A013 HISTORY MATCHING WITH RESPECT TO RESERVOIR STRUCTURE

Size: px
Start display at page:

Download "A013 HISTORY MATCHING WITH RESPECT TO RESERVOIR STRUCTURE"

Transcription

1 A3 HISTORY MATCHING WITH RESPECT TO RESERVOIR STRUCTURE SIGURD IVAR AANONSEN ; ODDVAR LIA ; AND OLE JAKOB ARNTZEN Centre for Integrated Research, University of Bergen, Allégt. 4, N-7 Bergen, Norway Statoil Research Centre, N-7 Trondheim, Norway Abstract A practical method for history-matching with respect to geological fault properties (fault displacement, average dip and strike, smear-gouge-ratio, shale-smear-factor, etc.) is presented. The method is based on coupling commercial software for fault modelling with a reservoir simulator. The history-matching and control of these tools are performed using standard optimization routines in MATLAB. Both large seismic faults as well as small subseismic faults can be modelled. For the large faults the simulation model grid is automatically deformed in each iteration of the history-matching process. The sealing effect is based on an advanced fault seal model and is included as transmissibility multipliers across individual cell interfaces. The subseismic faults may either be included in the same way as the large faults, or as permeability modifiers applied to the eisting grid. The methodology provides a good link between geological modelling (sedimentology, structural geology) and fluid flow simulation. The method is applied to reservoir models of typical shallow marine and fluvial depositional systems. Introduction A large number of publications on history-matching have appeared during the last three decades. However, they almost eclusively concentrate on the estimation of petrophysical properties, like permeability and porosity. Very few papers have considered the reservoir structure. If faults are considered, it is mostly limited to the adjustment of a single transmissibility multiplier for each fault. In a real case, however, the transmissibility will vary over the fault and depend on factors like fault throw, fault permeability, shale smear, etc. In this paper, the parameterization of seismic and subseismic faults used in a commercial fault modelling tool [] has been evaluated for history matching. This tool can perform stochastic simulation of faults and fractures as well as structural uncertainty modelling and also add faults to simulation grids []. History-matching with respect to structural geological fault parameters is performed on reservoir models of shallow marine and fluvial systems. Fault Modelling Two types of faults have been considered: Small subseismic faults and larger seismic faults. The subseismic faults are generated stochastically, and their effect is normally incorporated in the flow model as modifications to the grid cell permeabilities. Sealing effects of the subseismic faults are based on a fault permeability, which may be given eplicitly or calculated from the neighbouring cell permeabilities. The larger faults are modelled eplicitly through a parametric description. These faults are denoted pfm faults. The simulated faults will automatically be 9th European Conference on the Mathematics of Oil Recovery Cannes, France, 3 August - September 4

2 incorporated in the reservoir simulator grid by splitting of grid nodes and modification of layer depths in a region around the faults. The size of this region depends on the fault throw. When the fault displacement is used as a history-matching parameter, the grid is thus automatically adjusted in each iteration. For faults incorporated in the grid, transmissibility multipliers are calculated for each individual cell surface based on e.g., shale smear effects. Shale smear is included in two different ways, which may be combined: i) As a fault permeability or a fault permeability multiplier, which is given as a function of the smear-gouge-ratio (SGR) [3] or ii) as a complete blocking of flow in a tongue up or down the fault zone with a length depending on the thickness of the shale layer. The final fault permeability associated with each cell surface (from which the transmissibility multiplier is calculated) is obtained by multiplying the initial fault permeability with the SGR factor (SGRF) and the blocking factor taking the values or. The length of the shale-smear tongue is related to the thickness, t, of the shale facies layer by the formula: a L = bt. () SGRF is generally specified as a tabulated function of SGR. Here, the following parameterization was used for history-matching purposes: log( SGRF) = log( F) C( SGR SGR). () Any of the parameters F, SGR, C, a, and b may in principle be adjusted during the historymatching process. Here, only SGR and b were used. In the following, the parameter b will be denoted just SSF (Shale-Smear-Factor). History Matching The mis-match between simulated and measured production history is measured using a standard least-squares objective function weighted by a measurement error (standard deviation). Root Mean Square (RMS) is defined as the square root of the objective function divided by the number of measurements. That is, RMS = if the deviation between simulated and measured data is identical to the measurement error. The minimization of the objective function is performed using standard optimization routines in MATLAB, more specifically, the routines fminsearch and fminunc []. The routine fminsearch uses a simple method which does not require gradients, while fminunc uses a gradient method based on the BFGS quasi-newton method. The gradients are calculated numerically, using multiple simulations. To stabilize the MATLAB optimization algorithms, the parameters were normalised according to their initial value and a typical variation. For the fault permeability factor, a logarithmic transformation was used. For the other parameters we used a linear transformation. For details on the optimisation algorithms we refer to the MATLAB documentation []. The objective function is evaluated for a given set of parameter values by first running the fault modelling tool to generate updated fault properties (grid and transmissibility multipliers), and then a commercial reservoir simulator to generate production profiles. The fault modelling tool and the reservoir simulator are called automatically in each iteration from the MATLAB objective function routine. History-matching parameters for seismic (pfm) faults are fault displacement and the sealing parameters described above. History matching of subseismic faults is based on a similar procedure as described by Landa [4], where parameters of the stochastic fault model are varied while keeping the seed constant. That is, applying the stochastic modelling software as a purely deterministic tool. This approach may be applied to parameters for which the resulting fault realization depends continuously on the input parameters as long as the seed is kept constant, e.g. global fault parameters which are modelled by Gaussian random fields. For the fault modelling

3 3 Fig.. Model geometry Fig.. Fault model. Seismic (pfm) faults are shown as planes; subseismic faults as lines. tool applied, this applies to average displacement, strike and dip. Also the fractal dimension describing the distribution between smaller and larger subseismic faults[] may be used as a history-matching parameter. The distribution of faults, however, is based on a marked point process implying that a parameter such as the number of subseismic faults cannot be used in a matching procedure as described here. The rationale behind such an approach is that in a real situation, the true solution is not known, and some sort of uncertainty analysis should be performed. Liu and Oliver[6] give a good overview of different methods for assessing uncertainty in reservoir models. They showed that the randomized maimum likelihood method (RML) as proposed by Oliver et al.[7], although being eact only for linear models, produced distributions that were quite similar to the correct distributions also for a highly non-linear reservoir fluid flow problem with Gaussian statistics. They also showed that this is the only practical alternative that provides an acceptable assessment of uncertainty. In the RML method, the uncertainty is assessed by running multiple history-matching runs with measured data and initial conditions drawn from the data pdf and prior pdf for the history-matching parameters, respectively[7]. When these distributions are known, the main objective of the history-matching process reduces to that of generating a parameter realization that matches a given set of data from a given initial condition as efficiently as possible. Eamples The eamples are based on a synthetic reservoir model populated with a fault model and petrophysical properties based on two different depositional environments: Case (shallow marine) and Case (fluvial). The reservoir, which is initially oil-filled, is produced by injecting water in two wells downflank and producing from three wells upflank (Fig. ). The fault configurations are based on a predefined set of subseismic faults and 7 larger seismic faults (Fig. ). The reservoir dimensions are 3m. The volume was discretized using a regular grid with 39 cells. Well control is based on keeping the producers at a given bottom-hole pressure target combined with % voidage injection. History data to be matched are oil production rate and water cut. One set of parameters was chosen to represent the true values, and the production history is defined as the result of a simulation with this parameter set. Measurement errors are set to Sm3/d for oil production and. for water cut. Figs. 3-4 and Table show the results of an initial history-matching run with four parameters, three pfm fault parameters and one parameter for subseismic faults. The parameters for the pfm 9th European Conference on the Mathematics of Oil Recovery Cannes, France, 3 August - September 4

