Human-level concept learning through probabilistic program induction

Size: px
Start display at page:

Download "Human-level concept learning through probabilistic program induction"

Transcription

1 B.M Lake, R. Salakhutdinov, J.B. Tenenbaum Human-level concept learning through probabilistic program induction journal club at

2

3 two aspects in which machine learning spectacularly lags behind human learning

4 two aspects in which machine learning spectacularly lags behind human learning one-shot learning of new concepts

5

6

7 two aspects in which machine learning spectacularly lags behind human learning one-shot learning of new concepts

8 two aspects in which machine learning spectacularly lags behind human learning one-shot learning of new concepts rich representations

9

10

11

12

13

14

15

16

17

18

19 one-shot learning

20 human or machine?

21 human or machine?

22 human or machine?

23 human or machine?

24 human or machine?

25 generate conditioned on alphabet

26 human or machine?

27 human or machine?

28 human or machine?

29 human or machine?

30 human or machine?

31 human or machine?

32 human or machine?

33 generate freely

34 human or machine?

35 human or machine?

36 human or machine?

37 human or machine?

38 human or machine?

39 human or machine?

40 human or machine?

41

42 Bayesian Program Learner

43

44 motivation reverse engineer human learning

45 motivation reverse engineer human learning method understand the computational problem of learning first

46 simulation

47 simulation model physical world

48 simulation model physical world

49 simulation model physical world

50 uncertainty

51 uncertainty underdetermination of inference problems by experience

52 uncertainty underdetermination of inference problems by experience computational intractability of environment

53 simulation uncertainty

54 simulation uncertainty rules of probability }(includes Bayes rule)

55 simulation uncertainty rules of probability }(includes Bayes rule) does the search for an ideal learner stop here?

56 simulation uncertainty rules of probability }(includes Bayes rule) does the search for an ideal learner stop here? model space?

57 simulation uncertainty rules of probability }(includes Bayes rule) does the search for an ideal learner stop here? model space? set of all models (luckily, this exists)

58 simulation uncertainty rules of probability }(includes Bayes rule) does the search for an ideal learner stop here? model space? set of all models (luckily, this exists) brute force search

59 simulation uncertainty rules of probability }(includes Bayes rule) does the search for an ideal learner stop here? model space? set of all models (luckily, this exists) brute force search how can this be made tractable?

60 simulation uncertainty rules of probability }(includes Bayes rule)

61 simulation uncertainty rules of probability }(includes Bayes rule) }principles for choice of representation

62 simulation uncertainty rules of probability }(includes Bayes rule) learning to learn }principles for choice of representation

63 simulation uncertainty rules of probability }(includes Bayes rule) learning to learn compositionality }principles for choice of representation

64 simulation uncertainty rules of probability }(includes Bayes rule) learning to learn compositionality causality }principles for choice of representation

65 learning to learn

66 learning to learn [Griffiths et al 2008]

67 learning to learn [Griffiths et al 2008]

68 compositionality

69 compositionality The green bear is eating chocolate.

70 compositionality The green bear is eating chocolate. [Grosse et al 2012]

71 logic cough sneeze flu TB possible? t t t t y t t f f n f f f f y

72 truth table

73 truth table operators

74 truth table operators propositional logic

75 truth table operators propositional logic predicates, quantifiers

76 truth table operators propositional logic predicates, quantifiers first-order logic

77 truth table operators propositional logic predicates, quantifiers first-order logic λ-calculus

78 truth table operators propositional logic predicates, quantifiers first-order logic turing-completeness λ-calculus

79 truth table operators propositional logic predicates, quantifiers first-order logic expressive power turing-completeness λ-calculus

80 logic cough sneeze flu TB possible? t t t t y t t f f n f f f f y

81 probability cough sneeze flu TB probability t t t t 0.1 t t f f f f f f 0.3

82 truth table propositional logic first-order logic turing-completeness λ-calculus

83 truth table joint probability table propositional logic first-order logic turing-completeness λ-calculus

84 truth table joint probability table propositional logic bayes nets first-order logic turing-completeness λ-calculus

85 truth table joint probability table propositional logic bayes nets first-order logic turing-completeness λ-calculus ψλ -calculus

86 truth table joint probability table propositional logic bayes nets first-order logic turing-completeness λ-calculus ψλ -calculus all programs all distributions

87 filename=wigner_jc_anglicandemo.clj

88 (define a (flip 0.3)) (define b (flip 0.3)) (define c (flip 0.3)) (+ a b c) ,5 0,375 0,25 0,125 0 P (n) = n n n

89 (define a (flip 0.3)) (define b (flip 0.3)) (define c (flip 0.3)) (+ a b c) ,5 0,375 0,25 0,125 0 P (n) = n n n sampling semantics distribution semantics

90 (define a (flip 0.3)) (define b (flip 0.3)) (define c (flip 0.3)) (+ a b c) ,5 0,375 0,25 0,125 0 P (n) = n n n sampling semantics distribution semantics theorem any computable distribution can be represented by a Church expression & any (a.s.) halting Church expression can be represented by a computable distribution

91 (define a (flip 0.3)) (define b (flip 0.3)) (define c (flip 0.3)) (+ a b c) ,5 0,375 0,25 0,125 0 P (n) = n n n

