Mathematics 96 (3581) CA (Class Addendum) 1: Commutativity Mt. San Jacinto College Menifee Valley Campus Spring 2013

Size: px
Start display at page:

Download "Mathematics 96 (3581) CA (Class Addendum) 1: Commutativity Mt. San Jacinto College Menifee Valley Campus Spring 2013"

Transcription

1 Mathematics 96 (3581) CA (Class Addendum) 1: Commutativity Mt. San Jacinto College Menifee Valley Campus Spring 2013 Name This class handout is worth a maximum of five (5) points. It is due no later than the end of class on Monday, 4 February. Important: You should study this entire handout carefully several times before you begin the exercises it contains. You ll probably need to study example exercises carefully several times before you attempt the exercise sets that follow them. Also, the order in which the exercises occur may not necessarily be the order in which you complete them. If the solutions to a particular exercise set elude you, skip to another one. You are being given (almost) two weeks to complete this handout because you ll probably need to study it, attempt some of the exercises and then take a break, continuing with it a day or two later. The operations of addition and multiplication are commutative. That is, the order in which constants or variables are combined utilizing either operation does not change the result. For example, the constants 3 and 5 add to 8 regardless of whether the 3 is written first (3 + 5) or the 5 is written first (5 + 3). The equality of these two sums expresses the commutativity of addition: = Consider the term x and the term 3y. Because addition is commutative, the sum of these two unlike terms is the same regardless of which of the terms appears first: x + 3y = 3y + x. Since multiplication is commutative, utilizing x and 3y as factors, we have: x(3y) = (3y)x. The following three equations express the commutativity of addition: = 5 + (-2) (a + b) + c = c + (a + b) + = + The following three equations express the commutativity of multiplication: -2 (5) = 5 (-2) 1

2 (a + b) c = c (a + b) = Utilizing variables, we can express the commutativity of addition and multiplication as follows: The Commutative Property of Addition If x and y are real numbers, then x + y = y + x (1) The Commutative Property of Multiplication If x and y are real numbers, then xy = yx (2) Example 1. Express the commutativity of addition utilizing the terms 4a and 7b. Solution: We are asked to display that no matter which term is written first, the resulting sum is the same. We can complete the exercise by following the pattern displayed in formula (1). That is, starting with formula (1), we ll remove the placeholders x and y, and then insert parentheses in their locations. Next, we ll insert 4a into the parentheses in the x location and 7b into the parentheses in the y location. Then formula (1) x + y = y + x becomes (4a) + (7b) = (7b) + (4a). Note that the parentheses are redundant. First, removing them does not change the value of the expressions 4a + 7b or 7b + 4a. Therefore, the equation is true with or without the parentheses, so we ll choose the simpler form (i.e. without parentheses) for each expression. Second, removing the parentheses still leaves a clear expression of commutativity, as required by the exercise instructions. That is, one can (still) clearly see that the equation 4a + 7b = 7b + 4a is an expression of the commutativity of addition without the parentheses. One answer is: 4a + 7b = 7b + 4a. The other answer is: 7b + 4a = 4a + 7b. 2

3 Example 2. Express the commutativity of multiplication utilizing the factors 3u and 5v. Solution: We are asked to display that no matter which factor is written first, the product is the same. Since the operation is multiplication rather than addition, we will utilize formula (2), first removing the variables x and y and inserting parentheses in their place. Next, we ll insert 3u into the parentheses in the x location and 5v into the parentheses in the y location. Then formula (2) xy = yx becomes (3u)(5v) = (5v)(3u). Here, some of the parentheses are not redundant. While removing all parentheses would still yield a true equation (the expression on each side of the equal sign would still have the same value), removing all of them would mask the commutativity required by the exercise instructions. Since multiplication should still be performed left to right (as is the case in arithmetic), we can drop the first set of parentheses in each expression and still retain an expression of commutativity. One answer is: 3u(5v) = 5v(3u). The other answer is: 5v(3u) = 3u(5v). (NOTE: As the discussion in the solution to the example exercise above indicates, you must use grouping symbols (e.g. parentheses) whenever following the order of operations would combine numbers in an order different from that intended by a commutative law. For instance, in the expression 3u(5v), the v is to be multiplied first while in the expression 3u5v, the v would be multiplied last. Therefore, to simply write 3u5v = 5v3u would not be a correct answer to Example 2. While true, it would not express the commutativity of 3u multiplied to 5v, as requested.) Exercise 1. (To receive full credit (one point), you must complete at least three of the following four parts correctly). a. Express the commutativity of addition utilizing the constants -9 and 8. b. Express the commutativity of multiplication utilizing the constants -5 and 3. 3

4 c. Express the commutativity of addition utilizing the terms 2d and 7t. d. Express the commutativity of multiplication utilizing the factors 5 y and (Hint: See NOTE above!) 2 6m. There is nothing special about the letters x and y utilized in formulas (1) and (2) above. In Exercise 2 you will be asked to express the two commutative laws utilizing a variety of symbols. Here are two examples. Example 3. Express the commutativity of addition using the variables t and u. Solution: One way to interpret this request is that we are being asked to express the Commutative Property of Addition using t and u rather than x and y used in formula (1). Therefore, removing x and y, inserting parentheses in their locations, and inserting t into the parentheses in the x location and u into the parentheses in the y location, x + y = y + x becomes (t) + (u) = (u) + (t) Since all the parentheses are redundant, they may be removed. One solution is: t + u = u + t. The other solution is: u + t = t + u. Example 4. Express the commutativity of multiplication utilizing the symbols and. Solution: As in Example 3, we can interpret this request as a restatement of formula (2) using and rather than x and y. That is, with substituted for x and replacing y, xy = yx becomes ( ) ( ) = ( ) ( ) 4

