Using the Divergence Information Criterion for the Determination of the Order of an Autoregressive Process

Size: px
Start display at page:

Download "Using the Divergence Information Criterion for the Determination of the Order of an Autoregressive Process"

Transcription

1 Using the Divergence Information Criterion for the Determination of the Order of an Autoregressive Process P. Mantalos a1, K. Mattheou b, A. Karagrigoriou b a.deartment of Statistics University of Lund Sweden b.deartment of Mathematics and Statistics University of Cyrus Cyrus Version 17/04/008 Abstract This article comares traditional Model Selection Criteria with the recently roosed Divergence Information Criterion which is based on the BHHJ measure of divergence. We use Monte Carlo methods and different Data Generating Processes for small, medium and large samle sizes. The Divergence Information Criterion shows remarkable good results by choosing the correct model more frequently than the known traditional Information Criteria. Key words: divergence AR rocess, Information Criterion, Model selection, Measure of 1 Corresonding author: Docent Panagiotis Mantalos. Panagiotis.Mantalos@stat.lu.se 1

2 1. Introduction. Consider a discrete-time stationary AR() rocess of the form X = ax + a X + + a X + e (1) t 1 t 1 t t t where { t e } is a sequence of uncorrelated ( 0, ) N σ random variables and all the roots of the autoregressive olynomial are outside the unit circle, that is, Az ( ) = 1 az a z 0 1 for all z such that z < 1. One of the crucial roblems in time series modeling is selecting the otimal model order and secifying a arsimonious model for the data generating rocess (DGP). Many techniques have been develoed for the order selection of linear models, namely a) Grahical methods with reresentative the Box and Jenkins methods (1970); b) Hyothesis test rocedures with the ioneering work of Whittle (195) as reresentative. Akaike (1974) viewed the roblem of model fitting in the context of time series analysis as a multile decision rocedure rather than a hyothesis testing roblem. However the same author (Akaike, 1973) initiated the research on automatic model selection techniques by develoing the oular Akaike Information Criterion (AIC) which is considered as a significant contribution to statistical modeling. Schwarz (1978), Hannan and Quinn (1979) and others followed the ioneering work of Akaike. Most of the criteria roosed in the literature consist in minimizing, with resect to the model order, a function of the given observations lus a enalty term for the introduction of additional arameters, which

3 generally deends on the model order and samle size. Thus, according to automatic criteria, the arameters of a variety of cometing models are estimated and the model chosen is the one with the smallest criterion value. In a resent Ph.D thesis, Mattheou (007) and in a resulting article Mattheou, Lee and Karagrigoriou (008) introduced a new model selection criterion, the Divergence Information Criterion (DIC). This gives the signal to study the new DIC criterion and exlore its caabilities in autoregressive rocesses and in general in a time series context. The aer is organised as follows. In Section, we resent and briefly discuss the different Information Criteria including the Divergence Information Criterion (DIC). In Section 3, we resent a comarative study of various Information Criteria for different time series examles by using a Monte Carlo method. Finally in Section 4 we summarize our results. For the simulations we make use of the Gauss 8 rogram.. Information Criterion One of the most interesting and imortant roblems in Statistics is the roblem of selecting a satisfactory model for a given set of observations. It might aear at first sight that the higher the order of the selected rocess (model) chosen, the better the fitted model will be. Such a thought may be true for fitting uroses but not for redicting ones. Indeed, the fit may be erfect for the given data but the use of the selected model for redictive uroses may result in gross errors. Numerous selection criteria have been develoed over the last 40 years which attemt to revent overfitting by assigning a enalty to the introduction of an unnecessary large order and consequently to an unnecessary number of arameters. The measures of divergence are used as indices of similarity or dissimilarity between oulations and for measuring mutual information concerning two variables and as such they 3

4 can be used for the construction of model selection criteria. The distance between a candidate model and the true but unknown model could be measured by a measure of divergence. The candidate model for which the measure of divergence is minimized will be selected. The well known Kullback-Leibler measure of divergence (Kullback and Leibler, 1951) was the one used by Akaike (1973) to develo the Akaike Information Criterion (AIC). Akaike roosed the evaluation of the fit of the candidate model using minus twice the mean exected loglikelihood (also known as exected overall discreancy). Furthermore, he rovided an unbiased estimator of the exected loglikelihood so that the resulting AIC criterion is given by AIC = n ˆ +, ( ) log( σ ) where n the samle size, the order of the candidate model and ˆ σ the estimator of the variance of the th -order candidate model. For fitting autoregressive rocesses, Jones (1975) suggested that AIC has a tendency to overestimate the order of the rocess and Shibata (1976) showed that the robability of overestimation for a large samle size is nonzero. To correct this tendency, the SIC criterion was roosed indeendently by Akaike (1978) and Schwarz (1978): ˆ SIC( ) = n log( σ ) + log n. The above two criteria can be considered as members of the General Information Criterion given by ˆ GIC( ) = n log( σ ) + c n 4

5 where cn a quantity that may deend on n. For c n = the criterion reduces to AIC while for cn = log n to SIC. The case c = clog log nwith c > corresonds to the Hannan and Quinn n criterion (HQ, Hannan and Quinn, 1979) which has been found to be equivalent to SIC in the sense that they are both consistent (Hannan, 1980). The roblem of avoiding overfitting esecially for urely autoregressive rocesses can also be dealt with the minimization of the final rediction error criterion (FPE) of Akaike (1969). The FPE is an estimate of the one-ste ahead rediction mean squared error for a realization of the rocess indeendent of the one observed. If we fit AR rocesses of steadily increasing order the maximum likelihood estimator (MLE) of the white noise variance will usually decrease with. However, FPE will decrease to a minimum value and then increase as will increase. According to FPE, we choose the order of the candidate rocess to be the value of for which FPE is minimized. The FPE is given by n+ FPE( ) = ˆ σ n. In all the above cases, any arameter estimation is handled through the maximum likelihood method. A general class of criteria has been introduced by Konishi and Kitagawa (1996) which also estimates the Kullback-Leibler measure where the estimation is not necessarily based on maximum likelihood. One of the most recently roosed measures of divergence is the Basu-Harris-Hjort-Jones ower divergence between the candidate model f θ (.) and the true model g (Basu et. al, 1998) which is denoted by BHHJ, indexed by a ositive arameter α, and defined as: a (, ) a ( ) 1 ( ) a I g f f z g z f ( z) g 1 a = + + ( z) dz θ θ + + a θ a θ. 5

6 This family of measures was roosed by Basu et al. (1998) for the develoment of a minimum divergence estimating method for robust arameter estimation. The index α controls the trade-off between robustness and asymtotic efficiency of the arameter estimators which are the values of θ that minimize the measure over a arametric saceθ. It should be also noted that the BHHJ family reduces to the Kullback-Leibler measure of divergence for a 0 (see Mattheou, 007) and as it can be easily seen, to the square of the standard L distance between the candidate and the true model for α=1. Mattheou et al. (008) alying the same methodology used for AIC to the BHHJ divergence develoed a new criterion, the Divergence Information Criterion (DIC) which for a set of observations x 1,...,xnis given by / / ( ) ˆ ( ) a DIC nq π (1 a) + θ = + +, where n 1+ a 1 1 a Qˆ = f ˆ ( z) dz 1 + f ˆ ( x ) and ˆ θ θ i a n θ i= 1 θ a consistent and asymtotically normal estimator of θ. Preliminary simulation studies for regression models (Mattheou, 007) showed a very good medium samle size erformance for DIC for values of α close to zero. Although the DIC criterion was constructed so that it will be an asymtotically unbiased estimator of the BHHJ divergence measure between the candidate and the true model, the calculation of the first art of Q ˆ θ, namely the integral 1+ a f ˆ ( zdz ) is not comutationally θ attractive for ractitioners. Furthermore, the simulation study shows that the difference in the calculations of the above integrals, for the different candidate models is negligible comared with the difference in the calculation for the entire quantity Q ˆ θ. In other words the integral term does not affect the selection of the correct model and therefore can be removed from the 6

