Nitrogen speciation in upper mantle fluids and the origin of Earth s nitrogen-rich atmosphere

Size: px
Start display at page:

Download "Nitrogen speciation in upper mantle fluids and the origin of Earth s nitrogen-rich atmosphere"

Transcription

1 Supporting Online Material for Nitrogen speciation in upper mantle fluids and the origin of Earth s nitrogen-rich atmosphere Sami Mikhail & Dimitri Sverjensky S1. Supplementary discussion S1.1 The selection of N 2, 20 Ne, 36 Ar, 84 Kr, and 130 Xe In comparing the chemistry of telluric planetary atmospheres, several factors must be considered to enable accurate comparisons between different planets. The relative abundances of atmospheric N 2 and primordial noble gases can be used to investigate the role of mantle petrology and geochemistry on volcanic degassing, and to place constraints on the similarities and differences during the evolution of the terrestrial planets (Table S1). Here we use the noble gases and nitrogen because Earth s atmosphere has been terraformed by life 1, resulting in a CO 2- poor and O 2- rich atmosphere, whereas the atmosphere of the lifeless terrestrial planets (Venus and Mars) contain >95% CO 2 and only trace quantities of O 2 2. To enable comparative investigations of these planetary atmospheres the data must be selective to avoid effects of biological processes and geology/weathering (i.e. the decay of 40 K to 40 Ar). Most Ar in the atmospheres of Earth and Mars is not primordial, but instead produced through the decay of radiogenic 40 K (with 40 Ar/ 36 Ar ratios of 298 and 1900 ± 300 respectively) 1-2, whereas the ratio of primordial to radiogenic Ar in the Venusian atmosphere is anomalously low, with a 40 Ar/ 36 Ar ratio of 1.03 ± Therefore, the abundance of total Ar (combined 40 Ar, 38 Ar and 36 Ar) in planetary atmospheres appears to be more a function of the abundance of exposed K to the atmosphere, and not the amount of degassed Ar released through volcanism. NATURE GEOSCIENCE 1

2 Our approach is to use total atmospheric N 2 relative to the abundance of primordial noble gases ( 20 Ne, 36Ar, 84 Kr, and 130 Xe). This approach is based on the following factors. Firstly, the ratio of surficial nitrogen (biosphere, sediments and oceans) to atmospheric nitrogen is only ~ , therefore Earth s atmospheric nitrogen abundance is not controlled by the biosphere (contrary to CO 2, CH 4, O 2 and H 2O). Secondly, the primordial noble gas abundances in the atmosphere are not fractionated in the biosphere. S1.2 The reason for ruling out the role of bridgmanite to explain the data in Figure 1 Historically, geochemists have assumed that they should group nitrogen with the noble gases (Ne, Ar, Kr, Xe). This is because molecular nitrogen (N 2) and noble gases are inert gases within planetary atmospheres and are highly incompatible elements in common mantle minerals 5-6. However, recent experimental data show this assumption to be incorrect regarding mantle differentiation. Molecular nitrogen is indeed incompatible in silicate minerals, but ammonic nitrogen can be a moderately compatible element in K- Ca- Na bearing silicates phases, such as phlogopite and clinopyroxene 5-6. Likewise, Ne, Ar and Kr have been show to be soluble in bridgmanite (a recently named mineral, formerly known as MgSiO 3- Perovskite), whereas Xe remains incompatible 7. This means nitrogen can be fractionated from the noble gases, depending upon speciation, and theoretically, the noble gases can be fractionated from nitrogen during bridgmanite crystallization. If bridgmanite was involved in the origin of Earth s atmospheric N 2/noble gas enrichment one would expect the Martian and Venusian atmospheres to show very different results for ratios such as Ne/Xe or Ar/Xe because of the large differences in bridgmanite modal abundances within the mantles of these planets. However, this is certainly not the case (Figs.S1 and 1 respectively). S1.3 The reason for ruling out the role of Earths magnetic field to explain the data in Figure 1 It is theoretically possible that Earths magnetic field has enabled more atmospheric nitrogen retention relative to the Martian and Venusian atmospheres. This shielding effect has certainly occurred, but cannot explain the data in Fig. 1 for three reasons. Firstly, the Venusian atmosphere contains more nitrogen by 2 NATURE GEOSCIENCE

