PHIL12A Section answers, 16 February 2011

Size: px
Start display at page:

Download "PHIL12A Section answers, 16 February 2011"

Transcription

1 PHIL12A Section answers, 16 February 2011 Julian Jonker 1 How much do you know? 1. Show that the following sentences are equivalent. (a) (Ex 4.16) A B A and A B A B (A B) A A B T T T T T T T T T T T F T T F T T T T F F T F T T T F F T T F F F F F F F F F F (b) (Ex 4.18) A (B C) and (A B) (A C) A B C A (B C) (A B) (A C) T T T T T T T T T T T T T T T T T F T T T F F T T T T T T F T F T T T F F T T T F T T T T T F F T T F F F T T F T T T F T F F T T F F F T T F T T T F F T T F T T T T F T T T F T T F T F F F T F F F T T F F F F F F T F F F F T F F F F F T T F F F F F F F F F F F F F F F 1

2 2. For each of the following arguments, show that the conclusion is a tautological consequence of the premises using truth tables. (I ll use the shortcut method in each case, starting by placing a T under the main connective of each premise and an F under the main connective of the conclusion, and the working backwards until I hit a contradiction, at which point I will leave an x under the sentence to which I cannot assign a consistent truth value. (a) (Ex 4.20) 1 (A B) C 2 (B C) (A B) C B C T F T F F F T Fx T F F F F (b) (Ex 4.22) 1 A 2 B C 3 ((B A) (C A) A B C ((B A) (C A) T T F T T F T F F T T Fx T Fx F F T F F F T 2

3 (c) 1 A B 2 B C 3 B 4 A C A B B C B A C T T T F T F F T T F F T T F F T T T F Tx F Tx (d) The following conclusion is in fact not a tautological consequence of the premises, as the truth assignment below illustrates. 1 A B 2 C D 3 A C 4 B D A B C D A C B D F T T T T F T F T F T T F F 3. Recall the following equivalences: Associativity of : P (Q R) (P Q) R P Q R Associativity of : P (Q R) (P Q) R P Q R Commutativity of : P Q Q P Commutativity of : P Q Q P Idempotence of : P P P Idempotence of : P P P Double negation: P P 3

4 De Morgan s laws: (P Q) P Q) (P Q) P Q Using these equivalences to put the following sentences into negation normal form, using a chain of equivalences. At each step of the chain, indicate which principle you are using: (a) (Ex 4.36) ( A B) (B C) ( A B) (B C) A B B C (Associativity of ) A B C (Idempotence of ) (b) (A B) C ( ( B A) B) (A B) C ( ( B A) B) (A B) C ( B A B) (De Morgan s laws) (A B) C (B A B) (Double negation) (A B) C (A B) (Idempotency of ) (A B) C (Idempotency of ) (c) ( A B) C ( B A) A ( A B) C ( B A) A (A B) C ( B A) A (Double negation) ( A B) C ( B A) A (De Morgan s laws) ( A B) C ( A B) A (Commutativity of ) ( A B) C A (Commutativity of ) A B C A (Associativity of ) A B C (Idempotency of ) 2 Something slightly harder, if there s time. 1. Think of two sentences P and Q such that P is a logical consequence of Q, but not a tautological consequence. An example: P: x = 2, Q: x 2 = 4 4

5 2. (Ex 4.25) Is A B a tautological consequence of A B? Give an example of two different sentences A and B in the blocks language such that A B is a logical consequence of A B. A B is not a tautological consequence of A B: consider for example the row of the truth table in which A is true and B is false. However, if A is interpreted as LeftOf(a,b) and B is interpreted as RightOf(b,a), then we have that A B is a logical consequence of A B. 3. When using truth tables to determine whether one sentence is a tautological consequence of a set of sentences, you normally write out all possible truth values for each atomic sentence. Once you have more than three atomic sentences, this becomes laborious. Is there a quicker way to do it? Show how to do it with one of the examples above. See the examples above! 3 Challenge question Consider the arbitrary sentence φ consisting of parentheses, symbols, symbols, symbols and n atomic sentences. (Make up an example of such a complex sentence and draw its truth table in order to help with the questions that follow.) What are the reference rows of its truth table? How many rows in its truth table? Can a truth value be assigned to each row of the truth table of φ? How would you justify this? Consider for example φ = ( (A B) C). The truth table for this sentence has three reference columns and eight rows. Since the sentence consists of just atomic sentences, parentheses and truth-functional connectives, we can draw up a truth table and assign a truth value in each row on the basis of the truth values of the atomic sentences and the definitions of the truth-functional connectives. Now imagine that you have such a truth table. Consider the rows which make φ true. For each such row, there is a way to compose a sentence L i using the atomic sentences in φ, symbols and symbols. Can you work out how to do it? (Think about what this row of the truth table means, and how you could express this meaning using just the atomic sentences of φ, symbols and symbols.) Here is the truth table for φ: 5