5 Again, all parentheses are redundant and may be dropped. One solution is: =. The other solution is: =. Exercise 2. (To receive full credit (one point), you must complete at least three of the following four parts correctly). a. Express the commutativity of addition utilizing the variables u and z. b. Express the commutativity of multiplication utilizing the variable x and the variable expression b - w. (Hint: Not all parentheses are redundant!) c. Express the commutativity of addition utilizing the symbol and the expression β - 6. (Hint: Not all parentheses are redundant!) d. Express the commutativity of multiplication utilizing the expression c + 8 and the symbol α. (Hint: Not all parentheses are redundant!) Notice that Exercise 2 provides four additional ways to express commutativity! That is, (a) and (c) are simply restatements of formula (1) and (b) and (d) are just restatements of formula (2). In Exercise 3, you will be asked to finish applications of one of the two commutative laws. In other words, as written, each equation will be missing a symbol (or two) that you must insert to create an expression of commutativity. Here are two examples. 5

6 Example 5. Insert the missing symbol(s) (e.g. parentheses, a constant or a variable expression) to create an expression of commutativity = + 3 Solution: Since we see addition and the equal sign, it appears we are to complete an application of the Commutative Property of Addition. The left side of the equation, 3 + 4, looks complete, in that it could already be one side of an equation that expresses commutativity (of addition). The right side, + 3, appears to be missing something!! That is, if we inserted the constant 4 between the equal sign the plus sign, we d have the expression The entire equation would then become: This equation takes the form = a + b = b + a where a corresponds to the constant 3 and b corresponds to the constant 4. But the equation a + b = b + a states that addition is commutative (i.e. it s really The Commutative Law of Addition, substituting the variables a and b in formula (1) for x and y). Therefore, inserting a 4 between the equal sign and the plus sign completes an application of the Commutative Property of Addition and thus completes the exercise. Example 6. Insert the missing symbol(s) (e.g. parentheses, a constant or a variable expression) to create an expression of commutativity. 34z = (4z)3 Solution: Since the lack of any other operation symbol (e.g. a plus, minus or division sign) implies the operation of multiplication, it appears we are to complete an application of the Commutative Property of Multiplication. Moreover, on the right hand side of the equation the parentheses indicate a product of the factor 4z with the factor 3. That is, it looks like the right hand side is complete, in that it could already be one side of an equation that expresses commutativity (of multiplication). As written, the left hand side doesn t appear equivalent to the right hand side. That is, 34z and (4z)3 = 12z aren t equivalent values (unless z = 0). Therefore, we must insert a symbol, or symbols, to make the left hand and right hand sides not only equal but to make the entire equation an expression of commutativity. Placing parentheses around the 4z does the trick. By placing parentheses around the 4z on the left hand side of the original equation, we now have 3(4z) = (4z)3 6

7 Notice that this equation now has the form a b = b a where a corresponds to the constant 3 and b corresponds to the variable expression 4z. But the equation ab = ba states that multiplication is commutative (i.e. it s really formula (2) in The Commutative Law of Multiplication utilizing the variables a and b instead of x and y). Therefore, inserting parentheses as we ve done completes an application of the Commutative Property of Multiplication and thus completes the exercise. Exercise 3. Insert the missing symbol(s) (e.g. parentheses, a constant or a variable expression) to create an expression of commutativity. (To receive full credit (one point), you must complete at least three of the following four parts correctly). PLEASE USE A PENCIL OR INK OTHER THAN BLACK! a. q + j = + q b. (5u)(-14) = c. ( - 9 ) + 17 = 17 + (g 9) d. 5 2 = (2a) 5 In order to recognize an application of a real number property, it is necessary to determine how a mathematical expression, say in an exercise, corresponds to a variable in the formula for the property. The following examples utilize the commutative properties to illustrate this correspondence. Example 7. The following equation is an expression of the commutativity of addition. 4 + (5d g) = (5d g) + 4 Comparing it to formula (1), which expression in the equation corresponds to the variable x in formula (1)? Solution: The equation above and formula (1), x + y = y + x, are both expressions of the commutativity of addition. One way to determine the correspondence requested in Example 7 is write down both equations in a vertical format as follows: 4 + (5d g) = (5d g) + 4 x + y = y + x Notice that as we read both equations simultaneously as we would read a book (from left to right), we see that the 4 in the upper equation always corresponds to the variable x in 7

8 the lower equation. That is, both are always aligned vertically. This suggests that the equation takes the form of formula (1) 4 + (5d g) = (5d g) + 4 x + y = y + x where the 4 corresponds to the x (and the expression 5d g corresponds to the y). Therefore, the answer is: 4 corresponds to x (or x corresponds to 4). Example 8. The following equation is an expression of the commutativity of multiplication. 9(3 x) = (3 x)9 Comparing it to formula (2), which expression in the equation corresponds to the variable y in formula (2)? Solution: The equation above and formula (2), xy = yx, are both expressions of the commutativity of multiplication. One way to determine the correspondence requested in Example 8 is write down both equations in a vertical format as follows: 9(3 x) = (3 x)9 x y = y x Notice that as we read both equations simultaneously as we would read a book (from left to right), we see that the expression 3 x in the upper equation always corresponds to the variable y in the lower equation. That is, both are always aligned vertically. This suggests that the equation takes the form of formula (2) 9(3 x) = (3 x)9 xy = yx where the expression 3 - x corresponds to the y (and 9 corresponds to the x). Therefore, the answer is: 3 - x corresponds to y (or y corresponds to 3 - x). Exercise 4. To receive full credit (two points), you must complete at least three of the following four parts correctly. You ll receive one point if you complete two parts correctly. Completing less than two parts correctly will earn zero points. a. The following equation is an expression of the commutativity of addition. 8

9 k + 5z = 5z + k Comparing it to formula (1), which expression in the equation corresponds to the variable x in formula (1)? b. The following equation is an expression of the commutativity of multiplication. 4(v - a) = (v a)4 Comparing it to formula (2), which expression in the equation corresponds to the variable y in formula (2)? 9