3 SUPPLEMENTARY INFORMATION mass relative to Earth (factor of 3) 3. Secondly, one would expect mass- dependent fractionation reflected from N to Xe abundances, and also between light and heavy primordial noble gases during loss to space, which would be recorded within the given planetary atmosphere and is not seen here. Instead, the 20Ne/ 84 Kr ratio of Earth s atmosphere falls alongside the Venusian and Martian values (Fig.S1). Finally, the high 40 Ar/ 36 Ar ratio of the Martian atmosphere (1900±300) relative to Earth s (298) 1-2 has been proposed to be a function of early loss of more primordial 36 Ar from a weak Martian atmosphere relative to Earth, which was followed by volcanic degassing of 40 Ar produced by 40 K decay on both planets. Interestingly, the 40Ar/ 36 Ar ratio of the Venusian atmosphere is ~1 3, and shows comparable 36 Ar/primordial noble gas and 20Ne/primordial noble gas abundances to Earth and Mars (Fig.S1 and 1 respectively). Therefore the shielding effect of Earth s magnetic field cannot explain the differences between Earth s N 2- enrichment and the relative, and comparable, N 2- depletions for Mars and Venus. S1.4 The reason for ruling out N- rich cores for Mars and Venus relative to Earth to explain the data in Figure 1 Another hypothetical possibility is that Nitrogen should partition into a metallic phase during metal- silicate differentiation under equilibrium conditions 8. However, because of their similarity in size (within 5%), Earth and Venus would likely have had similar P- T- fo 2 conditions of core formation, provided that the giant moon- forming impact and core formation occurred under similar conditions. Ergo, Mars should be an outlier to the Earth- Venusian system, which is not the case (assuming comparable chemical composition for the starting materials during accretion). Overall then, the partitioning of N during core formation is not adequate to explain the differences for the atmospheric N 2/primordial noble gas ratios for the atmospheres of Earth and Venus S1.5 The reason for ruling out preferential primordial noble gas loss from Earth during the Moon- forming impact to explain the data in Figure 1 It could be hypothesized that loss of Earth s early atmospheric N 2 and the primordial noble gases during NATURE GEOSCIENCE 3

4 a large impact (i.e. the proposed Moon- forming impact) would be manifested as a distinct geochemical signature in Earths atmosphere and not in the atmospheres of Venus and Mars. In other words, we would predict highly fractionated primordial noble gas ratios relative to the Martian and Venusian atmospheres 9. In fact, Earth s atmosphere does show lower total concentrations of noble gases and molecular nitrogen relative to Venus, but there is no indication of fractionation of the heavy/light primordial noble gases (i.e. 20Ne/ 36 Ar and 20 Ne/ 83 Kr ratios; Fig.S1). This provides evidence that the relative noble gas patterns are preserved through secondary loss processes (i.e. the Moon- forming Giant Impact). Therefore, major loss of atmosphere appears to be possible without significantly fractionating the relative proportions of the primordial noble gases and molecular nitrogen 9. There is also the question of how much of the telluric planetary volatiles were delivered by the late veneer, which is required to explain the moderate to volatile elements (such as H, C, S, and Se) 10, and the HSE The late veneer was widespread throughout the solar system and certainly post- dates the formation of the moon However, it is unlikely that Earth received its N 2/primordial noble gas enrichment from the late veneer, because the Venusian and Martian atmospheres show comparable N 2/primordial noble gas abundances. The late veneer cannot explain these data in Figs 1a+b and S1. This is because the late veneer should/would have affected all planets in the inner solar system as a function of size (surface area). Ergo, the atmospheres of Earth and Venus should be comparable, and not different. In addition, the late veneer would have affected the atmospheres of Mars and Venus differently, however, they display comparable N2/primordial noble gas ratios. In fact, as shown in Fig.1a, and S1, the three planets exhibit comparable primordial noble gas/ primordial noble gas ratios (e.g. 20 N/ 36 Ar), something that would not be predicted if the late veneer was the explanation for the Earth s N2/primordial noble gas enrichment. S1.6 The redox state of the interiors of the terrestrial planets The Earth s upper mantle redox state (expressed as fo 2 in log units) can be determined by studying basaltic glasses and mantle xenoliths. These data show the LOGfO 2 of Earth s volcanic sampling field to be 4 NATURE GEOSCIENCE

5 SUPPLEMENTARY INFORMATION around the QFM redox buffer (average LOGfO 2 = ΔQFM 0 ± 2) 13. However, if the data for these mantle xenoliths are subdivided into two groups, a clearer picture emerges. Mantle xenoliths from arc settings above the mantle wedge are shown to be more oxidizing (LOGfO 2 = ΔQFM 0 to +2) relative to primitive basalts and kimberlitic/oceanic xenoliths (LOGfO 2 = ΔQFM 0 to - 3) 13-15, which thermodynamic data show should become even more reducing with depth (i.e. below ca. 250 km the mantle is buffered around IW, not QFM) 13. The LOGfO 2 of the Martian mantle has been determined from using the most primitive SNC meteorites to be around ΔQFM - 1 to Due to the scarcity of data, any comments on the redox state of the Venusian mantle are highly speculative. Data from landers Veneras 13 and 14 show FeO contents of basaltic rocks on the Venusian surface to be between ca wt.% 17, these compositions are similar to mid- ocean ridge basalts on Earth. 17. Because Venus and Earth are of a comparable size and bulk composition, their respective mantles should be dominated by bridgmanite, which during core- mantle differentiation forces the disproportionation of ferrous iron into ferric iron plus metal 18. This process has previously been described as an oxygen pump, which would have injected ferric iron into the Earth s upper mantle during mantle differentiation 18 thus raising the ambient redox state from near IW towards QFM. This process would not have occurred within the Martian interior because of the limited stability of bridgmanite in the smaller planet 18. This explains the upper mantle redox discrepancy between Earth and Mars, and would imply the Venusian mantle should have a redox state akin to the Earth s ambient mantle. Therefore, we assume the fo 2 of the Venusian mantle is similar to that of Earth s primitive mantle (LOGfO 2 = ΔQFM 0 to - 3). NATURE GEOSCIENCE 5

