DERIVING PROPER UNIFORM PRIORS FOR REGRESSION COEFFICIENTS

Size: px
Start display at page:

Download "DERIVING PROPER UNIFORM PRIORS FOR REGRESSION COEFFICIENTS"

Transcription

1 DERIVING PROPER UNIFORM PRIORS FOR REGRESSION COEFFICIENTS N. van Erp and P. van Gelder Structural Hydraulic and Probabilistic Design, TU Delft Delft, The Netherlands Abstract. In probles of odel coparison between copeting regression odels, one ust take care not to use iproper priors. Iproper priors introduce inverse infinities in the evidence factors, which do not cancel if one proceeds to copute the posterior probabilities of odels which have different nubers of regression coefficients. We therefore derive a siple and parsionious proper unifor prior for ultiple regression odels. We then look at the evidence values that result fro using this prior. Keywords: Bayesian Model Selection, Proper Unifor Priors, Regression Coefficients, Evidence Values, Invariance PACS: Cw INTRODUCTION There is a long tradition of the use of iproper unifor priors for regression coefficients, that is, location paraeters, in probles of paraeter estiation [1]. However, in probles of odel coparison between copeting regression odels one ust generally avoid iproper priors, whether unifor or not. This is because iproper priors will introduce inverse infinities in the evidence values which ay not cancel out if one coputes the corresponding posterior probabilities [2]. We shall therefore derive a parsionious proper unifor prior for univariate regression odels. This univariate prior is then generalized to its ultivariate equivalent. The resulting proper unifor prior has the nice property that it causes the scaled evidence values, e.g. the posterior probabilities of the copeting regression odels, to be invariant for changes in scale in both the dependent and independent variables. DERIVING PROPER UNIFORM PRIORS FOR THE UNIVARIATE CASE In what follows we derive the, trivial, liits of the univariate unifor prior for a single regression coefficient. The extension to the ultivariate case (in the next paragraph) is based upon the basic idea introduced here. Suppose we wish to regress an dependent vector y upon an independent vector x. Then, using atrix algebra, the regression coefficient β ay be coputed as β = x,y x,x = x y cosθ x 2 = y cosθ. (1) x

2 By exaing (1) we see that β ust lie in the interval y ax (cosθ) β y ax (cosθ) ax. (2) Since (cosθ) = 1 and (cosθ) ax = 1, interval (2) reduces to: y ax β y ax. (3) So, having prior knowledge of the ial length of the predictor,, and the axial length of the outcoe variable, y ax, we ay set liits to the possible values of β. It follows that the proper unifor prior of β ust be the univariate unifor distribution with liits as given in (3): p(β I) = 2 y ax, y ax β y ax, (4) where I stands for the prior background inforation that allows us to assign values to and y ax. DERIVING PROPER UNIFORM PRIORS FOR THE MULTIVARIATE CASE We now derive the liits of the ultivariate unifor prior for regression coefficients. The basic idea is a generalization of the very siple idea used to derive the liits for the univariate case. This generalization will involve a transition fro univariate line pieces to ultivariate ellipsoids. Say we have independent vectors x i that span soe -diensional subspace S. Let ŷ be the part of y that lies in S and let e be the part that is orthogonal to S, then y = ŷ + e. (5) Now, the projection ŷ is apped on the orthogonal base spanned by the vectors x i through the regression coefficients β i, that is, where ŷ = x i β i, (6) β i = x i,y x i,x i = x i,ŷ + e = x i,ŷ x i,x i x i,x i = ŷ x i cosθ i. (7) Because of the independence of the x i we have that x i,x j = 0 for i j. So, if we take the nor of (6) we find ŷ 2 2 = x i β i = ŷ 2 cos 2 θ i. (8)

3 It follows fro identity (8) that the angles θ i in (7) ust obey the constraint cos 2 θ i = 1. (9) Cobining (7) and (9), we see that all possible values of the coordinates β i ust lie on the surface of an -variate ellipsoid centered at the origin and with respective axes r i = ŷ x i. (10) Since ŷ y, the axes (10) ay be axiized through our prior knowledge of the ial lengths of the predictors and the axial length of the outcoe variable, that is, ax(r i ) = y ax x i. (11) It follows that all possible values of the regression coefficients β i ust lie in the -variate ellipsoid centered at the origin and with respective axes (11). If we substitute (11) into the identity for the volue of an -variate ellipsoid V = r i, (12) we find the volue of the paraeter space of all possible values of the β i, as V = x. (13) i Let X [x 1 x ]. Then for independent variables x i the product of the nors is equivalent to the square root of the deterant of X T X, that is, x i = X T X 1/2, (14) which is also the volue of the parallelepiped defined by the vectors x i. If the predictors x i are not independent we can transfor the to an orthogonal basis x i using the Gra-Schidt orthogonalization process. Let X [ x 1 x ]. Then, since the volue of the parallelepiped is invariant under orthogonalization, we have X T X 1/2 = X T X 1/2. (15) Upon aking the appropriate substitutions, we find the axiu volue of the prior accessible paraeter space of the β i, for both independent and dependent predictors, to be V ax = X T X 1/2. (16)

