Particle in cell simulations

Size: px
Start display at page:

Download "Particle in cell simulations"

Transcription

1 Particle in cell simulations Part II: Implementation of Zeltron Benoît Cerutti IPAG, CNRS, Université Grenoble Alpes, Grenoble, France. 1 Astrosim, Lyon, June 6 July 7, 017.

2 Plan of the lectures Monday: Morning: The PIC method, numerical schemes and main algorithms. Afternoon: Coding practice of the Boris push and the Yee algorithm. Tuesday: Morning: Implementation of Zeltron, structure and methods. Afternoon: Zeltron hands on relativistic reconnection simulations Evening: Seminar about application of PIC to pulsar magnetospheres. Wednesday: Morning: Boundary conditions and parallelization in Zeltron. Afternoon: Zeltron Hands on relativistic collisionless shocks simulations

3 General presentation Zeltron is an explicit, relativistic 3D PIC code created from scratch in 01. Originally designed to study particle acceleration in relativistic magnetic reconnection sites applied to astrophysics. Main developers: Benoît Cerutti (CNRS/Univ. Grenoble Alpes) Greg Werner (University of Colorado) Some general features Written in Fortran 90 Yee FDTD algorithm for the fields Boris push for the particles Efficiently parallelized with MPI (3D domain decomposition) Includes synchrotron and inverse Compton radiation reaction forces Non Cartesian mesh: spherical, cylindrical, Schwarzschild (not public) Large set of tools for data reduction and data analysis on the fly Set of boundary conditions (absorption, creation, open, reflective, ) No need for external libraries 3

4 Global structure PROGRAM: main.f90: Contains the main body of the code, initialization, main loop in time. MODULES: mod_input.f90: Input file where all the numerical and physical parameters can be set. This is the only file to modify for a given setup. mod_initial.f90: Initialize the fields and the particles (problem dependent). mod_fields.f90: Solve Maxwell equations and other operations related to fields. mod_motion.f90: Contains the particle push, applies boundary conditions and exchange particles at the boundaries between processors mod_rhoj.f90: For depositing particle charge and current on the grid. mod_analysis.f90: Data reduction and analysis on the fly and output to the disk Others: More technical modules related to I/O, interpolation, and parallelization. 4

5 Computation procedure per timestep in PIC Step 1 Solve Newton's equation B = c E t Δt E =c B 4 π J t Step 3 dp v B =q E+ dt c ( ) Deposit Solve Maxwell s Charge and equations (E,B) current densities Step (ρ,j) 5

6 General structure of the main.f90 file INITIALISATION 1. Initialize the MPI environment for parallel computing (see lecture III). Initialize the spatial grid, and Yee mesh (this lecture) 3. Set the initial conditions (Particles and fields) at t=0 (this lecture) 4. Write initial data to disk 5. Leap-frog initialization: evolve u0 u0-1/ (see lecture I) MAIN LOOP IN TIME - For each particle species 1. Boris push: un-1/ un+1/ (see lecture I). Deposit currents: J0=0.5ρnvn+1/ (see lecture I) 3. Evolve particle positions: rn rn+1 4. Apply boundary conditions and MPI communications (see lecture III) 5. Deposit currents: J=0.5ρn+1vn+1/+J0 (see lecture I) 6

7 Sample from the main.f90 file (particles)! Update u from t-dt/ to t+dt/, particle positions unchanged CALL BORIS_PUSH(-1d0,me,pcl_ed,pcl_data_ed,Bxg,Byg,Bzg,Exg,Eyg,Ezg,& Uph,xgp,ygp,Esyned,Eicsed,NED)! Computation of rho at t and half of the current density CALL RHOJ(-1d0,pcl_ed,rhoed,Jx0,Jy0,Jz0,xgp,ygp,NED,id,ngh,TOPO_COMM,ierr)! Push the particles from t to t+dt CALL PUSH_PARTICLES(pcl_ed,NED)! Applying boundary conditions to the particles CALL BOUNDARIES_PARTICLES(pcl_ed,pcl_data_ed,taged,NED)! Counting the particles leaving each subdomain CALL COUNT_ESCAPE(pcl_ed,xminp,xmaxp,yminp,ymaxp,NED,NESC)! Exchange of particles at the boundaries between processes CALL COM_PARTICLES(pcl_ed,pcl_data_ed,taged,xminp,xmaxp,yminp,ymaxp,& NED,NESC,id,ngh,TOPO_COMM,ierr)! Computation of rho at t+dt and the other half of the current density CALL RHOJ(-1d0,pcl_ed,rhoed,Jxed,Jyed,Jzed,xgp,ygp,NED,id,ngh,TOPO_COMM,ierr)! Total current density at t+dt/ Jxed=Jxed+Jx0 Jyed=Jyed+Jy0 Jzed=Jzed+Jz0 7

8 General structure of the main.f90 file MAIN LOOP IN TIME (continues) - For the fields 1. Collect currents from all species, and put current on the Yee mesh.. Push B field half time step: Bn Bn+1/ (see lecture I) 3. Push E field full time step: En En+1 (see lecture I) 4. Correct the E field (charge conservation) with Poisson solver (this lecture) 5. Push B field half time step: Bn+1/ Bn+1 (see lecture I) - Analyze and write data to disk every FDUMP time steps (this lecture) - Create a checkpoint every FSAVE time steps 8

9 Sample from the main.f90 file (fields)!=======================================================================! B FIELD at t=t+dt/!======================================================================= CALL PUSH_BHALF(Bx,By,Bz,Ex,Ey,Ez,xgp,ygp,id,ngh,TOPO_COMM,ierr)!=======================================================================! SOLVE MAXWELL'S EQUATIONS at t=t+dt!=======================================================================! E FIELD at t=t+dt CALL PUSH_EFIELD(Bx,By,Bz,Ex,Ey,Ez,Jx,Jy,Jz,xgp,ygp,id,ngh,TOPO_COMM,ierr) IF (MOD(it,FREQ_POISSON).EQ.0) THEN! Solve Poisson equation to ensure that div(e)=4*pi*rho CALL CORRECT_EFIELD(Ex,Ey,xgp,ygp,rho,id,ngh,TOPO_COMM,ierr) END IF! B FIELD at t=t+dt CALL PUSH_BHALF(Bx,By,Bz,Ex,Ey,Ez,xgp,ygp,id,ngh,TOPO_COMM,ierr) CALL FIELDS_NODES(Bx,By,Bz,Ex,Ey,Ez,Bxg,Byg,Bzg,Exg,Eyg,Ezg,xgp,ygp,& id,ngh,topo_comm,ierr) 9