10 c. The following equation is an expression of the commutativity of addition. (g + 6) + (3 n) = (3 n) + (g + 6) Comparing it to formula (1), which expression in the equation corresponds to the variable y in formula (1)? d. The following equation is an expression of the commutativity of multiplication. (11e)(p + r) = (p + r)(11e) Comparing it to formula (2), which expression in the equation corresponds to the variable x in formula (2)? 10

Mathematics 90 (3122) CA (Class Addendum) 3: Inverse Properties Mt. San Jacinto College Menifee Valley Campus Fall 2009

Mathematics 90 (3122) CA (Class Addendum) 3: Inverse Properties Mt. San Jacinto College Menifee Valley Campus Fall 2009 Mathematics 90 (322) CA (Class Addendum) 3: Inverse Properties Mt. San Jacinto College Menifee Valley Campus Fall 2009 Solutions Name This class handout is worth a maimum of five (5) points. It is due

More information

Mathematics 96 (3581) CA (Class Addendum) 4: Identity Properties Mt. San Jacinto College Menifee Valley Campus Spring 2013

Mathematics 96 (3581) CA (Class Addendum) 4: Identity Properties Mt. San Jacinto College Menifee Valley Campus Spring 2013 Mathematics 96 (8) CA (Class Addendum) 4: Identity Properties Mt. San Jacinto College Menifee Valley Campus Spring 0 Name This class handout is worth a maximum of five () points. It is due no later than

More information

Mathematics 96 (3581) CA 6: Property Identification Mt. San Jacinto College Menifee Valley Campus Spring 2013

Mathematics 96 (3581) CA 6: Property Identification Mt. San Jacinto College Menifee Valley Campus Spring 2013 Mathematics 96 (358) CA 6: Property Identification Mt. San Jacinto College Menifee Valley Campus Spring 203 Name This class addendum is worth a maximum of five (5) points. It is due no later than the end

More information

9.4 Radical Expressions

9.4 Radical Expressions Section 9.4 Radical Expressions 95 9.4 Radical Expressions In the previous two sections, we learned how to multiply and divide square roots. Specifically, we are now armed with the following two properties.

More information

REVIEW Chapter 1 The Real Number System

REVIEW Chapter 1 The Real Number System REVIEW Chapter The Real Number System In class work: Complete all statements. Solve all exercises. (Section.4) A set is a collection of objects (elements). The Set of Natural Numbers N N = {,,, 4, 5, }

More information

Factoring and Algebraic Fractions

Factoring and Algebraic Fractions Worksheet. Algebraic Fractions Section Factoring and Algebraic Fractions As pointed out in worksheet., we can use factoring to simplify algebraic expressions, and in particular we can use it to simplify

More information

GOOD LUCK! 2. a b c d e 12. a b c d e. 3. a b c d e 13. a b c d e. 4. a b c d e 14. a b c d e. 5. a b c d e 15. a b c d e. 6. a b c d e 16.

GOOD LUCK! 2. a b c d e 12. a b c d e. 3. a b c d e 13. a b c d e. 4. a b c d e 14. a b c d e. 5. a b c d e 15. a b c d e. 6. a b c d e 16. MA109 College Algebra Spring 017 Exam1 017-0-08 Name: Sec.: Do not remove this answer page you will turn in the entire exam. You have two hours to do this exam. No books or notes may be used. You may use

More information

1.9 Algebraic Expressions

1.9 Algebraic Expressions 1.9 Algebraic Expressions Contents: Terms Algebraic Expressions Like Terms Combining Like Terms Product of Two Terms The Distributive Property Distributive Property with a Negative Multiplier Answers Focus

More information

Math Lecture 3 Notes

Math Lecture 3 Notes Math 1010 - Lecture 3 Notes Dylan Zwick Fall 2009 1 Operations with Real Numbers In our last lecture we covered some basic operations with real numbers like addition, subtraction and multiplication. This

More information

Regina Algebra 1 and A

Regina Algebra 1 and A Regina Algebra 1 and A Summer Math Review In the following pages, you will find review materials that will prepare you for next year s math course. Please take the exercises seriously as this will allow

More information

Lesson 6: Algebra. Chapter 2, Video 1: "Variables"

Lesson 6: Algebra. Chapter 2, Video 1: Variables Lesson 6: Algebra Chapter 2, Video 1: "Variables" Algebra 1, variables. In math, when the value of a number isn't known, a letter is used to represent the unknown number. This letter is called a variable.

More information

DIRECTED NUMBERS ADDING AND SUBTRACTING DIRECTED NUMBERS

DIRECTED NUMBERS ADDING AND SUBTRACTING DIRECTED NUMBERS DIRECTED NUMBERS POSITIVE NUMBERS These are numbers such as: 3 which can be written as +3 46 which can be written as +46 14.67 which can be written as +14.67 a which can be written as +a RULE Any number

More information

8. TRANSFORMING TOOL #1 (the Addition Property of Equality)

8. TRANSFORMING TOOL #1 (the Addition Property of Equality) 8 TRANSFORMING TOOL #1 (the Addition Property of Equality) sentences that look different, but always have the same truth values What can you DO to a sentence that will make it LOOK different, but not change

More information

30. TRANSFORMING TOOL #1 (the Addition Property of Equality)

30. TRANSFORMING TOOL #1 (the Addition Property of Equality) 30 TRANSFORMING TOOL #1 (the Addition Property of Equality) sentences that look different, but always have the same truth values What can you DO to a sentence that will make it LOOK different, but not

More information

4.2 Reducing Rational Functions

4.2 Reducing Rational Functions Section. Reducing Rational Functions 1. Reducing Rational Functions The goal of this section is to review how to reduce a rational epression to lowest terms. Let s begin with a most important piece of

More information

Math 302 Module 4. Department of Mathematics College of the Redwoods. June 17, 2011

Math 302 Module 4. Department of Mathematics College of the Redwoods. June 17, 2011 Math 302 Module 4 Department of Mathematics College of the Redwoods June 17, 2011 Contents 4 Integer Exponents and Polynomials 1 4a Polynomial Identification and Properties of Exponents... 2 Polynomials...