4 4 RMS No of simulation runs Fig. 3. HM run Case with 4 parameters. Parameters: Initial Final True PFMF...7 SSF... SGR FPF... Table. HM run Case with 4 parameters. Fig. 4. Result of 4-parameter history-matching run Case, fluvial. faults are: Throw multiplier (PFMF), Shale-Smear-Factor b (SSF), and reference point for SGRcurve (SGR). For the subseismic faults: Fault-permeability-factor (FPF). The objective function minimization is performed with the simple method. Fig. 3 shows RMS development vs. the number of simulation runs, i.e., the number of objective function evaluations. Fig. 4 shows initial and final production profiles compared with the true case. Note that an RMS value of around is quite satisfactory. This is because a measurement error of Sm3/d corresponds to a relatively small relative error with the typical rates obtained here. From Table it is seen that the solution converges to a local minimum different from the true solution. The displacement of the pfm faults is too large, and this is compensated with lower values for all the fault seal parameters. To obtain more insight to this problem, a sensitivity

5 Fig.. Variation in RMS vs. HM parameters, Case. study was performed where the four parameters were systematically varied and the resulting RMS-values calculated. The result is shown in Fig.. It is seen on the left plot that there is a valley of low RMS-values. Also there are some wiggles in the objective function with variations in SSF. As a consequence, a local optimisation method may converge into a local minimum in this valley. A global minimum could possibly have been found using a global optimisation method. However, this would require a very large number of iterations, and the question is whether it is worth the additional cost, or even desirable if the history-matching is done as a part of a randomized maimum likelihood approach as described above. History-matching eamples with eight parameters for the two cases are summarized in Figs. 6-8, and Table. Again it is seen that multiple solutions eist, all with similar final RMS. Notice that the gradient method is very efficient. Even with eight parameters, the algorithm converges after only one iteration for Case and after four iterations for Case. The eamples indicate that the most important means of obtaining a match is to find a reasonable value for the overall transmissibility of the reservoir, and that such a value can be found very efficiently with the gradient method. In these eamples a single set of parameters have been used for all the pfm faults, and similar for the subseismic faults. The number of parameters would increase significantly if different values were used for each individual fault or fault group. However, it is a reasonable assumption that geological parameters, which we have used here, are globally more valid than for instance the traditional transmissibility multipliers, which are the same over the entire fault plane. In these and other eamples not presented here, incorrect values for most of the parameters typically can be accounted for by some etra modifications of one single parameter. Also, very different solutions, all matching history, can be found if different starting points are chosen. Fig. also illustrates a typical property of the objective function which have been observed in all cases run: The relative sensitivity with respect to the different parameters depends heavily on the location in parameter space where the sensitivities are evaluated. That is, a traditional sensitivity study varying one parameter at the time may lead to completely wrong conclusions with respect to which parameters being most important and most effective for history-matching. 9th European Conference on the Mathematics of Oil Recovery Cannes, France, 3 August - September 4

6 6 RMS 3 3 CASE (SHALLOW MARINE) No of sim ulation runs Fig. 6. Case with 8 parameters. Comparison between Simple method and Gradient method. CASE (shallow marine) (fluvial) Method simple Gradient simple gradient No of simulation runs No of iterations 99 7 Initial values RMS rma fdim.. strikeep dipep FPF...E-.E- SSF.. SGR PFMF.. True Final values RMS rma 3 3 fdim.7..9 strikeep dipep FPF E-3 3.E- SSF SGR PFMF Table. Results from HM runs with 8 parameters. Conclusions It has been demonstrated that fault parameters applied in a commercial fault modelling tool can be used to match a reservoir simulation model to dynamic data in an automatic loop. The loop is controlled by standard optimization routines in MATLAB. In each iteration of the loop, the simulation grid and permeabilities/transmissibilities are adjusted by the fault modelling tool and applied in a commercial reservoir simulator to obtain production performance. With the advanced fault sealing model, basic geological fault properties can be adjusted as opposed to the traditional method, where the history matching parameters typically are one fault transmissibility multiplier per fault. Since these geological parameters are more likely to be similar for different faults in the same reservoir, this method should be more efficient than the traditional method with respect to obtaining a match. Since the parameters being adjusted are geological parameters, the results of the historymatching process can be implemented directly in the geological model. Upscaling errors should then be taken into account. In this project, the geomodel grid was used also for the flow simulations, so upscaling was not an issue. For the cases studied, a good match depends to a large degree on having a correct overall communication, but not so much on the values of the individual fault parameters. There is thus a path of acceptable parameter values crossing through the parameter space. Choosing a particular solution along this path requires the use of prior geological information. Alternatively, this path may be characterized through multiple history-matching runs. The gradient method was much more efficient than the simple method even if the first used numerical gradients. This is in accordance with general eperience, see e.g. Fletcher [8]. Seismic faults have been history-matched with respect to displacement, and in this process the grid was adjusted in each iteration. These adjustments consist of moving the depth nodes

7 7 Fig. 7. Production profiles Case, gradient method. Initial and final solution compared with the true solution. according to the change in fault displacement as modelled by the fault modelling tool. Other modifications of fault geometry, which require moving the grid pillars, have not been considered. Acknowledgments This work has been financed by Statoil, and the authors want to thank Statoil for permission to publish this paper. We also want to thank the Norwegian Computing Centre for valuable software support, Jan Tveranger (CIPR) who made the geomodels and Signe Ottesen (Statoil) for help on various issues related to fault modelling. References [] Hollund K., Mostad P., Nielsen B.F., Holden L., Gjerde J., Contursi M.G., McCann, A.J., Townsend C., and Sverdrup E.: HAVANA a fault modeling tool, In: Hydrocarbon Seal Quantification (edited by Koestler, A. G. & Hunsdale, R.), Norwegian Petroleum Society (NPF), Special publication, pp. 7-7, Elsevier Science,. [] Holden L., Mostad P., Nielsen B.F., Gjerde J., Townsend C., and Ottesen S.: Stochastic Structural Modelling, Math. Geol. 3(8), 3, [3] Yielding G.:. Shale Gouge Ratio - calibration by geohistory. In: Hydrocarbon Seal Quantification (edited by Koestler, A. G. & Hunsdale, R.), Norwegian Petroleum Society (NPF), Special publication, pp. -7, Elsevier Science,. 9th European Conference on the Mathematics of Oil Recovery Cannes, France, 3 August - September 4

8 8 RMS No of simulation runs fdim No of simulations strike 3 3 No of simulations dip No of sim ulations fpf... No of s im ulations ssfb No of simulations sgr -. pfmf. rma No of sim ulations. No of sim ulations No of simulations Fig. 8. Results Case (fluvial). Comparison between Simple method and Gradient method. [4] Landa J.: Technique to Integrate Production Data and Static Data in a Self-Consistent Way, paper SPE 797, presented at the SPE Annual Technical Conference and Ehibition, New Orleans, Lousiana, 3 Sept. 3 Oct.. [] MATLAB Documentation, [6] Liu N. and Oliver D.S.: Evaluation of Monte Carlo Methods for Assessing Uncertainty, Soc. Petrol. Eng. J., 8(), 88 9, 3. [7] Oliver D.S., He N., and Reynolds A.C.: Conditioning Permeability Fields to Pressure Data, Proc. th European Conference on the Mathematics of Oil Recovery, Leoben, Austria, 3 6 Sept., 996. [8] Fletcher R.: Practical Methods of Optimization, Wiley, 987.