4 That is, the paraeter point (β 1,...,β ) ust lie in soe ellipsoid with axiu volue (16). To assign the proper unifor prior that spans the largest possible paraeter space, we let this proper prior be equal in value to the inverse of (16). It then follows that the ultivariate equivalent of (4) ay be written as p(β 1,...,β I) = where (β 1,...,β ) ellipsoid and X T X 1/2 = ( x i ) X T X 1/2, (17) 1 cosφ 12 ax cosφ 1 ax cosφ 12 ax 1 cosφ 2 ax cosφ 1 ax cosφ 2 ax 1 where cosφi j is the absolute value of the correlation between the predictors xi and x j and I stands for the prior background inforation that allows us to assign values to y ax and X T X 1/2. Fro (17) and (18), we see that axiizing the volue of the prior paraeter space is accoplished by axiizing the length of the dependent variable y and iizing the deterant of the inner product of the atrix X. The latter is accoplished by iizing the lengths of the independent variables x 1,...,x and axiizing the absolute values of their correlations, cosφ 12,...,cosφ 1,. 1/2 (18) DECONSTRUCTING THE EVIDENCE VALUES Having derived a suitable parsionious proper unifor prior for the ultivariate case, we now look ore closely at the evidence values which result fro using this prior. Suppose we wish the copute the evidence of a specific odel M M : y = Xβ + e, (19) where β = (β 1,...,β ), e = (e 1,...,e N ) and e i N (0,σ) for i = 1,...,N and soe value of σ. Then the corresponding likelihood is [ ] 1 p(y X,β,σ,M) = exp (y Xβ)T (y Xβ) (2πσ 2 N/2 ) 2σ 2. (20) For the unknown beta coefficients β of odel (19) we will use the derived proper unifor prior (17), and for the unknown error σ we use a proper Jeffreys prior with noralizing constant A. The proper prior for the unknown paraeters then becoes p(β,σ I) = X T X 1/2 A σ, (21)

5 where (β 1,...,β ) ellipsoid and a σ b. If we cobine the prior (21) with the likelihood (20), we get the following ultivariate distribution X T X 1/2 [ ] A 1 p(y,β,σ X,M,I) = y exp (y Xβ)T (y Xβ) ax σ (2πσ 2 N/2 ) 2σ 2. (22) Upon integrating out the + 1 unknown paraeters β and σ we are left with the following evidence value, [1]: X T X 1/2 A (2π)( N)/2 Γ[(N )/2] X T X 1/2 2 2 (N )/2 p(y X,M,I) = y ŷ N (23) where ŷ X ( X T X ) 1 X T y is the axiu likelihood estiate of y. We ay rearrange these ters to get p(y X,M,I) = y ŷ X T X 1/2 In the evidence (24), the factor X T X 1/2 shrinkage = Γ[(N )/2] y ŷ N y ŷ X T X 1/2 X T X 1/2 A 2π N/2. (24) is the shrinkage of the posterior accessible paraeter space of β relative to the prior accessible space. The greater this shrinkage, the saller the evidence. Shrinkage ay occur if ŷ y. If this is the case, then the factor that rewards goodness of fit goodness of fit = (25) 1 y ŷ N (26) will copensate for the shrinkage penalty. So there is a trade-off between the shrinkage (25) and the goodness of fit (26). Furtherore, there is a factor penalty = Γ[(N )/2] (27) that penalizes( regression odels with a greater nuber of regression coefficients. The last factor A/ 2π N/2) is shared by the evidence values of all the copeting regression odels and eventually cancels out if one coputes the corresponding posterior probabilities. INVARIANCE FOR CHANGE OF SCALE OF THE EVIDENCE The evidence value (24) is invariant under a change in scale of the dependent variables, that is, for the transforation X cx, where c is soe constant. The noralized

6 evidence value, e.g. posterior probability of the odel, is also invariant for a change in scale in the dependent variable, that is, under the transforation ỹ cy. If one uses instead of prior (21) the ore generic prior then the corresponding evidence ter becoes p(β,σ I) = AB σ, (28) B Γ[(N )/2] A p(y X,M,I) = X T X 1/2 y ŷ N 2π (N )/2 (29) and there sees to be a lack of invariance of the evidence values of regression odels under changes of scale. But if we replace the generic ter B with the proper unifor prior (17), we see that invariance was never lacking. DISCUSSION Using inforational consistency requireents, Jaynes [3] derived the for of axial non-inforative priors for location paraeters, that is, regression coefficients, to be unifor. However, this does not tell us what the liits of this this unifor distribution should be, that is, what particular unifor distribution to use. If we are faced with a paraeter estiation proble these liits of the unifor prior are irrelevant, since we ay scale the product of the iproper unifor prior and the likelihood to one, thus obtaining a properly noralized posterior. However, if we are faced with a proble of odel selection then the value of the unifor prior is an integral part of the evidence, which is used to rank the various copeting odels. We have given here soe guidelines for choosing a parsionious proper unifor prior. To construct such a parsionious prior one needs to assign a axial length to the dependent variable y, ial lengths to the independent variables x 1,...,x and axial absolute values to the correlations of the independent variables, cosφ 12,...,cosφ 1,. REFERENCES 1. Arnold Zellner, An Introduction to Bayesian Inference in Econoetrics, J. Wiley & Sons, Inc., New York (1971); Wiley Classics Library Edition (1996). 2. Larry G. Bretthorst, Bayesian Spectru Analysis and Paraeter Estiation, Springer-Verlag, New- York, Edwin T. Jaynes, Prior probabilities, IEEE Trans. Systes Sci. Cybernetics SSC-4 (3), (1968).

Estimating Parameters for a Gaussian pdf

Estimating Parameters for a Gaussian pdf Pattern Recognition and achine Learning Jaes L. Crowley ENSIAG 3 IS First Seester 00/0 Lesson 5 7 Noveber 00 Contents Estiating Paraeters for a Gaussian pdf Notation... The Pattern Recognition Proble...3

More information

Probabilistic Machine Learning

Probabilistic Machine Learning Probabilistic Machine Learning by Prof. Seungchul Lee isystes Design Lab http://isystes.unist.ac.kr/ UNIST Table of Contents I.. Probabilistic Linear Regression I... Maxiu Likelihood Solution II... Maxiu-a-Posteriori

More information

1 Bounding the Margin

1 Bounding the Margin COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #12 Scribe: Jian Min Si March 14, 2013 1 Bounding the Margin We are continuing the proof of a bound on the generalization error of AdaBoost

More information

A Note on the Applied Use of MDL Approximations

A Note on the Applied Use of MDL Approximations A Note on the Applied Use of MDL Approxiations Daniel J. Navarro Departent of Psychology Ohio State University Abstract An applied proble is discussed in which two nested psychological odels of retention