More information

irst we need to know that there are many ways to indicate multiplication; for example the product of 5 and 7 can be written in a variety of ways:

irst we need to know that there are many ways to indicate multiplication; for example the product of 5 and 7 can be written in a variety of ways: CH 2 VARIABLES INTRODUCTION F irst we need to know that there are many ways to indicate multiplication; for example the product of 5 and 7 can be written in a variety of ways: 5 7 5 7 5(7) (5)7 (5)(7)

More information

CH 54 PREPARING FOR THE QUADRATIC FORMULA

CH 54 PREPARING FOR THE QUADRATIC FORMULA 1 CH 54 PREPARING FOR THE QUADRATIC FORMULA Introduction W e re pretty good by now at solving equations like (3x 4) + 8 10(x + 1), and we ve had a whole boatload of word problems which can be solved by

More information

Quadratic Equations Part I

Quadratic Equations Part I Quadratic Equations Part I Before proceeding with this section we should note that the topic of solving quadratic equations will be covered in two sections. This is done for the benefit of those viewing

More information

CHAPTER 1 REVIEW Section 1 - Algebraic Expressions

CHAPTER 1 REVIEW Section 1 - Algebraic Expressions CHAPTER 1 REVIEW Section 1 - Algebraic Expressions A variable is a symbol used to represent one or more numbers. The numbers are called the values of the variable. The terms of an expression are the parts

More information

CH 73 THE QUADRATIC FORMULA, PART II

CH 73 THE QUADRATIC FORMULA, PART II 1 CH THE QUADRATIC FORMULA, PART II INTRODUCTION W ay back in Chapter 55 we used the Quadratic Formula to solve quadratic equations like 6x + 1x + 0 0, whose solutions are 5 and 8. In fact, all of the

More information

IES Parque Lineal - 2º ESO

IES Parque Lineal - 2º ESO UNIT5. ALGEBRA Contenido 1. Algebraic expressions.... 1 Worksheet: algebraic expressions.... 2 2. Monomials.... 3 Worksheet: monomials.... 5 3. Polynomials... 6 Worksheet: polynomials... 9 4. Factorising....

More information

9.2 Multiplication Properties of Radicals

9.2 Multiplication Properties of Radicals Section 9.2 Multiplication Properties of Radicals 885 9.2 Multiplication Properties of Radicals Recall that the equation x 2 = a, where a is a positive real number, has two solutions, as indicated in Figure

More information

( )( b + c) = ab + ac, but it can also be ( )( a) = ba + ca. Let s use the distributive property on a couple of

( )( b + c) = ab + ac, but it can also be ( )( a) = ba + ca. Let s use the distributive property on a couple of Factoring Review for Algebra II The saddest thing about not doing well in Algebra II is that almost any math teacher can tell you going into it what s going to trip you up. One of the first things they

More information

Math Lecture 18 Notes

Math Lecture 18 Notes Math 1010 - Lecture 18 Notes Dylan Zwick Fall 2009 In our last lecture we talked about how we can add, subtract, and multiply polynomials, and we figured out that, basically, if you can add, subtract,

More information

Section 2.7 Solving Linear Inequalities

Section 2.7 Solving Linear Inequalities Section.7 Solving Linear Inequalities Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Add and multiply an inequality. Solving equations (.1,.,

More information

If you have completed your extra credit opportunity, please place it on your inbox.

If you have completed your extra credit opportunity, please place it on your inbox. Warm-Up If you have completed your extra credit opportunity, please place it on your inbox. On everyone s desk should be paper and a pencil for notes. We are covering all of Quarter 1 in one day, so we

More information

PLEASE NOTE THAT YOU MUST BE ABLE TO DO THE FOLLOWING PROBLEMS WITHOUT A CALCULATOR!

PLEASE NOTE THAT YOU MUST BE ABLE TO DO THE FOLLOWING PROBLEMS WITHOUT A CALCULATOR! DETAILED SOLUTIONS AND CONCEPTS - INTRODUCTION TO ALGEBRA Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! PLEASE NOTE

More information

Precalculus Chapter P.1 Part 2 of 3. Mr. Chapman Manchester High School

Precalculus Chapter P.1 Part 2 of 3. Mr. Chapman Manchester High School Precalculus Chapter P.1 Part of 3 Mr. Chapman Manchester High School Algebraic Expressions Evaluating Algebraic Expressions Using the Basic Rules and Properties of Algebra Definition of an Algebraic Expression:

More information

GOOD LUCK! 2. a b c d e 12. a b c d e. 3. a b c d e 13. a b c d e. 4. a b c d e 14. a b c d e. 5. a b c d e 15. a b c d e. 6. a b c d e 16.