P026 Outcrop-based reservoir modeling of a naturally fractured siliciclastic CO 2 sequestration site, Svalbard, Arctic Norway

P026 Outcrop-based reservoir modeling of a naturally fractured siliciclastic CO 2 sequestration site, Svalbard, Arctic Norway P026 Outcrop-based reservoir modeling of a naturally fractured siliciclastic CO 2 sequestration site, Svalbard, Arctic Norway K. Senger (University of Bergen / CIPR), K. Ogata* (University Centre in Svalbard),

More information

A033 PRACTICAL METHODS FOR UNCERTAINTY ASSESSMENT

A033 PRACTICAL METHODS FOR UNCERTAINTY ASSESSMENT A33 PRACTICAL METHODS FOR UNCERTAINTY ASSESSMENT OF FLOW PREDICTIONS FOR RESERVOIRS WITH SIGNIFICANT HISTORY AFIELD CASE STUDY ALEXANDRE CASTELLINl, JORGE L. LANDA, JITENDRA KIKANI 2 () ChevronTexaco,

More information

An Overview of the Tapia Canyon Field Static Geocellular Model and Simulation Study

An Overview of the Tapia Canyon Field Static Geocellular Model and Simulation Study An Overview of the Tapia Canyon Field Static Geocellular Model and Simulation Study Prepared for Sefton Resources Inc. Jennifer Dunn, Chief Geologist Petrel Robertson Consulting Ltd. Outline Background

More information

A study on how top-surface morphology influences the CO 2 storage capacity

A study on how top-surface morphology influences the CO 2 storage capacity A study on how top-surface morphology influences the CO 2 storage capacity Anne Randi Syversveen, Halvor Møll Nilsen, Knut-Andreas Lie, Jan Tveranger, and Petter Abrahamsen Abstract The primary trapping

More information

Structural Surface Uncertainty Modeling and Updating Using the Ensemble Kalman Filter

Structural Surface Uncertainty Modeling and Updating Using the Ensemble Kalman Filter Structural Surface Uncertainty Modeling and Updating Using the Ensemble Kalman Filter A. Seiler, Nansen Environmental and Remote Sensing Center and Statoil; S.I. Aanonsen, Center for Integrated Petroleum

More information

Geostatistical History Matching coupled with Adaptive Stochastic Sampling: A zonation-based approach using Direct Sequential Simulation

Geostatistical History Matching coupled with Adaptive Stochastic Sampling: A zonation-based approach using Direct Sequential Simulation Geostatistical History Matching coupled with Adaptive Stochastic Sampling: A zonation-based approach using Direct Sequential Simulation Eduardo Barrela* Instituto Superior Técnico, Av. Rovisco Pais 1,

More information

F003 Geomodel Update Using 4-D Petrophysical Seismic Inversion on the Troll West Field

F003 Geomodel Update Using 4-D Petrophysical Seismic Inversion on the Troll West Field F003 Geomodel Update Using 4-D Petrophysical Seismic Inversion on the Troll West Field K. Gjerding* (Statoil), N. Skjei (Statoil), A. Norenes Haaland (Statoil), I. Machecler (CGGVeritas Services) & T.

More information

B008 COMPARISON OF METHODS FOR DOWNSCALING OF COARSE SCALE PERMEABILITY ESTIMATES

B008 COMPARISON OF METHODS FOR DOWNSCALING OF COARSE SCALE PERMEABILITY ESTIMATES 1 B8 COMPARISON OF METHODS FOR DOWNSCALING OF COARSE SCALE PERMEABILITY ESTIMATES Alv-Arne Grimstad 1 and Trond Mannseth 1,2 1 RF-Rogaland Research 2 Now with CIPR - Centre for Integrated Petroleum Research,

More information

A008 THE PROBABILITY PERTURBATION METHOD AN ALTERNATIVE TO A TRADITIONAL BAYESIAN APPROACH FOR SOLVING INVERSE PROBLEMS

A008 THE PROBABILITY PERTURBATION METHOD AN ALTERNATIVE TO A TRADITIONAL BAYESIAN APPROACH FOR SOLVING INVERSE PROBLEMS A008 THE PROAILITY PERTURATION METHOD AN ALTERNATIVE TO A TRADITIONAL AYESIAN APPROAH FOR SOLVING INVERSE PROLEMS Jef AERS Stanford University, Petroleum Engineering, Stanford A 94305-2220 USA Abstract

More information

Sarah Jane Riordan. Australian School of Petroleum University of Adelaide March 2009

Sarah Jane Riordan. Australian School of Petroleum University of Adelaide March 2009 Managing the Interdisciplinary Requirements of 3D Geological Models Sarah Jane Riordan Australian School of Petroleum University of Adelaide March 2009 Thesis submitted in accordance with the requirements

More information

Training Venue and Dates Ref # Reservoir Geophysics October, 2019 $ 6,500 London

Training Venue and Dates Ref # Reservoir Geophysics October, 2019 $ 6,500 London Training Title RESERVOIR GEOPHYSICS Training Duration 5 days Training Venue and Dates Ref # Reservoir Geophysics DE035 5 07 11 October, 2019 $ 6,500 London In any of the 5 star hotels. The exact venue

More information

Reservoir Uncertainty Calculation by Large Scale Modeling

Reservoir Uncertainty Calculation by Large Scale Modeling Reservoir Uncertainty Calculation by Large Scale Modeling Naeem Alshehri and Clayton V. Deutsch It is important to have a good estimate of the amount of oil or gas in a reservoir. The uncertainty in reserve

More information

NEW GEOLOGIC GRIDS FOR ROBUST GEOSTATISTICAL MODELING OF HYDROCARBON RESERVOIRS

NEW GEOLOGIC GRIDS FOR ROBUST GEOSTATISTICAL MODELING OF HYDROCARBON RESERVOIRS FOR ROBUST GEOSTATISTICAL MODELING OF HYDROCARBON RESERVOIRS EMMANUEL GRINGARTEN, BURC ARPAT, STANISLAS JAYR and JEAN- LAURENT MALLET Paradigm Houston, USA. ABSTRACT Geostatistical modeling of reservoir

More information

Building an Integrated Static Reservoir Model 5-day Course

Building an Integrated Static Reservoir Model 5-day Course Building an Integrated Static Reservoir Model 5-day Course Prepared by International Reservoir Technologies Lakewood, Colorado http://www.irt-inc.com/ 1 Agenda Day 1 Day 2 Day 3 Day 4 Day 5 Morning Introduction