7 formula. As a result, we roose now a modified new criterion, the Modified Divergence Information Criterion (MDIC) which is given by / / ( ) * ( ) a + MDIC = n MQ + π (1 + a) ˆ θ 1 MQ 1 f ( x ) θ n 1 where ˆ = ( + ) n a α ˆ. θ i i= 1 Note that a model selection criterion can be considered as an aroximately unbiased estimator of the exected overall discreancy, a nonnegative quantity which measures the distance between the true unknown model and a fitted aroximating model. Observe also that, as it was mentioned in the introduction, a criterion consists of two terms, the first of which is a biased estimator of the exected overall discreancy. As a result, if we choose the model with the smallest estimator of the exected overall discreancy we may end u with a selection with an unnecessarily large order. The estimator becomes asymtotically unbiased by introducing the aroriate correction term. 3. Simulations. 3.1 Selection of the index α Before the Monte Carlo exeriment is erformed one has to decide which ositive value of the index α is aroriate for ractical uroses. As a result, we simulate a 100 observation series for 5 different models with α between 0.01 and 0.5 and we rovide in Figure 1, the ower of the selection, namely the roortion of times the correct model is selected as a function ofα. In Figure 1, [Dot dash] line is the AR(1) model defined as Model 1 in section 3.; [Whole] line shows the AR() aearing as Model 5 in section 3.; [Dot close] line refers to the AR(3) rocess: xt = 1+ 0.xt xt 0.35xt 3+ et; [Dash] line is the AR(4) rocess: 7

8 x = 1+ 0.x + 0.5x 0.35x 0.x + e ; finally [Dot] is the AR(5) rocess defined as t t 1 t t 3 t 4 t Model 6 in section 3.. Figure 1 shows that for small lags (models AR(1) and AR()) the ower increases as the value of α increases. In all the other cases the ower increases u to a value of α and then decreases. More secifically, for the comlete AR(3) and AR(4) rocesses the ower stays high aroximately u to the value α = 0.5. For the AR(5) rocess the ower decreases after the value α = Although an otimum value of α for all tyes of autoregressive models may be considered to be the value of 0.10, in the Monte Carlo study of section 3. we choose the value of 0.5 since it aears to serve as a fair balance between small and large lag models. Figure 1 8

9 3. The Monte Carlo Exeriment In this section we rovide the characteristics of the Monte Carlo exeriment undertaken. We calculate the estimated ercent by simly observing how many times the correct AR() model is selected in reeated samles. By varying factors such as the number of observations 50 (small samle) 75, 100 (medium samle) and 00, 500 (large samle); and the order of AR() model we obtain a succession of estimated ercent of the correct selection model under different conditions. The Monte Carlo exeriment has been erformed by generating data according to the following Data generating rocesses: Model 1: xt = xt 1 + et Model : xt = xt + et Model 3: xt = xt xt + et Model 4: xt = xt xt + et Model 5: xt = xt 1 0.5xt + et Model 6: xt = xt 1 0.xt xt 5 + et where { t e } is a sequence of uncorrelated ( 0, ) N σ random variables. The criteria used in this exeriment are the ones defined in Section, namely AIC, SIC, HQ, FPE, and MDIC with α = 0.5. For the imlementation of the criteria we use f 1 eˆ ( x) = ex ˆ σ, ( πσˆ ) ˆ θ i where ê the estimated residuals and ˆ σ the estimated variance. For each time series 0 resamle values are generated with zero initial conditions, taking net samle sizes of n = 50,75,100,00,500 in order to cover small, medium and large samles. 9

10 The number of relications er model used is The calculations were erformed using GAUSS Results In this section we resent the results of the Monte Carlo exeriment concerning the ercent of correct selected model. Table 1 shows the results for Model 1. It is not difficult to see the good erformance of the MDIC criterion for all samle sizes. The rate of success of MDIC is almost 89% for the small samle with 50 observations, while the other criteria have a rate of success between 73.3% and 83.6%. We also observe the samle effect. Indeed, by increasing the number of observations, the only criterion for which the ercent of correct model selection increases significantly is the Hannan and Quinn criterion (HQ). A smaller increase is observed for the SIC criterion. For large samle sizes HQ comes first with a rate of success of aroximately 91% and MDIC close second with a success rate almost equal to 90%. At the same time, as the samle size increases, the difference between the MDIC and the remaining Information Criteria decreases, although it is still in favor of MDIC. The good erformance of the MDIC criterion is evident from the high ercent of selecting the correct AR(1) model in reeated samles. While in Table 1 MDIC erforms quite well with though some cometition from the HQ criterion, in the case of the second model, as seen in Table, the MDIC is suerior to all other criteria for all samle sizes. Observe that MDIC is the best criterion among the cometing criteria with the HQ coming second. The worst erformance was observed by SIC. The 10

11 samle effect shows the tendency of the best criteria, namely MDIC and HQ, to aroach each other in terms of their rate of success as n increases. Observe the imressive success rate of MDIC even for small samle sizes where for n=75 rreaches a remarkable success rate of 95%. Our attemt to see if the incomlete AR() rocess misleads the Information criteria does not seem to work since the rate of success is not significantly affected by the articular form of the underlying rocess. In case of Models 3 and 5 as Tables 3 and 5 show the results are not different from the revious cases. Indeed, MDIC is suerior to all other criteria with success rate as high as 95% even for relatively small samle sizes. In case of Model 4 as Table 4 shows all criteria for small samle sizes (n=50) have a high tendency of selecting the simlest model (AR(1)) which is due to the fact that the coefficient of lag is relatively close to zero (0.35). As the samle size increases the rate of success imroves. MDIC is the best criterion among the criteria examined with HQ coming second. Finally for Model 6, Table 6 shows that for small samle sizes the rate of success is less than 50% with SIC being the best, MDIC being the worse, and HQ coming second to last. As the samle size increases, MDIC and HQ have the higher imrovement so that for n 100 they become again the best models with MDIC reaching an imressive success rate of 98.5% for n=00 and 99.1% for n=500. To summarize the findings we could safely conclude that the MDIC criterion erforms much better than the other selection criteria for AR rocesses and for various samle sizes. In articular, the magnitude of the sueriority of MDIC is extremely high for AIC, SIC, and FPE for all samle sizes. In reference to the HQ criterion the sueriority of MDIC is of lesser magnitude as comared to the other criteria. 11

12 4. Conclusions In this aer we attemted a comarative study of model selection criteria for autoregressive rocesses for small, medium, and large samle sizes. Based on the results of our study we conclude that for regular AR models, the erformance of MDIC is excellent with very high rate of success, for all samle sizes. The rate of success of MDIC increases with samle size but usually not as much as the HQ and SIC criteria which is exected though since they are both consistent. It is imortant to oint out that in most cases MDIC aears to have a high rate of success (arox. equal to 90%) even for small samle sizes. For irregular models (like Model 6), MDIC needs a sufficient number of observations for erforming well. More secifically, a medium samle size of order 75 or 100 seems to be enough in order to ick u high rates of success. Finally observe that MDIC is the only criterion that never selects too large models. In fact, in all cases the robability of overestimation is at most 8% and for lags at most or 3 higher than the true lag while the other criteria may select lags as large as 7 lags higher than the true one. 1

13 Table nr 1: Model 1 Lag1 Lag Lag3 Lag4 Lag5 Lag6 Lag7 Lag8 50 obs AIC 0,769 0,108 0,049 0,0 0,018 0,01 0,013 0,009 SIC 0,733 0,114 0,051 0,08 0,0 0,017 0,018 0,017 HQ 0,836 0,097 0,08 0,015 0,009 0,008 0,005 0,00 FPE 0,769 0,11 0,049 0,01 0,017 0,01 0,013 0,009 MDIC 0,889 0,095 0,014 0, obs AIC 0,775 0,14 0,04 0,05 0,016 0,009 0,005 0,006 SIC 0,744 0,14 0,047 0,09 0,013 0,017 0,011 0,015 HQ 0,873 0,085 0,04 0,008 0,004 0,00 0,001 0,003 FPE 0,777 0,14 0,04 0,05 0,017 0,008 0,003 0,006 MDIC 0,894 0,086 0,018 0,001 0, obs AIC 0,774 0,107 0,057 0,03 0,019 0,01 0,004 0,006 SIC 0,75 0,106 0,065 0,08 0,019 0,013 0,009 0,01 HQ 0,881 0,071 0,07 0,009 0,009 0,00 0,001 0 FPE 0,774 0,107 0,057 0,03 0,019 0,01 0,005 0,005 MDIC 0,896 0,08 0,017 0,004 0, obs AIC 0,797 0,116 0,038 0,03 0,01 0,007 0,005 0,00 SIC 0,785 0,1 0,04 0,06 0,014 0,007 0,006 0,00 HQ 0,916 0,06 0,013 0,005 0,001 0, FPE 0,797 0,116 0,038 0,03 0,01 0,007 0,005 0,00 MDIC 0,896 0,088 0,01 0,00 0, obs AIC 0,776 0,117 0,049 0,019 0,016 0,013 0,008 0,00 SIC 0,773 0,118 0,049 0,01 0,016 0,013 0,007 0,003 HQ 0,918 0,07 0,01 0,001 0, FPE 0,776 0,117 0,049 0,019 0,016 0,013 0,008 0,00 MDIC 0,893 0,098 0, The shading indicates best erformance Information Criterion. 13

