, all

More information

Energy and the Quantum Theory

Energy and the Quantum Theory Energy and the Quantum Theory Light electrons are understood by comparing them to light 1. radiant energy 2. travels through space 3. makes you feel warm Light has properties of waves and particles Amplitude:

More information

Ch 7 Quantum Theory of the Atom (light and atomic structure)

Ch 7 Quantum Theory of the Atom (light and atomic structure) Ch 7 Quantum Theory of the Atom (light and atomic structure) Electromagnetic Radiation - Electromagnetic radiation consists of oscillations in electric and magnetic fields. The oscillations can be described

More information

ATOMIC STRUCTURE. Kotz Ch 7 & Ch 22 (sect 4,5)

ATOMIC STRUCTURE. Kotz Ch 7 & Ch 22 (sect 4,5) ATOMIC STRUCTURE Kotz Ch 7 & Ch 22 (sect 4,5) properties of light spectroscopy quantum hypothesis hydrogen atom Heisenberg Uncertainty Principle orbitals ELECTROMAGNETIC RADIATION subatomic particles (electron,

More information

Chapter 6 - Electronic Structure of Atoms

Chapter 6 - Electronic Structure of Atoms Chapter 6 - Electronic Structure of Atoms 6.1 The Wave Nature of Light To understand the electronic structure of atoms, one must understand the nature of electromagnetic radiation Visible light is an example

More information

Electronic Structure of Atoms. Chapter 6

Electronic Structure of Atoms. Chapter 6 Electronic Structure of Atoms Chapter 6 Electronic Structure of Atoms 1. The Wave Nature of Light All waves have: a) characteristic wavelength, λ b) amplitude, A Electronic Structure of Atoms 1. The Wave

More information

Ch. 7 The Quantum Mechanical Atom. Brady & Senese, 5th Ed.

Ch. 7 The Quantum Mechanical Atom. Brady & Senese, 5th Ed. Ch. 7 The Quantum Mechanical Atom Brady & Senese, 5th Ed. Index 7.1. Electromagnetic radiation provides the clue to the electronic structures of atoms 7.2. Atomic line spectra are evidence that electrons

More information

Chapter 8: Electrons in Atoms Electromagnetic Radiation

Chapter 8: Electrons in Atoms Electromagnetic Radiation Chapter 8: Electrons in Atoms Electromagnetic Radiation Electromagnetic (EM) radiation is a form of energy transmission modeled as waves moving through space. (see below left) Electromagnetic Radiation

More information

Table of Contents Electrons in Atoms > Light and Quantized Energy > Quantum Theory and the Atom > Electron Configuration

Table of Contents Electrons in Atoms > Light and Quantized Energy > Quantum Theory and the Atom > Electron Configuration Electrons in Atoms October 20, 2014 Table of Contents Electrons in Atoms > Light and Quantized Energy > Quantum Theory and the Atom > Electron Configuration 1 Electromagnetic Spectrum Electromagnetic radiation

More information

Chapter 7 Atomic Structure -1 Quantum Model of Atom. Dr. Sapna Gupta

Chapter 7 Atomic Structure -1 Quantum Model of Atom. Dr. Sapna Gupta Chapter 7 Atomic Structure -1 Quantum Model of Atom Dr. Sapna Gupta The Electromagnetic Spectrum The electromagnetic spectrum includes many different types of radiation which travel in waves. Visible light

More information

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY All matter is made of atoms. There are a limited number of types of atoms; these are the elements. (EU 1.A) Development of Atomic Theory Atoms are so small

More information

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY All matter is made of atoms. There are a limited number of types of atoms; these are the elements. (EU 1.A) Development of Atomic Theory Atoms are so small

More information

Electronic structure the number of electrons in an atom as well as the distribution of electrons around the nucleus and their energies

Electronic structure the number of electrons in an atom as well as the distribution of electrons around the nucleus and their energies Chemistry: The Central Science Chapter 6: Electronic Structure of Atoms Electronic structure the number of electrons in an atom as well as the distribution of electrons around the nucleus and their energies

