Modal Analysis. Werner Rücker. 6.1 Scope of Modal Analysis. 6.2 Excitation of Structures and Systems for Modal Analysis

Size: px
Start display at page:

Download "Modal Analysis. Werner Rücker. 6.1 Scope of Modal Analysis. 6.2 Excitation of Structures and Systems for Modal Analysis"

Transcription

1 Modal Analysis Werner Rücker 6 The numerical modal analysis constitutes a methodology for the examination of the dynamic behaviour of structures, systems and buildings. The mechanical characteristics of structural systems are described by the parameters frequencies, damping values and vibration modes. The knowledge of these modal parameters facilitates to interpret the vibration of a system on the basis of measurements. Furthermore, these parameters can be used to formulate requirements for retrofitting and modifying the structural system. Modal data can be used for the following tasks: Design verification, modification and optimisation Prototype development Improvement of numerical dynamic models Measures for vibration reduction Verification of the refurbishment and retrofitting success of structures Condition monitoring and damage identification. This chapter describes the principles and methods of modal analysis and presents examples showing the application variety of numerical and analytical case studies. W. Rücker (&) Bundesanstalt für Materialforschung und prüfung, Unter den Eichen 87, Berlin, Germany werner.ruecker@bam.de 6.1 Scope of Modal Analysis Dynamically loaded structures have to be designed so that the excitation frequencies do not overlap with their natural frequencies. Therefore, it is of outstanding importance to understand and to visualise the modal parameters of different structural types in the design process which also helps to identify weak structural areas. The knowledge of the modal damping is important as it often determines the service life of a structure. On the basis of the results of numerical modal analysis it can be decided whether a numerical modal analysis model complies with the existing structure. A damage assessment of dynamically loaded structures may be achieved by the determination of the natural frequencies, mode shapes and modal damping. A possible necessary reduction of non-tolerable dynamic loading caused by, e.g. changing operation conditions of production facilities is often only technically practicable after the knowledge of the modal parameters. 6.2 Excitation of Structures and Systems for Modal Analysis The appropriate methodology for the excitation of structures and systems has to be chosen in such a way that the required modal parameters can be determined uniquely, precisely and H. Czichos (ed.), Handbook of Technical Diagnostics, DOI: / _6, Ó Springer-Verlag Berlin Heidelberg

2 110 W. Rücker Fig. 6.1 Comparison of result of dynamic analysis with impact and ambient excitation of a reinforced steel bridge for pedestrians comprehensively. This leads to requirements for the scale and for the frequency range as well as for the spatial location and distribution of the excitation on the structure. In general, ambient excitations such as seismic activities, wind and wave loading, traffic, operation excitations and others or excitations such as an impact hammer, drop weights and oscillator systems can be applied for the excitation of structural systems. The first step for the design of a modal analysis is to define the frequency and mode shape range of interest. Generally, these ranges are determined on the basis of a simplistic analytical model or pre-measurements. Furthermore, the degrees of freedom of interest are to be defined. In general, it is sensible to use natural (ambient) excitation sources as they have substantial benefits in terms of costs because no excitation systems are required. The disadvantage of an ambient excitation might be the fact that the excitation frequencies are not uniformly distributed in the frequency range of interest (Fig. 6.1). Further, the excitation may contain signals which have their origin in a surrounding

3 6 Modal Analysis 111 Fig. 6.2 Eccentric cable stayed 60 t cargo barge on the Vasco da Gama Bridge; release of the loading and the corresponding signal [3] production facility. Also, other effects can cause a scatter in the modal parameters, such as different wind conditions for high rise buildings[4]. The possible excitation frequency range is of importance for the application of excitation systems. For instance, the first natural frequency for high rise buildings is usually below 1 Hz. For the excitation of such a system a so-called jumping excitation is sensible. A jumping excitation is performed by a deflection of the structural system (with a force applied by a cable) followed by a sudden release. Examples of such an excitation are depicted in Figs. 6.2 and 6.3. For a frequency range of 4 to about 1,000 Hz and more, shakers on the basis of servo hydraulic and electro dynamic principles are available (Figs. 6.4 and 6.5). In principle, any force time series can be imposed with the mentioned shakers on the structural system. The advantage of a harmonic excitation is that the whole excitation energy is concentrated in one frequency which can lead to an optimal response noise ratio. Furthermore, possible nonlinear structural effects can be detected. Often, the very long time for testing is a disadvantage for this excitation type. For application of dynamic loading, a limited noise signal which can excite in a short time period a significant frequency range can also be used. The limited size of the forces of this excitation methodology can lead to several repetitions of the measurements and necessitate averaging to achieve a reasonable signal-noise ratio. With relatively little technical effort, systems and structures can be dynamically loaded using so-called impulse excitation. It can be induced by impact hammers, drop weights, cartridge ignitions or vehicle impacts as well as by starting or braking manoeuvres. The performed force-time series can be measured or used as initial forces for additional free vibration tests to determine the system s damping. Standard impact hammers can be used for excitation of medium-sized

4 112 W. Rücker Fig. 6.5 Electro dynamic vibration exciter on a footbridge, max dynamic load =±1.5 kn, 4 B f B 1000 Hz Fig. 6.3 Tegel Harbour Bridge: excitation due to cable release with a ship Fig. 6.6 Impulse hammer for excitation of civil structures, max dynamic load 22 kn, f B 750 Hz Fig. 6.4 Servo-hydraulic vibration exciter for excitation of large civil structures, max dynamic load =±5kN, f C 2.3 Hz bridges to a length of about 30 m (Fig. 6.6). They feature an integrated load cell for simultaneous measurement of the induced forces. Targeted and/ or synchronised hopping of humans (Fig. 6.7) can either induce an impulse force or, by using a pulse clock, can also induce a periodic excitation force into the structure of examination. For all the described excitation systems it is important to consider that the additional mass or interconnection to the structure will not change the dynamic properties of the systems and structures under investigation to a significant amount.