GOOD LUCK! 2. a b c d e 12. a b c d e. 3. a b c d e 13. a b c d e. 4. a b c d e 14. a b c d e. 5. a b c d e 15. a b c d e. 6. a b c d e 16. MA109 College Algebra Fall 017 Exam1 017-09-0 Name: Sec.: Do not remove this answer page you will turn in the entire exam. You have two hours to do this exam. No books or notes may be used. You may use

More information

Solution Guide for Chapter 10

Solution Guide for Chapter 10 Solution Guide for Chapter 10 Here are the solutions for the Doing the Math exercises in Kiss My Math! DTM from p.133-4 2. 8 7 + 3 =? So, let s distribute the to each term inside the parentheses. In order

More information

Practice General Test # 4 with Answers and Explanations. Large Print (18 point) Edition

Practice General Test # 4 with Answers and Explanations. Large Print (18 point) Edition GRADUATE RECORD EXAMINATIONS Practice General Test # 4 with Answers and Explanations Large Print (18 point) Edition Section 5 Quantitative Reasoning Section 6 Quantitative Reasoning Copyright 2012 by Educational

More information

ABE Math Review Package

ABE Math Review Package P a g e ABE Math Review Package This material is intended as a review of skills you once learned and wish to review before your assessment. Before studying Algebra, you should be familiar with all of the

More information

CAHSEE on Target UC Davis, School and University Partnerships

CAHSEE on Target UC Davis, School and University Partnerships UC Davis, School and University Partnerships CAHSEE on Target Mathematics Curriculum Published by The University of California, Davis, School/University Partnerships Program 2006 Director Sarah R. Martinez,

More information

WSMA Algebra - Expressions Lesson 14

WSMA Algebra - Expressions Lesson 14 Algebra Expressions Why study algebra? Because this topic provides the mathematical tools for any problem more complicated than just combining some given numbers together. Algebra lets you solve word problems

More information

POLYNOMIAL EXPRESSIONS PART 1

POLYNOMIAL EXPRESSIONS PART 1 POLYNOMIAL EXPRESSIONS PART 1 A polynomial is an expression that is a sum of one or more terms. Each term consists of one or more variables multiplied by a coefficient. Coefficients can be negative, so

More information

Exam 2 MAS 3105 Applied Linear Algebra, Spring 2018

Exam 2 MAS 3105 Applied Linear Algebra, Spring 2018 Exam 2 MAS 3105 Applied Linear Algebra, Spring 2018 (Clearly!) Print Name: Mar 8, 2018 Read all of what follows carefully before starting! 1. This test has 6 problems and is worth 100 points. Please be

More information

15. NUMBERS HAVE LOTS OF DIFFERENT NAMES!

15. NUMBERS HAVE LOTS OF DIFFERENT NAMES! get the complete book: http://wwwonemathematicalcatorg/getfulltetfullbookhtm 5 NUMBERS HAVE LOTS OF DIFFERENT NAMES! a fun type of game with numbers one such game playing the game: 3 pets There are lots

More information

Read the following definitions and match them with the appropriate example(s) using the lines provided.

Read the following definitions and match them with the appropriate example(s) using the lines provided. Algebraic Expressions Prepared by: Sa diyya Hendrickson Name: Date: Read the following definitions and match them with the appropriate example(s) using the lines provided. 1. Variable: A letter that is

More information

32. SOLVING LINEAR EQUATIONS IN ONE VARIABLE

32. SOLVING LINEAR EQUATIONS IN ONE VARIABLE get the complete book: /getfulltextfullbook.htm 32. SOLVING LINEAR EQUATIONS IN ONE VARIABLE classifying families of sentences In mathematics, it is common to group together sentences of the same type

More information

Lecture for Week 2 (Secs. 1.3 and ) Functions and Limits

Lecture for Week 2 (Secs. 1.3 and ) Functions and Limits Lecture for Week 2 (Secs. 1.3 and 2.2 2.3) Functions and Limits 1 First let s review what a function is. (See Sec. 1 of Review and Preview.) The best way to think of a function is as an imaginary machine,

More information

Algebra Exam. Solutions and Grading Guide

Algebra Exam. Solutions and Grading Guide Algebra Exam Solutions and Grading Guide You should use this grading guide to carefully grade your own exam, trying to be as objective as possible about what score the TAs would give your responses. Full

More information

Chapter 1 Indices & Standard Form

Chapter 1 Indices & Standard Form Chapter 1 Indices & Standard Form Section 1.1 Simplifying Only like (same letters go together; same powers and same letter go together) terms can be grouped together. Example: a 2 + 3ab + 4a 2 5ab + 10

More information

22A-2 SUMMER 2014 LECTURE 5

22A-2 SUMMER 2014 LECTURE 5 A- SUMMER 0 LECTURE 5 NATHANIEL GALLUP Agenda Elimination to the identity matrix Inverse matrices LU factorization Elimination to the identity matrix Previously, we have used elimination to get a system

More information

Practical Algebra. A Step-by-step Approach. Brought to you by Softmath, producers of Algebrator Software

Practical Algebra. A Step-by-step Approach. Brought to you by Softmath, producers of Algebrator Software Practical Algebra A Step-by-step Approach Brought to you by Softmath, producers of Algebrator Software 2 Algebra e-book Table of Contents Chapter 1 Algebraic expressions 5 1 Collecting... like terms 5

More information

Algebra Review. Finding Zeros (Roots) of Quadratics, Cubics, and Quartics. Kasten, Algebra 2. Algebra Review

Algebra Review. Finding Zeros (Roots) of Quadratics, Cubics, and Quartics. Kasten, Algebra 2. Algebra Review Kasten, Algebra 2 Finding Zeros (Roots) of Quadratics, Cubics, and Quartics A zero of a polynomial equation is the value of the independent variable (typically x) that, when plugged-in to the equation,

More information

Relationships Between Quantities

Relationships Between Quantities Algebra 1 Relationships Between Quantities Relationships Between Quantities Everyone loves math until there are letters (known as variables) in problems!! Do students complain about reading when they come

More information

Intermediate Algebra. Gregg Waterman Oregon Institute of Technology

Intermediate Algebra. Gregg Waterman Oregon Institute of Technology Intermediate Algebra Gregg Waterman Oregon Institute of Technology c August 2013 Gregg Waterman This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

More information

Algebra. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Algebra. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. This document was written and copyrighted by Paul Dawkins. Use of this document and its online version is governed by the Terms and Conditions of Use located at. The online version of this document is

More information

MATH10212 Linear Algebra B Homework Week 5

MATH10212 Linear Algebra B Homework Week 5 MATH Linear Algebra B Homework Week 5 Students are strongly advised to acquire a copy of the Textbook: D C Lay Linear Algebra its Applications Pearson 6 (or other editions) Normally homework assignments