10 The grid and the Yee mesh Define number of cells and spatial boundaries from the input file (mod_input.f90)! Number of cells in X INTEGER*8, PARAMETER, PUBLIC :: NCX=18! Number of cells in Y INTEGER*8, PARAMETER, PUBLIC :: NCY=18! Spatial boundaries in the X-direction DOUBLE PRECISION, PARAMETER, PUBLIC :: xmin=0d0,xmax=100.0! Spatial boundaries in the Y-direction DOUBLE PRECISION, PARAMETER, PUBLIC :: ymin=0d0,ymax=100.0! Spatial step DOUBLE PRECISION, PARAMETER, PUBLIC :: dx=(xmax-xmin)/ncx DOUBLE PRECISION, PARAMETER, PUBLIC :: dy=(ymax-ymin)/ncy Build the spatial arrays (main.f90)! Nodal lattice DO ix=1,nx xg(ix)=(ix-1)*1d0/((nx-1)*1d0)*(xmax-xmin)+xmin ENDDO DO iy=1,ny yg(iy)=(iy-1)*1d0/((ny-1)*1d0)*(ymax-ymin)+ymin ENDDO! Yee lattice xyee=xg+dx/.0 yyee=yg+dy/.0 10

11 Particle data structure The particle distribution function is characterized by 3 arrays (mod_input.f90):! BACKGROUND ELECTRONS distribution function components DOUBLE PRECISION, ALLOCATABLE, PUBLIC :: pcl_eb(:,:) DOUBLE PRECISION, ALLOCATABLE, PUBLIC :: pcl_data_eb(:,:) INTEGER*8, ALLOCATABLE, PUBLIC :: tageb(:) ALLOCATE(pcl_eb(1:7,1:NP)): Actual particle distribution function (pb independent) x List of particles y z ux uy uz wgt Part 1 Part... Part NP ALLOCATE(pcl_data_eb(1:4,1:NP)): Additional particle data information (pb dependent) Data 1 List of particles Data 3 Data 4 Part 1 Part... Data Part NP 11

12 Particle data structure The particle distribution function is characterized by 3 arrays (mod_input.f90):! BACKGROUND ELECTRONS distribution function components DOUBLE PRECISION, ALLOCATABLE, PUBLIC :: pcl_eb(:,:) DOUBLE PRECISION, ALLOCATABLE, PUBLIC :: pcl_data_eb(:,:) INTEGER*8, ALLOCATABLE, PUBLIC :: tageb(:) ALLOCATE(tag_eb(1:NP)): Each particle is identified by a unique integer number => Useful for particle tracking tag List of particles Part 1 tag1 Part tag Part NP tag3 1

13 Fields/Currents data structure Fields defined on the Yee lattice (main.f90): Used to evolve the fields (see Lecture I)!**************************************************************! Magnetic and Electric fields components Yee lattice DOUBLE PRECISION, DIMENSION(1:NX,1:NY) :: Bx,By,Bz DOUBLE PRECISION, DIMENSION(1:NX,1:NY) :: Ex,Ey,Ez The current density is needed on the Yee mesh (main.f90)!**************************************************************! Current density components Yee lattice DOUBLE PRECISION, DIMENSION(1:NX,1:NY) :: Jx,Jy,Jz Fields defined on the nodes of the grid (main.f90): Used to evolve the particles (see Lecture I)!**************************************************************! Magnetic and Electric fields components at nodes DOUBLE PRECISION, DIMENSION(1:NX,1:NY) :: Bxg,Byg,Bzg DOUBLE PRECISION, DIMENSION(1:NX,1:NY) :: Exg,Eyg,Ezg 13

14 From Yee to nodes D y Electric field j+1 Ey Bx Bz j+1/ By j Ez i Ex i +1/, j + Exi 1/, j Exgi, j = Ex i+1/ x i+1 Ey i, j +1/ + Ey i, j 1 / Eygi, j = Ezgi, j =Ez i, j Magnetic field Bx i, j +1 / + Bx i, j 1/ Bxgi, j= By i+1 /, j + By i 1 /, j Bygi, j= Bz i+1 /, j +1/ + Bzi 1/, j +1 / + Bz i+1 /, j 1 / + Bz i 1 /, j 1 / Bzgi, j = 4 14

15 Correction of the electric field Zeltron does not use a charge conserving deposition scheme => Poisson equation must be solved! Consider that: E '= E+ δ E Small correction Known field Correct δ E = δ ϕ δ ϕ= ( 4 π ρ E) Solve this equation using a Gauss Seidel iterative method Empirically, Zeltron uses 500 iterations, every 5 time steps. Relevant parameters in mod_input.f90! Poisson solver calling frequency in terms of timesteps INTEGER, PARAMETER, PUBLIC :: FREQ_POISSON=5! Number of iterations to solve Poisson's equation INTEGER, PARAMETER, PUBLIC :: NIT=500 15

16 Poisson solver δ ϕ= ( 4 π ρ E) (i,j+1) D Example: 5 points stencil (i+1,j) (i,j) (i+1,j) (i,j 1) δ ϕ δ ϕ δ ϕi+ 1, j δ ϕi, j + δ ϕi 1, j δ ϕi, j+1 δ ϕi, j +δ ϕi, j 1 δ ϕ= + + x y Δx Δ y Injecting this into Poisson and after some rearrangements yields (and if x= y): δ ϕi, j = 1 δ ϕ + δ ϕ +δ ϕ +δ ϕ +( 4 π ρ E ) Δ x ( i+1, j ) i 1, j i, j +1 i, j 1 4 Calling the subroutine in main.f90 IF (MOD(it,FREQ_POISSON).EQ.0) THEN! Solve Poisson equation to ensure that div(e)=4*pi*rho CALL CORRECT_EFIELD(Ex,Ey,xgp,ygp,rho,id,ngh,TOPO_COMM,ierr) END IF 16

17 Particle initialization: Spatial distribution Let's consider a uniform distribution in D (mod_initial.f90) Cell (ix,iy) x (ix,iy+1) (ix+1,iy+1) y (ix,iy) xmin xmin+(ix 1) x (ix+1,iy) xmin+ix x!**************************************************************! Definition of the initial position (x0,y0) as a uniform random number defined between 0 and 1 x0c=0.0 y0c=0.0 CALL RANDOM_NUMBER(x0c) CALL RANDOM_NUMBER(y0c) x0c=xmin+(ix-1)*dx+x0c*dx y0c=ymin+(iy-1)*dy+y0c*dy!************************************************************** 17

18 Particle weight A macroparticle represents a large number of physical particles following the exact same trajectory in phase space. => The particle weight gives the normalization factor to connect between numerical and physical plasma densities. For a uniform physical and numerical plasma density, all the particles have the same weight given by: N phys n ( L x L y L z ) weight = = N num N num Physical density Sample code in D from main.f90:! Weight of background particles pcl_eb(7,:)=density_ratio*nd0*(xmax-xmin)*(ymax-ymin)/np pcl_pb(7,:)=density_ratio*nd0*(xmax-xmin)*(ymax-ymin)/np 18

19 Variable particle weight Large density contrast or sharp density profiles are hard to model with a constant particle weight. => Result in a bad sampling of low density regions Example: Relativistic reconnection studies where factor >10 between the background and the sheet plasmas. Solution: Variable particle weighting: Lx L y Lz weight ( y i)=n( y i) N num 19