92 0,5 0,375 (define a (flip 0.3)) (define b (flip 0.3)) (define c (flip 0.3)) (+ a b c) composition doesn t require 0,25 0,125 0 P (n) = n n n integrals

93 0,5 0,375 (define a (flip 0.3)) (define b (flip 0.3)) (define c (flip 0.3)) (+ a b c) composition doesn t require 0,25 0,125 0 P (n) = n n n integrals generalisation of d.g.m.:

94 0,5 0,375 (define a (flip 0.3)) (define b (flip 0.3)) (define c (flip 0.3)) (+ a b c) composition doesn t require 0,25 0,125 0 P (n) = n n n integrals generalisation of d.g.m.: causality

95 0,5 0,375 (define a (flip 0.3)) (define b (flip 0.3)) (define c (flip 0.3)) (+ a b c) composition doesn t require 0,25 0,125 0 P (n) = n n n integrals generalisation of d.g.m.: causality hierarchical models

96 0,5 0,375 (define a (flip 0.3)) (define b (flip 0.3)) (define c (flip 0.3)) (+ a b c) composition doesn t require 0,25 0,125 0 P (n) = n n n integrals generalisation of d.g.m.: causality hierarchical models non-parametric models

97 models.html#example-causal-models-in-medical- diagnosis sequences.html#probabilistic-context-free- grammars

98

99 generative model

100

101

102

103

104

105

106

107

108 inference

109

110

111

112 [Grosse et al 2012] Grosse, R. B., Salakhutdinov, R., Freeman, W. T., & Tenenbaum, J. B. (2012). Exploiting compositionality to explore a large space of model structures. Conference on Uncertainty in Artificial Intelligence. Retrieved from [Griffiths et al 2008] Griffiths, Thomas L., Charles Kemp, and Joshua B. Tenenbaum. "Bayesian models of cognition." (2008).

Introduction to Probabilistic Programming Languages (PPL)

Introduction to Probabilistic Programming Languages (PPL) Introduction to Probabilistic Programming Languages (PPL) Anton Andreev Ingénieur d'études CNRS andreev.anton@.grenoble-inp.fr Something simple int function add(int a, int b) return a + b add(3, 2) 5 Deterministic

More information

Bayesian Networks BY: MOHAMAD ALSABBAGH

Bayesian Networks BY: MOHAMAD ALSABBAGH Bayesian Networks BY: MOHAMAD ALSABBAGH Outlines Introduction Bayes Rule Bayesian Networks (BN) Representation Size of a Bayesian Network Inference via BN BN Learning Dynamic BN Introduction Conditional

More information

Pei Wang( 王培 ) Temple University, Philadelphia, USA

Pei Wang( 王培 ) Temple University, Philadelphia, USA Pei Wang( 王培 ) Temple University, Philadelphia, USA Artificial General Intelligence (AGI): a small research community in AI that believes Intelligence is a general-purpose capability Intelligence should

More information

MAI0203 Lecture 7: Inference and Predicate Calculus

MAI0203 Lecture 7: Inference and Predicate Calculus MAI0203 Lecture 7: Inference and Predicate Calculus Methods of Artificial Intelligence WS 2002/2003 Part II: Inference and Knowledge Representation II.7 Inference and Predicate Calculus MAI0203 Lecture

More information

Intelligent Agents. First Order Logic. Ute Schmid. Cognitive Systems, Applied Computer Science, Bamberg University. last change: 19.

Intelligent Agents. First Order Logic. Ute Schmid. Cognitive Systems, Applied Computer Science, Bamberg University. last change: 19. Intelligent Agents First Order Logic Ute Schmid Cognitive Systems, Applied Computer Science, Bamberg University last change: 19. Mai 2015 U. Schmid (CogSys) Intelligent Agents last change: 19. Mai 2015

More information

Module 10. Reasoning with Uncertainty - Probabilistic reasoning. Version 2 CSE IIT,Kharagpur

Module 10. Reasoning with Uncertainty - Probabilistic reasoning. Version 2 CSE IIT,Kharagpur Module 10 Reasoning with Uncertainty - Probabilistic reasoning 10.1 Instructional Objective The students should understand the role of uncertainty in knowledge representation Students should learn the

More information

Introduction to Probabilistic Programming Language (with Church as an example) Presenter: Enrique Rosales, Xing Zeng

Introduction to Probabilistic Programming Language (with Church as an example) Presenter: Enrique Rosales, Xing Zeng Introduction to Probabilistic Programming Language (with Church as an example) Presenter: Enrique Rosales, Xing Zeng 1 Knowledge How can we infer knowledge from observations? 2 Ron s box Bob has a box

More information

In today s lecture. Conditional probability and independence. COSC343: Artificial Intelligence. Curse of dimensionality.