14 Table nr : Model Lag1 Lag Lag3 Lag4 Lag5 Lag6 Lag7 Lag8 50 obs AIC 0,018 0,748 0,103 0,05 0,06 0,0 0,015 0,0 SIC 0,015 0,688 0,111 0,06 0,036 0,031 0,031 0,08 HQ 0,034 0,805 0,08 0,034 0,0 0,014 0,006 0,007 FPE 0,018 0,751 0,103 0,047 0,06 0,0 0,015 0,0 MDIC 0,037 0,894 0,06 0,008 0, obs AIC 0,001 0,777 0,104 0,051 0,08 0,017 0,009 0,013 SIC 0,001 0,743 0,11 0,056 0,033 0,03 0,01 0,0 HQ 0,00 0,878 0,076 0,04 0,01 0,006 0,001 0,003 FPE 0,001 0,777 0,104 0,051 0,08 0,017 0,009 0,013 MDIC 0,003 0,948 0,041 0,007 0, obs AIC 0,001 0,775 0,1 0,04 0,031 0,011 0,009 0,011 SIC 0,001 0,759 0,11 0,05 0,08 0,016 0,011 0,014 HQ 0,001 0,874 0,086 0,019 0,013 0,004 0,003 0 FPE 0,001 0,776 0,1 0,04 0,031 0,011 0,008 0,011 MDIC 0,001 0,93 0,063 0, obs AIC 0,001 0,814 0,104 0,07 0,03 0,007 0,004 0,011 SIC 0,001 0,804 0,106 0,03 0,034 0,008 0,005 0,01 HQ 0,001 0,915 0,061 0,013 0,007 0,00 0,001 0 FPE 0,001 0,814 0,104 0,07 0,03 0,007 0,004 0,011 MDIC 0,001 0,945 0,051 0, obs AIC 0,001 0,793 0,114 0,04 0,04 0,008 0,011 0,007 SIC 0,001 0,788 0,115 0,041 0,06 0,01 0,011 0,008 HQ 0,001 0,915 0,066 0,01 0,005 0, FPE 0,001 0,793 0,114 0,04 0,04 0,008 0,011 0,007 MDIC 0,001 0,939 0,057 0, The shading indicates best erformance Information Criterion. 14

15 Table nr 3: Model 3 Lag1 Lag Lag3 Lag4 Lag5 Lag6 Lag7 Lag8 50 obs AIC 0,001 0,749 0,11 0,05 0,04 0,07 0,015 0,011 SIC 0,001 0,709 0,11 0,06 0,031 0,03 0,04 0,0 HQ 0,001 0,85 0,106 0,031 0,011 0,0 0,004 0,00 FPE 0,001 0,749 0,1 0,05 0,04 0,07 0,015 0,01 MDIC 0,001 0,9 0,07 0, obs AIC 0,001 0,78 0,094 0,059 0,034 0,01 0,01 0,01 SIC 0,001 0,749 0,097 0,065 0,038 0,0 0,014 0,016 HQ 0,001 0,88 0,068 0,04 0,016 0,003 0,003 0,003 FPE 0,001 0,781 0,094 0,058 0,034 0,01 0,01 0,01 MDIC 0,001 0,944 0,048 0, obs AIC 0,001 0,764 0,11 0,046 0,07 0,0 0,013 0,006 SIC 0,001 0,736 0,18 0,051 0,09 0,08 0,017 0,01 HQ 0,001 0,879 0,08 0,019 0,014 0,005 0,00 0 FPE 0,001 0,765 0,11 0,046 0,07 0,0 0,01 0,006 MDIC 0,001 0,933 0,061 0, obs AIC 0,001 0,776 0,116 0,04 0,031 0,018 0,009 0,007 SIC 0,001 0,763 0,118 0,043 0,034 0,019 0,01 0,01 HQ 0,001 0,913 0,066 0,009 0,009 0, FPE 0,001 0,777 0,116 0,04 0,03 0,018 0,009 0,007 MDIC 0,001 0,949 0,047 0, obs AIC 0,001 0,795 0,095 0,058 0,05 0,01 0,011 0,003 SIC 0,001 0,795 0,095 0,058 0,05 0,01 0,011 0,003 HQ 0,001 0,931 0,046 0,018 0, FPE 0,001 0,795 0,095 0,058 0,05 0,01 0,011 0,003 MDIC 0,001 0,945 0,048 0, The shading indicates best erformance Information Criterion. 15

16 Table nr 4: Model 4 Lag1 Lag Lag3 Lag4 Lag5 Lag6 Lag7 Lag8 50 obs AIC 0,159 0,607 0,111 0,046 0,06 0,06 0,013 0,01 SIC 0,144 0,575 0,113 0,06 0,03 0,09 0,0 0,05 HQ 0,14 0,643 0,078 0,036 0,009 0,013 0,00 0,005 FPE 0,161 0,61 0,109 0,045 0,06 0,05 0,01 0,01 MDIC 0,68 0,673 0,05 0, obs AIC 0,075 0,71 0,11 0,045 0,03 0,015 0,007 0,006 SIC 0,067 0,684 0,11 0,054 0,036 0,0 0,01 0,017 HQ 0,13 0,756 0,074 0,04 0,014 0,003 0,00 0,004 FPE 0,077 0,71 0,11 0,045 0,09 0,014 0,008 0,005 MDIC 0,144 0,8 0,049 0, obs AIC 0,033 0,739 0,11 0,054 0,01 0,04 0,01 0,009 SIC 0,03 0,716 0,116 0,061 0,04 0,08 0,013 0,01 HQ 0,059 0,818 0,07 0,033 0,009 0,006 0,00 0,001 FPE 0,033 0,739 0,11 0,054 0,01 0,04 0,01 0,009 MDIC 0,07 0,863 0,051 0,013 0, obs AIC 0,001 0,779 0,114 0,047 0,033 0,014 0,005 0,007 SIC 0,001 0,771 0,11 0,053 0,034 0,014 0,006 0,009 HQ 0,00 0,909 0,06 0,016 0,007 0,005 0,001 0 FPE 0,001 0,779 0,114 0,047 0,033 0,014 0,005 0,007 MDIC 0,003 0,938 0,048 0,009 0, obs AIC 0,001 0,795 0,106 0,053 0,0 0,013 0,008 0,00 SIC 0,001 0,791 0,105 0,053 0,05 0,014 0,009 0,00 HQ 0,001 0,917 0,061 0,018 0, FPE 0,001 0,795 0,106 0,053 0,0 0,013 0,008 0,00 MDIC 0,001 0,933 0,059 0, The shading indicates best erformance Information Criterion. 16

17 Table nr 5: Model 5 Lag1 Lag Lag3 Lag4 Lag5 Lag6 Lag7 Lag8 50 obs AIC 0,05 0,71 0,137 0,045 0,07 0,07 0,013 0,014 SIC 0,03 0,677 0,14 0,05 0,031 0,033 0,0 0,06 HQ 0,04 0,78 0,106 0,031 0,01 0,016 0,004 0,007 FPE 0,06 0,716 0,136 0,045 0,06 0,07 0,01 0,01 MDIC 0,058 0,861 0,073 0,007 0, obs AIC 0,005 0,763 0,17 0,046 0,08 0,014 0,008 0,009 SIC 0,005 0,734 0,13 0,05 0,031 0,01 0,01 0,015 HQ 0,009 0,861 0,086 0,07 0,011 0,003 0,001 0,00 FPE 0,005 0,764 0,17 0,046 0,08 0,014 0,007 0,009 MDIC 0,011 0,97 0,053 0,008 0, obs AIC 0,001 0,759 0,119 0,055 0,04 0,05 0,009 0,008 SIC 0,001 0,739 0,1 0,057 0,07 0,09 0,009 0,016 HQ 0,00 0,859 0,089 0,07 0,013 0,009 0,001 0 FPE 0,001 0,76 0,118 0,055 0,04 0,05 0,009 0,008 MDIC 0,00 0,97 0,06 0,007 0, obs AIC 0,001 0,775 0,1 0,044 0,033 0,013 0,009 0,005 SIC 0,001 0,765 0,1 0,045 0,034 0,015 0,011 0,007 HQ 0,001 0,898 0,071 0,019 0,004 0,004 0,003 0 FPE 0,001 0,775 0,1 0,044 0,033 0,013 0,009 0,005 MDIC 0,001 0,941 0,05 0, obs AIC 0,001 0,789 0,107 0,05 0,06 0,011 0,01 0,004 SIC 0,001 0,788 0,108 0,05 0,06 0,011 0,01 0,004 HQ 0,001 0,917 0,055 0,018 0,007 0, FPE 0,001 0,789 0,107 0,05 0,06 0,011 0,01 0,004 MDIC 0,001 0,936 0,056 0, The shading indicates best erformance Information Criterion. 17