More information

Chapter 6 1-D Continuous Groups

Chapter 6 1-D Continuous Groups Chapter 6 1-D Continuous Groups Continuous groups consist of group eleents labelled by one or ore continuous variables, say a 1, a 2,, a r, where each variable has a well- defined range. This chapter explores:

More information

The Distribution of the Covariance Matrix for a Subset of Elliptical Distributions with Extension to Two Kurtosis Parameters

The Distribution of the Covariance Matrix for a Subset of Elliptical Distributions with Extension to Two Kurtosis Parameters journal of ultivariate analysis 58, 96106 (1996) article no. 0041 The Distribution of the Covariance Matrix for a Subset of Elliptical Distributions with Extension to Two Kurtosis Paraeters H. S. Steyn

More information

Using EM To Estimate A Probablity Density With A Mixture Of Gaussians

Using EM To Estimate A Probablity Density With A Mixture Of Gaussians Using EM To Estiate A Probablity Density With A Mixture Of Gaussians Aaron A. D Souza adsouza@usc.edu Introduction The proble we are trying to address in this note is siple. Given a set of data points

More information

TEST OF HOMOGENEITY OF PARALLEL SAMPLES FROM LOGNORMAL POPULATIONS WITH UNEQUAL VARIANCES

TEST OF HOMOGENEITY OF PARALLEL SAMPLES FROM LOGNORMAL POPULATIONS WITH UNEQUAL VARIANCES TEST OF HOMOGENEITY OF PARALLEL SAMPLES FROM LOGNORMAL POPULATIONS WITH UNEQUAL VARIANCES S. E. Ahed, R. J. Tokins and A. I. Volodin Departent of Matheatics and Statistics University of Regina Regina,

More information

Least Squares Fitting of Data

Least Squares Fitting of Data Least Squares Fitting of Data David Eberly, Geoetric Tools, Redond WA 98052 https://www.geoetrictools.co/ This work is licensed under the Creative Coons Attribution 4.0 International License. To view a

More information

Probability Distributions

Probability Distributions Probability Distributions In Chapter, we ephasized the central role played by probability theory in the solution of pattern recognition probles. We turn now to an exploration of soe particular exaples

More information

Paul M. Goggans Department of Electrical Engineering, University of Mississippi, Anderson Hall, University, Mississippi 38677

Paul M. Goggans Department of Electrical Engineering, University of Mississippi, Anderson Hall, University, Mississippi 38677 Evaluation of decay ties in coupled spaces: Bayesian decay odel selection a),b) Ning Xiang c) National Center for Physical Acoustics and Departent of Electrical Engineering, University of Mississippi,

More information

The linear model is the most fundamental of all serious statistical models encompassing:

The linear model is the most fundamental of all serious statistical models encompassing: Linear Regression Models: A Bayesian perspective Ingredients of a linear model include an n 1 response vector y = (y 1,..., y n ) T and an n p design matrix (e.g. including regressors) X = [x 1,..., x

More information

CS Lecture 13. More Maximum Likelihood

CS Lecture 13. More Maximum Likelihood CS 6347 Lecture 13 More Maxiu Likelihood Recap Last tie: Introduction to axiu likelihood estiation MLE for Bayesian networks Optial CPTs correspond to epirical counts Today: MLE for CRFs 2 Maxiu Likelihood

More information

Chaotic Coupled Map Lattices

Chaotic Coupled Map Lattices Chaotic Coupled Map Lattices Author: Dustin Keys Advisors: Dr. Robert Indik, Dr. Kevin Lin 1 Introduction When a syste of chaotic aps is coupled in a way that allows the to share inforation about each

More information

Feature Extraction Techniques

Feature Extraction Techniques Feature Extraction Techniques Unsupervised Learning II Feature Extraction Unsupervised ethods can also be used to find features which can be useful for categorization. There are unsupervised ethods that

More information

Soft Computing Techniques Help Assign Weights to Different Factors in Vulnerability Analysis

Soft Computing Techniques Help Assign Weights to Different Factors in Vulnerability Analysis Soft Coputing Techniques Help Assign Weights to Different Factors in Vulnerability Analysis Beverly Rivera 1,2, Irbis Gallegos 1, and Vladik Kreinovich 2 1 Regional Cyber and Energy Security Center RCES

More information

Constructing Locally Best Invariant Tests of the Linear Regression Model Using the Density Function of a Maximal Invariant

Constructing Locally Best Invariant Tests of the Linear Regression Model Using the Density Function of a Maximal Invariant Aerican Journal of Matheatics and Statistics 03, 3(): 45-5 DOI: 0.593/j.ajs.03030.07 Constructing Locally Best Invariant Tests of the Linear Regression Model Using the Density Function of a Maxial Invariant

More information

Boosting with log-loss

Boosting with log-loss Boosting with log-loss Marco Cusuano-Towner Septeber 2, 202 The proble Suppose we have data exaples {x i, y i ) i =... } for a two-class proble with y i {, }. Let F x) be the predictor function with the

More information

Bayes Decision Rule and Naïve Bayes Classifier

Bayes Decision Rule and Naïve Bayes Classifier Bayes Decision Rule and Naïve Bayes Classifier Le Song Machine Learning I CSE 6740, Fall 2013 Gaussian Mixture odel A density odel p(x) ay be ulti-odal: odel it as a ixture of uni-odal distributions (e.g.