More information

Section 4.6 Negative Exponents

Section 4.6 Negative Exponents Section 4.6 Negative Exponents INTRODUCTION In order to understand negative exponents the main topic of this section we need to make sure we understand the meaning of the reciprocal of a number. Reciprocals

More information

Lesson 7: Algebraic Expressions The Commutative and Associative Properties

Lesson 7: Algebraic Expressions The Commutative and Associative Properties : Algebraic Expressions The Commutative and Associative Properties Four Properties of Arithmetic: The Commutative Property of Addition: If a and b are real numbers, then a + b = b + a. The Associative

More information

15. NUMBERS HAVE LOTS OF DIFFERENT NAMES!

15. NUMBERS HAVE LOTS OF DIFFERENT NAMES! 5 NUMBERS HAVE LOTS OF DIFFERENT NAMES! a fun type of game with numbers one such game playing the game: 3 pets There are lots of number games that can make you look clairvoyant One such game goes something

More information

10. The GNFA method is used to show that

10. The GNFA method is used to show that CSE 355 Midterm Examination 27 February 27 Last Name Sample ASU ID First Name(s) Ima Exam # Sample Regrading of Midterms If you believe that your grade has not been recorded correctly, return the entire

More information

2015 SUMMER MATH PACKET

2015 SUMMER MATH PACKET Name: Date: 05 SUMMER MATH PACKET College Algebra Trig. - I understand that the purpose of the summer packet is for my child to review the topics they have already mastered in previous math classes and

More information

MAC 1105 Lecture Outlines for Ms. Blackwelder s lecture classes

MAC 1105 Lecture Outlines for Ms. Blackwelder s lecture classes MAC 1105 Lecture Outlines for Ms. Blackwelder s lecture classes These notes are prepared using software that is designed for typing mathematics; it produces a pdf output. Alternative format is not available.

More information

This exam is closed book and closed notes. (You will have access to a copy of the Table of Common Distributions given in the back of the text.

This exam is closed book and closed notes. (You will have access to a copy of the Table of Common Distributions given in the back of the text. TEST #3 STA 5326 December 4, 214 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. (You will have access to

More information

Algebra is a part of mathematics in which numbers and letters are used. Numbers and letters are combined by the arithmetic operations.

Algebra is a part of mathematics in which numbers and letters are used. Numbers and letters are combined by the arithmetic operations. Colegio Herma. Maths. Bilingual Department by Isabel Martos Martínez. 2013 WHAT IS ALGEBRA? Algebra is a part of mathematics in which numbers and letters are used. Numbers and letters are combined by the

More information

Suppose we have the set of all real numbers, R, and two operations, +, and *. Then the following are assumed to be true.

Suppose we have the set of all real numbers, R, and two operations, +, and *. Then the following are assumed to be true. Algebra Review In this appendix, a review of algebra skills will be provided. Students sometimes think that there are tricks needed to do algebra. Rather, algebra is a set of rules about what one may and

More information

Physics Motion Math. (Read objectives on screen.)

Physics Motion Math. (Read objectives on screen.) Physics 302 - Motion Math (Read objectives on screen.) Welcome back. When we ended the last program, your teacher gave you some motion graphs to interpret. For each section, you were to describe the motion

More information

Appendix A. Review of Basic Mathematical Operations. 22Introduction

Appendix A. Review of Basic Mathematical Operations. 22Introduction Appendix A Review of Basic Mathematical Operations I never did very well in math I could never seem to persuade the teacher that I hadn t meant my answers literally. Introduction Calvin Trillin Many of

More information

Pre Algebra, Unit 1: Variables, Expression, and Integers

Pre Algebra, Unit 1: Variables, Expression, and Integers Syllabus Objectives (1.1) Students will evaluate variable and numerical expressions using the order of operations. (1.2) Students will compare integers. (1.3) Students will order integers (1.4) Students

More information

Mathematics GRADE 8 Teacher Packet

Mathematics GRADE 8 Teacher Packet COMMON CORE Standards Plus Mathematics GRADE 8 Teacher Packet Copyright 01 Learning Plus Associates All Rights Reserved; International Copyright Secured. Permission is hereby granted to teachers to reprint

More information

Vector Spaces for Quantum Mechanics J. P. Leahy January 30, 2012

Vector Spaces for Quantum Mechanics J. P. Leahy January 30, 2012 PHYS 20602 Handout 1 Vector Spaces for Quantum Mechanics J. P. Leahy January 30, 2012 Handout Contents Examples Classes Examples for Lectures 1 to 4 (with hints at end) Definitions of groups and vector

More information

GRE Workshop Quantitative Reasoning. February 13 and 20, 2018

GRE Workshop Quantitative Reasoning. February 13 and 20, 2018 GRE Workshop Quantitative Reasoning February 13 and 20, 2018 Overview Welcome and introduction Tonight: arithmetic and algebra 6-7:15 arithmetic 7:15 break 7:30-8:45 algebra Time permitting, we ll start

More information

Basic Linear Algebra in MATLAB

Basic Linear Algebra in MATLAB Basic Linear Algebra in MATLAB 9.29 Optional Lecture 2 In the last optional lecture we learned the the basic type in MATLAB is a matrix of double precision floating point numbers. You learned a number

More information

Proof Worksheet 2, Math 187 Fall 2017 (with solutions)

Proof Worksheet 2, Math 187 Fall 2017 (with solutions) Proof Worksheet 2, Math 187 Fall 2017 (with solutions) Dr. Holmes October 17, 2017 The instructions are the same as on the first worksheet, except you can use all the rules in the strategies handout. We