In today s lecture. Conditional probability and independence. COSC343: Artificial Intelligence. Curse of dimensionality. In today s lecture COSC343: Artificial Intelligence Lecture 5: Bayesian Reasoning Conditional probability independence Curse of dimensionality Lech Szymanski Dept. of Computer Science, University of Otago

More information

Directed Graphical Models or Bayesian Networks

Directed Graphical Models or Bayesian Networks Directed Graphical Models or Bayesian Networks Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Bayesian Networks One of the most exciting recent advancements in statistical AI Compact

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction Symbolical artificial intelligence is a field of computer science that is highly related to quantum computation. At first glance, this statement appears to be a contradiction. However,

More information

Models. Models of Computation, Turing Machines, and the Limits of Turing Computation. Effective Calculability. Motivation for Models of Computation

Models. Models of Computation, Turing Machines, and the Limits of Turing Computation. Effective Calculability. Motivation for Models of Computation Turing Computation /0/ Models of Computation, Turing Machines, and the Limits of Turing Computation Bruce MacLennan Models A model is a tool intended to address a class of questions about some domain of

More information

Lecture 10: Introduction to reasoning under uncertainty. Uncertainty

Lecture 10: Introduction to reasoning under uncertainty. Uncertainty Lecture 10: Introduction to reasoning under uncertainty Introduction to reasoning under uncertainty Review of probability Axioms and inference Conditional probability Probability distributions COMP-424,

More information

Partial inconsistency and vector semantics: sampling, animation, and program learning

Partial inconsistency and vector semantics: sampling, animation, and program learning Partial inconsistency and vector semantics: sampling, animation, and program learning Michael Bukatin Nokia Corporation, Cambridge, MA Joint work with Ralph Kopperman and Steve Matthews - - - 29th Summer

More information

TDT70: Uncertainty in Artificial Intelligence. Chapter 1 and 2

TDT70: Uncertainty in Artificial Intelligence. Chapter 1 and 2 TDT70: Uncertainty in Artificial Intelligence Chapter 1 and 2 Fundamentals of probability theory The sample space is the set of possible outcomes of an experiment. A subset of a sample space is called

More information

Probability Basics. Robot Image Credit: Viktoriya Sukhanova 123RF.com

Probability Basics. Robot Image Credit: Viktoriya Sukhanova 123RF.com Probability Basics These slides were assembled by Eric Eaton, with grateful acknowledgement of the many others who made their course materials freely available online. Feel free to reuse or adapt these

More information

COS402- Artificial Intelligence Fall Lecture 10: Bayesian Networks & Exact Inference

COS402- Artificial Intelligence Fall Lecture 10: Bayesian Networks & Exact Inference COS402- Artificial Intelligence Fall 2015 Lecture 10: Bayesian Networks & Exact Inference Outline Logical inference and probabilistic inference Independence and conditional independence Bayes Nets Semantics

More information

Quantifying uncertainty & Bayesian networks

Quantifying uncertainty & Bayesian networks Quantifying uncertainty & Bayesian networks CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2016 Soleymani Artificial Intelligence: A Modern Approach, 3 rd Edition,

More information

Learning Goals of CS245 Logic and Computation

Learning Goals of CS245 Logic and Computation Learning Goals of CS245 Logic and Computation Alice Gao April 27, 2018 Contents 1 Propositional Logic 2 2 Predicate Logic 4 3 Program Verification 6 4 Undecidability 7 1 1 Propositional Logic Introduction

More information

Introduction to Bayes Nets. CS 486/686: Introduction to Artificial Intelligence Fall 2013

Introduction to Bayes Nets. CS 486/686: Introduction to Artificial Intelligence Fall 2013 Introduction to Bayes Nets CS 486/686: Introduction to Artificial Intelligence Fall 2013 1 Introduction Review probabilistic inference, independence and conditional independence Bayesian Networks - - What

More information

Bayesian belief networks

Bayesian belief networks CS 2001 Lecture 1 Bayesian belief networks Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square 4-8845 Milos research interests Artificial Intelligence Planning, reasoning and optimization in the presence

More information

STAT 499/962 Topics in Statistics Bayesian Inference and Decision Theory Jan 2018, Handout 01

STAT 499/962 Topics in Statistics Bayesian Inference and Decision Theory Jan 2018, Handout 01 STAT 499/962 Topics in Statistics Bayesian Inference and Decision Theory Jan 2018, Handout 01 Nasser Sadeghkhani a.sadeghkhani@queensu.ca There are two main schools to statistical inference: 1-frequentist

More information

Symmetry Breaking for Relational Weighted Model Finding

Symmetry Breaking for Relational Weighted Model Finding Symmetry Breaking for Relational Weighted Model Finding Tim Kopp Parag Singla Henry Kautz WL4AI July 27, 2015 Outline Weighted logics. Symmetry-breaking in SAT. Symmetry-breaking for weighted logics. Weighted

More information

CS540 Machine learning L9 Bayesian statistics

CS540 Machine learning L9 Bayesian statistics CS540 Machine learning L9 Bayesian statistics 1 Last time Naïve Bayes Beta-Bernoulli 2 Outline Bayesian concept learning Beta-Bernoulli model (review) Dirichlet-multinomial model Credible intervals 3 Bayesian

More information

Algorithmic probability, Part 1 of n. A presentation to the Maths Study Group at London South Bank University 09/09/2015

Algorithmic probability, Part 1 of n. A presentation to the Maths Study Group at London South Bank University 09/09/2015 Algorithmic probability, Part 1 of n A presentation to the Maths Study Group at London South Bank University 09/09/2015 Motivation Effective clustering the partitioning of a collection of objects such

More information

Probability in Programming. Prakash Panangaden School of Computer Science McGill University

Probability in Programming. Prakash Panangaden School of Computer Science McGill University Probability in Programming Prakash Panangaden School of Computer Science McGill University Two crucial issues Two crucial issues Correctness of software: Two crucial issues Correctness of software: with