18 Table nr 6: Model 6 Lag1 Lag Lag3 Lag4 Lag5 Lag6 Lag7 Lag8 50 obs AIC 0,149 0,0 0,096 0,033 0,498 0,114 0,049 0,041 SIC 0,11 0,019 0,076 0,03 0,499 0,16 0,057 0,07 HQ 0,37 0,0 0,113 0,033 0,466 0,08 0,09 0,0 FPE 0,15 0,0 0,097 0,033 0,497 0,114 0,048 0,041 MDIC 0,495 0,051 0,05 0,06 0, 0, obs AIC 0,059 0,001 0,031 0,014 0,70 0,1 0,047 0,06 SIC 0,047 0,001 0,05 0,011 0,683 0,136 0,058 0,039 HQ 0,11 0,008 0,051 0,013 0,701 0,068 0,06 0,01 FPE 0,059 0,001 0,031 0,014 0,704 0,119 0,046 0,06 MDIC 0,84 0,06 0,146 0,016 0,54 0, obs AIC 0,01 0,001 0,008 0,004 0,751 0,139 0,05 0,035 SIC 0,009 0,001 0,007 0,003 0,73 0,147 0,057 0,046 HQ 0,038 0,004 0,013 0,005 0,813 0,087 0,05 0,015 FPE 0,01 0,001 0,008 0,004 0,75 0,139 0,049 0,035 MDIC 0,18 0,015 0,08 0,011 0,758 0, obs AIC 0,001 0,001 0,001 0,001 0,801 0,111 0,047 0,037 SIC 0,001 0,001 0,001 0,001 0,78 0,13 0,05 0,041 HQ 0,001 0,001 0,001 0,001 0,901 0,078 0,015 0,00 FPE 0,001 0,001 0,001 0,001 0,801 0,111 0,047 0,037 MDIC 0,00 0,001 0,001 0,001 0,985 0, obs AIC 0,001 0,001 0,001 0,001 0,813 0,117 0,034 0,03 SIC 0,001 0,001 0,001 0,001 0,807 0,1 0,034 0,035 HQ 0,001 0,001 0,001 0,001 0,9 0,067 0,005 0,00 FPE 0,001 0,001 0,001 0,001 0,813 0,117 0,035 0,031 MDIC 0,001 0,001 0,001 0,001 0,991 0, The shading indicates best erformance Information Criterion. 18

19 REFERENCES Akaike, H. (1969). Fitting autoregression for redictions, Ann. of the Instit. of Statist. Math., 1, Akaike, H. (1973). Information theory and an extension of the maximum likelihood rincile, Proc. of the nd Intern. Symosium on Information Theory, Petrov B. N. and Csáki F., eds., 67-81, Akademiai Kaido, Budaest. Akaike, H. (1974). A new look at the statistical model identification, IEEE Transactions on Automatic Control, AC-19, Akaike, H. (1978). Time series analysis and control through arametric models, in Alied Time Series Analysis, D.F. Findley (ed.), Academic Press, New York. Basu, A., Harris, I. R., Hjort, N. L. and Jones, M. C. (1998). Robust and efficient estimation by minimising a density ower divergence, Biometrika, 85, Box, G.E.P. and Jenkins, G. M. (1970). Time Series Analysis: Forecasting and Control, Holden-Day, San Fransisco. Hannan, E. J. and Quinn, B. G. (1979). The determination of the order of an autoregression, Journal of Royal Statistical Society B, 41, Hannan, E. J. (1980). The estimation of the order of an ARMA rocess, Ann. Statist., 8, Jones, R. H. (1975). Fitting autoregressions, J. Amer. Statist. Assoc., 70, Konishi, S. and Kitagawa, G. (1996). Generalised information criteria in model selection, Biometrika, 83, Kullback, S. and Leibler, R. (1951). On information and sufficiency, Annals of Math. Statist.,, Mattheou, K. (007). On new develoments in statistical inference for measures of divergence, PhD Thesis, Deartment of Mathematics and Statistics, University of Cyrus. Mattheou, K., Lee, S., and Karagrigoriou, A. (008). A model selection criterion based on the BHHJ measure of divergence, J. of Statist. Plann. Inf. (to aear). Schwarz, G. (1978). Estimating the dimension of a model, Annals of Statistics, 6, Shibata, R. (1976). Selection of the order of an autoregressive model by Akaike s information criterion, Biometrika, 63, Whittle, P. (195). Test of Fit in Time Series, Biometrika, 39,

Performance of lag length selection criteria in three different situations

Performance of lag length selection criteria in three different situations MPRA Munich Personal RePEc Archive Performance of lag length selection criteria in three different situations Zahid Asghar and Irum Abid Quaid-i-Azam University, Islamabad Aril 2007 Online at htts://mra.ub.uni-muenchen.de/40042/

More information

Estimation of the large covariance matrix with two-step monotone missing data

Estimation of the large covariance matrix with two-step monotone missing data Estimation of the large covariance matrix with two-ste monotone missing data Masashi Hyodo, Nobumichi Shutoh 2, Takashi Seo, and Tatjana Pavlenko 3 Deartment of Mathematical Information Science, Tokyo

More information

Combining Logistic Regression with Kriging for Mapping the Risk of Occurrence of Unexploded Ordnance (UXO)

Combining Logistic Regression with Kriging for Mapping the Risk of Occurrence of Unexploded Ordnance (UXO) Combining Logistic Regression with Kriging for Maing the Risk of Occurrence of Unexloded Ordnance (UXO) H. Saito (), P. Goovaerts (), S. A. McKenna (2) Environmental and Water Resources Engineering, Deartment

More information

Lower Confidence Bound for Process-Yield Index S pk with Autocorrelated Process Data

Lower Confidence Bound for Process-Yield Index S pk with Autocorrelated Process Data Quality Technology & Quantitative Management Vol. 1, No.,. 51-65, 15 QTQM IAQM 15 Lower onfidence Bound for Process-Yield Index with Autocorrelated Process Data Fu-Kwun Wang * and Yeneneh Tamirat Deartment

More information

On split sample and randomized confidence intervals for binomial proportions

On split sample and randomized confidence intervals for binomial proportions On slit samle and randomized confidence intervals for binomial roortions Måns Thulin Deartment of Mathematics, Usala University arxiv:1402.6536v1 [stat.me] 26 Feb 2014 Abstract Slit samle methods have

More information

Notes on Instrumental Variables Methods

Notes on Instrumental Variables Methods Notes on Instrumental Variables Methods Michele Pellizzari IGIER-Bocconi, IZA and frdb 1 The Instrumental Variable Estimator Instrumental variable estimation is the classical solution to the roblem of

More information

Spectral Analysis by Stationary Time Series Modeling

Spectral Analysis by Stationary Time Series Modeling Chater 6 Sectral Analysis by Stationary Time Series Modeling Choosing a arametric model among all the existing models is by itself a difficult roblem. Generally, this is a riori information about the signal

More information

A Comparison between Biased and Unbiased Estimators in Ordinary Least Squares Regression

A Comparison between Biased and Unbiased Estimators in Ordinary Least Squares Regression Journal of Modern Alied Statistical Methods Volume Issue Article 7 --03 A Comarison between Biased and Unbiased Estimators in Ordinary Least Squares Regression Ghadban Khalaf King Khalid University, Saudi

More information

General Linear Model Introduction, Classes of Linear models and Estimation

General Linear Model Introduction, Classes of Linear models and Estimation Stat 740 General Linear Model Introduction, Classes of Linear models and Estimation An aim of scientific enquiry: To describe or to discover relationshis among events (variables) in the controlled (laboratory)

More information

Research Note REGRESSION ANALYSIS IN MARKOV CHAIN * A. Y. ALAMUTI AND M. R. MESHKANI **

Research Note REGRESSION ANALYSIS IN MARKOV CHAIN * A. Y. ALAMUTI AND M. R. MESHKANI ** Iranian Journal of Science & Technology, Transaction A, Vol 3, No A3 Printed in The Islamic Reublic of Iran, 26 Shiraz University Research Note REGRESSION ANALYSIS IN MARKOV HAIN * A Y ALAMUTI AND M R

More information

arxiv: v1 [physics.data-an] 26 Oct 2012

arxiv: v1 [physics.data-an] 26 Oct 2012 Constraints on Yield Parameters in Extended Maximum Likelihood Fits Till Moritz Karbach a, Maximilian Schlu b a TU Dortmund, Germany, moritz.karbach@cern.ch b TU Dortmund, Germany, maximilian.schlu@cern.ch

More information

System Reliability Estimation and Confidence Regions from Subsystem and Full System Tests