More information

Chapter Two. Integers ASSIGNMENT EXERCISES H I J 8. 4 K C B

Chapter Two. Integers ASSIGNMENT EXERCISES H I J 8. 4 K C B Chapter Two Integers ASSIGNMENT EXERCISES. +1 H 4. + I 6. + J 8. 4 K 10. 5 C 1. 6 B 14. 5, 0, 8, etc. 16. 0 18. For any integer, there is always at least one smaller 0. 0 >. 5 < 8 4. 1 < 8 6. 8 8 8. 0

More information

ALGEBRA CLAST MATHEMATICS COMPETENCIES

ALGEBRA CLAST MATHEMATICS COMPETENCIES 2 ALGEBRA CLAST MATHEMATICS COMPETENCIES IC1a: IClb: IC2: IC3: IC4a: IC4b: IC: IC6: IC7: IC8: IC9: IIC1: IIC2: IIC3: IIC4: IIIC2: IVC1: IVC2: Add and subtract real numbers Multiply and divide real numbers

More information

Order of Operations P E M D A S. Notes: Expressions and Equations (6.EE.1 9) Exponents. Order of Operations x

Order of Operations P E M D A S. Notes: Expressions and Equations (6.EE.1 9) Exponents. Order of Operations x Parts: Exponents 5 Exponent Base Exponential Form Write the expression using a base and exponent. Expanded Form: Write out what the exponent means. x x x x x Standard Form: Solve the expression. 6 81 ***

More information

Grades Algebra 1. Polynomial Arithmetic Equations and Identities Quadratics. By Henri Picciotto. 395 Main Street Rowley, MA

Grades Algebra 1. Polynomial Arithmetic Equations and Identities Quadratics. By Henri Picciotto. 395 Main Street Rowley, MA Grades 7 10 ALGEBRA LAB GEAR Algebra 1 Polynomial Arithmetic Equations and Identities Quadratics Factoring Graphing Connections By Henri Picciotto 395 Main Street Rowley, MA 01969 www.didax.com Contents

More information

Sect Properties of Real Numbers and Simplifying Expressions

Sect Properties of Real Numbers and Simplifying Expressions Sect 1.7 - Properties of Real Numbers and Simplifying Expressions Concept #1 Commutative Properties of Real Numbers Ex. 1a 9.34 + 2.5 Ex. 1b 2.5 + ( 9.34) Ex. 1c 6.3(4.2) Ex. 1d 4.2( 6.3) a) 9.34 + 2.5

More information

29. GREATEST COMMON FACTOR

29. GREATEST COMMON FACTOR 29. GREATEST COMMON FACTOR Don t ever forget what factoring is all about! greatest common factor a motivating example: cutting three boards of different lengths into same-length pieces solving the problem:

More information

1.1 Variables and Expressions How can a verbal expression be translated to an algebraic expression?

1.1 Variables and Expressions How can a verbal expression be translated to an algebraic expression? 1.1 Variables and Expressions How can a verbal expression be translated to an algebraic expression? Recall: Variable: Algebraic Expression: Examples of Algebraic Expressions: Different ways to show multiplication:

More information

Math 138: Introduction to solving systems of equations with matrices. The Concept of Balance for Systems of Equations

Math 138: Introduction to solving systems of equations with matrices. The Concept of Balance for Systems of Equations Math 138: Introduction to solving systems of equations with matrices. Pedagogy focus: Concept of equation balance, integer arithmetic, quadratic equations. The Concept of Balance for Systems of Equations

More information

MATH ALGEBRA AND FUNCTIONS

MATH ALGEBRA AND FUNCTIONS Students: 1. Use letters, boxes, or other symbols to stand for any number in simple expressions or equations. 1. Students use and interpret variables, mathematical symbols and properties to write and simplify

More information

MAS114: Solutions to Exercises

MAS114: Solutions to Exercises MAS114: s to Exercises Up to week 8 Note that the challenge problems are intended to be difficult! Doing any of them is an achievement. Please hand them in on a separate piece of paper if you attempt them.

More information

Mathematical Induction. EECS 203: Discrete Mathematics Lecture 11 Spring

Mathematical Induction. EECS 203: Discrete Mathematics Lecture 11 Spring Mathematical Induction EECS 203: Discrete Mathematics Lecture 11 Spring 2016 1 Climbing the Ladder We want to show that n 1 P(n) is true. Think of the positive integers as a ladder. 1, 2, 3, 4, 5, 6,...

More information

Properties of Real Numbers. Unit 1 Lesson 4

Properties of Real Numbers. Unit 1 Lesson 4 Properties of Real Numbers Unit 1 Lesson 4 Students will be able to: Recognize and use the properties of real numbers. Key Vocabulary: Identity Property Inverse Property Equality Property Associative Property

More information

COLLEGE ALGEBRA. Paul Dawkins

COLLEGE ALGEBRA. Paul Dawkins COLLEGE ALGEBRA Paul Dawkins Table of Contents Preface... iii Outline... iv Preliminaries... 7 Introduction... 7 Integer Exponents... 8 Rational Exponents...5 Radicals... Polynomials...30 Factoring Polynomials...36

More information

Chapter 1. Making algebra orderly with the order of operations and other properties Enlisting rules of exponents Focusing on factoring

Chapter 1. Making algebra orderly with the order of operations and other properties Enlisting rules of exponents Focusing on factoring In This Chapter Chapter 1 Making Advances in Algebra Making algebra orderly with the order of operations and other properties Enlisting rules of exponents Focusing on factoring Algebra is a branch of mathematics

More information

Chapter 1. Foundations of GMAT Math. Arithmetic

Chapter 1. Foundations of GMAT Math. Arithmetic Chapter of Foundations of GMAT Math In This Chapter Quick-Start Definitions Basic Numbers Greater Than and Less Than Adding and Subtracting Positives and Negatives Multiplying and Dividing Distributing