More information

Spine Fin Efficiency A Three Sided Pyramidal Fin of Equilateral Triangular Cross-Sectional Area

Spine Fin Efficiency A Three Sided Pyramidal Fin of Equilateral Triangular Cross-Sectional Area Proceedings of the 006 WSEAS/IASME International Conference on Heat and Mass Transfer, Miai, Florida, USA, January 18-0, 006 (pp13-18) Spine Fin Efficiency A Three Sided Pyraidal Fin of Equilateral Triangular

More information

Block designs and statistics

Block designs and statistics Bloc designs and statistics Notes for Math 447 May 3, 2011 The ain paraeters of a bloc design are nuber of varieties v, bloc size, nuber of blocs b. A design is built on a set of v eleents. Each eleent

More information

About the definition of parameters and regimes of active two-port networks with variable loads on the basis of projective geometry

About the definition of parameters and regimes of active two-port networks with variable loads on the basis of projective geometry About the definition of paraeters and regies of active two-port networks with variable loads on the basis of projective geoetry PENN ALEXANDR nstitute of Electronic Engineering and Nanotechnologies "D

More information

Biostatistics Department Technical Report

Biostatistics Department Technical Report Biostatistics Departent Technical Report BST006-00 Estiation of Prevalence by Pool Screening With Equal Sized Pools and a egative Binoial Sapling Model Charles R. Katholi, Ph.D. Eeritus Professor Departent

More information

A Simple Regression Problem

A Simple Regression Problem A Siple Regression Proble R. M. Castro March 23, 2 In this brief note a siple regression proble will be introduced, illustrating clearly the bias-variance tradeoff. Let Y i f(x i ) + W i, i,..., n, where

More information

Keywords: Estimator, Bias, Mean-squared error, normality, generalized Pareto distribution

Keywords: Estimator, Bias, Mean-squared error, normality, generalized Pareto distribution Testing approxiate norality of an estiator using the estiated MSE and bias with an application to the shape paraeter of the generalized Pareto distribution J. Martin van Zyl Abstract In this work the norality

More information

. The univariate situation. It is well-known for a long tie that denoinators of Pade approxiants can be considered as orthogonal polynoials with respe

. The univariate situation. It is well-known for a long tie that denoinators of Pade approxiants can be considered as orthogonal polynoials with respe PROPERTIES OF MULTIVARIATE HOMOGENEOUS ORTHOGONAL POLYNOMIALS Brahi Benouahane y Annie Cuyt? Keywords Abstract It is well-known that the denoinators of Pade approxiants can be considered as orthogonal

More information

Topic 5a Introduction to Curve Fitting & Linear Regression

Topic 5a Introduction to Curve Fitting & Linear Regression /7/08 Course Instructor Dr. Rayond C. Rup Oice: A 337 Phone: (95) 747 6958 E ail: rcrup@utep.edu opic 5a Introduction to Curve Fitting & Linear Regression EE 4386/530 Coputational ethods in EE Outline

More information

Pseudo-marginal Metropolis-Hastings: a simple explanation and (partial) review of theory

Pseudo-marginal Metropolis-Hastings: a simple explanation and (partial) review of theory Pseudo-arginal Metropolis-Hastings: a siple explanation and (partial) review of theory Chris Sherlock Motivation Iagine a stochastic process V which arises fro soe distribution with density p(v θ ). Iagine

More information

Linear Algebra (I) Yijia Chen. linear transformations and their algebraic properties. 1. A Starting Point. y := 3x.

Linear Algebra (I) Yijia Chen. linear transformations and their algebraic properties. 1. A Starting Point. y := 3x. Linear Algebra I) Yijia Chen Linear algebra studies Exaple.. Consider the function This is a linear function f : R R. linear transforations and their algebraic properties.. A Starting Point y := 3x. Geoetrically

More information

The simplest method for constructing APN polynomials EA-inequivalent to power functions

The simplest method for constructing APN polynomials EA-inequivalent to power functions The siplest ethod for constructing APN polynoials EA-inequivalent to power functions Lilya Budaghyan Abstract The first APN polynoials EA-inequivalent to power functions have been constructed in [7, 8]

More information

Intelligent Systems: Reasoning and Recognition. Perceptrons and Support Vector Machines

Intelligent Systems: Reasoning and Recognition. Perceptrons and Support Vector Machines Intelligent Systes: Reasoning and Recognition Jaes L. Crowley osig 1 Winter Seester 2018 Lesson 6 27 February 2018 Outline Perceptrons and Support Vector achines Notation...2 Linear odels...3 Lines, Planes

More information

Inspection; structural health monitoring; reliability; Bayesian analysis; updating; decision analysis; value of information

Inspection; structural health monitoring; reliability; Bayesian analysis; updating; decision analysis; value of information Cite as: Straub D. (2014). Value of inforation analysis with structural reliability ethods. Structural Safety, 49: 75-86. Value of Inforation Analysis with Structural Reliability Methods Daniel Straub

More information

E0 370 Statistical Learning Theory Lecture 6 (Aug 30, 2011) Margin Analysis

E0 370 Statistical Learning Theory Lecture 6 (Aug 30, 2011) Margin Analysis E0 370 tatistical Learning Theory Lecture 6 (Aug 30, 20) Margin Analysis Lecturer: hivani Agarwal cribe: Narasihan R Introduction In the last few lectures we have seen how to obtain high confidence bounds

More information

PAC-Bayes Analysis Of Maximum Entropy Learning

PAC-Bayes Analysis Of Maximum Entropy Learning PAC-Bayes Analysis Of Maxiu Entropy Learning John Shawe-Taylor and David R. Hardoon Centre for Coputational Statistics and Machine Learning Departent of Coputer Science University College London, UK, WC1E

More information

COS 424: Interacting with Data. Written Exercises

COS 424: Interacting with Data. Written Exercises COS 424: Interacting with Data Hoework #4 Spring 2007 Regression Due: Wednesday, April 18 Written Exercises See the course website for iportant inforation about collaboration and late policies, as well

More information

Physics 201, Lecture 15

Physics 201, Lecture 15 Physics 0, Lecture 5 Today s Topics q More on Linear Moentu And Collisions Elastic and Perfect Inelastic Collision (D) Two Diensional Elastic Collisions Exercise: Billiards Board Explosion q Multi-Particle