System Reliability Estimation and Confidence Regions from Subsystem and Full System Tests 009 American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA June 0-, 009 FrB4. System Reliability Estimation and Confidence Regions from Subsystem and Full System Tests James C. Sall Abstract

More information

Variable Selection and Model Building

Variable Selection and Model Building LINEAR REGRESSION ANALYSIS MODULE XIII Lecture - 38 Variable Selection and Model Building Dr. Shalabh Deartment of Mathematics and Statistics Indian Institute of Technology Kanur Evaluation of subset regression

More information

Hotelling s Two- Sample T 2

Hotelling s Two- Sample T 2 Chater 600 Hotelling s Two- Samle T Introduction This module calculates ower for the Hotelling s two-grou, T-squared (T) test statistic. Hotelling s T is an extension of the univariate two-samle t-test

More information

Introduction to Probability and Statistics

Introduction to Probability and Statistics Introduction to Probability and Statistics Chater 8 Ammar M. Sarhan, asarhan@mathstat.dal.ca Deartment of Mathematics and Statistics, Dalhousie University Fall Semester 28 Chater 8 Tests of Hyotheses Based

More information

The Recursive Fitting of Multivariate. Complex Subset ARX Models

The Recursive Fitting of Multivariate. Complex Subset ARX Models lied Mathematical Sciences, Vol. 1, 2007, no. 23, 1129-1143 The Recursive Fitting of Multivariate Comlex Subset RX Models Jack Penm School of Finance and lied Statistics NU College of Business & conomics

More information

State Estimation with ARMarkov Models

State Estimation with ARMarkov Models Deartment of Mechanical and Aerosace Engineering Technical Reort No. 3046, October 1998. Princeton University, Princeton, NJ. State Estimation with ARMarkov Models Ryoung K. Lim 1 Columbia University,

More information

Information collection on a graph

Information collection on a graph Information collection on a grah Ilya O. Ryzhov Warren Powell February 10, 2010 Abstract We derive a knowledge gradient olicy for an otimal learning roblem on a grah, in which we use sequential measurements

More information

Feedback-error control

Feedback-error control Chater 4 Feedback-error control 4.1 Introduction This chater exlains the feedback-error (FBE) control scheme originally described by Kawato [, 87, 8]. FBE is a widely used neural network based controller

More information

A New Asymmetric Interaction Ridge (AIR) Regression Method

A New Asymmetric Interaction Ridge (AIR) Regression Method A New Asymmetric Interaction Ridge (AIR) Regression Method by Kristofer Månsson, Ghazi Shukur, and Pär Sölander The Swedish Retail Institute, HUI Research, Stockholm, Sweden. Deartment of Economics and

More information

Finite-Sample Bias Propagation in the Yule-Walker Method of Autoregressive Estimation

Finite-Sample Bias Propagation in the Yule-Walker Method of Autoregressive Estimation Proceedings of the 7th World Congress The International Federation of Automatic Control Seoul, Korea, July 6-, 008 Finite-Samle Bias Proagation in the Yule-Walker Method of Autoregressie Estimation Piet

More information

An Analysis of Reliable Classifiers through ROC Isometrics

An Analysis of Reliable Classifiers through ROC Isometrics An Analysis of Reliable Classifiers through ROC Isometrics Stijn Vanderlooy s.vanderlooy@cs.unimaas.nl Ida G. Srinkhuizen-Kuyer kuyer@cs.unimaas.nl Evgueni N. Smirnov smirnov@cs.unimaas.nl MICC-IKAT, Universiteit

More information

DETC2003/DAC AN EFFICIENT ALGORITHM FOR CONSTRUCTING OPTIMAL DESIGN OF COMPUTER EXPERIMENTS

DETC2003/DAC AN EFFICIENT ALGORITHM FOR CONSTRUCTING OPTIMAL DESIGN OF COMPUTER EXPERIMENTS Proceedings of DETC 03 ASME 003 Design Engineering Technical Conferences and Comuters and Information in Engineering Conference Chicago, Illinois USA, Setember -6, 003 DETC003/DAC-48760 AN EFFICIENT ALGORITHM

More information

Information collection on a graph

Information collection on a graph Information collection on a grah Ilya O. Ryzhov Warren Powell October 25, 2009 Abstract We derive a knowledge gradient olicy for an otimal learning roblem on a grah, in which we use sequential measurements

More information

Morten Frydenberg Section for Biostatistics Version :Friday, 05 September 2014

Morten Frydenberg Section for Biostatistics Version :Friday, 05 September 2014 Morten Frydenberg Section for Biostatistics Version :Friday, 05 Setember 204 All models are aroximations! The best model does not exist! Comlicated models needs a lot of data. lower your ambitions or get

More information

Yixi Shi. Jose Blanchet. IEOR Department Columbia University New York, NY 10027, USA. IEOR Department Columbia University New York, NY 10027, USA

Yixi Shi. Jose Blanchet. IEOR Department Columbia University New York, NY 10027, USA. IEOR Department Columbia University New York, NY 10027, USA Proceedings of the 2011 Winter Simulation Conference S. Jain, R. R. Creasey, J. Himmelsach, K. P. White, and M. Fu, eds. EFFICIENT RARE EVENT SIMULATION FOR HEAVY-TAILED SYSTEMS VIA CROSS ENTROPY Jose

More information

4. Score normalization technical details We now discuss the technical details of the score normalization method.

4. Score normalization technical details We now discuss the technical details of the score normalization method. SMT SCORING SYSTEM This document describes the scoring system for the Stanford Math Tournament We begin by giving an overview of the changes to scoring and a non-technical descrition of the scoring rules

More information

Universal Finite Memory Coding of Binary Sequences

Universal Finite Memory Coding of Binary Sequences Deartment of Electrical Engineering Systems Universal Finite Memory Coding of Binary Sequences Thesis submitted towards the degree of Master of Science in Electrical and Electronic Engineering in Tel-Aviv

More information

Probability Estimates for Multi-class Classification by Pairwise Coupling

Probability Estimates for Multi-class Classification by Pairwise Coupling Probability Estimates for Multi-class Classification by Pairwise Couling Ting-Fan Wu Chih-Jen Lin Deartment of Comuter Science National Taiwan University Taiei 06, Taiwan Ruby C. Weng Deartment of Statistics

More information

Deriving Indicator Direct and Cross Variograms from a Normal Scores Variogram Model (bigaus-full) David F. Machuca Mory and Clayton V.

Deriving Indicator Direct and Cross Variograms from a Normal Scores Variogram Model (bigaus-full) David F. Machuca Mory and Clayton V. Deriving ndicator Direct and Cross Variograms from a Normal Scores Variogram Model (bigaus-full) David F. Machuca Mory and Clayton V. Deutsch Centre for Comutational Geostatistics Deartment of Civil &

More information

Tests for Two Proportions in a Stratified Design (Cochran/Mantel-Haenszel Test)

Tests for Two Proportions in a Stratified Design (Cochran/Mantel-Haenszel Test) Chater 225 Tests for Two Proortions in a Stratified Design (Cochran/Mantel-Haenszel Test) Introduction In a stratified design, the subects are selected from two or more strata which are formed from imortant

More information

Estimating function analysis for a class of Tweedie regression models

Estimating function analysis for a class of Tweedie regression models Title Estimating function analysis for a class of Tweedie regression models Author Wagner Hugo Bonat Deartamento de Estatística - DEST, Laboratório de Estatística e Geoinformação - LEG, Universidade Federal

More information

8 STOCHASTIC PROCESSES

8 STOCHASTIC PROCESSES 8 STOCHASTIC PROCESSES The word stochastic is derived from the Greek στoχαστικoς, meaning to aim at a target. Stochastic rocesses involve state which changes in a random way. A Markov rocess is a articular

More information

CHAPTER 5 STATISTICAL INFERENCE. 1.0 Hypothesis Testing. 2.0 Decision Errors. 3.0 How a Hypothesis is Tested. 4.0 Test for Goodness of Fit

CHAPTER 5 STATISTICAL INFERENCE. 1.0 Hypothesis Testing. 2.0 Decision Errors. 3.0 How a Hypothesis is Tested. 4.0 Test for Goodness of Fit Chater 5 Statistical Inference 69 CHAPTER 5 STATISTICAL INFERENCE.0 Hyothesis Testing.0 Decision Errors 3.0 How a Hyothesis is Tested 4.0 Test for Goodness of Fit 5.0 Inferences about Two Means It ain't

More information

Shadow Computing: An Energy-Aware Fault Tolerant Computing Model

Shadow Computing: An Energy-Aware Fault Tolerant Computing Model Shadow Comuting: An Energy-Aware Fault Tolerant Comuting Model Bryan Mills, Taieb Znati, Rami Melhem Deartment of Comuter Science University of Pittsburgh (bmills, znati, melhem)@cs.itt.edu Index Terms