6 S1.7 References cited S1. Porcelli, D. & Pepin, R. O. The Origin of Noble Gases and Major Volatiles in the Terrestrial Planets, Treatise on Geochemistry, , (2003) S2. Mahaffy et al., Abundance and Isotopic Composition of Gases in the Martian Atmosphere from the Curiosity Rover, Science, 341, (2013) S3. Hoffmann, J. H., Oyama, V. I. & Zahn, U. V. Measurements of the lower atmospheric composition: A comparison of Results. J. Geophys. Res. 85, (1980) S4. Canfield, D. E., Glazer, A. N, & Farlkowski, P. G. The evolution and future of Earth s nitrogen cycle. Science, 330, (2010) S5. Watenphul et al., Ammonium- bearing clinopyroxene: A potential nitrogen reservoir in the Earth's mantle. Chem. Geol. 270, (2010) S6. Li et al. Nitrogen solubility in upper mantle minerals. Earth Planet. Sci. Lett. 377, (2013) S7. Shcheka, S.S., & Keppler, H. The origin of the terrestrial noble- gas signature, Nature, 490, (2012) S8. Roskosz et al. Nitrogen solubility in molten metal and silicate at high pressure and temperature. Geochim. Cosmochim. Acta, 121, (2013) S9. Halliday, A. N. The origins of volatiles in the terrestrial planets, Geochim. Cosmochim. Acta, 105, (2013) 6 NATURE GEOSCIENCE

7 SUPPLEMENTARY INFORMATION S10. Wang, Z, & Becker, H. Ratios of S, Se and Te in the silicate Earth require a volatile- rich late veneer, Nature, (2013) S11. Dale et al., Late Accretion on the Earliest Planetesimals Revealed by the Highly Siderophile Elements, Science, 336, (2012) S12. Day, J. M. D, et al. Late accretion as a natural consequence of planetary growth. Nat. Geo., 5, (2012) S13. Frost, D. J, & McCammon, C. M. The Redox State of Earth's Mantle. Annu. Rev. Earth Planet. Sci. 36, (2008) S14. Wood, B. J., Bryndzia, L. T. & Johnson, K. E. Mantle oxidation state and its relationship to tectonic environment and fluid speciation. Science 248, (1990) S15. Parkinson, I. J. & Arculus, R. J. The redox state of subduction zones: insights from arc- peridotites. Chem. Geol. 160, (1999) S16. Herd, C. D. K., et al. Oxygen fugacity and geochemical variations in the Martian basalts: implications for Martian basalt petrogenesis and the oxidation state of the upper mantle of Mars. Geochim. Cosmochim. Acta, 66, (2002) S17. Hunten et al., Venus, University of Arizona press, 1983 S18. Wade, J. & Wood, B. J. Core formation and the oxidation state of the Earth. Earth Planet. Sci. Lett. 236, (2005) NATURE GEOSCIENCE 7

8 S2. Supplementary data Table S1: Data used in this study for the atmospheres of Earth 1, Mars 1-2 and Venus 1,3, NATURE GEOSCIENCE

9 SUPPLEMENTARY INFORMATION Figure S1: The abundances of atmospheric 20 Ne relative to the abundance of molecular nitrogen and the primordial noble gases of Earth 1, Mars 1-2 and Venus 1,3. Molecular nitrogen and the primordial noble gases are listed in order of their relative abundances ref.1. NATURE GEOSCIENCE 9

Volatiles in the terrestrial planets. Sujoy Mukhopadhyay University of California, Davis CIDER, 2014

Volatiles in the terrestrial planets. Sujoy Mukhopadhyay University of California, Davis CIDER, 2014 Volatiles in the terrestrial planets Sujoy Mukhopadhyay University of California, Davis CIDER, 2014 Atmophiles: Elements I will talk about rock-loving iron-loving sulfur-loving Temperatures in Protoplanetary

More information

Composition and the Early History of the Earth

Composition and the Early History of the Earth Composition and the Early History of the Earth Sujoy Mukhopadhyay CIDER 2006 What we will cover in this lecture Composition of Earth Short lived nuclides and differentiation of the Earth Atmosphere and

More information

Isotopic record of the atmosphere and hydrosphere

Isotopic record of the atmosphere and hydrosphere Isotopic record of the atmosphere and hydrosphere W. F. McDonough 1 1 Department of Earth Sciences and Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan (Dated: March 7, 2018)

More information

Volatiles on Venus: A missing link in understanding terrestrial planet evolution

Volatiles on Venus: A missing link in understanding terrestrial planet evolution Volatiles on Venus: A missing link in understanding terrestrial planet evolution Melissa G. Trainer Planetary Environments Laboratory NASA Goddard Space Flight Center 12 July 2017 Trainer - DS Mid-Term

More information

For thought: Excess volatiles

For thought: Excess volatiles For thought: Excess volatiles Term coined by William Rubey (circa 1955) Definition: Compounds present at Earth s surface that were not derived from converting igneous rock to sedimentary rock Rubey and

More information

Lecture 31. Planetary Accretion the raw materials and the final compositions

Lecture 31. Planetary Accretion the raw materials and the final compositions Lecture 31 Planetary Accretion the raw materials and the final compositions Reading this week: White Ch 11 (sections 11.1-11.4) Today 1. Boundary conditions for Planetary Accretion Growth and Differentiation