6 A B C ( (A B) C) T T T T F T T T F T T T F T F T T T F F T F T T F T T F F T T F F T F T T F F F F T T T F F T T F T F T F T F F T T F F F F T F T F F F T T F F F T T F F F F F Each row of the truth table produces a truth value under the main connective of the sentence that is a function of the truth values of the atomic sentences. A truth table is just an intuitive way of illustrating this. However, we could talk about the function F ( (A B) C) as a function from all the possible combinations of truth values of the atomic sentences to the two truth values T and F. So each row represents the value that this function takes on when given the truth values under the atomic sentences as its arguments. In other words, we could represent the second row of the truth table in the following way: F ( (A B) C) (T, T, F) = T. For each arbitrary sentence we could produce a function in the same way mapping the combinations of the atomic sentences to T and F. Now consider that for each row there are a finite number of true atomic sentences upon which the truth value of the sentence depends. If the sentence is true in this row, then its truth value is equivalent to the conjunction of those atomic sentences which are true and the negations of those atomic sentences which are false. For example, F ( (A B) C) (T, T, F) = T = F A B C (T, T, F). So we let L 2 = A B C. Similarly, for each row in which φ is true, there is a sentence L i consisting of the conjunction of the atomic sentences that are true in that row and the negations of those atomic sentences which are false. If any such sentence L i is true, it is because the atomic sentences of which it consists take on the truth values that match the ith row of the truth table, and by construction φ is true in that row. So whenever any L i is true, φ is also true. Now convince yourself that φ is equivalent to the disjunction of the Ls that is, L 1 L 2...L j, where j is the number of true rows of the truth table. If you have got this far, well done. You have demonstrated why it is that every sentence we can so far, no matter how complex the sentence, can be written in negation normal form. (Actually, you have shown something more: that every sentence can be written in disjunctive normal form.) Suppose there are j true rows of the truth table of φ. Since φ is true when L 1 is true, or when L 2 is true,..., or when L j is true, it follows that φ is true when at least one of the disjuncts of L 1 L 2... L j is true. Also, since the truth table of φ exhausts the possible combinations of truth values of the atomic sentences of φ, we know that when φ is true it is true in some ith row of its truth table. But in that case L i is true, and so the disjunction L 1 L 2... L j is true. This means that φ is equivalent to L 1 L 2... L j, a sentence in disjunctive normal form. Since φ was arbitrary, we conclude that we can represent any sentence consisting of atomic sentences, parentheses and truth-functional connectives in disjunctive normal form. 6

PHIL12A Section answers, 28 Feb 2011

PHIL12A Section answers, 28 Feb 2011 PHIL12A Section answers, 28 Feb 2011 Julian Jonker 1 How much do you know? Give formal proofs for the following arguments. 1. (Ex 6.18) 1 A B 2 A B 1 A B 2 A 3 A B Elim: 2 4 B 5 B 6 Intro: 4,5 7 B Intro:

More information

CSC Discrete Math I, Spring Propositional Logic

CSC Discrete Math I, Spring Propositional Logic CSC 125 - Discrete Math I, Spring 2017 Propositional Logic Propositions A proposition is a declarative sentence that is either true or false Propositional Variables A propositional variable (p, q, r, s,...)

More information

Lecture 2. Logic Compound Statements Conditional Statements Valid & Invalid Arguments Digital Logic Circuits. Reading (Epp s textbook)

Lecture 2. Logic Compound Statements Conditional Statements Valid & Invalid Arguments Digital Logic Circuits. Reading (Epp s textbook) Lecture 2 Logic Compound Statements Conditional Statements Valid & Invalid Arguments Digital Logic Circuits Reading (Epp s textbook) 2.1-2.4 1 Logic Logic is a system based on statements. A statement (or

More information

2.2: Logical Equivalence: The Laws of Logic

2.2: Logical Equivalence: The Laws of Logic Example (2.7) For primitive statement p and q, construct a truth table for each of the following compound statements. a) p q b) p q Here we see that the corresponding truth tables for two statement p q

More information

2. The Logic of Compound Statements Summary. Aaron Tan August 2017

2. The Logic of Compound Statements Summary. Aaron Tan August 2017 2. The Logic of Compound Statements Summary Aaron Tan 21 25 August 2017 1 2. The Logic of Compound Statements 2.1 Logical Form and Logical Equivalence Statements; Compound Statements; Statement Form (Propositional

More information

Deduction by Daniel Bonevac. Chapter 3 Truth Trees

Deduction by Daniel Bonevac. Chapter 3 Truth Trees Deduction by Daniel Bonevac Chapter 3 Truth Trees Truth trees Truth trees provide an alternate decision procedure for assessing validity, logical equivalence, satisfiability and other logical properties

More information

1.3 Propositional Equivalences

1.3 Propositional Equivalences 1 1.3 Propositional Equivalences The replacement of a statement with another statement with the same truth is an important step often used in Mathematical arguments. Due to this methods that produce propositions

More information

Propositional Equivalence

Propositional Equivalence Propositional Equivalence Tautologies and contradictions A compound proposition that is always true, regardless of the truth values of the individual propositions involved, is called a tautology. Example:

More information

COMP 182 Algorithmic Thinking. Proofs. Luay Nakhleh Computer Science Rice University

COMP 182 Algorithmic Thinking. Proofs. Luay Nakhleh Computer Science Rice University COMP 182 Algorithmic Thinking Proofs Luay Nakhleh Computer Science Rice University 1 Reading Material Chapter 1, Section 3, 6, 7, 8 Propositional Equivalences The compound propositions p and q are called