More information

Light. October 16, Chapter 5: Electrons in Atoms Honors Chemistry. Bohr Model

Light. October 16, Chapter 5: Electrons in Atoms Honors Chemistry. Bohr Model Chapter 5: Electrons in Atoms Honors Chemistry Bohr Model Niels Bohr, a young Danish physicist and a student of Rutherford improved Rutherford's model. Bohr proposed that an electron is found only in specific

More information

SCH4U: History of the Quantum Theory

SCH4U: History of the Quantum Theory SCH4U: History of the Quantum Theory Black Body Radiation When an object is heated, it initially glows red hot and at higher temperatures becomes white hot. This white light must consist of all of the

More information

Chapter 6. Electronic. Electronic Structure of Atoms Pearson Education

Chapter 6. Electronic. Electronic Structure of Atoms Pearson Education Chapter 6 Laser: step-like energy transition 6.1 The Wave Nature of Light 6.2 Quantized Energy and Photons 6.3 Line Spectra and the Bohr Model 6.4 The Wave Behavior of Matter 6.5 Quantum Mechanics and

More information

Chapter 6. Quantum Theory and the Electronic Structure of Atoms Part 1

Chapter 6. Quantum Theory and the Electronic Structure of Atoms Part 1 Chapter 6 Quantum Theory and the Electronic Structure of Atoms Part 1 The nature of light Quantum theory Topics Bohr s theory of the hydrogen atom Wave properties of matter Quantum mechanics Quantum numbers

More information

Chapter 6 Electronic structure of atoms

Chapter 6 Electronic structure of atoms Chapter 6 Electronic structure of atoms light photons spectra Heisenberg s uncertainty principle atomic orbitals electron configurations the periodic table 6.1 The wave nature of light Visible light is

More information

I understand the relationship between energy and a quanta I understand the difference between an electron s ground state and an electron s excited

I understand the relationship between energy and a quanta I understand the difference between an electron s ground state and an electron s excited NCCS 1.1.2 & 1.1.3 I understand the relationship between energy and a quanta I understand the difference between an electron s ground state and an electron s excited state I will describe how an electron

More information

Accounts for certain objects being colored. Used in medicine (examples?) Allows us to learn about structure of the atom

Accounts for certain objects being colored. Used in medicine (examples?) Allows us to learn about structure of the atom 1.1 Interaction of Light and Matter Accounts for certain objects being colored Used in medicine (examples?) 1.2 Wavelike Properties of Light Wavelength, : peak to peak distance Amplitude: height of the

More information

CHEMISTRY - TRO 4E CH.7 - THE QUANTUM-MECHANICAL MODEL OF THE ATOM

CHEMISTRY - TRO 4E CH.7 - THE QUANTUM-MECHANICAL MODEL OF THE ATOM !! www.clutchprep.com CONCEPT: THE NATURE OF LIGHT Visible light represents a small portion of the continuum of radiant energy known as. The visible light spectrum ranges from to. Its wave properties of

More information

The Electronic Structures of Atoms Electromagnetic Radiation The wavelength of electromagnetic radiation has the symbol λ.

The Electronic Structures of Atoms Electromagnetic Radiation The wavelength of electromagnetic radiation has the symbol λ. CHAPTER 7 Atomic Structure Chapter 8 Atomic Electron Configurations and Periodicity 1 The Electronic Structures of Atoms Electromagnetic Radiation The wavelength of electromagnetic radiation has the symbol

More information

The Bohr Model of the Atom

The Bohr Model of the Atom Unit 4: The Bohr Model of the Atom Properties of light Before the 1900 s, light was thought to behave only as a wave. Light is a type of electromagnetic radiation - a form of energy that exhibits wave

More information

Chapter 5. The Electromagnetic Spectrum. What is visible light? What is visible light? Which of the following would you consider dangerous?

Chapter 5. The Electromagnetic Spectrum. What is visible light? What is visible light? Which of the following would you consider dangerous? Which of the following would you consider dangerous? X-rays Radio waves Gamma rays UV radiation Visible light Microwaves Infrared radiation Chapter 5 Periodicity and Atomic Structure 2 The Electromagnetic

More information

Chapter 6 Electronic Structure of Atoms. 許富銀 ( Hsu Fu-Yin)

Chapter 6 Electronic Structure of Atoms. 許富銀 ( Hsu Fu-Yin) Chapter 6 Electronic Structure of Atoms 許富銀 ( Hsu Fu-Yin) 1 The Wave Nature of Light The light we see with our eyes, visible light, is one type of electromagnetic radiation. electromagnetic radiation carries

More information

Quantum Theory & Electronic Structure of Atoms. It s Unreal!! Check your intuition at the door.