More information

Composition of the Earth and its reservoirs: Geochemical observables

Composition of the Earth and its reservoirs: Geochemical observables Composition of the Earth and its reservoirs: Geochemical observables Cin-Ty A. Lee Rice University MYRES-I 2004 The Earth is dynamic and heterogeneous Atmosphere Midocean Ridge Plume Ocean Crust Oceanic

More information

Differentiation 2: mantle, crust OUTLINE

Differentiation 2: mantle, crust OUTLINE Differentiation 2: mantle, crust OUTLINE Reading this week: Should have been White Ch 10 and 11!! 7- Nov Differentiation of the Earth, Core formation W 10.6.6, 11.4 9- Nov Moon, crust, mantle, atmosphere

More information

What can isotopes tell us about mantle dynamics? Sujoy Mukhopadhyay. Harvard University

What can isotopes tell us about mantle dynamics? Sujoy Mukhopadhyay. Harvard University What can isotopes tell us about mantle dynamics? Sujoy Mukhopadhyay Harvard University The mantle zoo Hofmann, 1997 187 Os/ 188 Os 0.168 0.156 0.144 0.132 EM1 Hawaii Pitcairn DMM peridotites Shield Basalts

More information

Differentiation 1: core formation OUTLINE

Differentiation 1: core formation OUTLINE Differentiation 1: core formation Reading this week: White Ch 12 OUTLINE Today 1.Finish some slides 2.Layers 3.Core formation 1 Goldschmidt Classification/Geochemical Periodic Chart Elements can be assigned

More information

Geochemical constraints on the core formation and composition

Geochemical constraints on the core formation and composition Geochemical constraints on the core formation and composition Bernard Bourdon ENS Lyon with: Mathieu Touboul, Caroline Fitoussi, John Rudge and Thorsten Kleine Collège de France November 25 th Core formation

More information

Halogen and argon evidence of Martian hydrous fluids in nakhlite meteorites Ray Burgess

Halogen and argon evidence of Martian hydrous fluids in nakhlite meteorites Ray Burgess Halogen and argon evidence of Martian hydrous fluids in nakhlite meteorites Ray Burgess School of Earth, Atmospheric and Environmental Sciences University of Manchester, UK Topics Halogens and noble gases

More information

Geol. 656 Isotope Geochemistry

Geol. 656 Isotope Geochemistry RADIOGENIC ISOTOPE GEOCHEMISTRY: THE MANTLE II ISOTOPE GEOCHEMISTRY OF THE MANTLE: THE PB PICTURE Pb is by far the most powerful of the isotopic tools available to us because three parents decay to three

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature10326 Supplementary Discussion All known modern terrestrial mantle reservoirs evolved from a primitive precursor with superchondritic 143 Nd/ 144 Nd. What is this reservoir? The terms

More information

OCN 201: Earth Structure

OCN 201: Earth Structure OCN 201: Earth Structure Eric Heinen Eric H. De Carlo, Carlo: OCN 201, OCN Sp2010 201, Fall 2004 Early History of the Earth Rapid accretion of Earth and attendant dissipation of kinetic energy caused tremendous

More information

Formation of the Earth and Solar System

Formation of the Earth and Solar System Formation of the Earth and Solar System a. Supernova and formation of primordial dust cloud. NEBULAR HYPOTHESIS b. Condensation of primordial dust. Forms disk-shaped nubular cloud rotating counterclockwise.

More information

ESS 312 Geochemistry Simulating Earth degassing using radionuclides

ESS 312 Geochemistry Simulating Earth degassing using radionuclides ESS 312 Geochemistry Simulating Earth degassing using radionuclides CHEMICAL AND ISOTOPIC EVOLUTION OF A TWO-RESERVOIR SYSTEM In lectures we discussed radioactive decay and build-up of a daughter isotope

More information

Outline 9: Origin of the Earth: solids, liquids, and gases. The Early Archean Earth

Outline 9: Origin of the Earth: solids, liquids, and gases. The Early Archean Earth Outline 9: Origin of the Earth: solids, liquids, and gases The Early Archean Earth Origin of Earth s Matter The earth is made of recycled elements formed in stars that existed prior to our Sun. Supernova

More information

Outline 9: Origin of the Earth: solids, liquids, and gases

Outline 9: Origin of the Earth: solids, liquids, and gases Outline 9: Origin of the Earth: solids, liquids, and gases The Early Archean Earth Origin of Earth s Matter The earth is made of recycled elements formed in stars that existed prior to our Sun. Supernova

More information

Explanation for Observed Evidence of Geologically Recent Volatile-Related Activity on Mercury s Surface

Explanation for Observed Evidence of Geologically Recent Volatile-Related Activity on Mercury s Surface Explanation for Observed Evidence of Geologically Recent Volatile-Related Activity on Mercury s Surface J. Marvin Herndon Transdyne Corporation 11044 Red Rock Drive San Diego, CA 92131 USA mherndon@san.rr.com

More information

For thought: Excess volatiles

For thought: Excess volatiles For thought: Excess volatiles Term coined by William Rubey (circa 1955) Definition: Compounds present at Earth s surface that were not derived from converting igneous rock to sedimentary rock Rubey and

More information

Geochemistry 2: Experimental and Stable Isotope Perspectives on the Deep Earth. Anat Shahar Geophysical Laboratory Carnegie Institution of Washington