More information

Lecture 15. Probabilistic Models on Graph

Lecture 15. Probabilistic Models on Graph Lecture 15. Probabilistic Models on Graph Prof. Alan Yuille Spring 2014 1 Introduction We discuss how to define probabilistic models that use richly structured probability distributions and describe how

More information

Artificial Intelligence. 3 Problem Complexity. Prof. Dr. Jana Koehler Fall 2016 HSLU - JK

Artificial Intelligence. 3 Problem Complexity. Prof. Dr. Jana Koehler Fall 2016 HSLU - JK Artificial Intelligence 3 Problem Complexity Prof. Dr. Jana Koehler Fall 2016 Agenda Computability and Turing Machines Tractable and Intractable Problems P vs. NP Decision Problems Optimization problems

More information

Bayesian decision theory. Nuno Vasconcelos ECE Department, UCSD

Bayesian decision theory. Nuno Vasconcelos ECE Department, UCSD Bayesian decision theory Nuno Vasconcelos ECE Department, UCSD Notation the notation in DHS is quite sloppy e.g. show that ( error = ( error z ( z dz really not clear what this means we will use the following

More information

Uncertainty. Logic and Uncertainty. Russell & Norvig. Readings: Chapter 13. One problem with logical-agent approaches: C:145 Artificial

Uncertainty. Logic and Uncertainty. Russell & Norvig. Readings: Chapter 13. One problem with logical-agent approaches: C:145 Artificial C:145 Artificial Intelligence@ Uncertainty Readings: Chapter 13 Russell & Norvig. Artificial Intelligence p.1/43 Logic and Uncertainty One problem with logical-agent approaches: Agents almost never have

More information

Bayesian Learning. Examples. Conditional Probability. Two Roles for Bayesian Methods. Prior Probability and Random Variables. The Chain Rule P (B)

Bayesian Learning. Examples. Conditional Probability. Two Roles for Bayesian Methods. Prior Probability and Random Variables. The Chain Rule P (B) Examples My mood can take 2 possible values: happy, sad. The weather can take 3 possible vales: sunny, rainy, cloudy My friends know me pretty well and say that: P(Mood=happy Weather=rainy) = 0.25 P(Mood=happy

More information

Probability. CS 3793/5233 Artificial Intelligence Probability 1

Probability. CS 3793/5233 Artificial Intelligence Probability 1 CS 3793/5233 Artificial Intelligence 1 Motivation Motivation Random Variables Semantics Dice Example Joint Dist. Ex. Axioms Agents don t have complete knowledge about the world. Agents need to make decisions

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Introduction. Basic Probability and Bayes Volkan Cevher, Matthias Seeger Ecole Polytechnique Fédérale de Lausanne 26/9/2011 (EPFL) Graphical Models 26/9/2011 1 / 28 Outline

More information

Reasoning Under Uncertainty: Introduction to Probability

Reasoning Under Uncertainty: Introduction to Probability Reasoning Under Uncertainty: Introduction to Probability CPSC 322 Uncertainty 1 Textbook 6.1 Reasoning Under Uncertainty: Introduction to Probability CPSC 322 Uncertainty 1, Slide 1 Lecture Overview 1

More information

Modeling and reasoning with uncertainty

Modeling and reasoning with uncertainty CS 2710 Foundations of AI Lecture 18 Modeling and reasoning with uncertainty Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square KB systems. Medical example. We want to build a KB system for the diagnosis

More information

Bayesian Models in Machine Learning

Bayesian Models in Machine Learning Bayesian Models in Machine Learning Lukáš Burget Escuela de Ciencias Informáticas 2017 Buenos Aires, July 24-29 2017 Frequentist vs. Bayesian Frequentist point of view: Probability is the frequency of

More information

EPISTEMOLOGY, COMPUTATION AND THE LAWS OF PHYSICS

EPISTEMOLOGY, COMPUTATION AND THE LAWS OF PHYSICS EPISTEMOLOGY, COMPUTATION AND THE LAWS OF PHYSICS David H. Wolpert NASA Ames Research Center David.H.Wolpert@nasa.gov http://ti.arc.nasa.gov/people/dhw/ Walter Read Mathematics Department, CS Fresno NASA-ARC-03-0667

More information

Ch.6 Uncertain Knowledge. Logic and Uncertainty. Representation. One problem with logical approaches: Department of Computer Science

Ch.6 Uncertain Knowledge. Logic and Uncertainty. Representation. One problem with logical approaches: Department of Computer Science Ch.6 Uncertain Knowledge Representation Hantao Zhang http://www.cs.uiowa.edu/ hzhang/c145 The University of Iowa Department of Computer Science Artificial Intelligence p.1/39 Logic and Uncertainty One

More information

Handbook of Logic and Proof Techniques for Computer Science

Handbook of Logic and Proof Techniques for Computer Science Steven G. Krantz Handbook of Logic and Proof Techniques for Computer Science With 16 Figures BIRKHAUSER SPRINGER BOSTON * NEW YORK Preface xvii 1 Notation and First-Order Logic 1 1.1 The Use of Connectives

More information

Understanding Aha! Moments

Understanding Aha! Moments Understanding Aha! Moments Hermish Mehta Department of Electrical Engineering & Computer Sciences University of California, Berkeley Berkeley, CA 94720 hermish@berkeley.edu Abstract In this paper, we explore