20 Macroscopic quantities reconstruction One can reconstruct global and fluid quantities from the particles: (mod_analysis.f90) N cell Particle spectrum: dn 1 wk Δ γ dγ k =1 N dn 1 wk dv Δ V k=1 SUBROUTINE SPECTRUM_ANGULAR cell Plasma density: Stress energy tensor: μν P μ ν μν V V P η c ( ) T = ρ+ 1 ΔV Energy density: T 00 U e Momentum density: 1 T 0 i U p ΔV Pressure tensor: ij SUBROUTINE MAP_XY ij T P 1 ΔV SUBROUTINE MAP_FLUID N cell w γ mc k k k=1 N cell u k mc wk k=1 N cell k =1 ( ) wk m c i j uk u k γk 0

21 Particle initialization: Angular distribution Let's consider an isotropic angular distribution in 3D In spherical coordinates: θ0 u0 P(x,y) φ0 cosθ0 uniform random number between 1 and 1. - φ0 uniform random number between 0 and π. 1

22 Particle initialization: Angular distribution Let's consider an isotropic angular distribution in 3D (mod_initial.f90)!**************************************************************! Definition of the initial phi0 as a uniform random value between 0 and 1 phi0=0.0 CALL RANDOM_NUMBER(phi0) phi0=phi0*.0*pi! Definition of the initial cth0=cos(theta0) as a uniform random value between 0 and 1 cth0=0.0 CALL RANDOM_NUMBER(cth0) cth0=cth0*.0-1.0! Initial 4-velocity components ux0c=u0*sqrt(1.0-cth0*cth0)*cos(phi0) uy0c=u0*sqrt(1.0-cth0*cth0)*sin(phi0) uz0c=u0*cth0

23 Particle initialization: Energy distribution Let's consider a Power law distribution: f ( γ)= dn p γ dγ with γ [γ min, γ max ] The trick is to use the cumulative distribution: γ γ F ( γ) γ γ f ( γ ' )d γ ' min max f (γ')d γ ' min = γ p+1 γ minp+1 p+1 γ max γ minp+1 Next, define a uniform random number R between 0 and 1, and sample F to invert the distribution: F(γ) 1 R p +1 p +1 1 p +1 p+1 min γ=( R(γ max γ min )+ γ 0 ) 3 γmin γ γmax

24 Particle initialization: Energy distribution However, the cumulative distribution is often a tabulated (no analytical expression) F(γ) 1 R 0 F F1 γ1 γ γmin γ γmax We need to interpolate, a linear interpolation usually suffices: R ( 1 Γ) F 1 +Γ F γ γ 1 Γ= γ γ 1 R( γ γ 1) ( γ F1 γ1 F ) γ F F1 4

25 Particle initialization: Energy distribution In Zeltron, it looks like this (mod_initial.f90): Ru=0.0 CALL RANDOM_NUMBER(Ru) Ru=Ru*0.9999! Sum over all particles in a the cell DO ic=1,ppc! Localize closest known values of cumulative distribution gfu minu=minloc(abs(gfu-ru(ic))) iu=minu(1)! F1 and F gfu1=gfu(iu) gfu=gfu(iu+1)! u1 and u u1=ud(iu) u=ud(iu+1)! Linear interpolartion in the log-linear plane (numerically more accurate) u0(ic)=exp((ru(ic)*(log(u)-log(u1))log(u)*gfu1+log(u1)*gfu)/(gfu-gfu1)) ENDDO 5

26 Hands on II: Relativistic reconnection +B0 B0 Outflow Vout Erec Inflow Magnetic energy =? Plasma kinetic energy (heating+non thermal particles) How fast does reconnection proceed? How efficient at accelerating particles? What are the main acceleration mechanisms? 6

27 A common phenomenon ESA/C. T. Russel Man made plasma devices (e.g., Tokamaks, MRX at PPPL) Planet's magnetosphere (e.g., Earth, Jupiter, Saturn) ESO/L.Calçada NASA Pulsars/Magnetars Solar corona This evening's talk! BU Astrophysical jets Gamma ray burst7

28 Usual PIC setup: The Harris sheet 4π B= J c +B0 Current layer on skin depth scale δ J B0 8

29 Usual PIC setup: The Harris sheet Background particles +B0 Drifting particles initially carrying the current, in pressure balance δ B0 9

30 The relativistic Harris solution [See Kirk & Skjæraasen 003] The Harris solution is a kinetic equilibrium between the upstream magnetic pressure and a hot plasma concentrated inside the current sheet. The solution: The reconnecting field: B=B 0 tanh The drifting plasma density: y e δ x ( ) n d =n0 cosh y δ ( ) n 0= kt 4 π e Γd β d δ Pressure balance condition across the sheet: The background plasma: B0 =nd kt 8π n b =ϵ n0, (ϵ 1 for σ 1) σ= B0 4 π nb m e c 1 30

31 Particle initialization: Drifting Maxwellian The Harris solution assumes a relativistic drifting Maxwellian distribution, i.e., the plasma has a relativistic motion of Lorentz factor Γd. ( γ ' 1) f ( u ) exp θ kt ' θ= γ ' =Γd ( γ βd u ) mc In the lab frame: Where Following Swisdak (013): ( ) u =u + u Generation of ukvia the cumulative distribution of F(uk) u is generated, but cannot be chosen independently of uk The full procedure is in mod_initial.f90 Subroutines: SET_DRIFT_MAXWELLIAN, INIT_DRIFT_MAXWELLIAN, GEN_UP, GEN_PS 31

32 Initial numerical setup e+/e pairs +B0 Periodic δ B0 δ +B0 Periodic 3

Particle in cell simulations

Particle in cell simulations Particle in cell simulations Part III: Boundary conditions and parallelization Benoît Cerutti IPAG, CNRS, Université Grenoble Alpes, Grenoble, France. 1 Astrosim, Lyon, June 26 July 7, 2017. Plan of the

More information

Relativistic reconnection at the origin of the Crab gamma-ray flares

Relativistic reconnection at the origin of the Crab gamma-ray flares Relativistic reconnection at the origin of the Crab gamma-ray flares Benoît Cerutti Center for Integrated Plasma Studies University of Colorado, Boulder, USA Collaborators: Gregory Werner (CIPS), Dmitri

More information

Simulations of relativistic reconnection in pulsar wind nebulae and pulsar winds

Simulations of relativistic reconnection in pulsar wind nebulae and pulsar winds Simulations of relativistic reconnection in pulsar wind nebulae and pulsar winds Benoît Cerutti Lyman Spitzer Jr. Fellow Princeton University, Dept. of Astrophysical Sciences Collaborators @ Colorado :

More information

Magnetic dissipation in pulsar winds

Magnetic dissipation in pulsar winds Magnetic dissipation in pulsar winds Benoît Cerutti, CNRS & Univ. Grenoble Alpes, France. In collaboration with Sasha Philippov, UC Berkeley, USA. Cerutti & Philippov, A&A (2017) Third Purdue Workshop

More information

Benoît Cerutti CNRS & Université Grenoble Alpes (France)