5 6 Modal Analysis 113 Fig. 6.7 Excitation by hopping: people on the grandstand of the stadium Cologne-Müngerdorf 6.3 Applications Modal Analysis of Bridges For a prestressed concrete highway bridge in Berlin (the Westend Bridge), shown in Fig. 6.8, specific procedures for automated monitoring and damage detection had to be developed and tested. In a first step, an extensive experimental modal analysis was carried out. The aim here was to use the data for validation and improvement of a numerical finite-element model in a way that the structural behaviour of the numerical model equals that of the real bridge. With the aid of such validated numerical models of real structures and utilising measured data series, possible structural damage, its location, type and quantity can be determined. For performing modal analysis a measuring grid with five measurement lines and a total of 245 measurement points was installed on the bridge deck. Another 32 measuring points were installed at the bridge columns. The used sensors were velocity transducers and accelerometers of the type Bruel and Kjaer 8306 (Fig. 6.9). For excitation, an electro dynamic shaker of EMPA, Dübendorf, Switzerland, was used (Fig. 6.4). The location of the excitation was determined by preliminary analysis in a way such that as many vibration modes as possible could be excited within the frequency range up to about 20 Hz. For determination of the structures eigenfrequencies and mode shapes the simultaneously measured excitation and vibration responses of the bridge were used to identify the transfer functions. The relevant eigenfrequencies and mode shapes were then derived from the transfer functions utilising the so-called phase separation procedure. Figure 6.10 shows some of the experimentally determined mode shapes up to a frequency of Hz. In addition, an averaged power density spectrum of a bridge measurement point is shown. The Kronprinzen-Bridge (Fig. 6.11) spans the River Spree in Berlin-Centre and has a length of 75 m. The steel-tube construction with rigid crossbeams carries an orthotropic steel deck. For determining the bridge s modal behaviour, five measurement lines in longitudinal bridge direction were installed on the deck, a total measurement grid of 145 measurement points. The behaviour of the bridge bearings were recorded on 20 measurement points. For the determination of the vibration behaviour of the bridge, vibration velocity transducers of type HS1 were used. The aim of this investigation was to use a complete set of the structure s modal data for validation of a numerical model of the structure to reality. With the improved numerical model the assumptions of the structural analysis were revised. Among others, it included the assumptions regarding the fatigue damage prognosis. Figure 6.11 shows two characteristic mode shapes of frequencies 8.42 and Hz. The upper mode shape is a superposition of bending and torsion modes, in which the bridge bearings are also involved. The lower eigenmode is a superposition of bending modes of the longitudinal and transverse beams, which induces plate vibrations into the bridge. The excitation of this vibration test was induced by an impact hammer (Fig. 6.6).

6 114 W. Rücker Fig. 6.8 Highway bridge Westend in Berlin Fig. 6.9 Sensors for dynamic analysis: vibration velocity transducers (Typ HS1) (left and right) and accelerometer (left) with fastening elements, low frequency velocity sensor (right) For comparison, an additional experimental modal analysis was carried out under ambient excitation Dynamic Examination of Machine Foundations The aim of the dynamic examination of the machine foundation shown in Fig was to adjust the parameters of a numerical model to realistic values. Therefore, numerically calculated and experimentally measured modal parameters were compared. A major task was to determine the modal damping values which result amongst others from the air damped suspension of the foundation. Mainly accelerometers were used to capture the elastic mode shapes and the rigid body modes, which are also relevant for this system. The excitation of the system was carried out by hopping and ambient excitation. Because no excitation forces can be measured for these two excitation mechanisms, so-called output-only methods [1] were used to determine the modal values. In Fig the numerical model of the foundation is shown as well as a relevant mode shape which consists of two rigid body relaxation vibrations superimposed with elastic deformations of the foundation sidewalls. In the long-term monitoring of a prototype of an offshore wind energy plant, the vibrations were measured with accelerometers. Later, these data were used for numerical modal analysis. This was also to compare the experimental modal parameters with numerical parameters

7 6 Modal Analysis 115 Fig Experimental eigenfrequencies and mode shapes (top) of the 250 m long Westend Bridge determined during the structural design of the construction. The construction and some relevant mode shapes are given in Fig The excitation of the construction resulted from wind and operation. Using the so called peak-picking method the modal data was determined from the vibration responses of the construction. An additional analysis applying the results of a numerical modal analysis was done on the basis of autoregressive models [2]. Only the comparison to the numerical results allowed the interpretation of the vibration modes inherent to the dominant frequencies. Figure 6.13 represents the first two bending mode shapes (indicated by 1 and 2B), and an operational vibration mode (indicated by 3P) resulting from the blade passage frequency. In addition, a further vibration mode of the structure (1RB) is shown which is excited by the vibrations of the rotor blades in their first natural frequency by the dynamic coupling of the two plant components. Due to the limited number of measuring points higher vibration modes cannot be observed Safety of Roof Constructions Figure 6.15 shows the result of an experimental modal analysis of a football stadium in Braga, Portugal (Fig. 6.14). The dynamic behaviour of the roof construction which covers both tribunes with a span width of 202 m and is connected with cables was examined. To the roofs, which

8 116 W. Rücker Fig Bottom side of the bridge with orthotropic deck (top). Power density spectrum (left). Experimentally determined mode shapes at natural frequencies f N = and f M = 8.42 Hz of the Kronprinzenbrücke (right) have partial length of 60 m, grids of measuring points were attached, each with 15 points. The possible vulnerability of the roof with respect to resonance behaviour was to be examined by using the results of the numerical modal analysis. This kind of stress significantly influences the fatigue strength and thus influences the life cycle. In addition to the modal analysis, a monitoring system was installed to examine the influence of environmental factors on the modal parameters. The influence of wind loads on the damping of the roof was of high interest. Ambient excitation was used for this investigation. The according vibration responses were analysed using different output-only methods [1]. In Fig the determined natural frequencies and mode shapes are presented. Due to a frequency resolution of Hz during the analysis, approximately 12 natural frequencies and mode shapes could be identified for frequencies between 0 and 1.1 Hz. Modal damping for three modes are shown as well in Fig The mean value indicates a very small modal damping. As a consequence, relatively large vibration amplitudes at the corresponding operational excitations have to be expected Stability of the Brandenburg Gate In 1998 it was planned to open the Brandenburg Gate in Berlin (Figs and 6.17) to traffic completely. By previous visual investigations a

9 6 Modal Analysis 117 Fig Machine foundation for rotors of gas turbines (bottom). Torsion mode at frequency 14.4 Hz (top) number of cracks at the Brandenburg Gate and at its surrounding gatehouses were detected. Therefore, the loads due to traffic and other excitations as well as the static and dynamic structural behaviours of the gate should be monitored continuously over a period of slightly more than a year. The planned measurements should first serve as a basis of decision-making for the proposed opening of the gate. They should also create the basis for decisions to realise appropriate and evident reorganisation measures of the Brandenburg Gate and its surrounding gatehouses. The determination of suitable measuring points should be based on the results of the investigations carried out at the construction as well as on a global vibration analysis of the Brandenburg Gate, including its annexes. As a result of the

10 118 W. Rücker Fig M5000_2 Natural vibration modes (red) and operational vibration modes (blue, green) of the wind energy plant Fig Football stadium in Braga, Portugal [3] analysis the other measuring points should be determined at which the structural behaviour will be observed over a long period. At the same time the behaviour of the cracks should also be determined depending on various impacts. Due to traffic actions the dynamic loads cause deformations of the entire structure with its corresponding stresses and strains. These stresses and strains depend on the magnitude of vibration amplitudes and on the local distributed curvatures of the vibration modes. The vibration modes will have the highest amplitudes, if the excitation frequencies of the aforementioned vibration sources coincide with the natural frequencies of the structure (resonance excitation). The results of the modal analysis carried out are as follows: The frequency range of the relevant measured vibration amplitudes is between 1.4 B f B 25 Hz. The highest amplitudes of the traffic excitation are focused in a frequency range

11 6 Modal Analysis 119 Fig Results of the experimental modal analysis for a stadium roof in Braga, Portugal: identified eigenmodes (upper), associated distribution of the determined damping (lower) [3] Fig Brandenburg Gate, built by Langhans from 1788 to 1791, a landmark of Berlin and Germany Fig A sketch of the design by architect Carl Gotthard Langhans between 7.3 B f B 12 Hz. The highest vertical vibration amplitudes occur from the traffic excitation, while the horizontal motions are mainly the result of the natural vibration behaviour. The relevant natural frequencies of the structure are in a range of 1.77 B f B 7.26 Hz, where the first two mode shapes are depicted in Figs and 6.19.