More information

Theory-based causal inference

Theory-based causal inference Theory-based causal inference Joshua B. Tenenbaum & Thomas L. Griffiths Department of Brain and Cognitive Sciences MIT, Cambridge, MA 039 {jbt, gruffydd}@mit.edu Abstract People routinely make sophisticated

More information

Artificial Intelligence Programming Probability

Artificial Intelligence Programming Probability Artificial Intelligence Programming Probability Chris Brooks Department of Computer Science University of San Francisco Department of Computer Science University of San Francisco p.1/?? 13-0: Uncertainty

More information

Probabilistic and Bayesian Analytics

Probabilistic and Bayesian Analytics Probabilistic and Bayesian Analytics Note to other teachers and users of these slides. Andrew would be delighted if you found this source material useful in giving your own lectures. Feel free to use these

More information

Machine Learning and Cognitive Science

Machine Learning and Cognitive Science Machine Learning and Cognitive Science Josh Tenenbaum MIT Department of Brain and Cognitive Sciences CSAIL MLSS 2009 Cambridge, UK Human learning and machine learning: a long-term relationship Unsupervised

More information

A Simple Model for Sequences of Relational State Descriptions

A Simple Model for Sequences of Relational State Descriptions A Simple Model for Sequences of Relational State Descriptions Ingo Thon, Niels Landwehr, and Luc De Raedt Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, 3001 Heverlee,

More information

Markov Networks. l Like Bayes Nets. l Graphical model that describes joint probability distribution using tables (AKA potentials)

Markov Networks. l Like Bayes Nets. l Graphical model that describes joint probability distribution using tables (AKA potentials) Markov Networks l Like Bayes Nets l Graphical model that describes joint probability distribution using tables (AKA potentials) l Nodes are random variables l Labels are outcomes over the variables Markov

More information

Probabilistic and Logistic Circuits: A New Synthesis of Logic and Machine Learning

Probabilistic and Logistic Circuits: A New Synthesis of Logic and Machine Learning Probabilistic and Logistic Circuits: A New Synthesis of Logic and Machine Learning Guy Van den Broeck KULeuven Symposium Dec 12, 2018 Outline Learning Adding knowledge to deep learning Logistic circuits

More information

Structure learning in human causal induction

Structure learning in human causal induction Structure learning in human causal induction Joshua B. Tenenbaum & Thomas L. Griffiths Department of Psychology Stanford University, Stanford, CA 94305 jbt,gruffydd @psych.stanford.edu Abstract We use

More information

Latent Dirichlet Allocation Introduction/Overview

Latent Dirichlet Allocation Introduction/Overview Latent Dirichlet Allocation Introduction/Overview David Meyer 03.10.2016 David Meyer http://www.1-4-5.net/~dmm/ml/lda_intro.pdf 03.10.2016 Agenda What is Topic Modeling? Parametric vs. Non-Parametric Models

More information

Propositions. c D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 5.1, Page 1

Propositions. c D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 5.1, Page 1 Propositions An interpretation is an assignment of values to all variables. A model is an interpretation that satisfies the constraints. Often we don t want to just find a model, but want to know what

More information

Logic and machine learning review. CS 540 Yingyu Liang

Logic and machine learning review. CS 540 Yingyu Liang Logic and machine learning review CS 540 Yingyu Liang Propositional logic Logic If the rules of the world are presented formally, then a decision maker can use logical reasoning to make rational decisions.

More information

Beyond Almost-Sure Termination

Beyond Almost-Sure Termination Beyond Almost-Sure Termination Thomas F. Icard (icard@stanford.edu) Department of Philosophy, Stanford University Abstract The aim of this paper is to argue that models in cognitive science based on probabilistic

More information

The Legacy of Hilbert, Gödel, Gentzen and Turing

The Legacy of Hilbert, Gödel, Gentzen and Turing The Legacy of Hilbert, Gödel, Gentzen and Turing Amílcar Sernadas Departamento de Matemática - Instituto Superior Técnico Security and Quantum Information Group - Instituto de Telecomunicações TULisbon

More information

Bayesian Networks. Motivation

Bayesian Networks. Motivation Bayesian Networks Computer Sciences 760 Spring 2014 http://pages.cs.wisc.edu/~dpage/cs760/ Motivation Assume we have five Boolean variables,,,, The joint probability is,,,, How many state configurations

More information

Markov Networks. l Like Bayes Nets. l Graph model that describes joint probability distribution using tables (AKA potentials)

Markov Networks. l Like Bayes Nets. l Graph model that describes joint probability distribution using tables (AKA potentials) Markov Networks l Like Bayes Nets l Graph model that describes joint probability distribution using tables (AKA potentials) l Nodes are random variables l Labels are outcomes over the variables Markov

More information

Maximum Entropy in Nilsson's Probabilistic Logic. 2. Entropy

Maximum Entropy in Nilsson's Probabilistic Logic. 2. Entropy Maximum Entropy in Nilsson's Probabilistic Logic Thomas B. Kane Department of Computer Science, Heriot-Watt University, 79, Grassmarket, Edinburgh EH1 2HJ, Scotland. Abstract Nilsson's Probabilistic Logic