More information

CHAPTER-II Control Charts for Fraction Nonconforming using m-of-m Runs Rules

CHAPTER-II Control Charts for Fraction Nonconforming using m-of-m Runs Rules CHAPTER-II Control Charts for Fraction Nonconforming using m-of-m Runs Rules. Introduction: The is widely used in industry to monitor the number of fraction nonconforming units. A nonconforming unit is

More information

An Improved Generalized Estimation Procedure of Current Population Mean in Two-Occasion Successive Sampling

An Improved Generalized Estimation Procedure of Current Population Mean in Two-Occasion Successive Sampling Journal of Modern Alied Statistical Methods Volume 15 Issue Article 14 11-1-016 An Imroved Generalized Estimation Procedure of Current Poulation Mean in Two-Occasion Successive Samling G. N. Singh Indian

More information

One-way ANOVA Inference for one-way ANOVA

One-way ANOVA Inference for one-way ANOVA One-way ANOVA Inference for one-way ANOVA IPS Chater 12.1 2009 W.H. Freeman and Comany Objectives (IPS Chater 12.1) Inference for one-way ANOVA Comaring means The two-samle t statistic An overview of ANOVA

More information

MATHEMATICAL MODELLING OF THE WIRELESS COMMUNICATION NETWORK

MATHEMATICAL MODELLING OF THE WIRELESS COMMUNICATION NETWORK Comuter Modelling and ew Technologies, 5, Vol.9, o., 3-39 Transort and Telecommunication Institute, Lomonosov, LV-9, Riga, Latvia MATHEMATICAL MODELLIG OF THE WIRELESS COMMUICATIO ETWORK M. KOPEETSK Deartment

More information

Applied Mathematics and Computation

Applied Mathematics and Computation Alied Mathematics and Comutation 217 (2010) 1887 1895 Contents lists available at ScienceDirect Alied Mathematics and Comutation journal homeage: www.elsevier.com/locate/amc Derivative free two-oint methods

More information

Aggregate Prediction With. the Aggregation Bias

Aggregate Prediction With. the Aggregation Bias 100 Aggregate Prediction With Disaggregate Models: Behavior of the Aggregation Bias Uzi Landau, Transortation Research nstitute, Technion-srael nstitute of Technology, Haifa Disaggregate travel demand

More information

Stylianos Sp. Pappas* Vassilios C. Moussas. Sokratis K. Katsikas

Stylianos Sp. Pappas* Vassilios C. Moussas. Sokratis K. Katsikas 242 Int. J. Modelling, Identification and Control, Vol. 4, No. 3, 2008 Alication of the multi-model artitioning theory for simultaneous order and arameter estimation of multivariate ARMA models Stylianos

More information

arxiv: v3 [physics.data-an] 23 May 2011

arxiv: v3 [physics.data-an] 23 May 2011 Date: October, 8 arxiv:.7v [hysics.data-an] May -values for Model Evaluation F. Beaujean, A. Caldwell, D. Kollár, K. Kröninger Max-Planck-Institut für Physik, München, Germany CERN, Geneva, Switzerland

More information

PERFORMANCE BASED DESIGN SYSTEM FOR CONCRETE MIXTURE WITH MULTI-OPTIMIZING GENETIC ALGORITHM

PERFORMANCE BASED DESIGN SYSTEM FOR CONCRETE MIXTURE WITH MULTI-OPTIMIZING GENETIC ALGORITHM PERFORMANCE BASED DESIGN SYSTEM FOR CONCRETE MIXTURE WITH MULTI-OPTIMIZING GENETIC ALGORITHM Takafumi Noguchi 1, Iei Maruyama 1 and Manabu Kanematsu 1 1 Deartment of Architecture, University of Tokyo,

More information

Positive decomposition of transfer functions with multiple poles

Positive decomposition of transfer functions with multiple poles Positive decomosition of transfer functions with multile oles Béla Nagy 1, Máté Matolcsi 2, and Márta Szilvási 1 Deartment of Analysis, Technical University of Budaest (BME), H-1111, Budaest, Egry J. u.

More information

ASYMPTOTIC RESULTS OF A HIGH DIMENSIONAL MANOVA TEST AND POWER COMPARISON WHEN THE DIMENSION IS LARGE COMPARED TO THE SAMPLE SIZE

ASYMPTOTIC RESULTS OF A HIGH DIMENSIONAL MANOVA TEST AND POWER COMPARISON WHEN THE DIMENSION IS LARGE COMPARED TO THE SAMPLE SIZE J Jaan Statist Soc Vol 34 No 2004 9 26 ASYMPTOTIC RESULTS OF A HIGH DIMENSIONAL MANOVA TEST AND POWER COMPARISON WHEN THE DIMENSION IS LARGE COMPARED TO THE SAMPLE SIZE Yasunori Fujikoshi*, Tetsuto Himeno

More information

Chapter 3. GMM: Selected Topics

Chapter 3. GMM: Selected Topics Chater 3. GMM: Selected oics Contents Otimal Instruments. he issue of interest..............................2 Otimal Instruments under the i:i:d: assumtion..............2. he basic result............................2.2

More information

AN OPTIMAL CONTROL CHART FOR NON-NORMAL PROCESSES

AN OPTIMAL CONTROL CHART FOR NON-NORMAL PROCESSES AN OPTIMAL CONTROL CHART FOR NON-NORMAL PROCESSES Emmanuel Duclos, Maurice Pillet To cite this version: Emmanuel Duclos, Maurice Pillet. AN OPTIMAL CONTROL CHART FOR NON-NORMAL PRO- CESSES. st IFAC Worsho

More information

Unsupervised Hyperspectral Image Analysis Using Independent Component Analysis (ICA)

Unsupervised Hyperspectral Image Analysis Using Independent Component Analysis (ICA) Unsuervised Hyersectral Image Analysis Using Indeendent Comonent Analysis (ICA) Shao-Shan Chiang Chein-I Chang Irving W. Ginsberg Remote Sensing Signal and Image Processing Laboratory Deartment of Comuter

More information

Estimating Time-Series Models

Estimating Time-Series Models Estimating ime-series Models he Box-Jenkins methodology for tting a model to a scalar time series fx t g consists of ve stes:. Decide on the order of di erencing d that is needed to roduce a stationary

More information

Asymptotic Properties of the Markov Chain Model method of finding Markov chains Generators of..

Asymptotic Properties of the Markov Chain Model method of finding Markov chains Generators of.. IOSR Journal of Mathematics (IOSR-JM) e-issn: 78-578, -ISSN: 319-765X. Volume 1, Issue 4 Ver. III (Jul. - Aug.016), PP 53-60 www.iosrournals.org Asymtotic Proerties of the Markov Chain Model method of

More information

Ensemble Forecasting the Number of New Car Registrations

Ensemble Forecasting the Number of New Car Registrations Ensemble Forecasting the Number of New Car Registrations SJOERT FLEURKE Radiocommunications Agency Netherlands Emmasingel 1, 9700 AL, Groningen THE NETHERLANDS sjoert.fleurke@agentschatelecom.nl htt://www.agentschatelecom.nl

More information

Published: 14 October 2013

Published: 14 October 2013 Electronic Journal of Alied Statistical Analysis EJASA, Electron. J. A. Stat. Anal. htt://siba-ese.unisalento.it/index.h/ejasa/index e-issn: 27-5948 DOI: 1.1285/i275948v6n213 Estimation of Parameters of

More information

Session 5: Review of Classical Astrodynamics

Session 5: Review of Classical Astrodynamics Session 5: Review of Classical Astrodynamics In revious lectures we described in detail the rocess to find the otimal secific imulse for a articular situation. Among the mission requirements that serve

More information

Chapter 13 Variable Selection and Model Building

Chapter 13 Variable Selection and Model Building Chater 3 Variable Selection and Model Building The comlete regsion analysis deends on the exlanatory variables ent in the model. It is understood in the regsion analysis that only correct and imortant

More information

A Bound on the Error of Cross Validation Using the Approximation and Estimation Rates, with Consequences for the Training-Test Split

A Bound on the Error of Cross Validation Using the Approximation and Estimation Rates, with Consequences for the Training-Test Split A Bound on the Error of Cross Validation Using the Aroximation and Estimation Rates, with Consequences for the Training-Test Slit Michael Kearns AT&T Bell Laboratories Murray Hill, NJ 7974 mkearns@research.att.com

More information

Radial Basis Function Networks: Algorithms

Radial Basis Function Networks: Algorithms Radial Basis Function Networks: Algorithms Introduction to Neural Networks : Lecture 13 John A. Bullinaria, 2004 1. The RBF Maing 2. The RBF Network Architecture 3. Comutational Power of RBF Networks 4.