More information

Physics 215 Winter The Density Matrix

Physics 215 Winter The Density Matrix Physics 215 Winter 2018 The Density Matrix The quantu space of states is a Hilbert space H. Any state vector ψ H is a pure state. Since any linear cobination of eleents of H are also an eleent of H, it

More information

Detection and Estimation Theory

Detection and Estimation Theory ESE 54 Detection and Estiation Theory Joseph A. O Sullivan Sauel C. Sachs Professor Electronic Systes and Signals Research Laboratory Electrical and Systes Engineering Washington University 11 Urbauer

More information

Kernel Methods and Support Vector Machines

Kernel Methods and Support Vector Machines Intelligent Systes: Reasoning and Recognition Jaes L. Crowley ENSIAG 2 / osig 1 Second Seester 2012/2013 Lesson 20 2 ay 2013 Kernel ethods and Support Vector achines Contents Kernel Functions...2 Quadratic

More information

A Self-Organizing Model for Logical Regression Jerry Farlow 1 University of Maine. (1900 words)

A Self-Organizing Model for Logical Regression Jerry Farlow 1 University of Maine. (1900 words) 1 A Self-Organizing Model for Logical Regression Jerry Farlow 1 University of Maine (1900 words) Contact: Jerry Farlow Dept of Matheatics Univeristy of Maine Orono, ME 04469 Tel (07) 866-3540 Eail: farlow@ath.uaine.edu

More information

Physics 139B Solutions to Homework Set 3 Fall 2009

Physics 139B Solutions to Homework Set 3 Fall 2009 Physics 139B Solutions to Hoework Set 3 Fall 009 1. Consider a particle of ass attached to a rigid assless rod of fixed length R whose other end is fixed at the origin. The rod is free to rotate about

More information

Ensemble Based on Data Envelopment Analysis

Ensemble Based on Data Envelopment Analysis Enseble Based on Data Envelopent Analysis So Young Sohn & Hong Choi Departent of Coputer Science & Industrial Systes Engineering, Yonsei University, Seoul, Korea Tel) 82-2-223-404, Fax) 82-2- 364-7807

More information

Research in Area of Longevity of Sylphon Scraies

Research in Area of Longevity of Sylphon Scraies IOP Conference Series: Earth and Environental Science PAPER OPEN ACCESS Research in Area of Longevity of Sylphon Scraies To cite this article: Natalia Y Golovina and Svetlana Y Krivosheeva 2018 IOP Conf.

More information

Extension of CSRSM for the Parametric Study of the Face Stability of Pressurized Tunnels

Extension of CSRSM for the Parametric Study of the Face Stability of Pressurized Tunnels Extension of CSRSM for the Paraetric Study of the Face Stability of Pressurized Tunnels Guilhe Mollon 1, Daniel Dias 2, and Abdul-Haid Soubra 3, M.ASCE 1 LGCIE, INSA Lyon, Université de Lyon, Doaine scientifique

More information

Support Vector Machines MIT Course Notes Cynthia Rudin

Support Vector Machines MIT Course Notes Cynthia Rudin Support Vector Machines MIT 5.097 Course Notes Cynthia Rudin Credit: Ng, Hastie, Tibshirani, Friedan Thanks: Şeyda Ertekin Let s start with soe intuition about argins. The argin of an exaple x i = distance

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE7C (Spring 018: Convex Optiization and Approxiation Instructor: Moritz Hardt Eail: hardt+ee7c@berkeley.edu Graduate Instructor: Max Sichowitz Eail: sichow+ee7c@berkeley.edu October 15,

More information

Experimental Design For Model Discrimination And Precise Parameter Estimation In WDS Analysis

Experimental Design For Model Discrimination And Precise Parameter Estimation In WDS Analysis City University of New York (CUNY) CUNY Acadeic Works International Conference on Hydroinforatics 8-1-2014 Experiental Design For Model Discriination And Precise Paraeter Estiation In WDS Analysis Giovanna

More information

Model Fitting. CURM Background Material, Fall 2014 Dr. Doreen De Leon

Model Fitting. CURM Background Material, Fall 2014 Dr. Doreen De Leon Model Fitting CURM Background Material, Fall 014 Dr. Doreen De Leon 1 Introduction Given a set of data points, we often want to fit a selected odel or type to the data (e.g., we suspect an exponential

More information

Effective joint probabilistic data association using maximum a posteriori estimates of target states

Effective joint probabilistic data association using maximum a posteriori estimates of target states Effective joint probabilistic data association using axiu a posteriori estiates of target states 1 Viji Paul Panakkal, 2 Rajbabu Velurugan 1 Central Research Laboratory, Bharat Electronics Ltd., Bangalore,

More information

Analysis of Polynomial & Rational Functions ( summary )

Analysis of Polynomial & Rational Functions ( summary ) Analysis of Polynoial & Rational Functions ( suary ) The standard for of a polynoial function is ( ) where each of the nubers are called the coefficients. The polynoial of is said to have degree n, where

More information

Testing equality of variances for multiple univariate normal populations

Testing equality of variances for multiple univariate normal populations University of Wollongong Research Online Centre for Statistical & Survey Methodology Working Paper Series Faculty of Engineering and Inforation Sciences 0 esting equality of variances for ultiple univariate

More information

are equal to zero, where, q = p 1. For each gene j, the pairwise null and alternative hypotheses are,

are equal to zero, where, q = p 1. For each gene j, the pairwise null and alternative hypotheses are, Page of 8 Suppleentary Materials: A ultiple testing procedure for ulti-diensional pairwise coparisons with application to gene expression studies Anjana Grandhi, Wenge Guo, Shyaal D. Peddada S Notations

More information

Complex Quadratic Optimization and Semidefinite Programming

Complex Quadratic Optimization and Semidefinite Programming Coplex Quadratic Optiization and Seidefinite Prograing Shuzhong Zhang Yongwei Huang August 4 Abstract In this paper we study the approxiation algoriths for a class of discrete quadratic optiization probles