12 120 W. Rücker f 1 = 1,77 Hz (rotation) f 2 = 2,44 Hz (rotation) f 3 = 3,17 Hz f 4 = 7,26 Hz in the direction to Reichstag in the direction to Unter den Linden in the direction to Unter den Linden in the direction to Unter den Linden The above-mentioned natural frequencies are mainly rigid body vibrations. Elastic natural vibrations (shear, torsion and bending vibrations) occur only at frequencies approximately above 7 Hz The motions of the mode shapes for the frequencies f 1 und f 2 are slightly damped (\1 %). This means that these vibration modes can be excited by relative small dynamic loads (e.g. by wind). The dominant natural frequencies of the buildings next to the gate (northern roof house and columned hall) do not coincide with the natural frequency of the gate and also not among themselves. It is not expected that the vibration modes of these frequencies are synchronous with those of the adjacent buildings, which will lead to greater stresses and strains at the transition zone. Hence, the buildings gate and gatehouses need to be departed constructively. Fig First mode shape at frequency 1.77 Hz References Fig Second mode shape at frequency 2.44 Hz 1. Farrar, C.R., James III, G.H.: System identification from ambient vibration measurements of a bridge. J. Sound Vib. 205(1), 1 18 (1997) 2. Rücker, W., Fritzen, C.-P., et al.: IMO-WIND integral system for monitoring and assessment of offshore wind turbines. Joint Final Report on the Projects InnoNet 16INO326 and -327, University of Siegen, BAM, Jan Magalhães, F., Cunha, Á., Caetano, E.: Installation of a continuous dynamic monitoring system at Braga Stadium suspended roof: initial results from automated modal analysis. In: Proceedings EVACES 09, Wroclaw, Oct Brinker, R., Zhang, L., Andersen, P.: Modal identification from ambient responses using frequency domain decomposition. In: Proceedings of IMAC- XVIII, International Modal Analysis Conference, pp , San Antonio, Texas, USA (2000)

Damping Estimation Using Free Decays and Ambient Vibration Tests Magalhães, Filipe; Brincker, Rune; Cunha, Álvaro

Damping Estimation Using Free Decays and Ambient Vibration Tests Magalhães, Filipe; Brincker, Rune; Cunha, Álvaro Aalborg Universitet Damping Estimation Using Free Decays and Ambient Vibration Tests Magalhães, Filipe; Brincker, Rune; Cunha, Álvaro Published in: Proceedings of the 2nd International Operational Modal

More information

CONTRIBUTION TO THE IDENTIFICATION OF THE DYNAMIC BEHAVIOUR OF FLOATING HARBOUR SYSTEMS USING FREQUENCY DOMAIN DECOMPOSITION

CONTRIBUTION TO THE IDENTIFICATION OF THE DYNAMIC BEHAVIOUR OF FLOATING HARBOUR SYSTEMS USING FREQUENCY DOMAIN DECOMPOSITION CONTRIBUTION TO THE IDENTIFICATION OF THE DYNAMIC BEHAVIOUR OF FLOATING HARBOUR SYSTEMS USING FREQUENCY DOMAIN DECOMPOSITION S. Uhlenbrock, University of Rostock, Germany G. Schlottmann, University of

More information

Dynamic damage identification using linear and nonlinear testing methods on a two-span prestressed concrete bridge

Dynamic damage identification using linear and nonlinear testing methods on a two-span prestressed concrete bridge Dynamic damage identification using linear and nonlinear testing methods on a two-span prestressed concrete bridge J. Mahowald, S. Maas, F. Scherbaum, & D. Waldmann University of Luxembourg, Faculty of

More information

IOMAC' May Guimarães - Portugal IMPACT-SYNCHRONOUS MODAL ANALYSIS (ISMA) AN ATTEMPT TO FIND AN ALTERNATIVE

IOMAC' May Guimarães - Portugal IMPACT-SYNCHRONOUS MODAL ANALYSIS (ISMA) AN ATTEMPT TO FIND AN ALTERNATIVE IOMAC'13 5 th International Operational Modal Analysis Conference 2013 May 13-15 Guimarães - Portugal IMPACT-SYNCHRONOUS MODAL ANALYSIS (ISMA) AN ATTEMPT TO FIND AN ALTERNATIVE Abdul Ghaffar Abdul Rahman

More information

Feasibility of dynamic test methods in classification of damaged bridges

Feasibility of dynamic test methods in classification of damaged bridges Feasibility of dynamic test methods in classification of damaged bridges Flavio Galanti, PhD, MSc., Felieke van Duin, MSc. TNO Built Environment and Geosciences, P.O. Box 49, 26 AA, Delft, The Netherlands.

More information

Operational Modal Analysis of the Braga Sports Stadium Suspended Roof

Operational Modal Analysis of the Braga Sports Stadium Suspended Roof Operational Modal Analysis of the Braga Sports Stadium Suspended Roof Filipe Magalhães 1, Elsa Caetano 2 & Álvaro Cunha 3 1 Assistant, 2 Assistant Professor, 3 Associate Aggregate Professor Faculty of

More information

Vibrations in Mechanical Systems

Vibrations in Mechanical Systems Maurice Roseau Vibrations in Mechanical Systems Analytical Methods and Applications With 112 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Contents Chapter I. Forced Vibrations

More information

Improving the Accuracy of Dynamic Vibration Fatigue Simulation

Improving the Accuracy of Dynamic Vibration Fatigue Simulation Improving the Accuracy of Dynamic Vibration Fatigue Simulation Kurt Munson HBM Prenscia Agenda 2 1. Introduction 2. Dynamics and the frequency response function (FRF) 3. Using finite element analysis (FEA)

More information

Dynamic behavior of turbine foundation considering full interaction among facility, structure and soil

Dynamic behavior of turbine foundation considering full interaction among facility, structure and soil Dynamic behavior of turbine foundation considering full interaction among facility, structure and soil Fang Ming Scholl of Civil Engineering, Harbin Institute of Technology, China Wang Tao Institute of

More information

VIBRATION MEASUREMENT OF TSING MA BRIDGE DECK UNITS DURING ERECTION

VIBRATION MEASUREMENT OF TSING MA BRIDGE DECK UNITS DURING ERECTION VIBRATION MEASUREMENT OF TSING MA BRIDGE DECK UNITS DURING ERECTION Tommy CHAN Assistant Professor The Polytechnic University Ching Kwong LAU Deputy Director Highways Dept., Government Jan Ming KO Chair

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Consideration of medium-speed four-stroke engines in ship vibration analyses I. Asmussen, A. Muller-Schmerl GermanischerLloyd, P.O. Box 111606, 20416Hamburg, Germany Abstract Vibration problems were recently

More information

Pushover Seismic Analysis of Bridge Structures

Pushover Seismic Analysis of Bridge Structures Pushover Seismic Analysis of Bridge Structures Bernardo Frère Departamento de Engenharia Civil, Arquitectura e Georrecursos, Instituto Superior Técnico, Technical University of Lisbon, Portugal October