More information

Quantitative evaluation of fault lateral sealing

Quantitative evaluation of fault lateral sealing IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 06, Issue 03 (March. 2016), V1 PP 29-33 www.iosrjen.org Jianan Zhu 1, Yue Gong 1 1 (College of Earth Sciences, Northeast

More information

Constraining Uncertainty in Static Reservoir Modeling: A Case Study from Namorado Field, Brazil*

Constraining Uncertainty in Static Reservoir Modeling: A Case Study from Namorado Field, Brazil* Constraining Uncertainty in Static Reservoir Modeling: A Case Study from Namorado Field, Brazil* Juliana F. Bueno 1, Rodrigo D. Drummond 1, Alexandre C. Vidal 1, Emilson P. Leite 1, and Sérgio S. Sancevero

More information

Reservoir Simulator Compaction Modelling: A Predictor for Accelerated Coupled Rock Mechanics -- Reservoir Simulation

Reservoir Simulator Compaction Modelling: A Predictor for Accelerated Coupled Rock Mechanics -- Reservoir Simulation Reservoir Simulator Compaction Modelling: A Predictor for Accelerated Coupled Rock Mechanics -- Reservoir Simulation by Øystein Pettersen Centre for Integrated Petroleum Research, Bergen, Norway ECMOR

More information

Geostatistical History Matching coupled with Adaptive Stochastic Sampling

Geostatistical History Matching coupled with Adaptive Stochastic Sampling Geostatistical History Matching coupled with Adaptive Stochastic Sampling A Geologically consistent approach using Stochastic Sequential Simulation Eduardo Barrela Nº 79909 Project Thesis Presentation

More information

Assessing the Value of Information from Inverse Modelling for Optimising Long-Term Oil Reservoir Performance

Assessing the Value of Information from Inverse Modelling for Optimising Long-Term Oil Reservoir Performance Assessing the Value of Information from Inverse Modelling for Optimising Long-Term Oil Reservoir Performance Eduardo Barros, TU Delft Paul Van den Hof, TU Eindhoven Jan Dirk Jansen, TU Delft 1 Oil & gas

More information

Quantitative Seismic Interpretation An Earth Modeling Perspective

Quantitative Seismic Interpretation An Earth Modeling Perspective Quantitative Seismic Interpretation An Earth Modeling Perspective Damien Thenin*, RPS, Calgary, AB, Canada TheninD@rpsgroup.com Ron Larson, RPS, Calgary, AB, Canada LarsonR@rpsgroup.com Summary Earth models

More information

AFI (AVO Fluid Inversion)

AFI (AVO Fluid Inversion) AFI (AVO Fluid Inversion) Uncertainty in AVO: How can we measure it? Dan Hampson, Brian Russell Hampson-Russell Software, Calgary Last Updated: April 2005 Authors: Dan Hampson, Brian Russell 1 Overview

More information

A STATIC 3D MODELING OF HYDROCARBONIC RESERVOIR WITH THE HELP OF RMS CASE study: THE SOUTH EAST ANTICLINE OF KHUZESTAN IRAN

A STATIC 3D MODELING OF HYDROCARBONIC RESERVOIR WITH THE HELP OF RMS CASE study: THE SOUTH EAST ANTICLINE OF KHUZESTAN IRAN :43-48 www.amiemt.megig.ir A STATIC 3D MODELING OF HYDROCARBONIC RESERVOIR WITH THE HELP OF RMS CASE study: THE SOUTH EAST ANTICLINE OF KHUZESTAN IRAN Hamid reza samadi 1,mohammad hadi Salehi 2 1 PH.D

More information

PETROLEUM GEOSCIENCES GEOLOGY OR GEOPHYSICS MAJOR

PETROLEUM GEOSCIENCES GEOLOGY OR GEOPHYSICS MAJOR PETROLEUM GEOSCIENCES GEOLOGY OR GEOPHYSICS MAJOR APPLIED GRADUATE STUDIES Geology Geophysics GEO1 Introduction to the petroleum geosciences GEO2 Seismic methods GEO3 Multi-scale geological analysis GEO4

More information

Figure 1: Mode Shale Gouge Ratio results for a normal fault interpreted offshore Nova Scotia, Canada.

Figure 1: Mode Shale Gouge Ratio results for a normal fault interpreted offshore Nova Scotia, Canada. Uncertainty Modelling in Fault Analysis The sealing capacity of a fault can be estimated by constraining the interaction between fault throw and the surrounding stratigraphy. Throw is calculated as the

More information

A010 MULTISCALE RESERVOIR CHARACTERIZATION USING

A010 MULTISCALE RESERVOIR CHARACTERIZATION USING 1 A010 MULTISCALE RESERVOIR CHARACTERIZATION USING RODUCTION AND TIME LASE SEISMIC DATA Mokhles MEZGHANI, Alexandre FORNEL, Valérie LANGLAIS, Nathalie LUCET IF, 1 & 4 av de Bois réau, 92852 RUEIL-MALMAISON

More information

Reservoir Scale Deformation and Advances in Fault Seal Analysis

Reservoir Scale Deformation and Advances in Fault Seal Analysis Reservoir Scale Deformation and Advances in Fault Seal Analysis Tim Needham slide 1 Introduction The answer to the question, Does this fault seal? is It depends This is what It depends on: Juxtaposition

More information

We LHR3 04 Realistic Uncertainty Quantification in Geostatistical Seismic Reservoir Characterization

We LHR3 04 Realistic Uncertainty Quantification in Geostatistical Seismic Reservoir Characterization We LHR3 04 Realistic Uncertainty Quantification in Geostatistical Seismic Reservoir Characterization A. Moradi Tehrani* (CGG), A. Stallone (Roma Tre University), R. Bornard (CGG) & S. Boudon (CGG) SUMMARY

More information

Integrated Reservoir Study for Designing CO 2 -Foam EOR Field Pilot

Integrated Reservoir Study for Designing CO 2 -Foam EOR Field Pilot Integrated Reservoir Study for Designing CO 2 -Foam EOR Field Pilot Universitetet i Stavanger uis.no M. Sharma*, Z. P. Alcorn #, S. Fredriksen # M. Fernø # and A. Graue # * The National IOR Centre of Norway,

More information

CO2 storage modelling and capacity estimates for the Trøndelag Platform a basin modelling approach

CO2 storage modelling and capacity estimates for the Trøndelag Platform a basin modelling approach CO2 storage modelling and capacity estimates for the Trøndelag Platform a basin modelling approach Ane E. Lothe, Benjamin U. Emmel & Per Bergmo NORDICCS Conference Contribution D 6.1.1407 (4) August 2014

More information

Excellence. Respect Openness. Trust. History matching and identifying infill targets using an ensemble based method

Excellence. Respect Openness. Trust. History matching and identifying infill targets using an ensemble based method Re-thinking the Goliat reservoir models: Trust History matching and identifying infill targets using an ensemble based method Gjertrud Halset, Reservoir geologist Guro Solberg, Reservoir engineer Respect

More information

CO 2 storage capacity and injectivity analysis through the integrated reservoir modelling

CO 2 storage capacity and injectivity analysis through the integrated reservoir modelling CO 2 storage capacity and injectivity analysis through the integrated reservoir modelling Dr. Liuqi Wang Geoscience Australia CO 2 Geological Storage and Technology Training School of CAGS Beijing, P.