More information

Linear Transformations

Linear Transformations Linear Transforations Hopfield Network Questions Initial Condition Recurrent Layer p S x W S x S b n(t + ) a(t + ) S x S x D a(t) S x S S x S a(0) p a(t + ) satlins (Wa(t) + b) The network output is repeatedly

More information

Ph 20.3 Numerical Solution of Ordinary Differential Equations

Ph 20.3 Numerical Solution of Ordinary Differential Equations Ph 20.3 Nuerical Solution of Ordinary Differential Equations Due: Week 5 -v20170314- This Assignent So far, your assignents have tried to failiarize you with the hardware and software in the Physics Coputing

More information

i ij j ( ) sin cos x y z x x x interchangeably.)

i ij j ( ) sin cos x y z x x x interchangeably.) Tensor Operators Michael Fowler,2/3/12 Introduction: Cartesian Vectors and Tensors Physics is full of vectors: x, L, S and so on Classically, a (three-diensional) vector is defined by its properties under

More information

Supplementary Information for Design of Bending Multi-Layer Electroactive Polymer Actuators

Supplementary Information for Design of Bending Multi-Layer Electroactive Polymer Actuators Suppleentary Inforation for Design of Bending Multi-Layer Electroactive Polyer Actuators Bavani Balakrisnan, Alek Nacev, and Elisabeth Sela University of Maryland, College Park, Maryland 074 1 Analytical

More information

Interactive Markov Models of Evolutionary Algorithms

Interactive Markov Models of Evolutionary Algorithms Cleveland State University EngagedScholarship@CSU Electrical Engineering & Coputer Science Faculty Publications Electrical Engineering & Coputer Science Departent 2015 Interactive Markov Models of Evolutionary

More information

Pattern Recognition and Machine Learning. Artificial Neural networks

Pattern Recognition and Machine Learning. Artificial Neural networks Pattern Recognition and Machine Learning Jaes L. Crowley ENSIMAG 3 - MMIS Fall Seester 2017 Lessons 7 20 Dec 2017 Outline Artificial Neural networks Notation...2 Introduction...3 Key Equations... 3 Artificial

More information

3.3 Variational Characterization of Singular Values

3.3 Variational Characterization of Singular Values 3.3. Variational Characterization of Singular Values 61 3.3 Variational Characterization of Singular Values Since the singular values are square roots of the eigenvalues of the Heritian atrices A A and

More information

HIGH RESOLUTION NEAR-FIELD MULTIPLE TARGET DETECTION AND LOCALIZATION USING SUPPORT VECTOR MACHINES

HIGH RESOLUTION NEAR-FIELD MULTIPLE TARGET DETECTION AND LOCALIZATION USING SUPPORT VECTOR MACHINES ICONIC 2007 St. Louis, O, USA June 27-29, 2007 HIGH RESOLUTION NEAR-FIELD ULTIPLE TARGET DETECTION AND LOCALIZATION USING SUPPORT VECTOR ACHINES A. Randazzo,. A. Abou-Khousa 2,.Pastorino, and R. Zoughi

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a ournal published by Elsevier. The attached copy is furnished to the author for internal non-coercial research and education use, including for instruction at the authors institution

More information

Inference in the Presence of Likelihood Monotonicity for Polytomous and Logistic Regression

Inference in the Presence of Likelihood Monotonicity for Polytomous and Logistic Regression Advances in Pure Matheatics, 206, 6, 33-34 Published Online April 206 in SciRes. http://www.scirp.org/journal/ap http://dx.doi.org/0.4236/ap.206.65024 Inference in the Presence of Likelihood Monotonicity

More information

Kinetic Theory of Gases: Elementary Ideas

Kinetic Theory of Gases: Elementary Ideas Kinetic Theory of Gases: Eleentary Ideas 17th February 2010 1 Kinetic Theory: A Discussion Based on a Siplified iew of the Motion of Gases 1.1 Pressure: Consul Engel and Reid Ch. 33.1) for a discussion

More information

BAYESIAN ESTIMATION OF PROBABILITIES OF TARGET RATES USING FED FUNDS FUTURES OPTIONS

BAYESIAN ESTIMATION OF PROBABILITIES OF TARGET RATES USING FED FUNDS FUTURES OPTIONS BAYESIAN ESTIMATION OF PROBABILITIES OF TARGET RATES USING FED FUNDS FUTURES OPTIONS MARK FISHER Preliinary and Incoplete Abstract. This paper adopts a Bayesian approach to the proble of extracting the

More information

Efficient Numerical Solution of Diffusion Convection Problem of Chemical Engineering

Efficient Numerical Solution of Diffusion Convection Problem of Chemical Engineering Cheical and Process Engineering Research ISSN 4-7467 (Paper) ISSN 5-9 (Online) Vol, 5 Efficient Nuerical Solution of Diffusion Convection Proble of Cheical Engineering Bharti Gupta VK Kukreja * Departent

More information

Handwriting Detection Model Based on Four-Dimensional Vector Space Model

Handwriting Detection Model Based on Four-Dimensional Vector Space Model Journal of Matheatics Research; Vol. 10, No. 4; August 2018 ISSN 1916-9795 E-ISSN 1916-9809 Published by Canadian Center of Science and Education Handwriting Detection Model Based on Four-Diensional Vector

More information

Non-Parametric Non-Line-of-Sight Identification 1

Non-Parametric Non-Line-of-Sight Identification 1 Non-Paraetric Non-Line-of-Sight Identification Sinan Gezici, Hisashi Kobayashi and H. Vincent Poor Departent of Electrical Engineering School of Engineering and Applied Science Princeton University, Princeton,

More information

Least Squares Regression

Least Squares Regression CIS 50: Machine Learning Spring 08: Lecture 4 Least Squares Regression Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may not cover all the

More information

The proofs of Theorem 1-3 are along the lines of Wied and Galeano (2013).