Quantum Theory & Electronic Structure of Atoms. It s Unreal!! Check your intuition at the door. Quantum Theory & Electronic Structure of Atoms It s Unreal!! Check your intuition at the door. 1 Quantum Theory of the Atom Description of the atom and subatomic particles. We will focus on the electronic

More information

Development of the Periodic Table. Chapter 5. Light and the EM Spectrum. Light

Development of the Periodic Table. Chapter 5. Light and the EM Spectrum. Light Chapter 5 Periodic Table Song Periodicity and Atomic Structure Development of the Periodic Table Mid-1800 s, several scientists placed known elements in order based on different criteria. Mendeleev s and

More information

The Photoelectric Effect

The Photoelectric Effect The Photoelectric Effect Light can strike the surface of some metals causing an electron to be ejected No matter how brightly the light shines, electrons are ejected only if the light has sufficient energy

More information

Electron Arrangement - Part 1

Electron Arrangement - Part 1 Brad Collins Electron Arrangement - Part 1 Chapter 8 Some images Copyright The McGraw-Hill Companies, Inc. Properties of Waves Wavelength (λ) is the distance between identical points on successive waves.

More information

NOTES: 5.3 Light and Atomic Spectra (more Quantum Mechanics!)

NOTES: 5.3 Light and Atomic Spectra (more Quantum Mechanics!) NOTES: 5.3 Light and Atomic Spectra (more Quantum Mechanics!) Light WAVE or PARTICLE? Electromagnetic Radiation Electromagnetic radiation includes: -radio waves -microwaves -infrared waves -visible light

More information

Chapter 7. Characteristics of Atoms. 7.1 Electromagnetic Radiation. Chapter 7 1. The Quantum Mechanical Atom. Atoms: How do we study atoms?

Chapter 7. Characteristics of Atoms. 7.1 Electromagnetic Radiation. Chapter 7 1. The Quantum Mechanical Atom. Atoms: How do we study atoms? Chapter 7 The Quantum Mechanical Atom 1 Characteristics of Atoms Atoms: possess mass contain positive nuclei contain electrons occupy volume have various properties attract one another combine to form

More information

Georgia Institute of Technology CHEM 1310 revised 10/8/09 Spring The Development of Quantum Mechanics. ν (nu) = frequency (in s -1 or hertz)

Georgia Institute of Technology CHEM 1310 revised 10/8/09 Spring The Development of Quantum Mechanics. ν (nu) = frequency (in s -1 or hertz) The Development of Quantum Mechanics Early physicists used the properties of electromagnetic radiation to develop fundamental ideas about the structure of the atom. A fundamental assumption for their work

More information

AP Chemistry A. Allan Chapter 7 Notes - Atomic Structure and Periodicity

AP Chemistry A. Allan Chapter 7 Notes - Atomic Structure and Periodicity AP Chemistry A. Allan Chapter 7 Notes - Atomic Structure and Periodicity 7.1 Electromagnetic Radiation A. Types of EM Radiation (wavelengths in meters) 10-1 10-10 10-8 4 to 7x10-7 10-4 10-1 10 10 4 gamma

More information

Electromagnetic Radiation. is a form of energy that exhibits wavelike behavior as it travels through space.