Geochemistry 2: Experimental and Stable Isotope Perspectives on the Deep Earth. Anat Shahar Geophysical Laboratory Carnegie Institution of Washington Geochemistry 2: Experimental and Stable Isotope Perspectives on the Deep Earth δ? Anat Shahar Geophysical Laboratory Carnegie Institution of Washington Look for elements that have more than one non-radiogenic

More information

Question 1 (1 point) Question 2 (1 point) Question 3 (1 point)

Question 1 (1 point) Question 2 (1 point) Question 3 (1 point) Question 1 (1 point) If the Earth accreted relatively slowly, the heat obtained from the gravitational potential energy would have had time to escape during its accretion. We know that the Earth was already

More information

Radiogenic Isotope Systematics and Noble Gases. Sujoy Mukhopadhyay CIDER 2006

Radiogenic Isotope Systematics and Noble Gases. Sujoy Mukhopadhyay CIDER 2006 Radiogenic Isotope Systematics and Noble Gases Sujoy Mukhopadhyay CIDER 2006 What I will not cover.. U-Th-Pb sytematics 206 Pb 204 Pb 207 Pb 204 Pb 208 Pb 204 Pb = t = t = t 206 Pb 204 Pb 207 Pb 204 Pb

More information

Lecture 38. Igneous geochemistry. Read White Chapter 7 if you haven t already

Lecture 38. Igneous geochemistry. Read White Chapter 7 if you haven t already Lecture 38 Igneous geochemistry Read White Chapter 7 if you haven t already Today. Magma mixing/afc 2. Spot light on using the Rare Earth Elements (REE) to constrain mantle sources and conditions of petrogenesis

More information

OCN 201: Origin of the Earth and Oceans. Waimea Bay, Jan 2002

OCN 201: Origin of the Earth and Oceans. Waimea Bay, Jan 2002 OCN 201: Origin of the Earth and Oceans Waimea Bay, Jan 2002 Periodic Table of the Elements Noble IA IIA IIIA IVA VA VIA VIIA VIIIA IB IIB IIIB IVB VB VIB VIIB gases H He Li Be B C N O F Ne Na Mg Al Si

More information

THE PLANETARY SCIENTIST'S COMPANION

THE PLANETARY SCIENTIST'S COMPANION THE PLANETARY SCIENTIST'S COMPANION Katharina Lodders Bruce Fegley, Jr. New York Oxford Oxford University Press 1998 Contents 1 Technical data Table 1.1 The Greek alphabet 1 Table 1.2 Prefixes used with

More information

Differentiation of planetary interiors. Rocky Planets Interiors and surface geophysics

Differentiation of planetary interiors. Rocky Planets Interiors and surface geophysics Differentiation of planetary interiors Rocky Planets Interiors and surface geophysics Process of separation of internal planetary layers that takes place as a result of the physical and chemical properties

More information

General Introduction. The Earth as an evolving geologic body

General Introduction. The Earth as an evolving geologic body General Introduction The Earth as an evolving geologic body Unique/important attributes of Planet Earth 1. Rocky planet w/ strong magnetic field Mercury has a weak field, Mars has a dead field 1 Unique/important

More information

Supplementary Figure 1 Map of the study area Sample locations and main physiographic features of the study area. Contour interval is 200m (a) and 40m

Supplementary Figure 1 Map of the study area Sample locations and main physiographic features of the study area. Contour interval is 200m (a) and 40m Supplementary Figure 1 Map of the study area Sample locations and main physiographic features of the study area. Contour interval is 200m (a) and 40m (b). Dashed lines represent the two successive ridge

More information

Evolution of Earth Environments Bio-Geo-Chemical Cycling

Evolution of Earth Environments Bio-Geo-Chemical Cycling Evolution of Earth Environments Bio-Geo-Chemical Cycling Evolution of the Earliest Atmospheres of Mars and Earth Volcanic Outgassing Evolving to Equilibrium Atmosphere To Atmosphere Lost to space (Abundant)

More information

What can noble gases really say about mantle. 2) Extent of mantle degassing

What can noble gases really say about mantle. 2) Extent of mantle degassing What can noble gases really say about mantle convection and the deep Earth volatile cycles? 1) Constraints on mass flow 1) Constraints on mass flow 2) Extent of mantle degassing Outline: -Noble gas geochemistry

More information

1 The Earth as a Planet

1 The Earth as a Planet General Astronomy (29:61) Fall 2012 Lecture 27 Notes, November 5, 2012 1 The Earth as a Planet As we start studying the planets, we begin with Earth. To begin with, it gives us a different perspective

More information

On the Chemical Composition of Europa s Icy Shell, Ocean and Unterlying Rocks

On the Chemical Composition of Europa s Icy Shell, Ocean and Unterlying Rocks On the Chemical Composition of Europa s Icy Shell, Ocean and Unterlying Rocks M. Yu. Zolotov (Arizona State University) J. S. Kargel (University of Arizona) By Isabella Kraus Overview Introduction Composition

More information

Auxiliary Material for Formation of Methane on Mars by Fluid-Rock

Auxiliary Material for Formation of Methane on Mars by Fluid-Rock Auxiliary Material for Formation of Methane on Mars by Fluid-Rock Interaction in the Crust Auxiliary Text Oxygen fugacity of Martian Crust The fo 2 of martian basaltic crust, as modeled by shergottite

More information

Lecture 12 COMPLEX MELTING MODELS. (see books by Shaw, Trace Elements in Magmas (2006) and Zou, Quantitative Geochemistry (2007))