More information

Autoregressive (AR) Modelling

Autoregressive (AR) Modelling Autoregressive (AR) Modelling A. Uses of AR Modelling () Alications (a) Seech recognition and coding (storage) (b) System identification (c) Modelling and recognition of sonar, radar, geohysical signals

More information

An Investigation on the Numerical Ill-conditioning of Hybrid State Estimators

An Investigation on the Numerical Ill-conditioning of Hybrid State Estimators An Investigation on the Numerical Ill-conditioning of Hybrid State Estimators S. K. Mallik, Student Member, IEEE, S. Chakrabarti, Senior Member, IEEE, S. N. Singh, Senior Member, IEEE Deartment of Electrical

More information

An Improved Calibration Method for a Chopped Pyrgeometer

An Improved Calibration Method for a Chopped Pyrgeometer 96 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME 17 An Imroved Calibration Method for a Choed Pyrgeometer FRIEDRICH FERGG OtoLab, Ingenieurbüro, Munich, Germany PETER WENDLING Deutsches Forschungszentrum

More information

Covariance Matrix Estimation for Reinforcement Learning

Covariance Matrix Estimation for Reinforcement Learning Covariance Matrix Estimation for Reinforcement Learning Tomer Lancewicki Deartment of Electrical Engineering and Comuter Science University of Tennessee Knoxville, TN 37996 tlancewi@utk.edu Itamar Arel

More information

MODELING THE RELIABILITY OF C4ISR SYSTEMS HARDWARE/SOFTWARE COMPONENTS USING AN IMPROVED MARKOV MODEL

MODELING THE RELIABILITY OF C4ISR SYSTEMS HARDWARE/SOFTWARE COMPONENTS USING AN IMPROVED MARKOV MODEL Technical Sciences and Alied Mathematics MODELING THE RELIABILITY OF CISR SYSTEMS HARDWARE/SOFTWARE COMPONENTS USING AN IMPROVED MARKOV MODEL Cezar VASILESCU Regional Deartment of Defense Resources Management

More information

The non-stochastic multi-armed bandit problem

The non-stochastic multi-armed bandit problem Submitted for journal ublication. The non-stochastic multi-armed bandit roblem Peter Auer Institute for Theoretical Comuter Science Graz University of Technology A-8010 Graz (Austria) auer@igi.tu-graz.ac.at

More information

Solved Problems. (a) (b) (c) Figure P4.1 Simple Classification Problems First we draw a line between each set of dark and light data points.

Solved Problems. (a) (b) (c) Figure P4.1 Simple Classification Problems First we draw a line between each set of dark and light data points. Solved Problems Solved Problems P Solve the three simle classification roblems shown in Figure P by drawing a decision boundary Find weight and bias values that result in single-neuron ercetrons with the

More information

AI*IA 2003 Fusion of Multiple Pattern Classifiers PART III

AI*IA 2003 Fusion of Multiple Pattern Classifiers PART III AI*IA 23 Fusion of Multile Pattern Classifiers PART III AI*IA 23 Tutorial on Fusion of Multile Pattern Classifiers by F. Roli 49 Methods for fusing multile classifiers Methods for fusing multile classifiers

More information

Bayesian inference & Markov chain Monte Carlo. Note 1: Many slides for this lecture were kindly provided by Paul Lewis and Mark Holder

Bayesian inference & Markov chain Monte Carlo. Note 1: Many slides for this lecture were kindly provided by Paul Lewis and Mark Holder Bayesian inference & Markov chain Monte Carlo Note 1: Many slides for this lecture were kindly rovided by Paul Lewis and Mark Holder Note 2: Paul Lewis has written nice software for demonstrating Markov

More information

Use of Transformations and the Repeated Statement in PROC GLM in SAS Ed Stanek

Use of Transformations and the Repeated Statement in PROC GLM in SAS Ed Stanek Use of Transformations and the Reeated Statement in PROC GLM in SAS Ed Stanek Introduction We describe how the Reeated Statement in PROC GLM in SAS transforms the data to rovide tests of hyotheses of interest.

More information

Minimax Design of Nonnegative Finite Impulse Response Filters

Minimax Design of Nonnegative Finite Impulse Response Filters Minimax Design of Nonnegative Finite Imulse Resonse Filters Xiaoing Lai, Anke Xue Institute of Information and Control Hangzhou Dianzi University Hangzhou, 3118 China e-mail: laix@hdu.edu.cn; akxue@hdu.edu.cn

More information

On Fractional Predictive PID Controller Design Method Emmanuel Edet*. Reza Katebi.**

On Fractional Predictive PID Controller Design Method Emmanuel Edet*. Reza Katebi.** On Fractional Predictive PID Controller Design Method Emmanuel Edet*. Reza Katebi.** * echnology and Innovation Centre, Level 4, Deartment of Electronic and Electrical Engineering, University of Strathclyde,

More information

Research of power plant parameter based on the Principal Component Analysis method

Research of power plant parameter based on the Principal Component Analysis method Research of ower lant arameter based on the Princial Comonent Analysis method Yang Yang *a, Di Zhang b a b School of Engineering, Bohai University, Liaoning Jinzhou, 3; Liaoning Datang international Jinzhou

More information

Adaptive estimation with change detection for streaming data

Adaptive estimation with change detection for streaming data Adative estimation with change detection for streaming data A thesis resented for the degree of Doctor of Philosohy of the University of London and the Diloma of Imerial College by Dean Adam Bodenham Deartment

More information

Asymptotically Optimal Simulation Allocation under Dependent Sampling

Asymptotically Optimal Simulation Allocation under Dependent Sampling Asymtotically Otimal Simulation Allocation under Deendent Samling Xiaoing Xiong The Robert H. Smith School of Business, University of Maryland, College Park, MD 20742-1815, USA, xiaoingx@yahoo.com Sandee

More information

LINEAR SYSTEMS WITH POLYNOMIAL UNCERTAINTY STRUCTURE: STABILITY MARGINS AND CONTROL

LINEAR SYSTEMS WITH POLYNOMIAL UNCERTAINTY STRUCTURE: STABILITY MARGINS AND CONTROL LINEAR SYSTEMS WITH POLYNOMIAL UNCERTAINTY STRUCTURE: STABILITY MARGINS AND CONTROL Mohammad Bozorg Deatment of Mechanical Engineering University of Yazd P. O. Box 89195-741 Yazd Iran Fax: +98-351-750110

More information

ute measures of uncertainty called standard errors for these b j estimates and the resulting forecasts if certain conditions are satis- ed. Note the e

ute measures of uncertainty called standard errors for these b j estimates and the resulting forecasts if certain conditions are satis- ed. Note the e Regression with Time Series Errors David A. Dickey, North Carolina State University Abstract: The basic assumtions of regression are reviewed. Grahical and statistical methods for checking the assumtions

More information

VIBRATION ANALYSIS OF BEAMS WITH MULTIPLE CONSTRAINED LAYER DAMPING PATCHES

VIBRATION ANALYSIS OF BEAMS WITH MULTIPLE CONSTRAINED LAYER DAMPING PATCHES Journal of Sound and Vibration (998) 22(5), 78 85 VIBRATION ANALYSIS OF BEAMS WITH MULTIPLE CONSTRAINED LAYER DAMPING PATCHES Acoustics and Dynamics Laboratory, Deartment of Mechanical Engineering, The

More information

Metrics Performance Evaluation: Application to Face Recognition

Metrics Performance Evaluation: Application to Face Recognition Metrics Performance Evaluation: Alication to Face Recognition Naser Zaeri, Abeer AlSadeq, and Abdallah Cherri Electrical Engineering Det., Kuwait University, P.O. Box 5969, Safat 6, Kuwait {zaery, abeer,

More information

Plotting the Wilson distribution

Plotting the Wilson distribution , Survey of English Usage, University College London Setember 018 1 1. Introduction We have discussed the Wilson score interval at length elsewhere (Wallis 013a, b). Given an observed Binomial roortion

More information

Re-entry Protocols for Seismically Active Mines Using Statistical Analysis of Aftershock Sequences

Re-entry Protocols for Seismically Active Mines Using Statistical Analysis of Aftershock Sequences Re-entry Protocols for Seismically Active Mines Using Statistical Analysis of Aftershock Sequences J.A. Vallejos & S.M. McKinnon Queen s University, Kingston, ON, Canada ABSTRACT: Re-entry rotocols are

More information

Causality Testing using Higher Order Statistics

Causality Testing using Higher Order Statistics Causality Testing using Higher Order Statistics Dr Sanya Dudukovic International Management Deartment Franklin College, Switzerland Fax: 41 91 994 41 17 E-mail : Sdudukov@fc.edu Abstract : A new causality