More information

SPE History Matching Using the Ensemble Kalman Filter on a North Sea Field Case

SPE History Matching Using the Ensemble Kalman Filter on a North Sea Field Case SPE- 1243 History Matching Using the Ensemble Kalman Filter on a North Sea Field Case Vibeke Haugen, SPE, Statoil ASA, Lars-Jørgen Natvik, Statoil ASA, Geir Evensen, Hydro, Aina Berg, IRIS, Kristin Flornes,

More information

Downloaded 09/15/16 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 09/15/16 to Redistribution subject to SEG license or copyright; see Terms of Use at A Full Field Static Model of the RG-oil Field, Central Sirte Basin, Libya Abdalla Abdelnabi*, Kelly H. Liu, and Stephen Gao Missouri University of Science and Technology Summary Cambrian-Ordovician and

More information

Ensemble Kalman filter for automatic history matching of geologic facies

Ensemble Kalman filter for automatic history matching of geologic facies Journal of Petroleum Science and Engineering 47 (2005) 147 161 www.elsevier.com/locate/petrol Ensemble Kalman filter for automatic history matching of geologic facies Ning LiuT, Dean S. Oliver School of

More information

3D Geological Modeling and Uncertainty Analysis of Pilot Pad in the Long Lake Field with Lean Zone and Shale Layer

3D Geological Modeling and Uncertainty Analysis of Pilot Pad in the Long Lake Field with Lean Zone and Shale Layer Datapages/Search and Discovery Article #9224 GeoConvention 214, FOCUS - Adapt, Refine, Sustain Calgary, Alberta, Canada, May 12-16, 214 3D Geological Modeling and Uncertainty Analysis of Pilot Pad in the

More information

Storage 6 - Modeling for CO 2 Storage. Professor John Kaldi Chief Scientist, CO2CRC Australian School of Petroleum, University of Adelaide, Australia

Storage 6 - Modeling for CO 2 Storage. Professor John Kaldi Chief Scientist, CO2CRC Australian School of Petroleum, University of Adelaide, Australia Storage 6 - Modeling for CO 2 Storage Professor John Kaldi Chief Scientist, CO2CRC Australian School of Petroleum, University of Adelaide, Australia Regina, Sask., Canada, 17-22 July, 2016 Modeling 2 What

More information

Storage 4 - Modeling for CO 2 Storage. Professor John Kaldi Chief Scientist, CO2CRC Australian School of Petroleum, University of Adelaide, Australia

Storage 4 - Modeling for CO 2 Storage. Professor John Kaldi Chief Scientist, CO2CRC Australian School of Petroleum, University of Adelaide, Australia Storage 4 - Modeling for CO 2 Storage Professor John Kaldi Chief Scientist, CO2CRC Australian School of Petroleum, University of Adelaide, Australia 1 Modelling 2 On Models. All models are wrong. some

More information

Best Practice Reservoir Characterization for the Alberta Oil Sands

Best Practice Reservoir Characterization for the Alberta Oil Sands Best Practice Reservoir Characterization for the Alberta Oil Sands Jason A. McLennan and Clayton V. Deutsch Centre for Computational Geostatistics (CCG) Department of Civil and Environmental Engineering

More information

The Science Behind Structural Geology Software Tools

The Science Behind Structural Geology Software Tools The Science Behind Structural Geology Software Tools The Force Structural Geology Group are pleased to announce a halfday seminar focusing on the science behind some of the main software tools dedicated

More information

C002 Petrophysical Seismic Inversion over an Offshore Carbonate Field

C002 Petrophysical Seismic Inversion over an Offshore Carbonate Field C002 Petrophysical Seismic Inversion over an Offshore Carbonate Field T. Coleou* (CGGVeritas), F. Allo (CGGVeritas), O. Colnard (CGGVeritas), I. Machecler (CGGVeritas), L. Dillon (Petrobras), G. Schwedersky

More information

QUANTITATIVE INTERPRETATION

QUANTITATIVE INTERPRETATION QUANTITATIVE INTERPRETATION THE AIM OF QUANTITATIVE INTERPRETATION (QI) IS, THROUGH THE USE OF AMPLITUDE ANALYSIS, TO PREDICT LITHOLOGY AND FLUID CONTENT AWAY FROM THE WELL BORE This process should make

More information

Fault seal analysis: a regional calibration Nile delta, Egypt

Fault seal analysis: a regional calibration Nile delta, Egypt International Research Journal of Geology and Mining (IRJGM) (2276-6618) Vol. 3(5) pp. 190-194, June, 2013 Available online http://www.interesjournals.org/irjgm Copyright 2013 International Research Journals

More information

Downloaded 10/25/16 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 10/25/16 to Redistribution subject to SEG license or copyright; see Terms of Use at Facies modeling in unconventional reservoirs using seismic derived facies probabilities Reinaldo J. Michelena*, Omar G. Angola, and Kevin S. Godbey, ireservoir.com, Inc. Summary We present in this paper

More information

Reservoir Monitoring and Continuous Model Updating Using Ensemble Kalman Filter

Reservoir Monitoring and Continuous Model Updating Using Ensemble Kalman Filter SPE 84372 Reservoir Monitoring and Continuous Model Updating Using Ensemble Kalman Filter Geir Nævdal, RF-Rogaland Research; Liv Merethe Johnsen, SPE, Norsk Hydro; Sigurd Ivar Aanonsen, SPE, Norsk Hydro;

More information

Simplified In-Situ Stress Properties in Fractured Reservoir Models. Tim Wynn AGR-TRACS

Simplified In-Situ Stress Properties in Fractured Reservoir Models. Tim Wynn AGR-TRACS Simplified In-Situ Stress Properties in Fractured Reservoir Models Tim Wynn AGR-TRACS Before the What and the How is Why Potential decrease in fault seal capacity Potential increase in natural fracture

More information

Prediction of Naturally Fractured Reservoir Performance using Novel Integrated Workflow

Prediction of Naturally Fractured Reservoir Performance using Novel Integrated Workflow Prediction of Naturally Fractured Reservoir Performance using Novel Integrated Workflow Reda Abdel Azim Chemical and Petroleum Engineering Department American University of Ras Al Khaimah Ras Al Khaimah,

More information

3D geostatistical porosity modelling: A case study at the Saint-Flavien CO 2 storage project

3D geostatistical porosity modelling: A case study at the Saint-Flavien CO 2 storage project 3D geostatistical porosity modelling: A case study at the Saint-Flavien CO 2 storage project Maxime Claprood Institut national de la recherche scientifique, Québec, Canada Earth Modelling 2013 October

More information

QUANTITATIVE ANALYSIS OF SEISMIC RESPONSE TO TOTAL-ORGANIC-CONTENT AND THERMAL MATURITY IN SHALE GAS PLAYS

QUANTITATIVE ANALYSIS OF SEISMIC RESPONSE TO TOTAL-ORGANIC-CONTENT AND THERMAL MATURITY IN SHALE GAS PLAYS E: infoikonscience.com W: www.ikonscience.com QUANTITATIVE ANALYSIS OF SEISMIC RESPONSE TO TOTAL-ORGANIC-CONTENT AND THERMAL MATURITY IN SHALE GAS PLAYS Ebrahim Zadeh 12, Reza Rezaee 1, Michel Kemper 2