Benoît Cerutti CNRS & Université Grenoble Alpes (France) Gamma-ray Gamma-ray pulsars: pulsars: What What have have we we learned learned from from ab-initio ab-initio kinetic kinetic simulations? simulations? Benoît Cerutti CNRS & Université Grenoble Alpes (France)

More information

Kinetic Plasma Simulations in Astrophysics. Lorenzo Sironi

Kinetic Plasma Simulations in Astrophysics. Lorenzo Sironi Kinetic Plasma Simulations in Astrophysics Lorenzo Sironi Outline Plasma physics in astrophysics. The Vlasov-Maxwell system. Fully-kinetic particle-in-cell codes. 1. Electrostatic codes. 2. Electromagnetic

More information

Kinetic Plasma Simulations. Anatoly Spitkovsky (Princeton)

Kinetic Plasma Simulations. Anatoly Spitkovsky (Princeton) Kinetic Plasma Simulations Anatoly Spitkovsky (Princeton) Contents Plasma physics on computers How PIC works Electrostatic codes Charge assignment and shape factors Discretization effects Electromagnetic

More information

PIC modeling of particle acceleration and high-energy radiation in pulsars

PIC modeling of particle acceleration and high-energy radiation in pulsars PIC modeling of particle acceleration and high-energy radiation in pulsars Benoît Cerutti IPAG, CNRS, Université Grenoble Alpes In collaboration with : Sasha Philippov (Princeton), Anatoly Spitkovsky (Princeton),

More information

Kinetic modelling of pulsar magnetospheres

Kinetic modelling of pulsar magnetospheres Kinetic modelling of pulsar magnetospheres Benoît Cerutti IPAG, CNRS, Université Grenoble Alpes In collaboration with : Sasha Philippov (Princeton), Anatoly Spitkovsky (Princeton), Jérémy Mortier (U. Grenoble

More information

Lecture 4: The particle equations (1)

Lecture 4: The particle equations (1) Lecture 4: The particle equations (1) Presenter: Mark Eric Dieckmann Department of Science and Technology (ITN), Linköping University, Sweden July 17, 2014 Overview We have previously discussed the leapfrog

More information

arxiv: v1 [astro-ph.he] 1 Aug 2018

arxiv: v1 [astro-ph.he] 1 Aug 2018 arxiv:188.478v1 [astro-ph.he] 1 Aug 218 Relativistic magnetic reconnection in application to gamma-ray astrophysics Krzysztof Nalewajko 1 1. Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences

More information

Hybrid Simulations: Numerical Details and Current Applications

Hybrid Simulations: Numerical Details and Current Applications Hybrid Simulations: Numerical Details and Current Applications Dietmar Krauss-Varban and numerous collaborators Space Sciences Laboratory, UC Berkeley, USA Boulder, 07/25/2008 Content 1. Heliospheric/Space

More information

Outline. 1 Why PIC Simulations Make Sense. 2 The Algorithm. 3 Examples Surface High Harmonics Generation. 4 Extensions Of The PIC Algorithm

Outline. 1 Why PIC Simulations Make Sense. 2 The Algorithm. 3 Examples Surface High Harmonics Generation. 4 Extensions Of The PIC Algorithm PIC Simulations an Introduction GRK 1203 Meeting February 12-15, 2008, Oelde Outline 1 Simulations Make Sense 2 3 Surface High Harmonics Generation 4 Of PIC Plasma Physics Is Complex Experiment real thing

More information

Particle in Cell method

Particle in Cell method Particle in Cell method Birdsall and Langdon: Plasma Physics via Computer Simulation Dawson: Particle simulation of plasmas Hockney and Eastwood: Computer Simulations using Particles we start with an electrostatic

More information

Understanding the pulsar magnetosphere through first-principle simulations

Understanding the pulsar magnetosphere through first-principle simulations Understanding the pulsar magnetosphere through first-principle simulations Alexander Y. Chen In collaboration with: Andrei Beloborodov Rui Hu The Many Faces of Neutron Stars August 25, 2015 Pulsars: Rotating

More information

Particle-in-Cell Codes for plasma-based particle acceleration

Particle-in-Cell Codes for plasma-based particle acceleration A. Pukhov Institute for Theoretical Physics I University of Dusseldorf, Germany Particle-in-Cell Codes for plasma-based particle acceleration Outline Relativistic plasmas, acceleration and the simulation

More information

Guangye Chen, Luis Chacón,

Guangye Chen, Luis Chacón, JIFT workshop! Oct. 31, 2014 New Orleans, LA.! Guangye Chen, Luis Chacón, CoCoMANs team Los Alamos National Laboratory, Los Alamos, NM 87545, USA gchen@lanl.gov 1 Los Alamos National Laboratory Motivation

More information

Linear and non-linear evolution of the gyroresonance instability in Cosmic Rays

Linear and non-linear evolution of the gyroresonance instability in Cosmic Rays Linear and non-linear evolution of the gyroresonance instability in Cosmic Rays DESY Summer Student Programme, 2016 Olga Lebiga Taras Shevchenko National University of Kyiv, Ukraine Supervisors Reinaldo

More information

ブラックホール磁気圏での 磁気リコネクションの数値計算 熊本大学 小出眞路 RKKコンピュー 森野了悟 ターサービス(株) BHmag2012,名古屋大学,

ブラックホール磁気圏での 磁気リコネクションの数値計算 熊本大学 小出眞路 RKKコンピュー 森野了悟 ターサービス(株) BHmag2012,名古屋大学, RKK ( ) BHmag2012,, 2012.2.29 Outline Motivation and basis: Magnetic reconnection around astrophysical black holes Standard equations of resistive GRMHD Test calculations of resistive GRMHD A simulation

More information

Electrodynamics of Magnetized Rotators Anatoly Spitkovsky,, UC Berkeley

Electrodynamics of Magnetized Rotators Anatoly Spitkovsky,, UC Berkeley Electrodynamics of Magnetized Rotators Anatoly Spitkovsky,, UC Berkeley Magnetized rotators are ubiquitous: pulsars, AGN, GRBs (?) Rotation very efficient at long-term energy storage Extraction of rotational

More information

Plasma Astrophysics Chapter 1: Basic Concepts of Plasma. Yosuke Mizuno Institute of Astronomy National Tsing-Hua University

Plasma Astrophysics Chapter 1: Basic Concepts of Plasma. Yosuke Mizuno Institute of Astronomy National Tsing-Hua University Plasma Astrophysics Chapter 1: Basic Concepts of Plasma Yosuke Mizuno Institute of Astronomy National Tsing-Hua University What is a Plasma? A plasma is a quasi-neutral gas consisting of positive and negative

More information

Radia%ve Magne%c Reconnec%on. in Astrophysical Plasmas. Dmitri Uzdensky. (University of Colorado, Boulder) collaborators:

Radia%ve Magne%c Reconnec%on. in Astrophysical Plasmas. Dmitri Uzdensky. (University of Colorado, Boulder) collaborators: Radia%ve Magne%c Reconnec%on collaborators: in Astrophysical Plasmas Dmitri Uzdensky (University of Colorado, Boulder) - B. CeruF *, G. Werner, K. Nalewajko, M. Begelman (Univ. Colorado) - A. Spitkovsky