More information

PROOFS IN PREDICATE LOGIC AND COMPLETENESS; WHAT DECIDABILITY MEANS HUTH AND RYAN 2.3, SUPPLEMENTARY NOTES 2

PROOFS IN PREDICATE LOGIC AND COMPLETENESS; WHAT DECIDABILITY MEANS HUTH AND RYAN 2.3, SUPPLEMENTARY NOTES 2 PROOFS IN PREDICATE LOGIC AND COMPLETENESS; WHAT DECIDABILITY MEANS HUTH AND RYAN 2.3, SUPPLEMENTARY NOTES 2 Neil D. Jones DIKU 2005 12 September, 2005 Some slides today new, some based on logic 2004 (Nils

More information

Representing and Querying Correlated Tuples in Probabilistic Databases

Representing and Querying Correlated Tuples in Probabilistic Databases Representing and Querying Correlated Tuples in Probabilistic Databases Prithviraj Sen Amol Deshpande Department of Computer Science University of Maryland, College Park. International Conference on Data

More information

Reasoning Under Uncertainty: Introduction to Probability

Reasoning Under Uncertainty: Introduction to Probability Reasoning Under Uncertainty: Introduction to Probability CPSC 322 Lecture 23 March 12, 2007 Textbook 9 Reasoning Under Uncertainty: Introduction to Probability CPSC 322 Lecture 23, Slide 1 Lecture Overview

More information

CSE 473: Artificial Intelligence Autumn 2011

CSE 473: Artificial Intelligence Autumn 2011 CSE 473: Artificial Intelligence Autumn 2011 Bayesian Networks Luke Zettlemoyer Many slides over the course adapted from either Dan Klein, Stuart Russell or Andrew Moore 1 Outline Probabilistic models

More information

Probing the Compositionality of Intuitive Functions

Probing the Compositionality of Intuitive Functions Probing the Compositionality of Intuitive Functions Eric Schulz University College London e.schulz@cs.ucl.ac.uk Joshua B. Tenenbaum MIT jbt@mit.edu David Duvenaud University of Toronto duvenaud@cs.toronto.edu

More information

Density Propagation for Continuous Temporal Chains Generative and Discriminative Models

Density Propagation for Continuous Temporal Chains Generative and Discriminative Models $ Technical Report, University of Toronto, CSRG-501, October 2004 Density Propagation for Continuous Temporal Chains Generative and Discriminative Models Cristian Sminchisescu and Allan Jepson Department

More information

CS 275 Automata and Formal Language Theory

CS 275 Automata and Formal Language Theory CS 275 Automata and Formal Language Theory Course Notes Part III: Limits of Computation Chapter III.1: Introduction Anton Setzer http://www.cs.swan.ac.uk/ csetzer/lectures/ automataformallanguage/current/index.html

More information

Approximating Bayesian inference with a sparse distributed memory system

Approximating Bayesian inference with a sparse distributed memory system Approximating Bayesian inference with a sparse distributed memory system Joshua T. Abbott (joshua.abbott@berkeley.edu) Jessica B. Hamrick (jhamrick@berkeley.edu) Thomas L. Griffiths (tom griffiths@berkeley.edu)

More information

Bayesian networks. Soleymani. CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2018

Bayesian networks. Soleymani. CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2018 Bayesian networks CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2018 Soleymani Slides have been adopted from Klein and Abdeel, CS188, UC Berkeley. Outline Probability

More information

Abstract. Three Methods and Their Limitations. N-1 Experiments Suffice to Determine the Causal Relations Among N Variables

Abstract. Three Methods and Their Limitations. N-1 Experiments Suffice to Determine the Causal Relations Among N Variables N-1 Experiments Suffice to Determine the Causal Relations Among N Variables Frederick Eberhardt Clark Glymour 1 Richard Scheines Carnegie Mellon University Abstract By combining experimental interventions

More information

Probability Theory Review

Probability Theory Review Probability Theory Review Brendan O Connor 10-601 Recitation Sept 11 & 12, 2012 1 Mathematical Tools for Machine Learning Probability Theory Linear Algebra Calculus Wikipedia is great reference 2 Probability

More information

I N F S Y S R E S E A R C H R E P O R T

I N F S Y S R E S E A R C H R E P O R T I N F S Y S R E S E A R C H R E P O R T INSTITUT FÜR INFORMATIONSSYSTEME ABTEILUNG WISSENSBASIERTE SYSTEME STRUCTURE-BASED CAUSES AND EXPLANATIONS IN THE INDEPENDENT CHOICE LOGIC Alberto Finzi and Thomas

More information

Computational Cognitive Science

Computational Cognitive Science Computational Cognitive Science Lecture 9: A Bayesian model of concept learning Chris Lucas School of Informatics University of Edinburgh October 16, 218 Reading Rules and Similarity in Concept Learning

More information

A Stochastic l-calculus

A Stochastic l-calculus A Stochastic l-calculus Content Areas: probabilistic reasoning, knowledge representation, causality Tracking Number: 775 Abstract There is an increasing interest within the research community in the design

More information

Is there an Elegant Universal Theory of Prediction?

Is there an Elegant Universal Theory of Prediction? Is there an Elegant Universal Theory of Prediction? Shane Legg Dalle Molle Institute for Artificial Intelligence Manno-Lugano Switzerland 17th International Conference on Algorithmic Learning Theory Is

More information

1 [15 points] Search Strategies

1 [15 points] Search Strategies Probabilistic Foundations of Artificial Intelligence Final Exam Date: 29 January 2013 Time limit: 120 minutes Number of pages: 12 You can use the back of the pages if you run out of space. strictly forbidden.