More information

SHAKING TABLE TEST OF STEEL FRAME STRUCTURES SUBJECTED TO NEAR-FAULT GROUND MOTIONS

SHAKING TABLE TEST OF STEEL FRAME STRUCTURES SUBJECTED TO NEAR-FAULT GROUND MOTIONS 3 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, 24 Paper No. 354 SHAKING TABLE TEST OF STEEL FRAME STRUCTURES SUBJECTED TO NEAR-FAULT GROUND MOTIONS In-Kil Choi, Young-Sun

More information

Toward a novel approach for damage identification and health monitoring of bridge structures

Toward a novel approach for damage identification and health monitoring of bridge structures Toward a novel approach for damage identification and health monitoring of bridge structures Paolo Martino Calvi 1, Paolo Venini 1 1 Department of Structural Mechanics, University of Pavia, Italy E-mail:

More information

MODAL IDENTIFICATION AND DAMAGE DETECTION ON A CONCRETE HIGHWAY BRIDGE BY FREQUENCY DOMAIN DECOMPOSITION

MODAL IDENTIFICATION AND DAMAGE DETECTION ON A CONCRETE HIGHWAY BRIDGE BY FREQUENCY DOMAIN DECOMPOSITION T1-1-a-4 SEWC2002, Yokohama, Japan MODAL IDENTIFICATION AND DAMAGE DETECTION ON A CONCRETE HIGHWAY BRIDGE BY FREQUENCY DOMAIN DECOMPOSITION Rune BRINCKER 1, Palle ANDERSEN 2, Lingmi ZHANG 3 1 Dept. of

More information

Special edition paper

Special edition paper Development of New Aseismatic Structure Using Escalators Kazunori Sasaki* Atsushi Hayashi* Hajime Yoshida** Toru Masuda* Aseismatic reinforcement work is often carried out in parallel with improvement

More information

DYNAMIC INVESTIGATIONS ON REINFORCED CONCRETE BRIDGES

DYNAMIC INVESTIGATIONS ON REINFORCED CONCRETE BRIDGES 2 nd Int. PhD Symposium in Civil Engineering 1998 Budapest DYNMIC INVESTIGTIONS ON REINFORCED CONCRETE BRIDGES Tamás Kovács 1 Technical University of Budapest, Department of Reinforced Concrete Structures

More information

Active elastomer components based on dielectric elastomers

Active elastomer components based on dielectric elastomers Gummi Fasern Kunststoffe, 68, No. 6, 2015, pp. 412 415 Active elastomer components based on dielectric elastomers W. Kaal and S. Herold Fraunhofer Institute for Structural Durability and System Reliability

More information

Damage Identification in Wind Turbine Blades

Damage Identification in Wind Turbine Blades Damage Identification in Wind Turbine Blades 2 nd Annual Blade Inspection, Damage and Repair Forum, 2014 Martin Dalgaard Ulriksen Research Assistant, Aalborg University, Denmark Presentation outline Research

More information

IOMAC' May Guimarães - Portugal RELATIONSHIP BETWEEN DAMAGE AND CHANGE IN DYNAMIC CHARACTERISTICS OF AN EXISTING BRIDGE

IOMAC' May Guimarães - Portugal RELATIONSHIP BETWEEN DAMAGE AND CHANGE IN DYNAMIC CHARACTERISTICS OF AN EXISTING BRIDGE IOMAC'13 5 th International Operational Modal Analysis Conference 2013 May 13-15 Guimarães - Portugal RELATIONSHIP BETWEEN DAMAGE AND CHANGE IN DYNAMIC CHARACTERISTICS OF AN EXISTING BRIDGE Takeshi Miyashita

More information

COUPLED USE OF FEA AND EMA FOR THE INVESTIGATION OF DYNAMIC BEHAVIOUR OF AN INJECTION PUMP

COUPLED USE OF FEA AND EMA FOR THE INVESTIGATION OF DYNAMIC BEHAVIOUR OF AN INJECTION PUMP COUPLED USE OF FEA AND EMA FOR THE INVESTIGATION OF DYNAMIC BEHAVIOUR OF AN INJECTION PUMP Yasar Deger Wolfram Lienau Peter Sandford Sulzer Markets & Sulzer Pumps Ltd Sulzer Pumps (UK) Ltd Technology Ltd

More information

SOIL-STRUCTURE INTERACTION, WAVE PASSAGE EFFECTS AND ASSYMETRY IN NONLINEAR SOIL RESPONSE

SOIL-STRUCTURE INTERACTION, WAVE PASSAGE EFFECTS AND ASSYMETRY IN NONLINEAR SOIL RESPONSE SOIL-STRUCTURE INTERACTION, WAVE PASSAGE EFFECTS AND ASSYMETRY IN NONLINEAR SOIL RESPONSE Mihailo D. Trifunac Civil Eng. Department University of Southern California, Los Angeles, CA E-mail: trifunac@usc.edu

More information

A Guide to linear dynamic analysis with Damping

A Guide to linear dynamic analysis with Damping A Guide to linear dynamic analysis with Damping This guide starts from the applications of linear dynamic response and its role in FEA simulation. Fundamental concepts and principles will be introduced

More information

VIBRATION ENERGY FLOW IN WELDED CONNECTION OF PLATES. 1. Introduction

VIBRATION ENERGY FLOW IN WELDED CONNECTION OF PLATES. 1. Introduction ARCHIVES OF ACOUSTICS 31, 4 (Supplement), 53 58 (2006) VIBRATION ENERGY FLOW IN WELDED CONNECTION OF PLATES J. CIEŚLIK, W. BOCHNIAK AGH University of Science and Technology Department of Robotics and Mechatronics

More information

INELASTIC RESPONSES OF LONG BRIDGES TO ASYNCHRONOUS SEISMIC INPUTS

INELASTIC RESPONSES OF LONG BRIDGES TO ASYNCHRONOUS SEISMIC INPUTS 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 638 INELASTIC RESPONSES OF LONG BRIDGES TO ASYNCHRONOUS SEISMIC INPUTS Jiachen WANG 1, Athol CARR 1, Nigel

More information

Influence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes

Influence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes October 2014 Influence of residual stresses in the structural behavior of Abstract tubular columns and arches Nuno Rocha Cima Gomes Instituto Superior Técnico, Universidade de Lisboa, Portugal Contact:

More information

Damage detection in a reinforced concrete slab using outlier analysis

Damage detection in a reinforced concrete slab using outlier analysis Damage detection in a reinforced concrete slab using outlier analysis More info about this article: http://www.ndt.net/?id=23283 Abstract Bilal A. Qadri 1, Dmitri Tcherniak 2, Martin D. Ulriksen 1 and

More information

Advanced stability analysis and design of a new Danube archbridge. DUNAI, László JOÓ, Attila László VIGH, László Gergely

Advanced stability analysis and design of a new Danube archbridge. DUNAI, László JOÓ, Attila László VIGH, László Gergely Advanced stability analysis and design of a new Danube archbridge DUNAI, László JOÓ, Attila László VIGH, László Gergely Subject of the lecture Buckling of steel tied arch Buckling of orthotropic steel