Lecture 12 COMPLEX MELTING MODELS. (see books by Shaw, Trace Elements in Magmas (2006) and Zou, Quantitative Geochemistry (2007)) Lecture 12 COMPLEX MELTING MODELS (see books by Shaw, Trace Elements in Magmas (2006) and Zou, Quantitative Geochemistry (2007)) Thus far we have considered two end-member melting models, batch melting

More information

The Wet, Oxidizing Crust of Mars

The Wet, Oxidizing Crust of Mars 1 of 8 posted August 30, 2002 The Wet, Oxidizing Crust of Mars --- Analysis of isotopes and oxide minerals in Martian meteorites indicate that many magmas interacted with a wet, oxidizing crust as they

More information

Planetary Formation OUTLINE

Planetary Formation OUTLINE Planetary Formation Reading this week: White p474-490 OUTLINE Today 1.Accretion 2.Planetary composition 1 11/1/17 Building Earth 2 things are important: Accretion means the assembly of Earth from smaller

More information

NOBLE GASES IN GEOCHEMISTRY AND COSMOCHEMISTRY

NOBLE GASES IN GEOCHEMISTRY AND COSMOCHEMISTRY 3m V IImm 41 NOBLE GASES IN GEOCHEMISTRY AND COSMOCHEMISTRY Editors:, '...., Donald Porcelli Chris J. Ballentine RainerWieler Department of Earth Sciences University of Oxford Oxford, United Kingdom Department

More information

12. Data from Ito et al. (1987) Chemical Geology, 62, ; Figure ; and LeRoex et al. (1983) J. Petrol., 24,

12. Data from Ito et al. (1987) Chemical Geology, 62, ; Figure ; and LeRoex et al. (1983) J. Petrol., 24, Announcements Reading for Wed: p.363-399!!! p.362-366; p.373-378; p.383-386; p.392-394; p.395-399 Last lecture on Wednesday Bring food for pizza party Bring class notes, labs, book N-MORBs: 87 Sr/ 86 Sr

More information

Geochemical and mineralogical technics to investigate the lithosphere and the asthenosphere. 07/11/2017 GEO-DEEP 9300 Claire Aupart

Geochemical and mineralogical technics to investigate the lithosphere and the asthenosphere. 07/11/2017 GEO-DEEP 9300 Claire Aupart Geochemical and mineralogical technics to investigate the lithosphere and the asthenosphere 07/11/2017 GEO-DEEP 9300 Claire Aupart Introduction Introduction Getting samples Cores: Maximum depth reach in

More information

Formation of early water oceans on rocky planets

Formation of early water oceans on rocky planets DOI 10.1007/s10509-010-0535-3 ORIGINAL ARTICLE Formation of early water oceans on rocky planets Linda T. Elkins-Tanton Received: 21 May 2010 / Accepted: 6 November 2010 The Author(s) 2010. This article

More information

New evidence for lunar basalt metasomatism by underlying regolith.

New evidence for lunar basalt metasomatism by underlying regolith. 1 2 3 4 5 New evidence for lunar basalt metasomatism by underlying regolith. John F. Pernet-Fisher* School of Earth, Atmospheric, and Environmental Sciences, University of Manchester, Manchester, M13 2PL,

More information

Phys 214. Planets and Life

Phys 214. Planets and Life Phys 214. Planets and Life Dr. Cristina Buzea Department of Physics Room 259 E-mail: cristi@physics.queensu.ca (Please use PHYS214 in e-mail subject) Lecture 10. Geology and life. Part 1 (Page 99-123)

More information

The Terrestrial Planets

The Terrestrial Planets The Terrestrial Planets Large Bodies: Earth (1 R E, 1 M E ) Venus (0.95 R E, 0.82 M E ) Small Bodies: Mars (0.53 R E, 0.11 M E ) Mercury (0.38 R E, 0.055 M E ) Moon (0.27 R E, 0.012 M E ) The surfaces

More information

What are terrestrial planets like on the inside? Chapter 9 Planetary Geology: Earth and the Other Terrestrial Worlds. Seismic Waves.

What are terrestrial planets like on the inside? Chapter 9 Planetary Geology: Earth and the Other Terrestrial Worlds. Seismic Waves. Chapter 9 Planetary Geology: Earth and the Other Terrestrial Worlds What are terrestrial planets like on the inside? Seismic Waves Vibrations that travel through Earth s interior tell us what Earth is

More information

Effect of tectonic setting on chemistry of mantle-derived melts

Effect of tectonic setting on chemistry of mantle-derived melts Effect of tectonic setting on chemistry of mantle-derived melts Lherzolite Basalt Factors controlling magma composition Composition of the source Partial melting process Fractional crystallization Crustal

More information

For the next few weeks: Terrestrial Planets, their Moons, and the Sun. Planetary Surfaces and Interiors 2/20/07

For the next few weeks: Terrestrial Planets, their Moons, and the Sun. Planetary Surfaces and Interiors 2/20/07 For the next few weeks: Terrestrial Planets, their Moons, and the Sun Announcements Reading Assignment Section 9-1 (pp 186-189), 9-5 and 9-6 (pp 199-203) 3 rd Homework is now posted on the course website

More information

Chapter 9. ASTRONOMY 202 Spring 2007: Solar System Exploration. Class 26: Planetary Geology [3/23/07] Announcements.