More information

FRACMAN Reservoir Edition FRED. Success in Fractured Reservoirs FRACMAN TECHNOLOGY GROUP

FRACMAN Reservoir Edition FRED. Success in Fractured Reservoirs FRACMAN TECHNOLOGY GROUP FRACMAN Reservoir Edition FRED Success in Fractured Reservoirs FRACMAN TECHNOLOGY GROUP Managing fractured oil and gas reservoirs can be problematic, as conventional modeling approaches that treat rock

More information

Modelling of CO 2 storage and long term behaviour in the Casablanca field

Modelling of CO 2 storage and long term behaviour in the Casablanca field Available online at www.sciencedirect.com Energy Procedia 1 (2009) (2008) 2919 2927 000 000 GHGT-9 www.elsevier.com/locate/xxx www.elsevier.com/locate/procedia Modelling of CO 2 storage and long term behaviour

More information

Optimisation of Well Trajectory and Hydraulic Fracture Design in a Poor Formation Quality Gas-Condensate Reservoir

Optimisation of Well Trajectory and Hydraulic Fracture Design in a Poor Formation Quality Gas-Condensate Reservoir Optimisation of Well Trajectory and Hydraulic Fracture Design in a Poor Formation Quality Gas-Condensate Reservoir Tipping, André Carlo Torres de Carvalho at8865@my.bristol.ac.uk Masters in Petroleum Engineering,

More information

Th C3 08 Capturing Structural Uncertainty in Fault Seal Analysis A Multi-throw Scenario Approach

Th C3 08 Capturing Structural Uncertainty in Fault Seal Analysis A Multi-throw Scenario Approach Th C3 08 Capturing Structural Uncertainty in Fault Seal Analysis A Multi-throw Scenario Approach M. Giba* (DEA) Summary An intrinsic challenge of fault seal analyses is the large uncertainties that have

More information

A NEW APPROACH FOR QUANTIFYING THE IMPACT OF GEOSTATISTICAL UNCERTAINTY ON PRODUCTION FORECASTS: THE JOINT MODELING METHOD

A NEW APPROACH FOR QUANTIFYING THE IMPACT OF GEOSTATISTICAL UNCERTAINTY ON PRODUCTION FORECASTS: THE JOINT MODELING METHOD A NEW APPROACH FOR QUANTIFYING THE IMPACT OF GEOSTATISTICAL UNCERTAINTY ON PRODUCTION FORECASTS: THE JOINT MODELING METHOD IAMG, Cancun, September 6-1, 001 Isabelle Zabalza-Mezghani, IFP Emmanuel Manceau,

More information

Faults in conventional flow simulation models: a consideration of representational assumptions and geological uncertainties

Faults in conventional flow simulation models: a consideration of representational assumptions and geological uncertainties Faults in conventional flow simulation models: a consideration of representational assumptions and geological uncertainties T. Manzocchi 1, A. E. Heath 2, B. Palananthakumar 1, C. Childs 1 and J. J. Walsh

More information

The Alba Field: Improved Reservoir Characterisation using 4D Seismic Data. Elaine Campbell Oliver Hermann Steve Dobbs Andrew Warnock John Hampson

The Alba Field: Improved Reservoir Characterisation using 4D Seismic Data. Elaine Campbell Oliver Hermann Steve Dobbs Andrew Warnock John Hampson The Alba Field: Improved Reservoir Characterisation using 4D Seismic Data Elaine Campbell Oliver Hermann Steve Dobbs Andrew Warnock John Hampson Chevron 2005 Alba Field Location Equity: Chevron 23% (operator)

More information

Truncated Conjugate Gradient Method for History Matching in Reservoir Simulation

Truncated Conjugate Gradient Method for History Matching in Reservoir Simulation Trabalho apresentado no CNAC, Gramado - RS, 2016. Proceeding Series of the Brazilian Society of Computational and Applied athematics Truncated Conjugate Gradient ethod for History atching in Reservoir

More information

Imaging complex structure with crosswell seismic in Jianghan oil field

Imaging complex structure with crosswell seismic in Jianghan oil field INTERPRETER S CORNER Coordinated by Rebecca B. Latimer Imaging complex structure with crosswell seismic in Jianghan oil field QICHENG DONG and BRUCE MARION, Z-Seis, Houston, Texas, U.S. JEFF MEYER, Fusion

More information

The Science Behind Structural Geology Software Tools

The Science Behind Structural Geology Software Tools The Science Behind Structural Geology Software Tools The Force Structural Geology Group are pleased to announce a halfday seminar focusing on the science behind some of the main software tools dedicated

More information

Reducing Uncertainty in Modelling Fluvial Reservoirs by using Intelligent Geological Priors

Reducing Uncertainty in Modelling Fluvial Reservoirs by using Intelligent Geological Priors Reducing Uncertainty in Modelling Fluvial Reservoirs by using Intelligent Geological Priors Temístocles Rojas 1, Vasily Demyanov 2, Mike Christie 3 & Dan Arnold 4 Abstract Automatic history matching reservoir

More information

J.V. Herwanger* (Ikon Science), A. Bottrill (Ikon Science) & P. Popov (Ikon Science)

J.V. Herwanger* (Ikon Science), A. Bottrill (Ikon Science) & P. Popov (Ikon Science) 29829. One 4D geomechanical model and its many applications J.V. Herwanger* (Ikon Science), A. Bottrill (Ikon Science) & P. Popov (Ikon Science) Main objectives (i) Field case study demonstrating application

More information

Multiple-Point Geostatistics: from Theory to Practice Sebastien Strebelle 1

Multiple-Point Geostatistics: from Theory to Practice Sebastien Strebelle 1 Multiple-Point Geostatistics: from Theory to Practice Sebastien Strebelle 1 Abstract The limitations of variogram-based simulation programs to model complex, yet fairly common, geological elements, e.g.

More information

Bulletin of Earth Sciences of Thailand. A study of Reservoir Connectivity in the Platong Field, Pattani Basin, Gulf of Thailand. Hathairat Roenthon

Bulletin of Earth Sciences of Thailand. A study of Reservoir Connectivity in the Platong Field, Pattani Basin, Gulf of Thailand. Hathairat Roenthon A study of Reservoir Connectivity in the Platong Field, Pattani Basin, Gulf of Thailand Hathairat Roenthon Petroleum Geoscience Program, Department of Geology, Faculty of Science, Chulalongkorn University,

More information

Analysis of the Pattern Correlation between Time Lapse Seismic Amplitudes and Saturation

Analysis of the Pattern Correlation between Time Lapse Seismic Amplitudes and Saturation Analysis of the Pattern Correlation between Time Lapse Seismic Amplitudes and Saturation Darkhan Kuralkhanov and Tapan Mukerji Department of Energy Resources Engineering Stanford University Abstract The

More information

RESERVOIR CHARACTERISATION

RESERVOIR CHARACTERISATION Introducing geological processes in reservoir models Reservoir modelling and reservoir simulation are based on data collected at multiple scales with resolution ranging from sub-millimetre to tens of metres.