More information

Subspace-based damage detection on steel frame structure under changing excitation

Subspace-based damage detection on steel frame structure under changing excitation Subspace-based damage detection on steel frame structure under changing excitation M. Döhler 1,2 and F. Hille 1 1 BAM Federal Institute for Materials Research and Testing, Safety of Structures Department,

More information

Model tests and FE-modelling of dynamic soil-structure interaction

Model tests and FE-modelling of dynamic soil-structure interaction Shock and Vibration 19 (2012) 1061 1069 1061 DOI 10.3233/SAV-2012-0712 IOS Press Model tests and FE-modelling of dynamic soil-structure interaction N. Kodama a, * and K. Komiya b a Waseda Institute for

More information

MODEL-BASED ANALYSIS OF THE DYNAMIC BEHAVIOUR OF A 250 KN SHOCK FORCE CALIBRATION DEVICE

MODEL-BASED ANALYSIS OF THE DYNAMIC BEHAVIOUR OF A 250 KN SHOCK FORCE CALIBRATION DEVICE XX IMEKO World Congress Metrology for Green Growth September 9 14, 212, Busan, Republic of Korea MODEL-BASED ANALYSIS OF THE DYNAMIC BEHAVIOUR OF A 25 KN SHOCK FORCE CALIBRATION DEVICE Michael Kobusch,

More information

Investigation of traffic-induced floor vibrations in a building

Investigation of traffic-induced floor vibrations in a building Investigation of traffic-induced floor vibrations in a building Bo Li, Tuo Zou, Piotr Omenzetter Department of Civil and Environmental Engineering, The University of Auckland, Auckland, New Zealand. 2009

More information

Transactions on Modelling and Simulation vol 16, 1997 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 16, 1997 WIT Press,   ISSN X Dynamic testing of a prestressed concrete bridge and numerical verification M.M. Abdel Wahab and G. De Roeck Department of Civil Engineering, Katholieke Universiteit te Leuven, Belgium Abstract In this

More information

Dynamic and buckling analysis of FRP portal frames using a locking-free finite element

Dynamic and buckling analysis of FRP portal frames using a locking-free finite element Fourth International Conference on FRP Composites in Civil Engineering (CICE8) 22-24July 8, Zurich, Switzerland Dynamic and buckling analysis of FRP portal frames using a locking-free finite element F.

More information

Dynamics of structures

Dynamics of structures Dynamics of structures 2.Vibrations: single degree of freedom system Arnaud Deraemaeker (aderaema@ulb.ac.be) 1 Outline of the chapter *One degree of freedom systems in real life Hypothesis Examples *Response

More information

Transactions on the Built Environment vol 22, 1996 WIT Press, ISSN

Transactions on the Built Environment vol 22, 1996 WIT Press,   ISSN A shock damage potential approach to shock testing D.H. Trepess Mechanical Subject Group, School of Engineering, Coventry University, Coventry CVl 5FB, UK A shock damage (excitation capacity) approach

More information

Numerical simulation of an overhead power line section under wind excitation using wind tunnel test results and in-situ measured data

Numerical simulation of an overhead power line section under wind excitation using wind tunnel test results and in-situ measured data Proceedings of the 9th International Conference on Structural Dynamics, EURODYN 214 Porto, Portugal, 3 June - 2 July 214 A. Cunha, E. Caetano, P. Ribeiro, G. Müller (eds.) ISSN: 2311-92; ISBN: 978-972-752-165-4

More information

Grandstand Terraces. Experimental and Computational Modal Analysis. John N Karadelis

Grandstand Terraces. Experimental and Computational Modal Analysis. John N Karadelis Grandstand Terraces. Experimental and Computational Modal Analysis. John N Karadelis INTRODUCTION Structural vibrations caused by human activities are not known to be particularly damaging or catastrophic.

More information

Wind Effects on the Forth Replacement Crossing

Wind Effects on the Forth Replacement Crossing Wind Effects on the Forth Replacement Crossing M.N. Svendsen 1, M. Lollesgaard 2 and S.O. Hansen 2 1 RAMBØLL, DK. mnns@ramboll.dk 2 Svend Ole Hansen ApS, DK. Abstract The Forth Replacement Crossing is

More information

Modeling and Monitoring of Damage in Grouted Joints

Modeling and Monitoring of Damage in Grouted Joints 6th European Workshop on Structural Health Monitoring - Tu.2.D.4 More info about this article: http://www.ndt.net/?id=14100 Modeling and Monitoring of Damage in Grouted Joints Y. PETRYNA, M. LINK and A.

More information

PLEASURE VESSEL VIBRATION AND NOISE FINITE ELEMENT ANALYSIS

PLEASURE VESSEL VIBRATION AND NOISE FINITE ELEMENT ANALYSIS PLEASURE VESSEL VIBRATION AND NOISE FINITE ELEMENT ANALYSIS 1 Macchiavello, Sergio *, 2 Tonelli, Angelo 1 D Appolonia S.p.A., Italy, 2 Rina Services S.p.A., Italy KEYWORDS pleasure vessel, vibration analysis,

More information

1615. Nonlinear dynamic response analysis of a cantilever beam with a breathing crack

1615. Nonlinear dynamic response analysis of a cantilever beam with a breathing crack 65. Nonlinear dynamic response analysis of a cantilever beam with a breathing crack ShaoLin Qiu, LaiBin Zhang 2, JiaShun Hu 3, Yu Jiang 4, 2 College of Mechanical, Storage and Transportation Engineering,

More information

Structural Damage Detection Using Time Windowing Technique from Measured Acceleration during Earthquake

Structural Damage Detection Using Time Windowing Technique from Measured Acceleration during Earthquake Structural Damage Detection Using Time Windowing Technique from Measured Acceleration during Earthquake Seung Keun Park and Hae Sung Lee ABSTRACT This paper presents a system identification (SI) scheme

More information

Stability for Bridge Cable and Cable-Deck Interaction. Dr. Maria Rosaria Marsico D.J. Wagg

Stability for Bridge Cable and Cable-Deck Interaction. Dr. Maria Rosaria Marsico D.J. Wagg Stability for Bridge Cable and Cable-Deck Interaction Dr. Maria Rosaria Marsico D.J. Wagg S.A. Neild Introduction The interaction between cables and structure can lead to complex vibration response Cables

More information

Modal response identification of a highway bridge under traffic loads using frequency domain decomposition (FDD)

Modal response identification of a highway bridge under traffic loads using frequency domain decomposition (FDD) CHALLENGE JOURNAL OF STRUCTURAL MECHANICS 3 (2) (2017) 63 71 Modal response identification of a highway bridge under traffic loads using frequency domain decomposition (FDD) Mehmet Akköse a, *, Hugo C.