More information

PHYSICS OF HOT DENSE PLASMAS

PHYSICS OF HOT DENSE PLASMAS Chapter 6 PHYSICS OF HOT DENSE PLASMAS 10 26 10 24 Solar Center Electron density (e/cm 3 ) 10 22 10 20 10 18 10 16 10 14 10 12 High pressure arcs Chromosphere Discharge plasmas Solar interior Nd (nω) laserproduced

More information

Explosive reconnection of the double tearing mode in relativistic plasmas

Explosive reconnection of the double tearing mode in relativistic plasmas Explosive reconnection of the double tearing mode in relativistic plasmas Application to the Crab Jérôme Pétri 1 Hubert Baty 1 Makoto Takamoto 2, Seiji Zenitani 3 1 Observatoire astronomique de Strasbourg,

More information

Simulation Techniques for HED I: Particle-in-Cell Methods

Simulation Techniques for HED I: Particle-in-Cell Methods 2015 HED Summer School Simulation Techniques for HED I: Particle-in-Cell Methods Frank S. Tsung UCLA Special Thanks Viktor Decyk Peicheng Yu < - Slides Michael Meyers Thamine Dalichaouch < - Demos Outline

More information

The Physics of Fluids and Plasmas

The Physics of Fluids and Plasmas The Physics of Fluids and Plasmas An Introduction for Astrophysicists ARNAB RAI CHOUDHURI CAMBRIDGE UNIVERSITY PRESS Preface Acknowledgements xiii xvii Introduction 1 1. 3 1.1 Fluids and plasmas in the

More information

Compton Scattering I. 1 Introduction

Compton Scattering I. 1 Introduction 1 Introduction Compton Scattering I Compton scattering is the process whereby photons gain or lose energy from collisions with electrons. It is an important source of radiation at high energies, particularly

More information

Simulation of Relativistic Jet-Plasma Interactions

Simulation of Relativistic Jet-Plasma Interactions Simulation of Relativistic Jet-Plasma Interactions Robert Noble and Johnny Ng Stanford Linear Accelerator Center SABER Workshop, Laboratory Astrophysics WG SLAC, March 15-16, 2006 Motivations High energy

More information

MHD RELATED TO 2-FLUID THEORY, KINETIC THEORY AND MAGANETIC RECONNECTION

MHD RELATED TO 2-FLUID THEORY, KINETIC THEORY AND MAGANETIC RECONNECTION MHD RELATED TO 2-FLUID THEORY, KINETIC THEORY AND MAGANETIC RECONNECTION Marty Goldman University of Colorado Spring 2017 Physics 5150 Issues 2 How is MHD related to 2-fluid theory Level of MHD depends

More information

Tight-Focusing of Short Intense Laser Pulses in Particle-in-Cell Simulations of Laser-Plasma Interaction

Tight-Focusing of Short Intense Laser Pulses in Particle-in-Cell Simulations of Laser-Plasma Interaction 16/05/2017, CTU in Prague Tight-Focusing of Short Intense Laser Pulses in Particle-in-Cell Simulations of Laser-Plasma Interaction Bc. Petr Valenta (petr.valenta@eli-beams.eu) Supervisors: doc. Ing. Ondrej

More information

Fluid equations, magnetohydrodynamics

Fluid equations, magnetohydrodynamics Fluid equations, magnetohydrodynamics Multi-fluid theory Equation of state Single-fluid theory Generalised Ohm s law Magnetic tension and plasma beta Stationarity and equilibria Validity of magnetohydrodynamics

More information

Plasma Physics for Astrophysics

Plasma Physics for Astrophysics - ' ' * ' Plasma Physics for Astrophysics RUSSELL M. KULSRUD PRINCETON UNIVERSITY E;RESS '. ' PRINCETON AND OXFORD,, ', V. List of Figures Foreword by John N. Bahcall Preface Chapter 1. Introduction 1

More information

26. Non-linear effects in plasma

26. Non-linear effects in plasma Phys780: Plasma Physics Lecture 26. Non-linear effects. Collisionless shocks.. 1 26. Non-linear effects in plasma Collisionless shocks ([1], p.405-421, [6], p.237-245, 249-254; [4], p.429-440) Collisionless

More information

Fundamentals of Magnetohydrodynamics (MHD)

Fundamentals of Magnetohydrodynamics (MHD) Fundamentals of Magnetohydrodynamics (MHD) Thomas Neukirch School of Mathematics and Statistics University of St. Andrews STFC Advanced School U Dundee 2014 p.1/46 Motivation Solar Corona in EUV Want to

More information

Astrophysical Radiation Processes

Astrophysical Radiation Processes PHY3145 Topics in Theoretical Physics Astrophysical Radiation Processes 3: Relativistic effects I Dr. J. Hatchell, Physics 407, J.Hatchell@exeter.ac.uk Course structure 1. Radiation basics. Radiative transfer.

More information

Magnetic field reconnection is said to involve an ion diffusion region surrounding an

Magnetic field reconnection is said to involve an ion diffusion region surrounding an The magnetic field reconnection site and dissipation region by P.L. Pritchett 1 and F.S. Mozer 2 1. Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095-1547 2. Space Sciences Laboratory, University

More information

Three-dimensional nature of magnetic reconnection X-line in asymmetric current sheets

Three-dimensional nature of magnetic reconnection X-line in asymmetric current sheets Blue Waters symposium 2017 Three-dimensional nature of magnetic reconnection X-line in asymmetric current sheets Yi-Hsin Liu @ NASA- Goddard Space Flight Center William Daughton @ Los Alamos National Lab

More information

Heating and current drive: Radio Frequency

Heating and current drive: Radio Frequency Heating and current drive: Radio Frequency Dr Ben Dudson Department of Physics, University of York Heslington, York YO10 5DD, UK 13 th February 2012 Dr Ben Dudson Magnetic Confinement Fusion (1 of 26)

More information

Particle acceleration during 2D and 3D magnetic reconnection

Particle acceleration during 2D and 3D magnetic reconnection Particle acceleration during 2D and 3D magnetic reconnection J. Dahlin University of Maryland J. F. Drake University of Maryland M. Swisdak University of Maryland Astrophysical reconnection Solar and stellar

More information

Can blazar flares be triggered by the VHE gamma-rays from the surrounding of a supermassive black hole?