Chapter 9. ASTRONOMY 202 Spring 2007: Solar System Exploration. Class 26: Planetary Geology [3/23/07] Announcements. ASTRONOMY 202 Spring 2007: Solar System Exploration Instructor: Dr. David Alexander Web-site: www.ruf.rice.edu/~dalex/astr202_s07 Class 26: Planetary Geology [3/23/07] Announcements Planetary Geology Planetary

More information

Martian Meteorites 1

Martian Meteorites 1 Martian Meteorites 1 The SNCs How do we know the SNCs are from Mars? [Taylor & McLennan, 2009] 2 The SNCs Abundances and isotopic compositions of gases trapped in impact melt glasses match those measured

More information

Comet Science Goals II

Comet Science Goals II Comet Science Goals II {questions for goals} Don Brownlee Did the events postulated by the Nice Hypothesis really happen? Were there wide-spread solar system wide impact events that were coeval with the

More information

Evolution of the Atmosphere: The Biological Connection

Evolution of the Atmosphere: The Biological Connection Evolution of the Atmosphere: The Biological Connection The Earth s Four Spheres How It All Began Or At Least How We Think It Began O.k. it s a good guess Egg of energy The Big Bang splattered radiation

More information

Evidences for geochemically distinct mantle components

Evidences for geochemically distinct mantle components Evidences for geochemically distinct mantle components 1 Mantle Array Oceanic basalts, including seamounts, oceanic islands and middle ocean ridge basalts, were used. 2 Binary All analyses fall between

More information

Terrestrial Planets: The Earth as a Planet

Terrestrial Planets: The Earth as a Planet Terrestrial Planets: The Earth as a Planet In today s class, we want to look at those characteristics of the Earth that are also important in our understanding of the other terrestrial planets. This is

More information

Nebular Hypothesis and Origin of Earth s Water

Nebular Hypothesis and Origin of Earth s Water Nebular Hypothesis and Origin of Earth s Water What is the shape of our solar system? A. Spherical: the Sun is in the center, the planets orbit in spherical shells. B. Disc shaped: fat in the center, tapering

More information

Chapter 1: Introduction...1 Chapter 2: Energy, Entropy and Fundamental Thermodynamic Concepts...24

Chapter 1: Introduction...1 Chapter 2: Energy, Entropy and Fundamental Thermodynamic Concepts...24 Table of Contents Part I: The Geochemical Toolbox Chapter 1: Introduction...1 Geochemistry...1 This Book...2 The Philosophy of Science...4 Building Scientific Understanding...4 The Scientist as Skeptic...5

More information

Remote Sensing of the Earth s Interior

Remote Sensing of the Earth s Interior Remote Sensing of the Earth s Interior Earth s interior is largely inaccessible Origin and Layering of the Earth: Geochemical Perspectives Composition of Earth cannot be understood in isolation Sun and

More information

Lecture 20. Origin of the atmosphere (Chap. 10) The carbon cycle and long-term climate (Chap. 8 of the textbook: p )

Lecture 20. Origin of the atmosphere (Chap. 10) The carbon cycle and long-term climate (Chap. 8 of the textbook: p ) Lecture 20 Origin of the atmosphere (Chap. 10) The carbon cycle and long-term climate (Chap. 8 of the textbook: p.158-170) end of last ice-age; begin civilization beginning of modern era of ice-ages asteroid

More information

How Could Plato Serve Planetary Physics and. What can we Learn From Solar System Planets for Terrestrial Exoplanets?

How Could Plato Serve Planetary Physics and. What can we Learn From Solar System Planets for Terrestrial Exoplanets? How Could Plato Serve Planetary Physics and Leben und die Entwicklung der Planeten What can we Learn From Solar System Planets for Terrestrial Exoplanets? Tilman Spohn Tilman Spohn PLATO What we expect

More information

Nebular Hypothesis and Origin of Earth s Water

Nebular Hypothesis and Origin of Earth s Water Nebular Hypothesis and Origin of Earth s Water What is the shape of our solar system? A. Spherical: the Sun is in the center, the planets orbit in spherical shells. B. Disc shaped: fat in the center, tapering

More information

Compositional relationships between meteorites and planets I. Kevin Righter NASA Johnson Space Center

Compositional relationships between meteorites and planets I. Kevin Righter NASA Johnson Space Center Compositional relationships between meteorites and planets I Kevin Righter NASA Johnson Space Center Accretion models for terrestrial planets Can we make planets from meteorites? What are the outstanding

More information

Cosmic Building Blocks: From What is Earth Made?