Electromagnetic Radiation. is a form of energy that exhibits wavelike behavior as it travels through space. Electromagnetic Radiation is a form of energy that exhibits wavelike behavior as it travels through space. What are the 7 forms of electromagnetic radiation, in order of INCREASING wavelength? gamma rays

More information

CVB102 Lecture 1 - Chemical Structure and Reactivity. Contact Information: Dr. Bill Lot Electronic Structure of Atoms

CVB102 Lecture 1 - Chemical Structure and Reactivity. Contact Information: Dr. Bill Lot Electronic Structure of Atoms CVB102 Lecture 1 - Chemical Structure and Reactivity Contact Information: Dr. Bill Lot b.lott@qut.edu.au Electronic Structure of Atoms Text: Blackman, et al Pp. 127-147 (Pp. 148-159 recommended) The periodic

More information

To review Rutherford s model of the atom To explore the nature of electromagnetic radiation To see how atoms emit light

To review Rutherford s model of the atom To explore the nature of electromagnetic radiation To see how atoms emit light Objectives To review Rutherford s model of the atom To explore the nature of electromagnetic radiation To see how atoms emit light 1 A. Rutherford s Atom.but there is a problem here!! 2 Using Rutherford

More information

Atomic Structure and the Periodic Table

Atomic Structure and the Periodic Table Atomic Structure and the Periodic Table The electronic structure of an atom determines its characteristics Studying atoms by analyzing light emissions/absorptions Spectroscopy: analysis of light emitted

More information

CHAPTER 4. Arrangement of Electrons in Atoms

CHAPTER 4. Arrangement of Electrons in Atoms CHAPTER 4 Arrangement of Electrons in Atoms 4.1 Part I Development of a New Atomic Model 4.1 Objectives 1. Explain the mathematical relationship among the speed, wavelength, and frequency of electromagnetic

More information

2) The energy of a photon of light is proportional to its frequency and proportional to its wavelength.

2) The energy of a photon of light is proportional to its frequency and proportional to its wavelength. Advanced Chemistry Chapter 13 Review Name Per Show all work Wave Properties 1) Which one of the following is correct? A) ν + λ = c B) ν λ = c C) ν = cλ D) λ = c ν E) νλ = c 2) The energy of a photon of

More information

Chapter 8. Structure of Atom

Chapter 8. Structure of Atom Chapter 8 Structure of Atom Synopsis Energy propagates as electromagnetic waves and can have a wide variety of wavelengths. The entire range of wavelengths is known as the electromagnetic spectrum. Max

More information

Chapter 5 Electrons In Atoms

Chapter 5 Electrons In Atoms Chapter 5 Electrons In Atoms 5.1 Revising the Atomic Model 5.2 Electron Arrangement in Atoms 5.3 Atomic Emission Spectra and the Quantum Mechanical Model 1 Copyright Pearson Education, Inc., or its affiliates.

More information

Electronic Structure. of Atoms. 2009, Prentice-Hall, Inc. Electronic Structure. of Atoms. 2009, Prentice-Hall, Inc. Electronic Structure.

Electronic Structure. of Atoms. 2009, Prentice-Hall, Inc. Electronic Structure. of Atoms. 2009, Prentice-Hall, Inc. Electronic Structure. Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 6 Section 1 6: The Marathon Adapted from: John D. Bookstaver St. Charles Community College

More information

Chapter 6 Electronic Structure of Atoms

Chapter 6 Electronic Structure of Atoms Chapter 6 Electronic Structure of Atoms What is the origin of color in matter? Demo: flame tests What does this have to do with the atom? Why are atomic properties periodic? 6.1 The Wave Nature of Light

More information

Gilbert Kirss Foster. Chapter3. Atomic Structure. Explaining the Properties of Elements

Gilbert Kirss Foster. Chapter3. Atomic Structure. Explaining the Properties of Elements Gilbert Kirss Foster Chapter3 Atomic Structure Explaining the Properties of Elements Chapter Outline 3.1 Waves of Light 3.2 Atomic Spectra 3.3 Particles of Light: Quantum Theory 3.4 The Hydrogen Spectrum

More information

Atoms, Electrons and Light MS. MOORE CHEMISTRY

Atoms, Electrons and Light MS. MOORE CHEMISTRY Atoms, Electrons and Light MS. MOORE CHEMISTRY Atoms Remember Rutherford??? What did he discover with his gold foil experiment. A: Atoms contain a dense nucleus where the protons and neutrons reside. ATOMS

More information

Part One: Light Waves, Photons, and Bohr Theory. 2. Beyond that, nothing was known of arrangement of the electrons.