Can blazar flares be triggered by the VHE gamma-rays from the surrounding of a supermassive black hole? Can blazar flares be triggered by the VHE gamma-rays from the surrounding of a supermassive black hole? Department of Astrophysics, University of Lodz, Lodz, Poland E-mail: p.banasinski@uni.lodz.pl Wlodek

More information

A particle-in-cell method with adaptive phase-space remapping for kinetic plasmas

A particle-in-cell method with adaptive phase-space remapping for kinetic plasmas A particle-in-cell method with adaptive phase-space remapping for kinetic plasmas Bei Wang 1 Greg Miller 2 Phil Colella 3 1 Princeton Institute of Computational Science and Engineering Princeton University

More information

The ideal Maxwellian plasma

The ideal Maxwellian plasma The ideal Maxwellian plasma Dr. L. Conde Departamento de Física Aplicada. E.T.S. Ingenieros Aeronáuticos Universidad Politécnica de Madrid Plasmas are,... The plasma state of matter may be defined as a

More information

Tsvi Piran The Hebrew University

Tsvi Piran The Hebrew University Some new (old) ideas about particle acceleration and other topics Tsvi Piran The Hebrew University Evgeny Derishev, Daniel Kagan, Ehud Nakar, Glennys Farrar Paris Sept 13-16, 2016 Outline Shock Acceleration

More information

Ideal Magnetohydrodynamics (MHD)

Ideal Magnetohydrodynamics (MHD) Ideal Magnetohydrodynamics (MHD) Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 1, 2016 These lecture notes are largely based on Lectures in Magnetohydrodynamics

More information

High Order Semi-Lagrangian WENO scheme for Vlasov Equations

High Order Semi-Lagrangian WENO scheme for Vlasov Equations High Order WENO scheme for Equations Department of Mathematical and Computer Science Colorado School of Mines joint work w/ Andrew Christlieb Supported by AFOSR. Computational Mathematics Seminar, UC Boulder

More information

Parsek2D: An Implicit Parallel Particle-in-Cell Code

Parsek2D: An Implicit Parallel Particle-in-Cell Code NUMERICAL MODELING OF SPACE PLASMA FLOWS: ASTRONUM-2008 ASP Conference Series, Vol. 406, c 2009 Nikolai V. Pogorelov, Edouard Audit, Phillip Colella, and Gary P. Zank, eds. Parsek2D: An Implicit Parallel

More information

Dissipation Mechanism in 3D Magnetic Reconnection

Dissipation Mechanism in 3D Magnetic Reconnection Dissipation Mechanism in 3D Magnetic Reconnection Keizo Fujimoto Computational Astrophysics Laboratory, RIKEN Reconnection (in the Earth Magnetosphere) Coroniti [1985] 10 km 10 5 km 10 3 km Can induce

More information

Perpendicular Flow Separation in a Magnetized Counterstreaming Plasma: Application to the Dust Plume of Enceladus

Perpendicular Flow Separation in a Magnetized Counterstreaming Plasma: Application to the Dust Plume of Enceladus Perpendicular Flow Separation in a Magnetized Counterstreaming Plasma: Application to the Dust Plume of Enceladus Y.-D. Jia, Y. J. Ma, C.T. Russell, G. Toth, T.I. Gombosi, M.K. Dougherty Magnetospheres

More information

Stellar Atmosphere Codes III. Mats Carlsson Rosseland Centre for Solar Physics, Univ Oslo La Laguna, November

Stellar Atmosphere Codes III. Mats Carlsson Rosseland Centre for Solar Physics, Univ Oslo La Laguna, November Stellar Atmosphere Codes III Mats Carlsson Rosseland Centre for Solar Physics, Univ Oslo La Laguna, November 14-15 2017 What physics need to be included when modeling the solar chromosphere? Boundaries

More information

Mechanisms for particle heating in flares

Mechanisms for particle heating in flares Mechanisms for particle heating in flares J. F. Drake University of Maryland J. T. Dahlin University of Maryland M. Swisdak University of Maryland C. Haggerty University of Delaware M. A. Shay University

More information

Physical Processes in Astrophysics

Physical Processes in Astrophysics Physical Processes in Astrophysics Huirong Yan Uni Potsdam & Desy Email: hyan@mail.desy.de 1 Reference Books: Plasma Physics for Astrophysics, Russell M. Kulsrud (2005) The Physics of Astrophysics, Frank

More information

Summer College on Plasma Physics. 30 July - 24 August, The forming of a relativistic partially electromagnetic planar plasma shock

Summer College on Plasma Physics. 30 July - 24 August, The forming of a relativistic partially electromagnetic planar plasma shock 1856-31 2007 Summer College on Plasma Physics 30 July - 24 August, 2007 The forming of a M. E. Dieckmann Institut fuer Theoretische Physik IV, Ruhr-Universitaet, Bochum, Germany The forming of a The forming

More information

The Virial Theorem, MHD Equilibria, and Force-Free Fields

The Virial Theorem, MHD Equilibria, and Force-Free Fields The Virial Theorem, MHD Equilibria, and Force-Free Fields Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 10 12, 2014 These lecture notes are largely

More information

Solar wind - magnetosphere coupling via magnetic reconnection and the effects of cold plasma of ionospheric origin. Sergio Toledo-Redondo

Solar wind - magnetosphere coupling via magnetic reconnection and the effects of cold plasma of ionospheric origin. Sergio Toledo-Redondo Solar wind - magnetosphere coupling via magnetic reconnection and the effects of cold plasma of ionospheric origin Sergio Toledo-Redondo European Space Astronomy Centre, European Space Agency, Madrid,

More information

The Generalized Interpolation Material Point Method

The Generalized Interpolation Material Point Method Compaction of a foam microstructure The Generalized Interpolation Material Point Method Tungsten Particle Impacting sandstone The Material Point Method (MPM) 1. Lagrangian material points carry all state

More information

PHYSICS Computational Plasma Physics

PHYSICS Computational Plasma Physics PHYSICS 78 - Computational Plasma Physics INSTRUCTOR Dr. Earl Scime (escime@wvu.edu) 93-34, ext. 1437 Office hours: MW :30 3:30 and whenever door is open Rm 18 & 05 Hodges Hall Class: MWF 1:30-:0 Rm 334

More information

Astrophysical Radiation Processes

Astrophysical Radiation Processes PHY3145 Topics in Theoretical Physics Astrophysical Radiation Processes 5:Synchrotron and Bremsstrahlung spectra Dr. J. Hatchell, Physics 406, J.Hatchell@exeter.ac.uk Course structure 1. Radiation basics.

More information

Proper initial conditions for long-term integrations of the solar system

Proper initial conditions for long-term integrations of the solar system Proper initial conditions for long-term integrations of the solar system M. Arminjon Laboratoire Sols, Solides, Structures [CNRS / Université Joseph Fourier / Institut National Polytechnique de Grenoble]

More information

Relativistic magnetohydrodynamics. Abstract

Relativistic magnetohydrodynamics. Abstract Relativistic magnetohydrodynamics R. D. Hazeltine and S. M. Mahajan Institute for Fusion Studies, The University of Texas, Austin, Texas 78712 (October 19, 2000) Abstract The lowest-order description of

More information

Magnetohydrodynamics of pulsar winds and plerions Yuri Lyubarsky

Magnetohydrodynamics of pulsar winds and plerions Yuri Lyubarsky Magnetohydrodynamics of pulsar winds and plerions Yuri Lyubarsky Ben-Gurion University, Israel Pulsar magneto sphere e Pulsar wind +, e, (ions?), electro-magnetic fields Pulsar wind nebula j j v B v v

More information

What is Classical Molecular Dynamics?