More information

Generalized Randomized Maximum Likelihood

Generalized Randomized Maximum Likelihood Generalized Randomized Maximum Likelihood Andreas S. Stordal & Geir Nævdal ISAPP, Delft 2015 Why Bayesian history matching doesn t work, cont d Previous talk: Why Bayesian history matching doesn t work,

More information

A021 Petrophysical Seismic Inversion for Porosity and 4D Calibration on the Troll Field

A021 Petrophysical Seismic Inversion for Porosity and 4D Calibration on the Troll Field A021 Petrophysical Seismic Inversion for Porosity and 4D Calibration on the Troll Field T. Coleou* (CGG), A.J. van Wijngaarden (Hydro), A. Norenes Haaland (Hydro), P. Moliere (Hydro), R. Ona (Hydro) &

More information

SEISMIC PROFILE CGG SEISMIC INVERSIONS. by Lucia Levato, CGG. three offshore case studies show how one size does not fi t all. 18 seismic profile

SEISMIC PROFILE CGG SEISMIC INVERSIONS. by Lucia Levato, CGG. three offshore case studies show how one size does not fi t all. 18 seismic profile 4D SEISMIC INVERSIONS by Lucia Levato, CGG three offshore case studies show how one size does not fi t all 18 seismic profile The following three cases of offshore 4D seismic inversions illustrate how

More information

Statistical Rock Physics

Statistical Rock Physics Statistical - Introduction Book review 3.1-3.3 Min Sun March. 13, 2009 Outline. What is Statistical. Why we need Statistical. How Statistical works Statistical Rock physics Information theory Statistics

More information

Exploration _Advanced geophysical methods. Research Challenges. Séverine Pannetier-Lescoffit and Ute Mann. SINTEF Petroleum Research

Exploration _Advanced geophysical methods. Research Challenges. Séverine Pannetier-Lescoffit and Ute Mann. SINTEF Petroleum Research Exploration _Advanced geophysical methods * Research Challenges Séverine Pannetier-Lescoffit and Ute Mann SINTEF Petroleum Research 1 Exploration and Reservoir Characterization * Research Challenges 29%

More information

Risk Factors in Reservoir Simulation

Risk Factors in Reservoir Simulation Risk Factors in Reservoir Simulation Dr. Helmy Sayyouh Petroleum Engineering Cairo University 12/26/2017 1 Sources Of Data Petro-physical Data Water saturation may be estimated from log analysis, capillary

More information

Quantitative Interpretation

Quantitative Interpretation Quantitative Interpretation The aim of quantitative interpretation (QI) is, through the use of amplitude analysis, to predict lithology and fluid content away from the well bore. This process should make

More information

Estimating Fault Seal and Capillary Sealing Properties in the Visund Field, North Sea A study carried out for Norsk Hydro

Estimating Fault Seal and Capillary Sealing Properties in the Visund Field, North Sea A study carried out for Norsk Hydro Estimating Fault Seal and Capillary Sealing Properties in the Visund Field, North Sea A study carried out for Norsk Hydro Abstract This study investigates the difference in seal/leakage mechanisms across

More information

Study on the Couple of 3D Geological Model and Reservoir Numerical Simulation Results

Study on the Couple of 3D Geological Model and Reservoir Numerical Simulation Results Advances in Petroleum Exploration and Development Vol. 13, No. 2, 2017, pp. 43-47 DOI:10.3968/9663 ISSN 1925-542X [Print] ISSN 1925-5438 [Online] www.cscanada.net www.cscanada.org Study on the Couple of

More information

Recent developments in object modelling opens new era for characterization of fluvial reservoirs

Recent developments in object modelling opens new era for characterization of fluvial reservoirs Recent developments in object modelling opens new era for characterization of fluvial reservoirs Markus L. Vevle 1*, Arne Skorstad 1 and Julie Vonnet 1 present and discuss different techniques applied

More information

Opportunities in Oil and Gas Fields Questions TABLE OF CONTENTS

Opportunities in Oil and Gas Fields Questions TABLE OF CONTENTS TABLE OF CONTENTS A. Asset... 3 1. What is the size of the opportunity (size the prize)?... 3 2. Volumetric Evaluation... 3 3. Probabilistic Volume Estimates... 3 4. Material Balance Application... 3 5.

More information

Quantitative interpretation using inverse rock-physics modeling on AVO data

Quantitative interpretation using inverse rock-physics modeling on AVO data Quantitative interpretation using inverse rock-physics modeling on AVO data Erling Hugo Jensen 1, Tor Arne Johansen 2, 3, 4, Per Avseth 5, 6, and Kenneth Bredesen 2, 7 Downloaded 08/16/16 to 129.177.32.62.

More information

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET. Directional Metropolis Hastings updates for posteriors with nonlinear likelihoods

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET. Directional Metropolis Hastings updates for posteriors with nonlinear likelihoods NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Directional Metropolis Hastings updates for posteriors with nonlinear likelihoods by Håkon Tjelmeland and Jo Eidsvik PREPRINT STATISTICS NO. 5/2004 NORWEGIAN

More information

3D geologic modelling of channellized reservoirs: applications in seismic attribute facies classification

3D geologic modelling of channellized reservoirs: applications in seismic attribute facies classification first break volume 23, December 2005 technology feature 3D geologic modelling of channellized reservoirs: applications in seismic attribute facies classification Renjun Wen, * president and CEO, Geomodeling

More information

Th E Natural Fracture Prediction for Discrete Fracture Modelling

Th E Natural Fracture Prediction for Discrete Fracture Modelling Th E103 01 Natural Fracture Prediction for Discrete Fracture Modelling H. Phillips* (Schlumberger), J.P. Joonnekindt (Schlumberger) & L. Maerten (Schlumberger) SUMMARY There are many uncertainties in the

More information

Bayesian Lithology-Fluid Prediction and Simulation based. on a Markov Chain Prior Model

Bayesian Lithology-Fluid Prediction and Simulation based. on a Markov Chain Prior Model Bayesian Lithology-Fluid Prediction and Simulation based on a Markov Chain Prior Model Anne Louise Larsen Formerly Norwegian University of Science and Technology, N-7491 Trondheim, Norway; presently Schlumberger

More information

One or two deficiencies of current fault seal analysis methods

One or two deficiencies of current fault seal analysis methods Shell Exploration & Production One or two deficiencies of current fault seal analysis methods Scott J. Wilkins and Stephen J. Naruk Copyright 2003 SIEP B.V. Structure, Traps and Seals Team Bellaire Technology

More information

Th LHR2 04 Quantification of Reservoir Pressure-sensitivity Using Multiple Monitor 4D Seismic Data

Th LHR2 04 Quantification of Reservoir Pressure-sensitivity Using Multiple Monitor 4D Seismic Data Th LHR2 04 Quantification of Reservoir -sensitivity Using Multiple Monitor 4D Seismic Data V.E. Omofoma* (Heriot-Watt University) & C. MacBeth (Heriot-Watt University) SUMMARY Key to quantitative interpretation

More information

A Fully Integrated Approach for Better Determination of Fracture Parameters Using Streamline Simulation; A gas condensate reservoir case study in Iran

A Fully Integrated Approach for Better Determination of Fracture Parameters Using Streamline Simulation; A gas condensate reservoir case study in Iran Journal of Chemical and Petroleum Engineering, University of Tehran, Vol. 47, No.2, Dec. 2013, PP. 83-94 83 A Fully Integrated Approach for Better Determination of Fracture Parameters Using Streamline