Part One: Light Waves, Photons, and Bohr Theory. 2. Beyond that, nothing was known of arrangement of the electrons. CHAPTER SEVEN: QUANTUM THEORY AND THE ATOM Part One: Light Waves, Photons, and Bohr Theory A. The Wave Nature of Light (Section 7.1) 1. Structure of atom had been established as cloud of electrons around

More information

Recall the Goal. What IS the structure of an atom? What are the properties of atoms?

Recall the Goal. What IS the structure of an atom? What are the properties of atoms? Recall the Goal What IS the structure of an atom? What are the properties of atoms? REMEMBER: structure affects function! Important questions: Where are the electrons? What is the energy of an electron?

More information

Electrons in Atoms. Section 5.1 Light and Quantized Energy

Electrons in Atoms. Section 5.1 Light and Quantized Energy Name Date Class 5 Electrons in Atoms Section 5.1 Light and Quantized Energy In your textbook, read about the wave nature of light. Use each of the terms below just once to complete the passage. amplitude

More information

Periodicity and the Electronic Structure of Atoms 國防醫學院生化學科王明芳老師

Periodicity and the Electronic Structure of Atoms 國防醫學院生化學科王明芳老師 Periodicity and the Electronic Structure of Atoms 國防醫學院生化學科王明芳老師 2018-10-2 1 2 Light and the Electromagnetic Spectrum Electromagnetic energy ( light ) is characterized by wavelength, frequency, and amplitude.

More information

Bohr. Electronic Structure. Spectroscope. Spectroscope

Bohr. Electronic Structure. Spectroscope. Spectroscope Bohr Electronic Structure Bohr proposed that the atom has only certain allowable energy states. Spectroscope Using a device called a it was found that gaseous elements emitted electromagnetic radiation

More information

Calendar. October 23, Chapter 5 Notes Waves.notebook Waves vocab waves ws. quiz PSAT. Blank. elements test. demo day

Calendar. October 23, Chapter 5 Notes Waves.notebook Waves vocab waves ws. quiz PSAT. Blank. elements test. demo day Calendar Sunday Monday Tuesday Wednesday Thursday Friday Saturday 13 14 Waves vocab waves ws 20 PSAT make notecards 7th 15 21 22 quiz 16 23 17 24 27 28 29 30 31 elements test demo day Blank 1 The Nature

More information

Introduction to Quantum Mechanics. and Quantum Numbers

Introduction to Quantum Mechanics. and Quantum Numbers Introduction to Quantum Mechanics and Quantum Numbers The Quantum Mechanical Model quantum mechanics: the application of quantum theory to explain the properties of matter, particularly electrons in atoms

More information

Chapter 4 Arrangement of Electrons in Atoms. 4.1 The Development of a New Atomic Model

Chapter 4 Arrangement of Electrons in Atoms. 4.1 The Development of a New Atomic Model Chapter 4 Arrangement of Electrons in Atoms 4.1 The Development of a New Atomic Model Properties of Light Electromagnetic Radiation: EM radiation are forms of energy which move through space as waves There

More information

Chapter 7. Quantum Theory and the Electronic Structure of Atoms

Chapter 7. Quantum Theory and the Electronic Structure of Atoms Chapter 7 Quantum Theory and the Electronic Structure of Atoms This chapter introduces the student to quantum theory and the importance of this theory in describing electronic behavior. Upon completion

More information

The Structure of the Atom Review

The Structure of the Atom Review The Structure of the Atom Review Atoms are composed of PROTONS + positively charged mass = 1.6726 x 10 27 kg NEUTRONS neutral mass = 1.6750 x 10 27 kg ELECTRONS negatively charged mass = 9.1096 x 10 31

More information

Structure of the atom

Structure of the atom Structure of the atom What IS the structure of an atom? What are the properties of atoms? REMEMBER: structure affects function! Important questions: Where are the electrons? What is the energy of an electron?

More information

CHEMISTRY - ZUMDAHL 8E CH.7 - ATOMIC STRUCTURE & PERIODICITY.