What is Classical Molecular Dynamics? What is Classical Molecular Dynamics? Simulation of explicit particles (atoms, ions,... ) Particles interact via relatively simple analytical potential functions Newton s equations of motion are integrated

More information

Application of the immersed boundary method to simulate flows inside and outside the nozzles

Application of the immersed boundary method to simulate flows inside and outside the nozzles Application of the immersed boundary method to simulate flows inside and outside the nozzles E. Noël, A. Berlemont, J. Cousin 1, T. Ménard UMR 6614 - CORIA, Université et INSA de Rouen, France emeline.noel@coria.fr,

More information

NIMEQ: MHD Equilibrium Solver for NIMROD

NIMEQ: MHD Equilibrium Solver for NIMROD NIMEQ: MHD Equilibrium Solver for NIMOD E.C.Howell, C..Sovinec University of Wisconsin-Madison 5 th Annual Meeting of Division of Plasma Physics Dallas, Texas, Nov. 17-Nov. 1,8 1 Abstract A Grad-Shafranov

More information

arxiv: v1 [physics.plasm-ph] 23 Jan 2019

arxiv: v1 [physics.plasm-ph] 23 Jan 2019 arxiv:9.777v [physics.plasm-ph] 3 Jan 9 Gridless particle technique for the Vlasov-Poisson system in problems with high degree of symmetry E. Boella G. Coppa A. D Angola 3 and B. Peiretti Paradisi 4 Center

More information

Graduate Accelerator Physics. G. A. Krafft Jefferson Lab Old Dominion University Lecture 1

Graduate Accelerator Physics. G. A. Krafft Jefferson Lab Old Dominion University Lecture 1 Graduate Accelerator Physics G. A. Krafft Jefferson Lab Old Dominion University Lecture 1 Course Outline Course Content Introduction to Accelerators and Short Historical Overview Basic Units and Definitions

More information

Synchrotron Radiation II

Synchrotron Radiation II Synchrotron Radiation II Cyclotron v

More information

A unifying model for fluid flow and elastic solid deformation: a novel approach for fluid-structure interaction and wave propagation

A unifying model for fluid flow and elastic solid deformation: a novel approach for fluid-structure interaction and wave propagation A unifying model for fluid flow and elastic solid deformation: a novel approach for fluid-structure interaction and wave propagation S. Bordère a and J.-P. Caltagirone b a. CNRS, Univ. Bordeaux, ICMCB,

More information

Shock Waves. = 0 (momentum conservation)

Shock Waves. = 0 (momentum conservation) PH27: Aug-Dec 2003 Shock Waves A shock wave is a surface of discontinuity moving through a medium at a speed larger than the speed of sound upstream. The change in the fluid properties upon passing the

More information

Summer College on Plasma Physics. 30 July - 24 August, The particle-in-cell simulation method: Concept and limitations

Summer College on Plasma Physics. 30 July - 24 August, The particle-in-cell simulation method: Concept and limitations 1856-30 2007 Summer College on Plasma Physics 30 July - 24 August, 2007 The particle-in-cell M. E. Dieckmann Institut fuer Theoretische Physik IV, Ruhr-Universitaet, Bochum, Germany The particle-in-cell

More information

Magnetic Reconnection: Recent Developments and Future Challenges

Magnetic Reconnection: Recent Developments and Future Challenges Magnetic Reconnection: Recent Developments and Future Challenges A. Bhattacharjee Center for Integrated Computation and Analysis of Reconnection and Turbulence (CICART) Space Science Center, University

More information

Radiative Processes in Flares I: Bremsstrahlung

Radiative Processes in Flares I: Bremsstrahlung Hale COLLAGE 2017 Lecture 20 Radiative Processes in Flares I: Bremsstrahlung Bin Chen (New Jersey Institute of Technology) The standard flare model e - magnetic reconnection 1) Magnetic reconnection and

More information

Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit

Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit Rough breakdown of MHD shocks Jump conditions: flux in = flux out mass flux: ρv n magnetic flux: B n Normal momentum flux: ρv n

More information

Magnetic fields generated by the Weibel Instability

Magnetic fields generated by the Weibel Instability Magnetic fields generated by the Weibel Instability C. M. Ryu POSTECH, KOREA FFP14 Marseille 14.7.15-7.18 Outline I. Why Weibel instability? II. Simulations III. Conclusion Why Weibel instability? The

More information

Magnetic Reconnection in Space Plasmas

Magnetic Reconnection in Space Plasmas Magnetic Reconnection in Space Plasmas Lin-Ni Hau et al. Institute of Space Science Department of Physics National Central University, Taiwan R.O.C. EANAM, 2012.10.31 Contents Introduction Some highlights

More information

Synchrotron Radiation: II. Spectrum

Synchrotron Radiation: II. Spectrum Synchrotron Radiation: II. Spectrum Massimo Ricotti ricotti@astro.umd.edu University of Maryland Synchrotron Radiation: II. Spectrum p.1/18 ds=v dt_em dt=ds cos(theta)/c=v/c cos(theta)dt_em Synchrotron

More information

Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015)

Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015) Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015) Interaction of x-ray with matter: - Photoelectric absorption - Elastic (coherent) scattering (Thomson Scattering) - Inelastic (incoherent) scattering

More information

Kinetic Solvers with Adaptive Mesh in Phase Space for Low- Temperature Plasmas

Kinetic Solvers with Adaptive Mesh in Phase Space for Low- Temperature Plasmas Kinetic Solvers with Adaptive Mesh in Phase Space for Low- Temperature Plasmas Vladimir Kolobov, a,b,1 Robert Arslanbekov a and Dmitry Levko a a CFD Research Corporation, Huntsville, AL 35806, USA b The

More information

Hybrid Kinetic-MHD simulations with NIMROD

Hybrid Kinetic-MHD simulations with NIMROD simulations with NIMROD Charlson C. Kim and the NIMROD Team Plasma Science and Innovation Center University of Washington CSCADS Workshop July 18, 2011 NIMROD C.R. Sovinec, JCP, 195, 2004 parallel, 3-D,

More information

Reconnection of magnetic field lines on ion scale

Reconnection of magnetic field lines on ion scale POSTER 2015, PRAGUE MAY 14 1 Reconnection of magnetic field lines on ion scale Matus CVENGROS 1 1 Dept. of Physics, Czech Technical University in Prague, Břehová 7, 115 19 Praha 1, Czech Republic cvengmat@fjfi.cvut.cz

More information

Incompressible MHD simulations

Incompressible MHD simulations Incompressible MHD simulations Felix Spanier 1 Lehrstuhl für Astronomie Universität Würzburg Simulation methods in astrophysics Felix Spanier (Uni Würzburg) Simulation methods in astrophysics 1 / 20 Outline

More information

GAMMA-RAYS FROM MASSIVE BINARIES

GAMMA-RAYS FROM MASSIVE BINARIES GAMMA-RAYS FROM MASSIVE BINARIES W lodek Bednarek Department of Experimental Physics, University of Lódź, Poland 1. Sources of TeV gamma-rays PSR 1259+63/SS2883 - (HESS) LS 5039 - (HESS) LSI 303 +61 o