The proofs of Theorem 1-3 are along the lines of Wied and Galeano (2013). A Appendix: Proofs The proofs of Theore 1-3 are along the lines of Wied and Galeano (2013) Proof of Theore 1 Let D[d 1, d 2 ] be the space of càdlàg functions on the interval [d 1, d 2 ] equipped with

More information

RESTARTED FULL ORTHOGONALIZATION METHOD FOR SHIFTED LINEAR SYSTEMS

RESTARTED FULL ORTHOGONALIZATION METHOD FOR SHIFTED LINEAR SYSTEMS BIT Nuerical Matheatics 43: 459 466, 2003. 2003 Kluwer Acadeic Publishers. Printed in The Netherlands 459 RESTARTED FULL ORTHOGONALIZATION METHOD FOR SHIFTED LINEAR SYSTEMS V. SIMONCINI Dipartiento di

More information

Will Monroe August 9, with materials by Mehran Sahami and Chris Piech. image: Arito. Parameter learning

Will Monroe August 9, with materials by Mehran Sahami and Chris Piech. image: Arito. Parameter learning Will Monroe August 9, 07 with aterials by Mehran Sahai and Chris Piech iage: Arito Paraeter learning Announceent: Proble Set #6 Goes out tonight. Due the last day of class, Wednesday, August 6 (before

More information

Upper and Lower Bounds on the Capacity of Wireless Optical Intensity Channels

Upper and Lower Bounds on the Capacity of Wireless Optical Intensity Channels ISIT7, Nice, France, June 4 June 9, 7 Upper and Lower Bounds on the Capacity of Wireless Optical Intensity Channels Ahed A. Farid and Steve Hranilovic Dept. Electrical and Coputer Engineering McMaster

More information

Multiscale Entropy Analysis: A New Method to Detect Determinism in a Time. Series. A. Sarkar and P. Barat. Variable Energy Cyclotron Centre

Multiscale Entropy Analysis: A New Method to Detect Determinism in a Time. Series. A. Sarkar and P. Barat. Variable Energy Cyclotron Centre Multiscale Entropy Analysis: A New Method to Detect Deterinis in a Tie Series A. Sarkar and P. Barat Variable Energy Cyclotron Centre /AF Bidhan Nagar, Kolkata 700064, India PACS nubers: 05.45.Tp, 89.75.-k,

More information

Forecast Evaluation: A Likelihood Scoring Method. by Matthew A. Diersen and Mark R. Manfredo

Forecast Evaluation: A Likelihood Scoring Method. by Matthew A. Diersen and Mark R. Manfredo Forecast Evaluation: A Likelihood Scoring Method by Matthew A. Diersen and Mark R. Manfredo Suggested citation forat: Diersen, M. A., and M. R. Manfredo. 1998. Forecast Evaluation: A Likelihood Scoring

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A. 2 Biostatistics, School of Public

More information

Vulnerability of MRD-Code-Based Universal Secure Error-Correcting Network Codes under Time-Varying Jamming Links

Vulnerability of MRD-Code-Based Universal Secure Error-Correcting Network Codes under Time-Varying Jamming Links Vulnerability of MRD-Code-Based Universal Secure Error-Correcting Network Codes under Tie-Varying Jaing Links Jun Kurihara KDDI R&D Laboratories, Inc 2 5 Ohara, Fujiino, Saitaa, 356 8502 Japan Eail: kurihara@kddilabsjp

More information

Sampling How Big a Sample?

Sampling How Big a Sample? C. G. G. Aitken, 1 Ph.D. Sapling How Big a Saple? REFERENCE: Aitken CGG. Sapling how big a saple? J Forensic Sci 1999;44(4):750 760. ABSTRACT: It is thought that, in a consignent of discrete units, a certain

More information

Kinetic Theory of Gases: Elementary Ideas

Kinetic Theory of Gases: Elementary Ideas Kinetic Theory of Gases: Eleentary Ideas 9th February 011 1 Kinetic Theory: A Discussion Based on a Siplified iew of the Motion of Gases 1.1 Pressure: Consul Engel and Reid Ch. 33.1) for a discussion of

More information

Introduction to Robotics (CS223A) (Winter 2006/2007) Homework #5 solutions

Introduction to Robotics (CS223A) (Winter 2006/2007) Homework #5 solutions Introduction to Robotics (CS3A) Handout (Winter 6/7) Hoework #5 solutions. (a) Derive a forula that transfors an inertia tensor given in soe frae {C} into a new frae {A}. The frae {A} can differ fro frae

More information

Construction of the Electronic Angular Wave Functions and Probability Distributions of the Hydrogen Atom

Construction of the Electronic Angular Wave Functions and Probability Distributions of the Hydrogen Atom Construction of the Electronic Angular Wave Functions and Probability Distributions of the Hydrogen Ato Thoas S. Kuntzlean Mark Ellison John Tippin Departent of Cheistry Departent of Cheistry Departent

More information

Supplementary to Learning Discriminative Bayesian Networks from High-dimensional Continuous Neuroimaging Data

Supplementary to Learning Discriminative Bayesian Networks from High-dimensional Continuous Neuroimaging Data Suppleentary to Learning Discriinative Bayesian Networks fro High-diensional Continuous Neuroiaging Data Luping Zhou, Lei Wang, Lingqiao Liu, Philip Ogunbona, and Dinggang Shen Proposition. Given a sparse

More information

Determining OWA Operator Weights by Mean Absolute Deviation Minimization

Determining OWA Operator Weights by Mean Absolute Deviation Minimization Deterining OWA Operator Weights by Mean Absolute Deviation Miniization Micha l Majdan 1,2 and W lodziierz Ogryczak 1 1 Institute of Control and Coputation Engineering, Warsaw University of Technology,

More information

Online Supplement. and. Pradeep K. Chintagunta Graduate School of Business University of Chicago