More information

M.Sc. Track Petroleum Engineering & Geosciences

M.Sc. Track Petroleum Engineering & Geosciences M.Sc. Track Petroleum Engineering & Geosciences 3-9-2017 Delft University of Technology Challenge the future Challenging industry (and study) 2 Geothermal Energy Produce energy (heat) from subsurface for

More information

Integrating Geomechanics and Reservoir Characterization Examples from Canadian Shale Plays

Integrating Geomechanics and Reservoir Characterization Examples from Canadian Shale Plays Integrating Geomechanics and Reservoir Characterization Examples from Canadian Shale Plays AAPG Geosciences Technology Workshops Geomechanics and Reservoir Characterization of Shale and Carbonates July

More information

Caracterização de. Michelle Uchôa Chaves Geóloga SIS Brasil

Caracterização de. Michelle Uchôa Chaves Geóloga SIS Brasil Caracterização de Reservatórios Michelle Uchôa Chaves Geóloga SIS Brasil Email: mchaves@slb.com Introduction into SIS Schlumberger Information Solutions (SIS), an operating unit of Schlumberger, is organized

More information

Consistent Downscaling of Seismic Inversions to Cornerpoint Flow Models SPE

Consistent Downscaling of Seismic Inversions to Cornerpoint Flow Models SPE Consistent Downscaling of Seismic Inversions to Cornerpoint Flow Models SPE 103268 Subhash Kalla LSU Christopher D. White LSU James S. Gunning CSIRO Michael E. Glinsky BHP-Billiton Contents Method overview

More information

Vertical Permeability Estimation: Examples from a Tidal Deltaic Reservoir System

Vertical Permeability Estimation: Examples from a Tidal Deltaic Reservoir System Vertical Permeability Estimation: Examples from a Tidal Deltaic Reservoir System Philip Ringrose 1 and Jan Einar Ringås 2 Statoil Research 1 and Operations 2 Aims of the Talk 1. What is the true vertical

More information

Tu P05 06 Duplex Wave Migration Case Study in Yemen

Tu P05 06 Duplex Wave Migration Case Study in Yemen Tu P05 06 Duplex Wave Migration Case Study in Yemen G. Markarova* (Calvalley Petroleum Inc), I. Blumentsvaig (TetraSeis Inc.), A. Kostyukevych (TetraSeis Inc.) & N. Marmalyevskyy (TetraSeis Inc.) SUMMARY

More information

Seismic validation of reservoir simulation using a shared earth model

Seismic validation of reservoir simulation using a shared earth model Seismic validation of reservoir simulation using a shared earth model D.E. Gawith & P.A. Gutteridge BPExploration, Chertsey Road, Sunbury-on-Thames, TW16 7LN, UK ABSTRACT: This paper concerns an example

More information

Reservoir Geomechanics and Faults

Reservoir Geomechanics and Faults Reservoir Geomechanics and Faults Dr David McNamara National University of Ireland, Galway david.d.mcnamara@nuigalway.ie @mcnamadd What is a Geological Structure? Geological structures include fractures

More information

Vertical Hydrocarbon Migration at the Nigerian Continental Slope: Applications of Seismic Mapping Techniques.

Vertical Hydrocarbon Migration at the Nigerian Continental Slope: Applications of Seismic Mapping Techniques. ROAR HEGGLAND, Statoil ASA, N-4035 Stavanger, Norway Vertical Hydrocarbon Migration at the Nigerian Continental Slope: Applications of Seismic Mapping Techniques. Summary By the use of 3D seismic data,

More information

Submarine Debris flow Project Proposal to Force August 2018/v1.02

Submarine Debris flow Project Proposal to Force August 2018/v1.02 Submarine Debris flow Project Proposal to Force August 2018/v1.02 Summary The main objective of the Submarine Debris Flow study is to implement the concept of debris flow in the MassFlow3DÔ code as an

More information

PREDICTION OF CO 2 DISTRIBUTION PATTERN IMPROVED BY GEOLOGY AND RESERVOIR SIMULATION AND VERIFIED BY TIME LAPSE SEISMIC

PREDICTION OF CO 2 DISTRIBUTION PATTERN IMPROVED BY GEOLOGY AND RESERVOIR SIMULATION AND VERIFIED BY TIME LAPSE SEISMIC Extended abstract of presentation given at Fifth International Conference on Greenhouse Gas Control Technologies Cairns, Australia, 13 th to 16 th August 2000 PREDICTION OF CO 2 DISTRIBUTION PATTERN IMPROVED

More information

SPE DISTINGUISHED LECTURER SERIES is funded principally through a grant of the SPE FOUNDATION

SPE DISTINGUISHED LECTURER SERIES is funded principally through a grant of the SPE FOUNDATION SPE DISTINGUISHED LECTURER SERIES is funded principally through a grant of the SPE FOUNDATION The Society gratefully acknowledges those companies that support the program by allowing their professionals

More information

Assessment of Hydraulic Conductivity Upscaling Techniques and. Associated Uncertainty

Assessment of Hydraulic Conductivity Upscaling Techniques and. Associated Uncertainty CMWRXVI Assessment of Hydraulic Conductivity Upscaling Techniques and Associated Uncertainty FARAG BOTROS,, 4, AHMED HASSAN 3, 4, AND GREG POHLL Division of Hydrologic Sciences, University of Nevada, Reno

More information

Geologic influence on variations in oil and gas production from the Cardium Formation, Ferrier Oilfield, west-central Alberta, Canada

Geologic influence on variations in oil and gas production from the Cardium Formation, Ferrier Oilfield, west-central Alberta, Canada Geologic influence on variations in oil and gas production from the Cardium Formation, Ferrier Oilfield, west-central Alberta, Canada Marco Venieri and Per Kent Pedersen Department of Geoscience, University

More information

Seismic reservoir and source-rock analysis using inverse rock-physics modeling: A Norwegian Sea demonstration

Seismic reservoir and source-rock analysis using inverse rock-physics modeling: A Norwegian Sea demonstration 66 Seismic reservoir and source-rock analysis using inverse rock-physics modeling: A Norwegian Sea demonstration Kenneth Bredesen 1, Erling Hugo Jensen 1, 2, Tor Arne Johansen 1, 2, and Per Avseth 3, 4

More information

Earth models for early exploration stages

Earth models for early exploration stages ANNUAL MEETING MASTER OF PETROLEUM ENGINEERING Earth models for early exploration stages Ângela Pereira PhD student angela.pereira@tecnico.ulisboa.pt 3/May/2016 Instituto Superior Técnico 1 Outline Motivation

More information

BERG-HUGHES CENTER FOR PETROLEUM AND SEDIMENTARY SYSTEMS. Department of Geology and Geophysics College of Geosciences

BERG-HUGHES CENTER FOR PETROLEUM AND SEDIMENTARY SYSTEMS. Department of Geology and Geophysics College of Geosciences BERG-HUGHES CENTER FOR PETROLEUM AND SEDIMENTARY SYSTEMS Department of Geology and Geophysics College of Geosciences MISSION Integrate geoscience, engineering and other disciplines to collaborate with

More information