More information

Gyrokinetic simulations of magnetic fusion plasmas

Gyrokinetic simulations of magnetic fusion plasmas Gyrokinetic simulations of magnetic fusion plasmas Tutorial 2 Virginie Grandgirard CEA/DSM/IRFM, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance, France. email: virginie.grandgirard@cea.fr

More information

PIC Simulation of Magnetic Reconnection with Adaptive Mesh Refinement

PIC Simulation of Magnetic Reconnection with Adaptive Mesh Refinement PIC Simulation of Magnetic Reconnection with Adaptive Mesh Refinement Keizo Fujimoto National Astronomical Observatory of Japan Overview Introduction Particle-in-Cell (PIC) model with adaptive mesh refinement

More information

Monte Carlo Collisions in Particle in Cell simulations

Monte Carlo Collisions in Particle in Cell simulations Monte Carlo Collisions in Particle in Cell simulations Konstantin Matyash, Ralf Schneider HGF-Junior research group COMAS : Study of effects on materials in contact with plasma, either with fusion or low-temperature

More information

Magnetic Fields in Astrophysics: Origins and Evolution. Kinwah Wu Mullard Space Science Laboratory University College London

Magnetic Fields in Astrophysics: Origins and Evolution. Kinwah Wu Mullard Space Science Laboratory University College London Magnetic Fields in Astrophysics: Origins and Evolution Kinwah Wu Mullard Space Science Laboratory University College London Maxwell s equations covariant form in flat space time Lorentz force equation:

More information

Berk-Breizman and diocotron instability testcases

Berk-Breizman and diocotron instability testcases Berk-Breizman and diocotron instability testcases M. Mehrenberger, N. Crouseilles, V. Grandgirard, S. Hirstoaga, E. Madaule, J. Petri, E. Sonnendrücker Université de Strasbourg, IRMA (France); INRIA Grand

More information

Multi-scale simulation for plasma science

Multi-scale simulation for plasma science Journal of Physics: Conference Series Multi-scale simulation for plasma science To cite this article: S Ishiguro et al 2010 J. Phys.: Conf. Ser. 257 012026 View the article online for updates and enhancements.

More information

EP2Plus: a hybrid plasma. plume/spacecraft. interaction code. F. Cichocki, M. Merino, E. Ahedo

EP2Plus: a hybrid plasma. plume/spacecraft. interaction code. F. Cichocki, M. Merino, E. Ahedo EP2Plus: a hybrid plasma plume/spacecraft interaction code F. Cichocki, M. Merino, E. Ahedo 24 th SPINE meeting ESTEC, Noordwijk, October 23 rd, 2017 Contents Introduction to EP2PLUS Overall structure

More information

PLASMA ASTROPHYSICS. ElisaBete M. de Gouveia Dal Pino IAG-USP. NOTES: (references therein)

PLASMA ASTROPHYSICS. ElisaBete M. de Gouveia Dal Pino IAG-USP. NOTES:  (references therein) PLASMA ASTROPHYSICS ElisaBete M. de Gouveia Dal Pino IAG-USP NOTES:http://www.astro.iag.usp.br/~dalpino (references therein) ICTP-SAIFR, October 7-18, 2013 Contents What is plasma? Why plasmas in astrophysics?

More information

High-Energy Astrophysics

High-Energy Astrophysics M.Phys. & M.Math.Phys. High-Energy Astrophysics Garret Cotter garret.cotter@physics.ox.ac.uk High-Energy Astrophysics MT 2016 Lecture 2 High-Energy Astrophysics: Synopsis 1) Supernova blast waves; shocks.

More information

Parallel-in-time integrators for Hamiltonian systems

Parallel-in-time integrators for Hamiltonian systems Parallel-in-time integrators for Hamiltonian systems Claude Le Bris ENPC and INRIA Visiting Professor, The University of Chicago joint work with X. Dai (Paris 6 and Chinese Academy of Sciences), F. Legoll

More information

Asynchronous 3D HYPERS Simulations of Compact Toroids and Magnetoplasmas

Asynchronous 3D HYPERS Simulations of Compact Toroids and Magnetoplasmas Asynchronous 3D HYPERS Simulations of Compact Toroids and Magnetoplasmas Y.A. Omelchenko Trinum Research, Inc., San Diego, CA, USA US-Japan CT2016 Workshop on Compact Tori, Irvine, CA, August 22-24, 2016

More information

Reduced MHD. Nick Murphy. Harvard-Smithsonian Center for Astrophysics. Astronomy 253: Plasma Astrophysics. February 19, 2014

Reduced MHD. Nick Murphy. Harvard-Smithsonian Center for Astrophysics. Astronomy 253: Plasma Astrophysics. February 19, 2014 Reduced MHD Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 19, 2014 These lecture notes are largely based on Lectures in Magnetohydrodynamics by Dalton

More information

Simple examples of MHD equilibria

Simple examples of MHD equilibria Department of Physics Seminar. grade: Nuclear engineering Simple examples of MHD equilibria Author: Ingrid Vavtar Mentor: prof. ddr. Tomaž Gyergyek Ljubljana, 017 Summary: In this seminar paper I will

More information

Contents Motivation Particle In Cell Method Projects Plasma and Ion Beam Simulations

Contents Motivation Particle In Cell Method Projects Plasma and Ion Beam Simulations PIC Method for Numerical Simulation Ninad Joshi NNP Group 1 Contents Motivation Particle In Cell Method Projects Plasma and Ion Beam Simulations Motivation 3 Particle simulation Ion beams and Plasmas Accelerators

More information

Plasma spectroscopy when there is magnetic reconnection associated with Rayleigh-Taylor instability in the Caltech spheromak jet experiment

Plasma spectroscopy when there is magnetic reconnection associated with Rayleigh-Taylor instability in the Caltech spheromak jet experiment Plasma spectroscopy when there is magnetic reconnection associated with Rayleigh-Taylor instability in the Caltech spheromak jet experiment KB Chai Korea Atomic Energy Research Institute/Caltech Paul M.

More information

Integrated Modeling of Fast Ignition Experiments

Integrated Modeling of Fast Ignition Experiments Integrated Modeling of Fast Ignition Experiments Presented to: 9th International Fast Ignition Workshop Cambridge, MA November 3-5, 2006 R. P. J. Town AX-Division Lawrence Livermore National Laboratory

More information

Micro-macro methods for Boltzmann-BGK-like equations in the diffusion scaling

Micro-macro methods for Boltzmann-BGK-like equations in the diffusion scaling Micro-macro methods for Boltzmann-BGK-like equations in the diffusion scaling Anaïs Crestetto 1, Nicolas Crouseilles 2, Giacomo Dimarco 3 et Mohammed Lemou 4 Saint-Malo, 14 décembre 2017 1 Université de

More information

The Larmor Formula (Chapters 18-19)

The Larmor Formula (Chapters 18-19) 2017-02-28 Dispersive Media, Lecture 12 - Thomas Johnson 1 The Larmor Formula (Chapters 18-19) T. Johnson Outline Brief repetition of emission formula The emission from a single free particle - the Larmor

More information