More information

Propositional Logic. Jason Filippou UMCP. ason Filippou UMCP) Propositional Logic / 38

Propositional Logic. Jason Filippou UMCP. ason Filippou UMCP) Propositional Logic / 38 Propositional Logic Jason Filippou CMSC250 @ UMCP 05-31-2016 ason Filippou (CMSC250 @ UMCP) Propositional Logic 05-31-2016 1 / 38 Outline 1 Syntax 2 Semantics Truth Tables Simplifying expressions 3 Inference

More information

THE LOGIC OF COMPOUND STATEMENTS

THE LOGIC OF COMPOUND STATEMENTS CHAPTER 2 THE LOGIC OF COMPOUND STATEMENTS Copyright Cengage Learning. All rights reserved. SECTION 2.1 Logical Form and Logical Equivalence Copyright Cengage Learning. All rights reserved. Logical Form

More information

INTRODUCTION TO LOGIC. Propositional Logic. Examples of syntactic claims

INTRODUCTION TO LOGIC. Propositional Logic. Examples of syntactic claims Introduction INTRODUCTION TO LOGIC 2 Syntax and Semantics of Propositional Logic Volker Halbach In what follows I look at some formal languages that are much simpler than English and define validity of

More information

Tautologies, Contradictions, and Contingencies

Tautologies, Contradictions, and Contingencies Section 1.3 Tautologies, Contradictions, and Contingencies A tautology is a proposition which is always true. Example: p p A contradiction is a proposition which is always false. Example: p p A contingency

More information

Logic, Sets, and Proofs

Logic, Sets, and Proofs Logic, Sets, and Proofs David A. Cox and Catherine C. McGeoch Amherst College 1 Logic Logical Operators. A logical statement is a mathematical statement that can be assigned a value either true or false.

More information

Logic and Proofs. Jan COT3100: Applications of Discrete Structures Jan 2007

Logic and Proofs. Jan COT3100: Applications of Discrete Structures Jan 2007 COT3100: Propositional Equivalences 1 Logic and Proofs Jan 2007 COT3100: Propositional Equivalences 2 1 Translating from Natural Languages EXAMPLE. Translate the following sentence into a logical expression:

More information

Compound Propositions

Compound Propositions Discrete Structures Compound Propositions Producing new propositions from existing propositions. Logical Operators or Connectives 1. Not 2. And 3. Or 4. Exclusive or 5. Implication 6. Biconditional Truth

More information

Section 1.1: Logical Form and Logical Equivalence

Section 1.1: Logical Form and Logical Equivalence Section 1.1: Logical Form and Logical Equivalence An argument is a sequence of statements aimed at demonstrating the truth of an assertion. The assertion at the end of an argument is called the conclusion,

More information

What is Logic? Introduction to Logic. Simple Statements. Which one is statement?

What is Logic? Introduction to Logic. Simple Statements. Which one is statement? What is Logic? Introduction to Logic Peter Lo Logic is the study of reasoning It is specifically concerned with whether reasoning is correct Logic is also known as Propositional Calculus CS218 Peter Lo

More information

Logic and Truth Tables

Logic and Truth Tables Logic and Truth Tables What is a Truth Table? A truth table is a tool that helps you analyze statements or arguments in order to verify whether or not they are logical, or true. There are five basic operations

More information

Propositional Logic Not Enough

Propositional Logic Not Enough Section 1.4 Propositional Logic Not Enough If we have: All men are mortal. Socrates is a man. Does it follow that Socrates is mortal? Can t be represented in propositional logic. Need a language that talks

More information

Introduction to Sets and Logic (MATH 1190)

Introduction to Sets and Logic (MATH 1190) Introduction to Sets Logic () Instructor: Email: shenlili@yorku.ca Department of Mathematics Statistics York University Sept 18, 2014 Outline 1 2 Tautologies Definition A tautology is a compound proposition

More information

1.1 Language and Logic

1.1 Language and Logic c Oksana Shatalov, Fall 2017 1 1.1 Language and Logic Mathematical Statements DEFINITION 1. A proposition is any declarative sentence (i.e. it has both a subject and a verb) that is either true or false,

More information

Equivalence and Implication

Equivalence and Implication Equivalence and Alice E. Fischer CSCI 1166 Discrete Mathematics for Computing February 7 8, 2018 Alice E. Fischer Laws of Logic... 1/33 1 Logical Equivalence Contradictions and Tautologies 2 3 4 Necessary

More information

Logic: Propositional Logic (Part I)

Logic: Propositional Logic (Part I) Logic: Propositional Logic (Part I) Alessandro Artale Free University of Bozen-Bolzano Faculty of Computer Science http://www.inf.unibz.it/ artale Descrete Mathematics and Logic BSc course Thanks to Prof.