More information

Modal Analysis: What it is and is not Gerrit Visser

Modal Analysis: What it is and is not Gerrit Visser Modal Analysis: What it is and is not Gerrit Visser What is a Modal Analysis? What answers do we get out of it? How is it useful? What does it not tell us? In this article, we ll discuss where a modal

More information

Mitigation of Diesel Generator Vibrations in Nuclear Applications Antti Kangasperko. FSD3020xxx-x_01-00

Mitigation of Diesel Generator Vibrations in Nuclear Applications Antti Kangasperko. FSD3020xxx-x_01-00 Mitigation of Diesel Generator Vibrations in Nuclear Applications Antti Kangasperko FSD3020xxx-x_01-00 1 Content Introduction Vibration problems in EDGs Sources of excitation 2 Introduction Goal of this

More information

Assessment of the Frequency Domain Decomposition Method: Comparison of Operational and Classical Modal Analysis Results

Assessment of the Frequency Domain Decomposition Method: Comparison of Operational and Classical Modal Analysis Results Assessment of the Frequency Domain Decomposition Method: Comparison of Operational and Classical Modal Analysis Results Ales KUYUMCUOGLU Arceli A. S., Research & Development Center, Istanbul, Turey Prof.

More information

Gründungen von Offshore Windenergieanlagen: Von der Planung bis zur Lebensdauerüberwachung

Gründungen von Offshore Windenergieanlagen: Von der Planung bis zur Lebensdauerüberwachung Gründungen von Offshore Windenergieanlagen: Von der Planung bis zur Lebensdauerüberwachung Dr.-Ing. Fabian Kirsch GuD Geotechnik und Dynamik Consult GmbH, Berlin Offshoretage, 18. März 2016, TU Berlin

More information

Eliminating the Influence of Harmonic Components in Operational Modal Analysis

Eliminating the Influence of Harmonic Components in Operational Modal Analysis Eliminating the Influence of Harmonic Components in Operational Modal Analysis Niels-Jørgen Jacobsen Brüel & Kjær Sound & Vibration Measurement A/S Skodsborgvej 307, DK-2850 Nærum, Denmark Palle Andersen

More information

Estimation of Fatigue Life of Long-Span Bridge by Considering Vehicle- Bridge Coupled Vibration

Estimation of Fatigue Life of Long-Span Bridge by Considering Vehicle- Bridge Coupled Vibration Send Orders for Reprints to reprints@benthamscience.ae 944 The Open Mechanical Engineering Journal, 215, 9, 944-949 Open Access Estimation of Fatigue Life of Long-Span Bridge by Considering Vehicle- Bridge

More information

DETERMINING THE STRESS PATTERN IN THE HH RAILROAD TIES DUE TO DYNAMIC LOADS 1

DETERMINING THE STRESS PATTERN IN THE HH RAILROAD TIES DUE TO DYNAMIC LOADS 1 PERIODICA POLYTECHNICA SER. CIV. ENG. VOL. 46, NO. 1, PP. 125 148 (2002) DETERMINING THE STRESS PATTERN IN THE HH RAILROAD TIES DUE TO DYNAMIC LOADS 1 Nándor LIEGNER Department of Highway and Railway Engineering

More information

Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum

Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum STRUCTURAL DYNAMICS Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum Overview of Structural Dynamics Structure Members, joints, strength, stiffness, ductility Structure

More information

Non-Linearities in an Aero-Engine Structure: From Test to Design

Non-Linearities in an Aero-Engine Structure: From Test to Design Non-Linearities in an Aero-Engine Structure: From Test to Design S. Perinpanayagam, D. Robb, D. J. Ewins Centre for Vibration Engineering Mechanical Engineering Department Imperial College London Exhibition

More information

INVESTIGATION OF IMPACT HAMMER CALIBRATIONS

INVESTIGATION OF IMPACT HAMMER CALIBRATIONS IMEKO 23 rd TC3, 13 th TC5 and 4 th TC22 International Conference 30 May to 1 June, 2017, Helsinki, Finland INVESTIGATION OF IMPACT HAMMER CALIBRATIONS M. Kobusch 1, L. Klaus 1, and L. Muñiz Mendoza 2

More information

Experimental and Numerical Modal Analysis of a Compressor Mounting Bracket

Experimental and Numerical Modal Analysis of a Compressor Mounting Bracket IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 14, Issue 1 Ver. VI (Jan. - Feb. 2017), PP 01-07 www.iosrjournals.org Experimental and Numerical

More information

The use of transmissibility properties to estimate FRFs on modified structures

The use of transmissibility properties to estimate FRFs on modified structures Shock and Vibration 7 (00) 56 577 56 DOI 0./SAV-00-058 IOS Press The use of transmissibility properties to estimate FRFs on modified structures R.A.B. Almeida a,, A.P.V. Urgueira a and N.M.M. Maia b a

More information

Applied Modal Analysis of Wind Turbine Blades

Applied Modal Analysis of Wind Turbine Blades Risø-R-1388(EN) Applied Modal Analysis of Wind Turbine Blades Henrik Broen Pedersen, Ole Jesper Dahl Kristensen Risø National Laboratory, Roskilde, Denmark February 2003 Abstract In this project modal

More information

Damage Detection In Non-Prismatic Reinforced Concrete Beams Using Curvature Mode Shapes

Damage Detection In Non-Prismatic Reinforced Concrete Beams Using Curvature Mode Shapes SIF004 Structural Integrity and Fracture. http://eprint.uq.edu.au/archive/00000836 Damage Detection In Non-Prismatic Reinforced Concrete Beams Using Curvature Mode Shapes F Saleh 1, B Supriyadi 1, B Suhendro

More information

Hammer crusher - influences of design and execution of vibroprotection and machine properties on vibration intensity

Hammer crusher - influences of design and execution of vibroprotection and machine properties on vibration intensity Applied and Computational Mechanics 1 (2007) 149-154 Hammer crusher - influences of design and execution of vibroprotection and machine properties on vibration intensity D. Makovička a,*, J. Šmejkal b

More information

Joint input-response predictions in structural dynamics

Joint input-response predictions in structural dynamics Joint input-response predictions in structural dynamics Eliz-Mari Lourens, Geert Lombaert KU Leuven, Department of Civil Engineering, Leuven, Belgium Costas Papadimitriou University of Thessaly, Department

More information

Coupling System for Ultra Precision Machining

Coupling System for Ultra Precision Machining Journal of Mechanics Engineering and Automation 6 (2016) 301-306 doi: 10.17265/2159-5275/2016.06.006 D DAVID PUBLISHING Eike Foremny, Christian Schenck and Bernd Kuhfuss Bremen Institute for Mechanical

More information

Monitoring the Condition of a Bridge using a Traffic Speed Deflectometer Vehicle Travelling at Highway Speed

Monitoring the Condition of a Bridge using a Traffic Speed Deflectometer Vehicle Travelling at Highway Speed Monitoring the Condition of a Bridge using a Traffic Speed Deflectometer Vehicle Travelling at Highway Speed Eugene J. OBrien 1, 2, Enrique Sevillano 1, Daniel Martinez 1 1 School of Civil Engineering,

More information

Vibration Condition Monitoring of the Vertical Steel Tanks

Vibration Condition Monitoring of the Vertical Steel Tanks Vibrations in Physical Systems Vol. 27 (2016) Abstract Vibration Condition Monitoring of the Vertical Steel Tans Nadiia BOURAOU National Technical University of Uraine Kyiv Polytechnic Institute 37 Peremogy

More information

Study on Evolutionary Modal Parameters of Runyang Suspension Bridge during Typhoon Matsa