More information

Chapter 1A -- Real Numbers. iff. Math Symbols: Sets of Numbers

Chapter 1A -- Real Numbers. iff. Math Symbols: Sets of Numbers Fry Texas A&M University! Fall 2016! Math 150 Notes! Section 1A! Page 1 Chapter 1A -- Real Numbers Math Symbols: iff or Example: Let A = {2, 4, 6, 8, 10, 12, 14, 16,...} and let B = {3, 6, 9, 12, 15, 18,

More information

Ch. 3 Equations and Inequalities

Ch. 3 Equations and Inequalities Ch. 3 Equations and Inequalities 3.1 Solving Linear Equations Graphically There are 2 methods presented in this section for solving linear equations graphically. Normally I would not cover solving linear

More information

MA 180 Lecture. Chapter 0. College Algebra and Calculus by Larson/Hodgkins. Fundamental Concepts of Algebra

MA 180 Lecture. Chapter 0. College Algebra and Calculus by Larson/Hodgkins. Fundamental Concepts of Algebra 0.) Real Numbers: Order and Absolute Value Definitions: Set: is a collection of objections in mathematics Real Numbers: set of numbers used in arithmetic MA 80 Lecture Chapter 0 College Algebra and Calculus

More information

Properties of Arithmetic

Properties of Arithmetic Excerpt from "Prealgebra" 205 AoPS Inc. 4 6 7 4 5 8 22 23 5 7 0 Arithmetic is being able to count up to twenty without taking o your shoes. Mickey Mouse CHAPTER Properties of Arithmetic. Why Start with

More information

Intermediate Algebra. Gregg Waterman Oregon Institute of Technology

Intermediate Algebra. Gregg Waterman Oregon Institute of Technology Intermediate Algebra Gregg Waterman Oregon Institute of Technology c 207 Gregg Waterman This work is licensed under the Creative Commons Attribution 4.0 International license. The essence of the license

More information

Math 308 Midterm Answers and Comments July 18, Part A. Short answer questions

Math 308 Midterm Answers and Comments July 18, Part A. Short answer questions Math 308 Midterm Answers and Comments July 18, 2011 Part A. Short answer questions (1) Compute the determinant of the matrix a 3 3 1 1 2. 1 a 3 The determinant is 2a 2 12. Comments: Everyone seemed to

More information

Unit 3. Expressions. Unit 3 Calendar

Unit 3. Expressions. Unit 3 Calendar Unit 3 Expressions Exponents Order of Operations Evaluating Algebraic Expressions Translating Words to Math Identifying Parts of Exprsessions Evaluating Formulas Algebraic Properties Simplifying Expressions

More information

Summer Solutions Common Core Mathematics 8. Common Core. Mathematics. Help Pages

Summer Solutions Common Core Mathematics 8. Common Core. Mathematics. Help Pages 8 Common Core Mathematics 6 6 Vocabulary absolute value additive inverse property adjacent angles the distance between a number and zero on a number line. Example: the absolute value of negative seven

More information

Lecture 4: Constructing the Integers, Rationals and Reals

Lecture 4: Constructing the Integers, Rationals and Reals Math/CS 20: Intro. to Math Professor: Padraic Bartlett Lecture 4: Constructing the Integers, Rationals and Reals Week 5 UCSB 204 The Integers Normally, using the natural numbers, you can easily define

More information

Matrix multiplications that do row operations

Matrix multiplications that do row operations May 6, 204 Matrix multiplications that do row operations page Matrix multiplications that do row operations Introduction We have yet to justify our method for finding inverse matrices using row operations:

More information

Review: Expressions and Equations

Review: Expressions and Equations Review: Expressions and Equations Expressions Order of Operations Combine Like Terms Distributive Property Equations & Inequalities Graphs and Tables Independent/Dependent Variables Constant: a number

More information

Linear Algebra (Part II) Vector Spaces, Independence, Span and Bases

Linear Algebra (Part II) Vector Spaces, Independence, Span and Bases Linear Algebra (Part II) Vector Spaces, Independence, Span and Bases A vector space, or sometimes called a linear space, is an abstract system composed of a set of objects called vectors, an associated

More information

Lab Slide Rules and Log Scales

Lab Slide Rules and Log Scales Name: Lab Slide Rules and Log Scales [EER Note: This is a much-shortened version of my lab on this topic. You won t finish, but try to do one of each type of calculation if you can. I m available to help.]

More information

Polynomial Operations

Polynomial Operations Chapter 7 Polynomial Operations Sec. 1 Polynomials; Add/Subtract Polynomials sounds tough enough. But, if you look at it close enough you ll notice that students have worked with polynomial expressions

More information

Welcome to Math Video Lessons. Stanley Ocken. Department of Mathematics The City College of New York Fall 2013

Welcome to Math Video Lessons. Stanley Ocken. Department of Mathematics The City College of New York Fall 2013 Welcome to Math 19500 Video Lessons Prof. Department of Mathematics The City College of New York Fall 2013 An important feature of the following Beamer slide presentations is that you, the reader, move

More information

1. Introduction to commutative rings and fields

1. Introduction to commutative rings and fields 1. Introduction to commutative rings and fields Very informally speaking, a commutative ring is a set in which we can add, subtract and multiply elements so that the usual laws hold. A field is a commutative

More information

Provide Computational Solutions to Power Engineering Problems SAMPLE. Learner Guide. Version 3

Provide Computational Solutions to Power Engineering Problems SAMPLE. Learner Guide. Version 3 Provide Computational Solutions to Power Engineering Problems Learner Guide Version 3 Training and Education Support Industry Skills Unit Meadowbank Product Code: 5793 Acknowledgments The TAFE NSW Training

More information

Intermediate Algebra. Gregg Waterman Oregon Institute of Technology

Intermediate Algebra. Gregg Waterman Oregon Institute of Technology Intermediate Algebra Gregg Waterman Oregon Institute of Technology c 2017 Gregg Waterman This work is licensed under the Creative Commons Attribution 4.0 International license. The essence of the license

More information