More information

~ p is always false. Based on the basic truth table for disjunction, if q is true then p ~

~ p is always false. Based on the basic truth table for disjunction, if q is true then p ~ MAT 101 Solutions Exam 2 (Logic, Part I) Multiple-Choice Questions 1. D Because this sentence contains exactly ten words, it is stating that it is false. But if it is taken to be false, then it has to

More information

Chapter 4: Classical Propositional Semantics

Chapter 4: Classical Propositional Semantics Chapter 4: Classical Propositional Semantics Language : L {,,, }. Classical Semantics assumptions: TWO VALUES: there are only two logical values: truth (T) and false (F), and EXTENSIONALITY: the logical

More information

CSE 20: Discrete Mathematics

CSE 20: Discrete Mathematics Spring 2018 Summary Last time: Today: Logical connectives: not, and, or, implies Using Turth Tables to define logical connectives Logical equivalences, tautologies Some applications Proofs in propositional

More information

Mathematical Logic Part One

Mathematical Logic Part One Mathematical Logic Part One Question: How do we formalize the definitions and reasoning we use in our proofs? Where We're Going Propositional Logic (oday) Basic logical connectives. ruth tables. Logical

More information

The Logic of Compound Statements cont.

The Logic of Compound Statements cont. The Logic of Compound Statements cont. CSE 215, Computer Science 1, Fall 2011 Stony Brook University http://www.cs.stonybrook.edu/~cse215 Refresh from last time: Logical Equivalences Commutativity of :

More information

PL: Truth Trees. Handout Truth Trees: The Setup

PL: Truth Trees. Handout Truth Trees: The Setup Handout 4 PL: Truth Trees Truth tables provide a mechanical method for determining whether a proposition, set of propositions, or argument has a particular logical property. For example, we can show that

More information

Propositional Logic and Semantics

Propositional Logic and Semantics Propositional Logic and Semantics English is naturally ambiguous. For example, consider the following employee (non)recommendations and their ambiguity in the English language: I can assure you that no

More information

Section 1.2 Propositional Equivalences. A tautology is a proposition which is always true. A contradiction is a proposition which is always false.

Section 1.2 Propositional Equivalences. A tautology is a proposition which is always true. A contradiction is a proposition which is always false. Section 1.2 Propositional Equivalences A tautology is a proposition which is always true. Classic Example: P P A contradiction is a proposition which is always false. Classic Example: P P A contingency

More information

PHIL 422 Advanced Logic Inductive Proof

PHIL 422 Advanced Logic Inductive Proof PHIL 422 Advanced Logic Inductive Proof 1. Preamble: One of the most powerful tools in your meta-logical toolkit will be proof by induction. Just about every significant meta-logical result relies upon

More information

A Little Deductive Logic

A Little Deductive Logic A Little Deductive Logic In propositional or sentential deductive logic, we begin by specifying that we will use capital letters (like A, B, C, D, and so on) to stand in for sentences, and we assume that

More information

Announcements CompSci 102 Discrete Math for Computer Science

Announcements CompSci 102 Discrete Math for Computer Science Announcements CompSci 102 Discrete Math for Computer Science Read for next time Chap. 1.4-1.6 Recitation 1 is tomorrow Homework will be posted by Friday January 19, 2012 Today more logic Prof. Rodger Most

More information

Description Logics. Foundations of Propositional Logic. franconi. Enrico Franconi

Description Logics. Foundations of Propositional Logic.   franconi. Enrico Franconi (1/27) Description Logics Foundations of Propositional Logic Enrico Franconi franconi@cs.man.ac.uk http://www.cs.man.ac.uk/ franconi Department of Computer Science, University of Manchester (2/27) Knowledge

More information

Chapter Summary. Propositional Logic. Predicate Logic. Proofs. The Language of Propositions (1.1) Applications (1.2) Logical Equivalences (1.

Chapter Summary. Propositional Logic. Predicate Logic. Proofs. The Language of Propositions (1.1) Applications (1.2) Logical Equivalences (1. Chapter 1 Chapter Summary Propositional Logic The Language of Propositions (1.1) Applications (1.2) Logical Equivalences (1.3) Predicate Logic The Language of Quantifiers (1.4) Logical Equivalences (1.4)

More information

Numbers that are divisible by 2 are even. The above statement could also be written in other logically equivalent ways, such as:

Numbers that are divisible by 2 are even. The above statement could also be written in other logically equivalent ways, such as: 3.4 THE CONDITIONAL & BICONDITIONAL Definition. Any statement that can be put in the form If p, then q, where p and q are basic statements, is called a conditional statement and is written symbolically

More information

A Little Deductive Logic

A Little Deductive Logic A Little Deductive Logic In propositional or sentential deductive logic, we begin by specifying that we will use capital letters (like A, B, C, D, and so on) to stand in for sentences, and we assume that

More information

Truth-Functional Logic

Truth-Functional Logic Truth-Functional Logic Syntax Every atomic sentence (A, B, C, ) is a sentence and are sentences With ϕ a sentence, the negation ϕ is a sentence With ϕ and ψ sentences, the conjunction ϕ ψ is a sentence

More information

Supplementary exercises in propositional logic

Supplementary exercises in propositional logic Supplementary exercises in propositional logic The purpose of these exercises is to train your ability to manipulate and analyze logical formulas. Familiarize yourself with chapter 7.3-7.5 in the course

More information

Logic and Discrete Mathematics. Section 3.5 Propositional logical equivalence Negation of propositional formulae

Logic and Discrete Mathematics. Section 3.5 Propositional logical equivalence Negation of propositional formulae Logic and Discrete Mathematics Section 3.5 Propositional logical equivalence Negation of propositional formulae Slides version: January 2015 Logical equivalence of propositional formulae Propositional

More information

A statement is a sentence that is definitely either true or false but not both.