More information

Bayesian Spatially Varying Coefficient Models in the Presence of Collinearity

Bayesian Spatially Varying Coefficient Models in the Presence of Collinearity Bayesian Satially Varying Coefficient Models in the Presence of Collinearity David C. Wheeler 1, Catherine A. Calder 1 he Ohio State University 1 Abstract he belief that relationshis between exlanatory

More information

Modeling Business Cycles with Markov Switching Arma (Ms-Arma) Model: An Application on Iranian Business Cycles

Modeling Business Cycles with Markov Switching Arma (Ms-Arma) Model: An Application on Iranian Business Cycles Modeling Business Cycles with Markov Switching Arma (Ms-Arma) Model: An Alication on Iranian Business Cycles Morteza Salehi Sarbijan 1 Faculty Member in School of Engineering, Deartment of Mechanics, Zabol

More information

LECTURE 7 NOTES. x n. d x if. E [g(x n )] E [g(x)]

LECTURE 7 NOTES. x n. d x if. E [g(x n )] E [g(x)] LECTURE 7 NOTES 1. Convergence of random variables. Before delving into the large samle roerties of the MLE, we review some concets from large samle theory. 1. Convergence in robability: x n x if, for

More information

Robust Performance Design of PID Controllers with Inverse Multiplicative Uncertainty

Robust Performance Design of PID Controllers with Inverse Multiplicative Uncertainty American Control Conference on O'Farrell Street San Francisco CA USA June 9 - July Robust Performance Design of PID Controllers with Inverse Multilicative Uncertainty Tooran Emami John M Watkins Senior

More information

On Using FASTEM2 for the Special Sensor Microwave Imager (SSM/I) March 15, Godelieve Deblonde Meteorological Service of Canada

On Using FASTEM2 for the Special Sensor Microwave Imager (SSM/I) March 15, Godelieve Deblonde Meteorological Service of Canada On Using FASTEM2 for the Secial Sensor Microwave Imager (SSM/I) March 15, 2001 Godelieve Deblonde Meteorological Service of Canada 1 1. Introduction Fastem2 is a fast model (multile-linear regression model)

More information

Towards understanding the Lorenz curve using the Uniform distribution. Chris J. Stephens. Newcastle City Council, Newcastle upon Tyne, UK

Towards understanding the Lorenz curve using the Uniform distribution. Chris J. Stephens. Newcastle City Council, Newcastle upon Tyne, UK Towards understanding the Lorenz curve using the Uniform distribution Chris J. Stehens Newcastle City Council, Newcastle uon Tyne, UK (For the Gini-Lorenz Conference, University of Siena, Italy, May 2005)

More information

STABILITY ANALYSIS TOOL FOR TUNING UNCONSTRAINED DECENTRALIZED MODEL PREDICTIVE CONTROLLERS

STABILITY ANALYSIS TOOL FOR TUNING UNCONSTRAINED DECENTRALIZED MODEL PREDICTIVE CONTROLLERS STABILITY ANALYSIS TOOL FOR TUNING UNCONSTRAINED DECENTRALIZED MODEL PREDICTIVE CONTROLLERS Massimo Vaccarini Sauro Longhi M. Reza Katebi D.I.I.G.A., Università Politecnica delle Marche, Ancona, Italy

More information

Estimation of Separable Representations in Psychophysical Experiments

Estimation of Separable Representations in Psychophysical Experiments Estimation of Searable Reresentations in Psychohysical Exeriments Michele Bernasconi (mbernasconi@eco.uninsubria.it) Christine Choirat (cchoirat@eco.uninsubria.it) Raffaello Seri (rseri@eco.uninsubria.it)

More information

MULTIVARIATE SHEWHART QUALITY CONTROL FOR STANDARD DEVIATION

MULTIVARIATE SHEWHART QUALITY CONTROL FOR STANDARD DEVIATION MULTIVARIATE SHEWHART QUALITY CONTROL FOR STANDARD DEVIATION M. Jabbari Nooghabi, Deartment of Statistics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad-Iran. and H. Jabbari

More information

Monte Carlo Studies. Monte Carlo Studies. Sampling Distribution

Monte Carlo Studies. Monte Carlo Studies. Sampling Distribution Monte Carlo Studies Do not let yourself be intimidated by the material in this lecture This lecture involves more theory but is meant to imrove your understanding of: Samling distributions and tests of

More information

Study on determinants of Chinese trade balance based on Bayesian VAR model

Study on determinants of Chinese trade balance based on Bayesian VAR model Available online www.jocr.com Journal of Chemical and Pharmaceutical Research, 204, 6(5):2042-2047 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Study on determinants of Chinese trade balance based

More information

Completely Randomized Design

Completely Randomized Design CHAPTER 4 Comletely Randomized Design 4.1 Descrition of the Design Chaters 1 to 3 introduced some basic concets and statistical tools that are used in exerimental design. In this and the following chaters,

More information

Research of PMU Optimal Placement in Power Systems

Research of PMU Optimal Placement in Power Systems Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, Setember 15-17, 2005 (38-43) Research of PMU Otimal Placement in Power Systems TIAN-TIAN CAI, QIAN AI

More information

Scaling Multiple Point Statistics for Non-Stationary Geostatistical Modeling

Scaling Multiple Point Statistics for Non-Stationary Geostatistical Modeling Scaling Multile Point Statistics or Non-Stationary Geostatistical Modeling Julián M. Ortiz, Steven Lyster and Clayton V. Deutsch Centre or Comutational Geostatistics Deartment o Civil & Environmental Engineering

More information

A SIMPLE PLASTICITY MODEL FOR PREDICTING TRANSVERSE COMPOSITE RESPONSE AND FAILURE

A SIMPLE PLASTICITY MODEL FOR PREDICTING TRANSVERSE COMPOSITE RESPONSE AND FAILURE THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS A SIMPLE PLASTICITY MODEL FOR PREDICTING TRANSVERSE COMPOSITE RESPONSE AND FAILURE K.W. Gan*, M.R. Wisnom, S.R. Hallett, G. Allegri Advanced Comosites

More information

#A64 INTEGERS 18 (2018) APPLYING MODULAR ARITHMETIC TO DIOPHANTINE EQUATIONS

#A64 INTEGERS 18 (2018) APPLYING MODULAR ARITHMETIC TO DIOPHANTINE EQUATIONS #A64 INTEGERS 18 (2018) APPLYING MODULAR ARITHMETIC TO DIOPHANTINE EQUATIONS Ramy F. Taki ElDin Physics and Engineering Mathematics Deartment, Faculty of Engineering, Ain Shams University, Cairo, Egyt

More information

STA 250: Statistics. Notes 7. Bayesian Approach to Statistics. Book chapters: 7.2

STA 250: Statistics. Notes 7. Bayesian Approach to Statistics. Book chapters: 7.2 STA 25: Statistics Notes 7. Bayesian Aroach to Statistics Book chaters: 7.2 1 From calibrating a rocedure to quantifying uncertainty We saw that the central idea of classical testing is to rovide a rigorous

More information

Adaptive Estimation of the Regression Discontinuity Model

Adaptive Estimation of the Regression Discontinuity Model Adative Estimation of the Regression Discontinuity Model Yixiao Sun Deartment of Economics Univeristy of California, San Diego La Jolla, CA 9293-58 Feburary 25 Email: yisun@ucsd.edu; Tel: 858-534-4692

More information

arxiv:cond-mat/ v2 25 Sep 2002

arxiv:cond-mat/ v2 25 Sep 2002 Energy fluctuations at the multicritical oint in two-dimensional sin glasses arxiv:cond-mat/0207694 v2 25 Se 2002 1. Introduction Hidetoshi Nishimori, Cyril Falvo and Yukiyasu Ozeki Deartment of Physics,

More information

Guaranteed In-Control Performance for the Shewhart X and X Control Charts

Guaranteed In-Control Performance for the Shewhart X and X Control Charts Guaranteed In-Control Performance for the Shewhart X and X Control Charts ROB GOEDHART, MARIT SCHOONHOVEN, and RONALD J. M. M. DOES University of Amsterdam, Plantage Muidergracht, 08 TV Amsterdam, The

More information

José Alberto Mauricio. Instituto Complutense de Análisis Económico. Universidad Complutense de Madrid. Campus de Somosaguas Madrid - SPAIN

José Alberto Mauricio. Instituto Complutense de Análisis Económico. Universidad Complutense de Madrid. Campus de Somosaguas Madrid - SPAIN A CORRECTED ALGORITHM FOR COMPUTING THE THEORETICAL AUTOCOVARIANCE MATRICES OF A VECTOR ARMA MODEL José Alberto Mauricio Instituto Comlutense de Análisis Económico Universidad Comlutense de Madrid Camus

More information