More information

Lecture : Probabilistic Machine Learning

Lecture : Probabilistic Machine Learning Lecture : Probabilistic Machine Learning Riashat Islam Reasoning and Learning Lab McGill University September 11, 2018 ML : Many Methods with Many Links Modelling Views of Machine Learning Machine Learning

More information

COMP9414: Artificial Intelligence Reasoning Under Uncertainty

COMP9414: Artificial Intelligence Reasoning Under Uncertainty COMP9414, Monday 16 April, 2012 Reasoning Under Uncertainty 2 COMP9414: Artificial Intelligence Reasoning Under Uncertainty Overview Problems with Logical Approach What Do the Numbers Mean? Wayne Wobcke

More information

Combining causal and similarity-based reasoning

Combining causal and similarity-based reasoning Combining causal and similarity-based reasoning Charles Kemp, Patrick Shafto, Allison Berke & Joshua B. Tenenbaum Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 239 {ckemp,shafto,berke,jbt}@mit.edu

More information

MODULE -4 BAYEIAN LEARNING

MODULE -4 BAYEIAN LEARNING MODULE -4 BAYEIAN LEARNING CONTENT Introduction Bayes theorem Bayes theorem and concept learning Maximum likelihood and Least Squared Error Hypothesis Maximum likelihood Hypotheses for predicting probabilities

More information

Machine Learning. CS Spring 2015 a Bayesian Learning (I) Uncertainty

Machine Learning. CS Spring 2015 a Bayesian Learning (I) Uncertainty Machine Learning CS6375 --- Spring 2015 a Bayesian Learning (I) 1 Uncertainty Most real-world problems deal with uncertain information Diagnosis: Likely disease given observed symptoms Equipment repair:

More information

The Noisy-Logical Distribution and its Application to Causal Inference

The Noisy-Logical Distribution and its Application to Causal Inference The Noisy-Logical Distribution and its Application to Causal Inference Alan Yuille Department of Statistics University of California at Los Angeles Los Angeles, CA 90095 yuille@stat.ucla.edu Hongjing Lu

More information

Trustworthy, Useful Languages for. Probabilistic Modeling and Inference

Trustworthy, Useful Languages for. Probabilistic Modeling and Inference Trustworthy, Useful Languages for Probabilistic Modeling and Inference Neil Toronto Dissertation Defense Brigham Young University 2014/06/11 Master s Research: Super-Resolution Toronto et al. Super-Resolution

More information

Bayesian Learning (II)

Bayesian Learning (II) Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayesian Learning (II) Niels Landwehr Overview Probabilities, expected values, variance Basic concepts of Bayesian learning MAP

More information

Expectation Propagation Algorithm

Expectation Propagation Algorithm Expectation Propagation Algorithm 1 Shuang Wang School of Electrical and Computer Engineering University of Oklahoma, Tulsa, OK, 74135 Email: {shuangwang}@ou.edu This note contains three parts. First,

More information

COMP90051 Statistical Machine Learning

COMP90051 Statistical Machine Learning COMP90051 Statistical Machine Learning Semester 2, 2017 Lecturer: Trevor Cohn 2. Statistical Schools Adapted from slides by Ben Rubinstein Statistical Schools of Thought Remainder of lecture is to provide

More information

CS 275 Automata and Formal Language Theory

CS 275 Automata and Formal Language Theory CS 275 Automata and Formal Language Theory Course Notes Part III: Limits of Computation Chapt. III.1: Introduction Anton Setzer http://www.cs.swan.ac.uk/ csetzer/lectures/ automataformallanguage/current/index.html

More information

Bayesian Networks. Semantics of Bayes Nets. Example (Binary valued Variables) CSC384: Intro to Artificial Intelligence Reasoning under Uncertainty-III

Bayesian Networks. Semantics of Bayes Nets. Example (Binary valued Variables) CSC384: Intro to Artificial Intelligence Reasoning under Uncertainty-III CSC384: Intro to Artificial Intelligence Reasoning under Uncertainty-III Bayesian Networks Announcements: Drop deadline is this Sunday Nov 5 th. All lecture notes needed for T3 posted (L13,,L17). T3 sample

More information

Average-case analysis of a search algorithm for estimating prior and posterior probabilities in Bayesian networks with extreme probabilities

Average-case analysis of a search algorithm for estimating prior and posterior probabilities in Bayesian networks with extreme probabilities Average-case analysis of a search algorithm for estimating prior and posterior probabilities in Bayesian networks with extreme probabilities David Poole* Department of Computer Science, University of British

More information

Propositional logic. First order logic. Alexander Clark. Autumn 2014

Propositional logic. First order logic. Alexander Clark. Autumn 2014 Propositional logic First order logic Alexander Clark Autumn 2014 Formal Logic Logical arguments are valid because of their form. Formal languages are devised to express exactly that relevant form and

More information

A Probabilistic Forest-to-String Model for Language Generation from Typed Lambda Calculus Expressions

A Probabilistic Forest-to-String Model for Language Generation from Typed Lambda Calculus Expressions A Probabilistic Forest-to-String Model for Language Generation from Typed Lambda Calculus Expressions Wei Lu and Hwee Tou Ng National University of Singapore 1/26 The Task (Logical Form) λx 0.state(x 0

More information

An AI-ish view of Probability, Conditional Probability & Bayes Theorem

An AI-ish view of Probability, Conditional Probability & Bayes Theorem An AI-ish view of Probability, Conditional Probability & Bayes Theorem Review: Uncertainty and Truth Values: a mismatch Let action A t = leave for airport t minutes before flight. Will A 15 get me there

More information

10/18/2017. An AI-ish view of Probability, Conditional Probability & Bayes Theorem. Making decisions under uncertainty.