A statement is a sentence that is definitely either true or false but not both. 5 Logic In this part of the course we consider logic. Logic is used in many places in computer science including digital circuit design, relational databases, automata theory and computability, and artificial

More information

PHIL12A Section answers, 14 February 2011

PHIL12A Section answers, 14 February 2011 PHIL12A Section answers, 14 February 2011 Julian Jonker 1 How much do you know? 1. You should understand why a truth table is constructed the way it is: why are the truth values listed in the order they

More information

Example. Logic. Logical Statements. Outline of logic topics. Logical Connectives. Logical Connectives

Example. Logic. Logical Statements. Outline of logic topics. Logical Connectives. Logical Connectives Logic Logic is study of abstract reasoning, specifically, concerned with whether reasoning is correct. Logic focuses on relationship among statements as opposed to the content of any particular statement.

More information

Chapter 1 Elementary Logic

Chapter 1 Elementary Logic 2017-2018 Chapter 1 Elementary Logic The study of logic is the study of the principles and methods used in distinguishing valid arguments from those that are not valid. The aim of this chapter is to help

More information

What is the decimal (base 10) representation of the binary number ? Show your work and place your final answer in the box.

What is the decimal (base 10) representation of the binary number ? Show your work and place your final answer in the box. Question 1. [10 marks] Part (a) [2 marks] What is the decimal (base 10) representation of the binary number 110101? Show your work and place your final answer in the box. 2 0 + 2 2 + 2 4 + 2 5 = 1 + 4

More information

3 The Semantics of the Propositional Calculus

3 The Semantics of the Propositional Calculus 3 The Semantics of the Propositional Calculus 1. Interpretations Formulas of the propositional calculus express statement forms. In chapter two, we gave informal descriptions of the meanings of the logical

More information

Chapter 1, Section 1.1 Propositional Logic

Chapter 1, Section 1.1 Propositional Logic Discrete Structures Chapter 1, Section 1.1 Propositional Logic These class notes are based on material from our textbook, Discrete Mathematics and Its Applications, 6 th ed., by Kenneth H. Rosen, published

More information

Chapter 1, Part I: Propositional Logic. With Question/Answer Animations

Chapter 1, Part I: Propositional Logic. With Question/Answer Animations Chapter 1, Part I: Propositional Logic With Question/Answer Animations Chapter Summary Propositional Logic The Language of Propositions Applications Logical Equivalences Predicate Logic The Language of

More information

Mathematical Reasoning (Part I) 1

Mathematical Reasoning (Part I) 1 c Oksana Shatalov, Spring 2017 1 Mathematical Reasoning (art I) 1 Statements DEFINITION 1. A statement is any declarative sentence 2 that is either true or false, but not both. A statement cannot be neither

More information

Propositional Logic: Part II - Syntax & Proofs 0-0

Propositional Logic: Part II - Syntax & Proofs 0-0 Propositional Logic: Part II - Syntax & Proofs 0-0 Outline Syntax of Propositional Formulas Motivating Proofs Syntactic Entailment and Proofs Proof Rules for Natural Deduction Axioms, theories and theorems

More information

Propositional Logic. Fall () Propositional Logic Fall / 30

Propositional Logic. Fall () Propositional Logic Fall / 30 Propositional Logic Fall 2013 () Propositional Logic Fall 2013 1 / 30 1 Introduction Learning Outcomes for this Presentation 2 Definitions Statements Logical connectives Interpretations, contexts,... Logically

More information

Sample Problems for all sections of CMSC250, Midterm 1 Fall 2014

Sample Problems for all sections of CMSC250, Midterm 1 Fall 2014 Sample Problems for all sections of CMSC250, Midterm 1 Fall 2014 1. Translate each of the following English sentences into formal statements using the logical operators (,,,,, and ). You may also use mathematical

More information

2/2/2018. CS 103 Discrete Structures. Chapter 1. Propositional Logic. Chapter 1.1. Propositional Logic

2/2/2018. CS 103 Discrete Structures. Chapter 1. Propositional Logic. Chapter 1.1. Propositional Logic CS 103 Discrete Structures Chapter 1 Propositional Logic Chapter 1.1 Propositional Logic 1 1.1 Propositional Logic Definition: A proposition :is a declarative sentence (that is, a sentence that declares

More information

Discrete Structures of Computer Science Propositional Logic III Rules of Inference

Discrete Structures of Computer Science Propositional Logic III Rules of Inference Discrete Structures of Computer Science Propositional Logic III Rules of Inference Gazihan Alankuş (Based on original slides by Brahim Hnich) July 30, 2012 1 Previous Lecture 2 Summary of Laws of Logic

More information

Propositional Logic Basics Propositional Equivalences Normal forms Boolean functions and digital circuits. Propositional Logic.