Study on Evolutionary Modal Parameters of Runyang Suspension Bridge during Typhoon Matsa Study on Evolutionary Modal Parameters of Runyang Suspension Bridge during Typhoon Matsa *Hao Wang 1), Jian-Xiao Mao 2) and Zhi-Xiang Xun 3) 1), 2), 3) Southeast University, Nanjing, China Abstract: The

More information

Vibration analysis of concrete bridges during a train pass-by using various models

Vibration analysis of concrete bridges during a train pass-by using various models Journal of Physics: Conference Series PAPER OPEN ACCESS Vibration analysis of concrete bridges during a train pass-by using various models To cite this article: Qi Li et al 2016 J. Phys.: Conf. Ser. 744

More information

The 5rd International Conference on. COMEC OCTOBER 2013, Brasov, Romania WORK SAFETY

The 5rd International Conference on. COMEC OCTOBER 2013, Brasov, Romania WORK SAFETY The 5rd International Conference on Computational Mechanics and Virtual Engineering COMEC 2013 24 25 OCTOBER 2013, Brasov, Romania THEORETICAL STUDIES AND EXPERIMENTAL DETERMINATIONS FOCUSED ON THE INCREASE

More information

EUROCODE EN SEISMIC DESIGN OF BRIDGES

EUROCODE EN SEISMIC DESIGN OF BRIDGES Brussels, 18-20 February 2008 Dissemination of information workshop 1 EUROCODE EN1998-2 SEISMIC DESIGN OF BRIDGES Basil Kolias Basic Requirements Brussels, 18-20 February 2008 Dissemination of information

More information

TIME-DOMAIN OUTPUT ONLY MODAL PARAMETER EXTRACTION AND ITS APPLICATION

TIME-DOMAIN OUTPUT ONLY MODAL PARAMETER EXTRACTION AND ITS APPLICATION IME-DOMAIN OUPU ONLY MODAL PARAMEER EXRACION AND IS APPLICAION Hong Guan, University of California, San Diego, U.S.A. Vistasp M. Karbhari*, University of California, San Diego, U.S.A. Charles S. Sikorsky,

More information

Automated Estimation of an Aircraft s Center of Gravity Using Static and Dynamic Measurements

Automated Estimation of an Aircraft s Center of Gravity Using Static and Dynamic Measurements Proceedings of the IMAC-XXVII February 9-, 009 Orlando, Florida USA 009 Society for Experimental Mechanics Inc. Automated Estimation of an Aircraft s Center of Gravity Using Static and Dynamic Measurements

More information

Movement assessment of a cable-stayed bridge tower based on integrated GPS and accelerometer observations

Movement assessment of a cable-stayed bridge tower based on integrated GPS and accelerometer observations Movement assessment of a cable-stayed bridge tower based on integrated and accelerometer observations *Mosbeh R. Kaloop 1), Mohamed A. Sayed 2) and Dookie Kim 3) 1), 2), 3) Department of Civil and Environmental

More information

Review of modal testing

Review of modal testing Review of modal testing A. Sestieri Dipartimento di Meccanica e Aeronautica University La Sapienza, Rome Presentation layout - Modelling vibration problems - Aim of modal testing - Types of modal testing:

More information

Monitoring based weak point determination of a steel bridge s torsional bracings with regard to fatigue threat

Monitoring based weak point determination of a steel bridge s torsional bracings with regard to fatigue threat Monitoring based weak point determination of a steel bridge s torsional bracings with regard to fatigue threat R. Veit-Egerer & H. Wenzel Vienna Consulting Engineers, Vienna, Austria ABSTRACT: Bridges

More information

Quantification and Management of Grid Interaction Effects on Turbo- Generator Sets

Quantification and Management of Grid Interaction Effects on Turbo- Generator Sets 18th World Conference on Nondestructive Testing, 16-20 April 2012, Durban, South Africa Quantification and Management of Grid Interaction Effects on Turbo- Generator Sets Mark NEWBY 1, Ronnie SCHEEPERS

More information

COMPARISON BETWEEN 2D AND 3D ANALYSES OF SEISMIC STABILITY OF DETACHED BLOCKS IN AN ARCH DAM

COMPARISON BETWEEN 2D AND 3D ANALYSES OF SEISMIC STABILITY OF DETACHED BLOCKS IN AN ARCH DAM COMPARISON BETWEEN 2D AND 3D ANALYSES OF SEISMIC STABILITY OF DETACHED BLOCKS IN AN ARCH DAM Sujan MALLA 1 ABSTRACT The seismic safety of the 147 m high Gigerwald arch dam in Switzerland was assessed for

More information

Ship structure dynamic analysis - effects of made assumptions on computation results

Ship structure dynamic analysis - effects of made assumptions on computation results Ship structure dynamic analysis - effects of made assumptions on computation results Lech Murawski Centrum Techniki Okrętowej S. A. (Ship Design and Research Centre) ABSTRACT The paper presents identification

More information

Structural Dynamic Behavior of a High-Speed Milling Machine

Structural Dynamic Behavior of a High-Speed Milling Machine Structural Dynamic Behavior of a High-Speed Milling Machine FEA Vs. EMA Assessment * J. Rotberg, ** B. Bork * "Technion" I.I.T ** Technische Universitat Darmstadt Faculty of Mechanical Eng. PTW Institut

More information

FIXED BEAMS IN BENDING

FIXED BEAMS IN BENDING FIXED BEAMS IN BENDING INTRODUCTION Fixed or built-in beams are commonly used in building construction because they possess high rigidity in comparison to simply supported beams. When a simply supported

More information

Modern techniques for effective wind load distributions on large roofs. John D. Holmes 1)

Modern techniques for effective wind load distributions on large roofs. John D. Holmes 1) The 2012 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM 12) Seoul, Korea, August 26-30, 2012 Keynote Paper Modern techniques for effective wind load distributions on large

More information

Compensation-based non-destructive automatic quality control using acoustic methods

Compensation-based non-destructive automatic quality control using acoustic methods Compensation-based non-destructive automatic quality control using acoustic methods Abstract Keywords Ingolf Hertlin RTE Akustik + Prüftechnik GmbH Gewerbestr. 26, D-76327 Pfinztal, Germany www.rte.de

More information

REGULATION OF THE DYNAMIC LIVE LOAD FAC- TOR FOR CALCULATION OF BRIDGE STRUCTURES ON HIGH-SPEED RAILWAY MAINLINES

REGULATION OF THE DYNAMIC LIVE LOAD FAC- TOR FOR CALCULATION OF BRIDGE STRUCTURES ON HIGH-SPEED RAILWAY MAINLINES Vol. 13, Issue 1/2017, 12-19, DOI: 10.1515/cee-2017-0002 REGULATION OF THE DYNAMIC LIVE LOAD FAC- TOR FOR CALCULATION OF BRIDGE STRUCTURES ON HIGH-SPEED RAILWAY MAINLINES Leonid K. DYACHENKO 1,*, Andrey

More information

Robustness - Offshore Wind Energy Converters

Robustness - Offshore Wind Energy Converters Robustness of Structures - February 4-5, 2008, Zurich 1-14 Robustness - Offshore Wind Energy Converters Sebastian Thöns Risk and Safety, Institute of Structural Engineering (IBK) ETH Zurich Division VII.2:

More information

A REVIEW OF LOAD MODELS FOR THE PREDICTION OF FOOTFALL-INDUCED VIBRATION IN STRUCTURES

A REVIEW OF LOAD MODELS FOR THE PREDICTION OF FOOTFALL-INDUCED VIBRATION IN STRUCTURES 11 th International Conference on Vibration Problems Z. Dimitrovová et al. (eds.) Lisbon, Portugal, 9-1 September 013 A REVIEW OF LOAD MODELS FOR THE PREDICTION OF FOOTFALL-INDUCED VIBRATION IN STRUCTURES

More information

Chapter 4 Analysis of a cantilever

Chapter 4 Analysis of a cantilever Chapter 4 Analysis of a cantilever Before a complex structure is studied performing a seismic analysis, the behaviour of simpler ones should be fully understood. To achieve this knowledge we will start

More information

Basic Principle of Strain Gauge Accelerometer. Description of Strain Gauge Accelerometer

Basic Principle of Strain Gauge Accelerometer. Description of Strain Gauge Accelerometer Basic Principle of Strain Gauge Accelerometer When a cantilever beam attached with a mass at its free end is subjected to vibration, vibrational displacement of the mass takes place. Depending on the displacement

More information

Operational modal analysis and assessment of an historic RC arch bridge

Operational modal analysis and assessment of an historic RC arch bridge Structural Studies, Repairs and Maintenance of Heritage Architecture X 525 Operational modal analysis and assessment of an historic RC arch bridge C. Gentile & N. Gallino Department of Structural Engineering,

More information

Using Operating Deflection Shapes to Detect Misalignment in Rotating Equipment

Using Operating Deflection Shapes to Detect Misalignment in Rotating Equipment Using Operating Deflection Shapes to Detect Misalignment in Rotating Equipment Surendra N. Ganeriwala (Suri) & Zhuang Li Mark H. Richardson Spectra Quest, Inc Vibrant Technology, Inc 8205 Hermitage Road

More information

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian ahmadian@iust.ac.ir Dynamic Response of MDOF Systems: Mode-Superposition Method Mode-Superposition Method:

More information

Application of a novel method to identify multi-axis joint properties

Application of a novel method to identify multi-axis joint properties Application of a novel method to identify multi-axis joint properties Scott Noll, Jason Dreyer, and Rajendra Singh The Ohio State University, 219 W. 19 th Avenue, Columbus, Ohio 4321 USA ABSTRACT This

More information

SYSTEM IDENTIFICATION & DAMAGE ASSESSMENT OF STRUCTURES USING OPTICAL TRACKER ARRAY DATA

SYSTEM IDENTIFICATION & DAMAGE ASSESSMENT OF STRUCTURES USING OPTICAL TRACKER ARRAY DATA SYSTEM IDENTIFICATION & DAMAGE ASSESSMENT OF STRUCTURES USING OPTICAL TRACKER ARRAY DATA Chin-Hsiung Loh 1,* and Chuan-Kai Chan 1 1 Department of Civil Engineering, National Taiwan University Taipei 10617,

More information

25/01/2013. Agenda. Advanced Approaches to Modeling and Assessment of Floors for Control of Human Activity. Ultra-Low Vibration Environments

25/01/2013. Agenda. Advanced Approaches to Modeling and Assessment of Floors for Control of Human Activity. Ultra-Low Vibration Environments // Advanced Approaches to Modeling and Assessment of Floors for Control of Human Activity Brad Pridham, Ph.D., P.Eng. February, Finite Element Modeling Application Example Air Quality Wind & Climate Sound,

More information

Dynamic FE analysis of a continuous steel railway bridge and comparisons with field measurements

Dynamic FE analysis of a continuous steel railway bridge and comparisons with field measurements Dynamic FE analysis of a continuous steel railway bridge and comparisons with field measurements G. Kaliyaperumal, B. Imam, T. Righiniotis & M. Chryssanthopoulos Faculty of Engineering and Physical Sciences,

More information

This equation of motion may be solved either by differential equation method or by graphical method as discussed below:

This equation of motion may be solved either by differential equation method or by graphical method as discussed below: 2.15. Frequency of Under Damped Forced Vibrations Consider a system consisting of spring, mass and damper as shown in Fig. 22. Let the system is acted upon by an external periodic (i.e. simple harmonic)

More information

THE NEW 1.1 MN m TORQUE STANDARD MACHINE OF THE PTB BRAUNSCHWEIG/GERMANY

THE NEW 1.1 MN m TORQUE STANDARD MACHINE OF THE PTB BRAUNSCHWEIG/GERMANY THE NEW 1.1 MN m TORQUE STANDARD MACHINE OF THE PTB BRAUNSCHWEIG/GERMANY D. Peschel 1, D. Mauersberger 1, D. Schwind 2, U. Kolwinski 2 1 Solid mechanics department, PTB, Germany 2 Gassmann Theiss Messtechnik

More information

L13 Structural Engineering Laboratory

L13 Structural Engineering Laboratory LABORATORY PLANNING GUIDE L13 Structural Engineering Laboratory Content Covered subjects according to the curriculum of Structural Engineering... 2 Main concept... 4 Initial training provided for laboratory

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS STATICS AND MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr, John T. DeWolf David E Mazurek \Cawect Mc / iur/» Craw SugomcT Hilt Introduction 1 1.1 What is Mechanics? 2 1.2 Fundamental

More information

Towards Rotordynamic Analysis with COMSOL Multiphysics

Towards Rotordynamic Analysis with COMSOL Multiphysics Towards Rotordynamic Analysis with COMSOL Multiphysics Martin Karlsson *1, and Jean-Claude Luneno 1 1 ÅF Sound & Vibration *Corresponding author: SE-169 99 Stockholm, martin.r.karlsson@afconsult.com Abstract:

More information

NUMERICAL INVESTIGATION OF CABLE PARAMETRIC VIBRATIONS

NUMERICAL INVESTIGATION OF CABLE PARAMETRIC VIBRATIONS 11 th International Conference on Vibration Problems Z. Dimitrovová et al. (eds.) Lisbon, Portugal, 9-1 September 013 NUMERICAL INVESTIGATION OF CABLE PARAMETRIC VIBRATIONS Marija Nikolić* 1, Verica Raduka

More information

NV-TECH-Design: Scalable Automatic Modal Hammer (SAM) for structural dynamics testing

NV-TECH-Design: Scalable Automatic Modal Hammer (SAM) for structural dynamics testing NV-TECH-Design: Scalable Automatic Modal Hammer (SAM) for structural dynamics testing NV-TECH-Design Scalable Automatic Modal Hammer (SAM) für structural testing. Patent number: DE 10 2015 110 597.7 Description

More information

Comparison between different operational modal analysis techniques for the identification of large civil structure modal parameters

Comparison between different operational modal analysis techniques for the identification of large civil structure modal parameters Comparison between different operational modal analysis techniques for the identification of large civil structure modal parameters Alessandro Caprioli, Alfredo Cigada, Marcello Vanali Politecnico di Milano,

More information