Online Supplement. and. Pradeep K. Chintagunta Graduate School of Business University of Chicago Online Suppleent easuring Cross-Category Price Effects with Aggregate Store Data Inseong Song ksong@usthk Departent of arketing, HKUST Hong Kong University of Science and Technology and Pradeep K Chintagunta

More information

Machine Learning Basics: Estimators, Bias and Variance

Machine Learning Basics: Estimators, Bias and Variance Machine Learning Basics: Estiators, Bias and Variance Sargur N. srihari@cedar.buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 Topics in Basics

More information

PHYSICS 110A : CLASSICAL MECHANICS MIDTERM EXAM #2

PHYSICS 110A : CLASSICAL MECHANICS MIDTERM EXAM #2 PHYSICS 110A : CLASSICAL MECHANICS MIDTERM EXAM #2 [1] Two blocks connected by a spring of spring constant k are free to slide frictionlessly along a horizontal surface, as shown in Fig. 1. The unstretched

More information

Principal Components Analysis

Principal Components Analysis Principal Coponents Analysis Cheng Li, Bingyu Wang Noveber 3, 204 What s PCA Principal coponent analysis (PCA) is a statistical procedure that uses an orthogonal transforation to convert a set of observations

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Finite fields. and we ve used it in various examples and homework problems. In these notes I will introduce more finite fields

Finite fields. and we ve used it in various examples and homework problems. In these notes I will introduce more finite fields Finite fields I talked in class about the field with two eleents F 2 = {, } and we ve used it in various eaples and hoework probles. In these notes I will introduce ore finite fields F p = {,,...,p } for

More information

arxiv: v1 [stat.ot] 7 Jul 2010

arxiv: v1 [stat.ot] 7 Jul 2010 Hotelling s test for highly correlated data P. Bubeliny e-ail: bubeliny@karlin.ff.cuni.cz Charles University, Faculty of Matheatics and Physics, KPMS, Sokolovska 83, Prague, Czech Republic, 8675. arxiv:007.094v

More information

W-BASED VS LATENT VARIABLES SPATIAL AUTOREGRESSIVE MODELS: EVIDENCE FROM MONTE CARLO SIMULATIONS

W-BASED VS LATENT VARIABLES SPATIAL AUTOREGRESSIVE MODELS: EVIDENCE FROM MONTE CARLO SIMULATIONS W-BASED VS LATENT VARIABLES SPATIAL AUTOREGRESSIVE MODELS: EVIDENCE FROM MONTE CARLO SIMULATIONS. Introduction When it coes to applying econoetric odels to analyze georeferenced data, researchers are well

More information

Department of Electronic and Optical Engineering, Ordnance Engineering College, Shijiazhuang, , China

Department of Electronic and Optical Engineering, Ordnance Engineering College, Shijiazhuang, , China 6th International Conference on Machinery, Materials, Environent, Biotechnology and Coputer (MMEBC 06) Solving Multi-Sensor Multi-Target Assignent Proble Based on Copositive Cobat Efficiency and QPSO Algorith

More information

lecture 36: Linear Multistep Mehods: Zero Stability

lecture 36: Linear Multistep Mehods: Zero Stability 95 lecture 36: Linear Multistep Mehods: Zero Stability 5.6 Linear ultistep ethods: zero stability Does consistency iply convergence for linear ultistep ethods? This is always the case for one-step ethods,

More information

Darcy s law describes water flux determined by a water potential gradient: q w = k dψ dx

Darcy s law describes water flux determined by a water potential gradient: q w = k dψ dx 6 Hydraulic Properties The soil hydraulic properties are of utost iportance for a large variety of soil processes and in particular for soil water flow. The two ost coon hydraulic properties are the soil

More information

The Energy Flux Method for Reverberation: Modeling and Inversion

The Energy Flux Method for Reverberation: Modeling and Inversion DISTRIBUTION STATEMENT A Approved for public release; distribution is unliited The Energy Flux Method for Reverberation: Modeling and Inversion Ji-Xun Zhou School of Mechanical Engineering Georgia Institute

More information

Polygonal Designs: Existence and Construction

Polygonal Designs: Existence and Construction Polygonal Designs: Existence and Construction John Hegean Departent of Matheatics, Stanford University, Stanford, CA 9405 Jeff Langford Departent of Matheatics, Drake University, Des Moines, IA 5011 G

More information

Why it was necessary? Geodetic Datums. Type of Geodetic Datum. Nothing but spheroid of origin. We need. Local Datum Definitions in Dubai Emirate

Why it was necessary? Geodetic Datums. Type of Geodetic Datum. Nothing but spheroid of origin. We need. Local Datum Definitions in Dubai Emirate Why it was necessary? Dubai Eirate Between Clark880 and Spheroid.Al Marzooqi, H.Fashir, Syed Iliyas Ahed ( Dubai, United Arab Eirates ) About 9000 control points were available on Clark880 UTM Whole ilitary

More information

Intelligent Systems: Reasoning and Recognition. Artificial Neural Networks

Intelligent Systems: Reasoning and Recognition. Artificial Neural Networks Intelligent Systes: Reasoning and Recognition Jaes L. Crowley MOSIG M1 Winter Seester 2018 Lesson 7 1 March 2018 Outline Artificial Neural Networks Notation...2 Introduction...3 Key Equations... 3 Artificial

More information

a a a a a a a m a b a b

a a a a a a a m a b a b Algebra / Trig Final Exa Study Guide (Fall Seester) Moncada/Dunphy Inforation About the Final Exa The final exa is cuulative, covering Appendix A (A.1-A.5) and Chapter 1. All probles will be ultiple choice

More information

The accelerated expansion of the universe is explained by quantum field theory.

The accelerated expansion of the universe is explained by quantum field theory. The accelerated expansion of the universe is explained by quantu field theory. Abstract. Forulas describing interactions, in fact, use the liiting speed of inforation transfer, and not the speed of light.

More information