Propositional Logic Basics Propositional Equivalences Normal forms Boolean functions and digital circuits. Propositional Logic. Propositional Logic Winter 2012 Propositional Logic: Section 1.1 Proposition A proposition is a declarative sentence that is either true or false. Which ones of the following sentences are propositions?

More information

Propositional Calculus: Formula Simplification, Essential Laws, Normal Forms

Propositional Calculus: Formula Simplification, Essential Laws, Normal Forms P Formula Simplification, Essential Laws, Normal Forms Lila Kari University of Waterloo P Formula Simplification, Essential Laws, Normal CS245, Forms Logic and Computation 1 / 26 Propositional calculus

More information

Logic and Truth Tables

Logic and Truth Tables Logic and ruth ables What is a ruth able? A truth table is a tool that helps you analyze statements or arguments in order to verify whether or not they are logical, or true. here are five basic operations

More information

PROPOSITIONAL CALCULUS

PROPOSITIONAL CALCULUS PROPOSITIONAL CALCULUS A proposition is a complete declarative sentence that is either TRUE (truth value T or 1) or FALSE (truth value F or 0), but not both. These are not propositions! Connectives and

More information

Proofs. Joe Patten August 10, 2018

Proofs. Joe Patten August 10, 2018 Proofs Joe Patten August 10, 2018 1 Statements and Open Sentences 1.1 Statements A statement is a declarative sentence or assertion that is either true or false. They are often labelled with a capital

More information

CS206 Lecture 03. Propositional Logic Proofs. Plan for Lecture 03. Axioms. Normal Forms

CS206 Lecture 03. Propositional Logic Proofs. Plan for Lecture 03. Axioms. Normal Forms CS206 Lecture 03 Propositional Logic Proofs G. Sivakumar Computer Science Department IIT Bombay siva@iitb.ac.in http://www.cse.iitb.ac.in/ siva Page 1 of 12 Fri, Jan 03, 2003 Plan for Lecture 03 Axioms

More information

Chapter 1. Logic and Proof

Chapter 1. Logic and Proof Chapter 1. Logic and Proof 1.1 Remark: A little over 100 years ago, it was found that some mathematical proofs contained paradoxes, and these paradoxes could be used to prove statements that were known

More information

a. ~p : if p is T, then ~p is F, and vice versa

a. ~p : if p is T, then ~p is F, and vice versa Lecture 10: Propositional Logic II Philosophy 130 3 & 8 November 2016 O Rourke & Gibson I. Administrative A. Group papers back to you on November 3. B. Questions? II. The Meaning of the Conditional III.

More information

Solutions to Homework I (1.1)

Solutions to Homework I (1.1) Solutions to Homework I (1.1) Problem 1 Determine whether each of these compound propositions is satisable. a) (p q) ( p q) ( p q) b) (p q) (p q) ( p q) ( p q) c) (p q) ( p q) (a) p q p q p q p q p q (p

More information

Supplementary Logic Notes CSE 321 Winter 2009

Supplementary Logic Notes CSE 321 Winter 2009 1 Propositional Logic Supplementary Logic Notes CSE 321 Winter 2009 1.1 More efficient truth table methods The method of using truth tables to prove facts about propositional formulas can be a very tedious

More information

https://vu5.sfc.keio.ac.jp/slide/

https://vu5.sfc.keio.ac.jp/slide/ 1 FUNDAMENTALS OF LOGIC NO.3 NORMAL FORMS Tatsuya Hagino hagino@sfc.keio.ac.jp lecture URL https://vu5.sfc.keio.ac.jp/slide/ 2 So Far What is Logic? mathematical logic symbolic logic Proposition A statement

More information

Propositional Logic Review

Propositional Logic Review Propositional Logic Review UC Berkeley, Philosophy 142, Spring 2016 John MacFarlane The task of describing a logical system comes in three parts: Grammar Describing what counts as a formula Semantics Defining

More information

HANDOUT AND SET THEORY. Ariyadi Wijaya

HANDOUT AND SET THEORY. Ariyadi Wijaya HANDOUT LOGIC AND SET THEORY Ariyadi Wijaya Mathematics Education Department Faculty of Mathematics and Natural Science Yogyakarta State University 2009 1 Mathematics Education Department Faculty of Mathematics

More information

1.1 Statements and Compound Statements

1.1 Statements and Compound Statements Chapter 1 Propositional Logic 1.1 Statements and Compound Statements A statement or proposition is an assertion which is either true or false, though you may not know which. That is, a statement is something

More information

Announcements. CS311H: Discrete Mathematics. Propositional Logic II. Inverse of an Implication. Converse of a Implication

Announcements. CS311H: Discrete Mathematics. Propositional Logic II. Inverse of an Implication. Converse of a Implication Announcements CS311H: Discrete Mathematics Propositional Logic II Instructor: Işıl Dillig First homework assignment out today! Due in one week, i.e., before lecture next Wed 09/13 Remember: Due before

More information

Propositional Logic. Spring Propositional Logic Spring / 32

Propositional Logic. Spring Propositional Logic Spring / 32 Propositional Logic Spring 2016 Propositional Logic Spring 2016 1 / 32 Introduction Learning Outcomes for this Presentation Learning Outcomes... At the conclusion of this session, we will Define the elements