CHEMISTRY - ZUMDAHL 8E CH.7 - ATOMIC STRUCTURE & PERIODICITY. !! www.clutchprep.com CONCEPT: THE NATURE OF LIGHT Visible light represents a small portion of the continuum of radiant energy known as. The visible light spectrum ranges from to. Its wave properties of

More information

Chemistry 111 Dr. Kevin Moore

Chemistry 111 Dr. Kevin Moore Chemistry 111 Dr. Kevin Moore Black Body Radiation Heated objects emit radiation based on its temperature Higher temperatures produce higher frequencies PhotoElectric Effect Light on a clean metal surface

More information

Quantum Theory and the Electronic Structure of Atoms

Quantum Theory and the Electronic Structure of Atoms Quantum Theory and the Electronic Structure of Atoms Chapter 7 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Properties of Waves Wavelength ( ) is the distance

More information

The early periodic table based on atomic weight. (Section 5.1) Lets review: What is a hydrogen atom? 1 electron * nucleus H 1 proton

The early periodic table based on atomic weight. (Section 5.1) Lets review: What is a hydrogen atom? 1 electron * nucleus H 1 proton PERIODICITY AND ATOMIC STRUCTURE CHAPTER 5 How can we relate the structure of the atom to the way that it behaves chemically? The process of understanding began with a realization that many of the properties

More information

Chapter 6. Electronic Structure of Atoms

Chapter 6. Electronic Structure of Atoms Chapter 6 Electronic Structure of Atoms 6.1 The Wave Nature of Light Made up of electromagnetic radiation. Waves of electric and magnetic fields at right angles to each other. Parts of a wave Wavelength

More information

Electrons! Chapter 5

Electrons! Chapter 5 Electrons! Chapter 5 I.Light & Quantized Energy A.Background 1. Rutherford s nuclear model: nucleus surrounded by fast-moving electrons; no info on how electrons move, how they re arranged, or differences

More information

Chapter 7. The Quantum- Mechanical Model of the Atom. Chapter 7 Lecture Lecture Presentation. Sherril Soman Grand Valley State University

Chapter 7. The Quantum- Mechanical Model of the Atom. Chapter 7 Lecture Lecture Presentation. Sherril Soman Grand Valley State University Chapter 7 Lecture Lecture Presentation Chapter 7 The Quantum- Mechanical Model of the Atom Sherril Soman Grand Valley State University The Beginnings of Quantum Mechanics Until the beginning of the twentieth

More information

Ch 6 Atomic Spectra. Masterson & Hurley

Ch 6 Atomic Spectra. Masterson & Hurley Ch 6 Atomic Spectra Masterson & Hurley 1 Joule = 1 kg m 2 s 2 Ch 6.1 Light, Photon Energies, & Atomic Spectra What scientists know about light, scientists are able to explain the structure of the atom.

More information

Quantum Mechanics & Atomic Structure (Chapter 11)

Quantum Mechanics & Atomic Structure (Chapter 11) Quantum Mechanics & Atomic Structure (Chapter 11) Quantum mechanics: Microscopic theory of light & matter at molecular scale and smaller. Atoms and radiation (light) have both wave-like and particlelike

More information

The Wave Nature of Light. Chapter Seven: Electromagnetic Waves. c = λν. λ and ν are inversely related

The Wave Nature of Light. Chapter Seven: Electromagnetic Waves. c = λν. λ and ν are inversely related The Wave Nature of Light Chapter Seven: ATOMIC STRUCTURE & PERIODICITY Electromagnetic radiation is energy propagated by vibrating electric and magnetic fields. Electromagnetic radiation forms a whole

More information

I. Multiple Choice Questions (Type-I)

I. Multiple Choice Questions (Type-I) I. Multiple Choice Questions (Type-I) 1. Which of the following conclusions could not be derived from Rutherford s α -particle scattering experiement? (i) Most of the space in the atom is empty. (ii) The

More information

The Quantum Mechanical Atom

The Quantum Mechanical Atom The Quantum Mechanical Atom CHAPTER 7 Chemistry: The Molecular Nature of Matter, 6 th edition By Jesperson, Brady, & Hyslop CHAPTER 8: Quantum Mechanical Atom Learning Objectives q Light as Waves, Wavelength

More information

Chapter 7: The Quantum-Mechanical Model of the Atom

Chapter 7: The Quantum-Mechanical Model of the Atom C h e m i s t r y 1 A : C h a p t e r 7 P a g e 1 Chapter 7: The Quantum-Mechanical Model of the Atom Homework: Read Chapter 7. Work out sample/practice exercises Check for the MasteringChemistry.com assignment