10/18/2017. An AI-ish view of Probability, Conditional Probability & Bayes Theorem. Making decisions under uncertainty. An AI-ish view of Probability, Conditional Probability & Bayes Theorem Review: Uncertainty and Truth Values: a mismatch Let action A t = leave for airport t minutes before flight. Will A 15 get me there

More information

Automatic Sampler Discovery via Probabilistic Programming and Approximate Bayesian Computation

Automatic Sampler Discovery via Probabilistic Programming and Approximate Bayesian Computation Automatic Sampler Discovery via Probabilistic Programming and Approximate Bayesian Computation Yura Perov and Frank Wood Department of Engineering Science, University of Oxford, United Kingdom, {perov,fwood}@robots.ox.ac.uk

More information

Propositional Logic Language

Propositional Logic Language Propositional Logic Language A logic consists of: an alphabet A, a language L, i.e., a set of formulas, and a binary relation = between a set of formulas and a formula. An alphabet A consists of a finite

More information

Computational Complexity of Bayesian Networks

Computational Complexity of Bayesian Networks Computational Complexity of Bayesian Networks UAI, 2015 Complexity theory Many computations on Bayesian networks are NP-hard Meaning (no more, no less) that we cannot hope for poly time algorithms that

More information

Logic and Probability Lecture 3: Beyond Boolean Logic

Logic and Probability Lecture 3: Beyond Boolean Logic Logic and Probability Lecture 3: Beyond Boolean Logic Wesley Holliday & Thomas Icard UC Berkeley & Stanford August 13, 2014 ESSLLI, Tübingen Wesley Holliday & Thomas Icard: Logic and Probability, Lecture

More information

The computational power of dynamic bayesian networks

The computational power of dynamic bayesian networks The computational power of dynamic bayesian networks Joshua Brulé Department of Computer Science University of Maryland, College Park jbrule@cs.umd.edu Abstract. This paper considers the computational

More information

ECE521 week 3: 23/26 January 2017

ECE521 week 3: 23/26 January 2017 ECE521 week 3: 23/26 January 2017 Outline Probabilistic interpretation of linear regression - Maximum likelihood estimation (MLE) - Maximum a posteriori (MAP) estimation Bias-variance trade-off Linear

More information

10/15/2015 A FAST REVIEW OF DISCRETE PROBABILITY (PART 2) Probability, Conditional Probability & Bayes Rule. Discrete random variables

10/15/2015 A FAST REVIEW OF DISCRETE PROBABILITY (PART 2) Probability, Conditional Probability & Bayes Rule. Discrete random variables Probability, Conditional Probability & Bayes Rule A FAST REVIEW OF DISCRETE PROBABILITY (PART 2) 2 Discrete random variables A random variable can take on one of a set of different values, each with an

More information

Machine Learning. Bayes Basics. Marc Toussaint U Stuttgart. Bayes, probabilities, Bayes theorem & examples

Machine Learning. Bayes Basics. Marc Toussaint U Stuttgart. Bayes, probabilities, Bayes theorem & examples Machine Learning Bayes Basics Bayes, probabilities, Bayes theorem & examples Marc Toussaint U Stuttgart So far: Basic regression & classification methods: Features + Loss + Regularization & CV All kinds

More information

Reasoning with Uncertainty

Reasoning with Uncertainty Reasoning with Uncertainty Representing Uncertainty Manfred Huber 2005 1 Reasoning with Uncertainty The goal of reasoning is usually to: Determine the state of the world Determine what actions to take

More information

First-Order Logic (FOL)

First-Order Logic (FOL) First-Order Logic (FOL) Also called Predicate Logic or Predicate Calculus 2. First-Order Logic (FOL) FOL Syntax variables x, y, z, constants a, b, c, functions f, g, h, terms variables, constants or n-ary

More information

Dynamic Semantics. Dynamic Semantics. Operational Semantics Axiomatic Semantics Denotational Semantic. Operational Semantics

Dynamic Semantics. Dynamic Semantics. Operational Semantics Axiomatic Semantics Denotational Semantic. Operational Semantics Dynamic Semantics Operational Semantics Denotational Semantic Dynamic Semantics Operational Semantics Operational Semantics Describe meaning by executing program on machine Machine can be actual or simulated

More information

CMPT Machine Learning. Bayesian Learning Lecture Scribe for Week 4 Jan 30th & Feb 4th

CMPT Machine Learning. Bayesian Learning Lecture Scribe for Week 4 Jan 30th & Feb 4th CMPT 882 - Machine Learning Bayesian Learning Lecture Scribe for Week 4 Jan 30th & Feb 4th Stephen Fagan sfagan@sfu.ca Overview: Introduction - Who was Bayes? - Bayesian Statistics Versus Classical Statistics

More information