More information

Advanced Topics in LP and FP

Advanced Topics in LP and FP Lecture 1: Prolog and Summary of this lecture 1 Introduction to Prolog 2 3 Truth value evaluation 4 Prolog Logic programming language Introduction to Prolog Introduced in the 1970s Program = collection

More information

3/29/2017. Logic. Propositions and logical operations. Main concepts: propositions truth values propositional variables logical operations

3/29/2017. Logic. Propositions and logical operations. Main concepts: propositions truth values propositional variables logical operations Logic Propositions and logical operations Main concepts: propositions truth values propositional variables logical operations 1 Propositions and logical operations A proposition is the most basic element

More information

Conjunction: p q is true if both p, q are true, and false if at least one of p, q is false. The truth table for conjunction is as follows.

Conjunction: p q is true if both p, q are true, and false if at least one of p, q is false. The truth table for conjunction is as follows. Chapter 1 Logic 1.1 Introduction and Definitions Definitions. A sentence (statement, proposition) is an utterance (that is, a string of characters) which is either true (T) or false (F). A predicate is

More information

Review. Propositional Logic. Propositions atomic and compound. Operators: negation, and, or, xor, implies, biconditional.

Review. Propositional Logic. Propositions atomic and compound. Operators: negation, and, or, xor, implies, biconditional. Review Propositional Logic Propositions atomic and compound Operators: negation, and, or, xor, implies, biconditional Truth tables A closer look at implies Translating from/ to English Converse, inverse,

More information

CSCE 222 Discrete Structures for Computing. Propositional Logic. Dr. Hyunyoung Lee. !!!!!! Based on slides by Andreas Klappenecker

CSCE 222 Discrete Structures for Computing. Propositional Logic. Dr. Hyunyoung Lee. !!!!!! Based on slides by Andreas Klappenecker CSCE 222 Discrete Structures for Computing Propositional Logic Dr. Hyunyoung Lee Based on slides by Andreas Klappenecker 1 Propositions A proposition is a declarative sentence that is either true or false

More information

Logic as a Tool Chapter 1: Understanding Propositional Logic 1.1 Propositions and logical connectives. Truth tables and tautologies

Logic as a Tool Chapter 1: Understanding Propositional Logic 1.1 Propositions and logical connectives. Truth tables and tautologies Logic as a Tool Chapter 1: Understanding Propositional Logic 1.1 Propositions and logical connectives. Truth tables and tautologies Valentin Stockholm University September 2016 Propositions Proposition:

More information

EECS 1028 M: Discrete Mathematics for Engineers

EECS 1028 M: Discrete Mathematics for Engineers EECS 1028 M: Discrete Mathematics for Engineers Suprakash Datta Office: LAS 3043 Course page: http://www.eecs.yorku.ca/course/1028 Also on Moodle S. Datta (York Univ.) EECS 1028 W 18 1 / 26 Why Study Logic?

More information

Logic Overview, I. and T T T T F F F T F F F F

Logic Overview, I. and T T T T F F F T F F F F Logic Overview, I DEFINITIONS A statement (proposition) is a declarative sentence that can be assigned a truth value T or F, but not both. Statements are denoted by letters p, q, r, s,... The 5 basic logical

More information

Mathematical Logic Part One

Mathematical Logic Part One Mathematical Logic Part One Question: How do we formalize the defnitions and reasoning we use in our proofs? Where We're Going Propositional Logic (Today) Basic logical connectives. Truth tables. Logical

More information

1 Propositional Logic

1 Propositional Logic 1 Propositional Logic Required reading: Foundations of Computation. Sections 1.1 and 1.2. 1. Introduction to Logic a. Logical consequences. If you know all humans are mortal, and you know that you are

More information

Functions. Lecture 4: Truth functions, evaluating compound statements. Arithmetic Functions. x y x+y

Functions. Lecture 4: Truth functions, evaluating compound statements. Arithmetic Functions. x y x+y Lecture 4: ruth functions, evaluating compound statements 1. unctions, arithmetic functions, and truth functions 2. Definitions of truth functions unctions A function is something that takes inputs and

More information

Knowledge base (KB) = set of sentences in a formal language Declarative approach to building an agent (or other system):

Knowledge base (KB) = set of sentences in a formal language Declarative approach to building an agent (or other system): Logic Knowledge-based agents Inference engine Knowledge base Domain-independent algorithms Domain-specific content Knowledge base (KB) = set of sentences in a formal language Declarative approach to building

More information

Logic and Propositional Calculus

Logic and Propositional Calculus CHAPTER 4 Logic and Propositional Calculus 4.1 INTRODUCTION Many algorithms and proofs use logical expressions such as: IF p THEN q or If p 1 AND p 2, THEN q 1 OR q 2 Therefore it is necessary to know

More information

7 LOGICAL AGENTS. OHJ-2556 Artificial Intelligence, Spring OHJ-2556 Artificial Intelligence, Spring

7 LOGICAL AGENTS. OHJ-2556 Artificial Intelligence, Spring OHJ-2556 Artificial Intelligence, Spring 109 7 LOGICAL AGENS We now turn to knowledge-based agents that have a knowledge base KB at their disposal With the help of the KB the agent aims at maintaining knowledge of its partially-observable environment