More information

Introduction. Electromagnetic Waves. Electromagnetic Waves

Introduction. Electromagnetic Waves. Electromagnetic Waves Introduction Much of the information we know about electrons comes from studies of interactions of light and matter. In the early 1900 s, scientists discovered that light has properties of both a wave

More information

Atomic Structure. Standing Waves x10 8 m/s. (or Hz or 1/s) λ Node

Atomic Structure. Standing Waves x10 8 m/s. (or Hz or 1/s) λ Node Atomic Structure Topics: 7.1 Electromagnetic Radiation 7.2 Planck, Einstein, Energy, and Photons 7.3 Atomic Line Spectra and Niels Bohr 7.4 The Wave Properties of the Electron 7.5 Quantum Mechanical View

More information

Unit 4. Electrons in Atoms

Unit 4. Electrons in Atoms Unit 4 Electrons in Atoms When were most of the subatomic particles discovered? Who discovered densely packed nucleus surrounded by fast moving electrons? Rutherford s Model Major development Lacked detail

More information

Quantum Theory of the Atom

Quantum Theory of the Atom The Wave Nature of Light Quantum Theory of the Atom Electromagnetic radiation carries energy = radiant energy some forms are visible light, x rays, and radio waves Wavelength ( λ) is the distance between

More information

Provide a short and specific definition in YOUR OWN WORDS. Do not use the definition from the book. Electromagnetic Radiation

Provide a short and specific definition in YOUR OWN WORDS. Do not use the definition from the book. Electromagnetic Radiation Name: Provide a short and specific definition in YOUR OWN WORDS. Do not use the definition from the book Additional Notes: Electromagnetic Radiation Electromagnetic Spectrum Wavelength Frequency Photoelectric

More information

5.1 Light & Quantized Energy

5.1 Light & Quantized Energy 5.1 Light & Quantized Energy Objectives: 1. Describe electromagnetic (EM) wave properties & measures 2. Relate visible light to areas of the EM spectrum with higher & lower energy 3. Know the relationship

More information

Chapter 5 Electrons In Atoms

Chapter 5 Electrons In Atoms Chapter 5 Electrons In Atoms 5.1 Revising the Atomic Model 5.2 Electron Arrangement in Atoms 5.3 Atomic Emission Spectra and the Quantum Mechanical Model 1 Copyright Pearson Education, Inc., or its affiliates.

More information

The Bohr Model Bohr proposed that an electron is found only in specific circular paths, or orbits, around the nucleus.

The Bohr Model Bohr proposed that an electron is found only in specific circular paths, or orbits, around the nucleus. 5.1 The Development of Atomic Models Rutherford s atomic model could not explain the chemical properties of elements. Rutherford s atomic model could not explain why objects change color when heated. The

More information

Chapter 9: Electrons and the Periodic Table

Chapter 9: Electrons and the Periodic Table C h e m i s t r y 1 2 C h 9 : E l e c t r o n s a n d P e r i o d i c T a b l e P a g e 1 Chapter 9: Electrons and the Periodic Table Work on MasteringChemistry assignments What we have learned: Dalton

More information

Chapter 2. Atomic Structure and Periodicity

Chapter 2. Atomic Structure and Periodicity Chapter 2 Atomic Structure and Periodicity Chapter 2 Table of Contents (2.1) (2.2) (2.3) (2.4) (2.5) (2.6) (2.7) (2.8) (2.9) Electromagnetic radiation The nature of matter The atomic spectrum of hydrogen

More information

The Nature of Energy

The Nature of Energy The Nature of Energy For atoms and molecules, one does not observe a continuous spectrum, as one gets from a white light source.? Only a line spectrum of discrete wavelengths is observed. 2012 Pearson

More information

UNIT 4 Electrons in Atoms. Advanced Chemistry 235 Lanphier High School Mr. David Peeler

UNIT 4 Electrons in Atoms. Advanced Chemistry 235 Lanphier High School Mr. David Peeler UNIT 4 Electrons in Atoms Advanced Chemistry 235 Lanphier High School Mr. David Peeler Section 4.1 Models of the Atom OBJECTIVES: Identify the inadequacies in the Rutherford atomic model. Section 4.1 Models