More information

1.1 Language and Logic

1.1 Language and Logic c Oksana Shatalov, Spring 2018 1 1.1 Language and Logic Mathematical Statements DEFINITION 1. A proposition is any declarative sentence (i.e. it has both a subject and a verb) that is either true or false,

More information

Definition 2. Conjunction of p and q

Definition 2. Conjunction of p and q Proposition Propositional Logic CPSC 2070 Discrete Structures Rosen (6 th Ed.) 1.1, 1.2 A proposition is a statement that is either true or false, but not both. Clemson will defeat Georgia in football

More information

Chapter 1: Formal Logic

Chapter 1: Formal Logic Chapter 1: Formal Logic Dr. Fang (Daisy) Tang ftang@cpp.edu www.cpp.edu/~ftang/ CS 130 Discrete Structures Logic: The Foundation of Reasoning Definition: the foundation for the organized, careful method

More information

Examples. Example (1) Example (2) Let x, y be two variables, and denote statements p : x = 0 and q : y = 1. Solve. x 2 + (y 1) 2 = 0.

Examples. Example (1) Example (2) Let x, y be two variables, and denote statements p : x = 0 and q : y = 1. Solve. x 2 + (y 1) 2 = 0. Examples Let x, y be two variables, and denote statements p : x = 0 and q : y = 1. Example (1) Solve x 2 + (y 1) 2 = 0. The solution is x = 0 AND y = 1. [p q.] Example (2) Solve x(y 1) = 0. Examples Let

More information

Sec$on Summary. Tautologies, Contradictions, and Contingencies. Logical Equivalence. Normal Forms (optional, covered in exercises in text)

Sec$on Summary. Tautologies, Contradictions, and Contingencies. Logical Equivalence. Normal Forms (optional, covered in exercises in text) Section 1.3 1 Sec$on Summary Tautologies, Contradictions, and Contingencies. Logical Equivalence Important Logical Equivalences Showing Logical Equivalence Normal Forms (optional, covered in exercises

More information

Foundations of Mathematics

Foundations of Mathematics Foundations of Mathematics L. Pedro Poitevin 1. Preliminaries 1.1. Sets We will naively think of a set as a collection of mathematical objects, called its elements or members. To indicate that an object

More information

MATHEMATICAL REASONING

MATHEMATICAL REASONING J-Mathematics MATHMATICAL RASONING 1. STATMNT : A sentence which is either true or false but cannot be both are called a statement. A sentence which is an exclamatory or a wish or an imperative or an interrogative

More information

Announcements. CS243: Discrete Structures. Propositional Logic II. Review. Operator Precedence. Operator Precedence, cont. Operator Precedence Example

Announcements. CS243: Discrete Structures. Propositional Logic II. Review. Operator Precedence. Operator Precedence, cont. Operator Precedence Example Announcements CS243: Discrete Structures Propositional Logic II Işıl Dillig First homework assignment out today! Due in one week, i.e., before lecture next Tuesday 09/11 Weilin s Tuesday office hours are

More information

Theorem. For every positive integer n, the sum of the positive integers from 1 to n is n(n+1)

Theorem. For every positive integer n, the sum of the positive integers from 1 to n is n(n+1) Week 1: Logic Lecture 1, 8/1 (Sections 1.1 and 1.3) Examples of theorems and proofs Theorem (Pythagoras). Let ABC be a right triangle, with legs of lengths a and b, and hypotenuse of length c. Then a +

More information

Propositional Logic: Equivalence

Propositional Logic: Equivalence Propositional Logic: Equivalence Alice Gao Lecture 5 Based on work by J. Buss, L. Kari, A. Lubiw, B. Bonakdarpour, D. Maftuleac, C. Roberts, R. Trefler, and P. Van Beek 1/42 Outline Propositional Logic:

More information

Section 1.2: Propositional Logic

Section 1.2: Propositional Logic Section 1.2: Propositional Logic January 17, 2017 Abstract Now we re going to use the tools of formal logic to reach logical conclusions ( prove theorems ) based on wffs formed by some given statements.

More information

We last time we began introducing equivalency laws.

We last time we began introducing equivalency laws. Monday, January 14 MAD2104 Discrete Math 1 Course website: www/mathfsuedu/~wooland/mad2104 Today we will continue in Course Notes Chapter 22 We last time we began introducing equivalency laws Today we

More information

HW1 graded review form? HW2 released CSE 20 DISCRETE MATH. Fall

HW1 graded review form? HW2 released CSE 20 DISCRETE MATH. Fall CSE 20 HW1 graded review form? HW2 released DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Today's learning goals Translate sentences from English to propositional logic using appropriate

More information

Learning Goals of CS245 Logic and Computation

Learning Goals of CS245 Logic and Computation Learning Goals of CS245 Logic and Computation Alice Gao April 27, 2018 Contents 1 Propositional Logic 2 2 Predicate Logic 4 3 Program Verification 6 4 Undecidability 7 1 1 Propositional Logic Introduction

More information