More information

Atomic Structure Part II Electrons in Atoms

Atomic Structure Part II Electrons in Atoms Atomic Structure Part II Electrons in Atoms Radiant energy travels in the form of waves that have both electrical and magnetic properties. These electromagnetic waves can travel through empty space, as

More information

CHEMISTRY - KIRSS 2E CH.3 - ATOMIC STRUCTURE: EXPLAINING THE PROPERTIES OF ELEMENTS

CHEMISTRY - KIRSS 2E CH.3 - ATOMIC STRUCTURE: EXPLAINING THE PROPERTIES OF ELEMENTS !! www.clutchprep.com CONCEPT: THE NATURE OF LIGHT Visible light represents a small portion of the continuum of radiant energy known as. The visible light spectrum ranges from to. Its wave properties of

More information

Ch. 5 Notes - ELECTRONS IN ATOMS NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 5 Notes - ELECTRONS IN ATOMS NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Ch. 5 Notes - ELECTRONS IN ATOMS NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. 5.1 Notes I. Light and Quantized Energy A. The Wave Nature of Light 1) the wave

More information

Chapter 6. Electronic Structure of Atoms. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 6. Electronic Structure of Atoms. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 6 Electronic Structure of Atoms John D. Bookstaver St. Charles Community College Cottleville, MO Waves Waves are periodic disturbances they repeat at regular intervals of time

More information

CHAPTER 5 Electrons in Atoms

CHAPTER 5 Electrons in Atoms CHAPTER 5 Electrons in Atoms 5.1 Light & Quantized Energy Was the Nuclear Atomic model incomplete? To most scientists, the answer was yes. The arrangement of electrons was not determined > Remember...the

More information

Electronic Structure and the Periodic Table. Unit 6 Honors Chemistry

Electronic Structure and the Periodic Table. Unit 6 Honors Chemistry Electronic Structure and the Periodic Table Unit 6 Honors Chemistry Wave Theory of Light James Clerk Maxwell Electromagnetic waves a form of energy that exhibits wavelike behavior as it travels through

More information

CHEMISTRY Matter and Change

CHEMISTRY Matter and Change CHEMISTRY Matter and Change Chapter 5: Electrons in Atoms 5 Section 5.1 Section Section 5.3 Table Of Contents Light and Quantized Energy Electron Configuration Compare the wave and particle natures of

More information

Chapter 5: Electrons in Atoms

Chapter 5: Electrons in Atoms Chapter 5: Electrons in Atoms Models of the Atom Rutherford used existing ideas about the atom and proposed an atomic model in which the electrons move around the nucleus, like the planets move around

More information

3/26/10. Light carries energy in waves. Units for wavelength, λ meter 1 nm = 10-9 m 1 Angstrom (1 Å) = m

3/26/10. Light carries energy in waves. Units for wavelength, λ meter 1 nm = 10-9 m 1 Angstrom (1 Å) = m Chpt 6 lectronic Structure of Atoms lectromagnetic Radiation Light Light carries energy in 2 ways: 1st is the Wave Model Amplitude ν. λ = c time Wavelength (lambda, λ) Frequency (nu, ν) Speed (c = 3.00

More information

Name Class Date ELECTRONS AND THE STRUCTURE OF ATOMS

Name Class Date ELECTRONS AND THE STRUCTURE OF ATOMS Electrons in Atoms ELECTRONS AND THE STRUCTURE OF ATOMS 5.1 Revising the Atomic Model Essential Understanding of an atom. An electron s energy depends on its location around the nucleus Reading Strategy

More information

Final Exam. Tuesday, July 29, Final 25% of Overall grade. Chapters covered. Crib Sheets allowed. Grade Improvement Plan

Final Exam. Tuesday, July 29, Final 25% of Overall grade. Chapters covered. Crib Sheets allowed. Grade Improvement Plan Final Exam Tuesday, July 29, 2002 8:00 PM to 10:50 PM Chem Annex Room 16 Final 25% of Overall grade Multiple Choice, no partial credit, no extra credit Chapters covered Part A Chapters 4-6 Part B Chapters

More information