Cosmic Building Blocks: From What is Earth Made? Cosmic Building Blocks: From What is Earth Made? The Sun constitutes 99.87% of the mass of the Solar system. Earth is big and important, so its composition should be similar to that of the average Solar

More information

Origin of the Solar System

Origin of the Solar System Origin of the Solar System Look for General Properties Dynamical Regularities Orbits in plane, nearly circular Orbit sun in same direction (CCW from N.P.) Rotation Axes to orbit plane (Sun & most planets;

More information

Fundamental Importance of Returned Samples to Understanding the Martian Interior

Fundamental Importance of Returned Samples to Understanding the Martian Interior Fundamental Importance of Returned Samples to Understanding the Martian Interior David S. Draper and Carl B. Agee Institute of Meteoritics Department of Earth and Planetary Sciences University of New Mexico

More information

Earth History & Geobiology. O. Jagoutz

Earth History & Geobiology. O. Jagoutz Earth History & Geobiology O. Jagoutz 12.001 Intro: Earth differs from other rocky planets by the presence of the hydrosphere, free oxygen and the presence of complex life. It is a major scientific challenge

More information

The Lead 206/207 Dating Method

The Lead 206/207 Dating Method The Lead 206/207 Dating Method 1 U Pb Zircon Ages, Chemical Geology, Volume 211 (2004) Pages 87 109 2 Lead Isotope Planetary Profiling, Chemical Geology, Volume 233 (2006) Pages 1 45 3 U Pb Step-Leaching

More information

N = N 0 e -λt D* = N 0 -N D* = N 0 (1-e -λt ) or N(e λt -1) where N is number of parent atoms at time t, N 0

N = N 0 e -λt D* = N 0 -N D* = N 0 (1-e -λt ) or N(e λt -1) where N is number of parent atoms at time t, N 0 N = N 0 e -λt D* = N 0 -N D* = N 0 (1-e -λt ) or N(e λt -1) where N is number of parent atoms at time t, N 0 is initial number of parents, D* is number of radiogenic daughter atoms, and λ is the decay

More information

The Martian Sedimentary Mass: Constraints on its Composition, Age and Size. Scott McLennan Department of Geosciences, SUNY Stony Brook

The Martian Sedimentary Mass: Constraints on its Composition, Age and Size. Scott McLennan Department of Geosciences, SUNY Stony Brook The Martian Sedimentary Mass: Constraints on its Composition, Age and Size Scott McLennan Department of Geosciences, SUNY Stony Brook Exploring Mars Habitability Lisbon 14 June, 2011 Martian Crustal Chemistry

More information

Planetary Atmospheres

Planetary Atmospheres Planetary Atmospheres Structure Composition Clouds Meteorology Photochemistry Atmospheric Escape EAS 4803/8803 - CP 22:1 Where do planetary atmospheres come from? Three primary sources Primordial (solar

More information

AN OXYGEN ISOTOPE MIXING MODEL FOR THE ACCRETION AND COMPOSITION OF ROCKY PLANETS. 1. Introduction

AN OXYGEN ISOTOPE MIXING MODEL FOR THE ACCRETION AND COMPOSITION OF ROCKY PLANETS. 1. Introduction AN OXYGEN ISOTOPE MIXING MODEL FOR THE ACCRETION AND COMPOSITION OF ROCKY PLANETS KATHARINA LODDERS Planetary Chemistry Laboratory, Department of Earth and Planetary Sciences, Washington University, St.

More information

B.S., 1970, Geology, Michigan State University. M.A., 1972, Geology, Princeton University. Post-doctoral fellow, , Stanford University

B.S., 1970, Geology, Michigan State University. M.A., 1972, Geology, Princeton University. Post-doctoral fellow, , Stanford University B.S., 1970, Geology, Michigan State University M.A., 1972, Geology, Princeton University Ph.D., 1976, Geology, Harvard University Post-doctoral fellow, 1976-77, Stanford University Scientist, 1977-86,

More information

Meteorites free samples from the solar system

Meteorites free samples from the solar system Meteorites free samples from the solar system It is easier to believe that Yankee professors would lie, than that stones would fall from heaven [Thomas Jefferson, 3rd president of the USA] 2.1 Collection

More information

Mars Internal Structure, Activity, and Composition. Tilman Spohn DLR Institute of Planetary Research, Berlin

Mars Internal Structure, Activity, and Composition. Tilman Spohn DLR Institute of Planetary Research, Berlin Mars Internal Structure, Activity, and Composition Tilman Spohn DLR Institute of Planetary Research, Berlin Interior Structure Interior Structure models aim at 2 the bulk chemistry of the planet the masses

More information

ABITABILITY IN THE SOLAR SYSTEM AND BEYON. Frances Westall. Centre de Biophysique Moléculaire, CNRS, Orléans, France

ABITABILITY IN THE SOLAR SYSTEM AND BEYON. Frances Westall. Centre de Biophysique Moléculaire, CNRS, Orléans, France ABITABILITY IN THE SOLAR SYSTEM AND BEYON Frances Westall Centre de Biophysique Moléculaire, CNRS, Orléans, France westall@cnrs-orleans.fr WHAT IS HABITABILITY? EARTH MARS EUROPA (VENUS?) OTHER? WHAT IS

More information

Metal saturation in the upper mantle

Metal saturation in the upper mantle Vol 449 27 September 2007 Metal saturation in the upper mantle A. Rohrbach, C. Ballhaus, U. Golla Schindler, P. Ulmer,V.S. Kamenetsky, D.V. Kuzmin NS seminar 2007.10.25 The uppermost mantle is oxidized.

More information

Correction notice Pervasive oxygenation along late Archaean ocean margins

Correction notice Pervasive oxygenation along late Archaean ocean margins Correction notice Pervasive oxygenation along late Archaean ocean margins Brian Kendall, Christopher T. Reinhard, Timothy W. Lyons, Alan J. Kaufman, Simon W. Poulton and Ariel D. Anbar The accompanying

More information

Chapter 11. The Archean Era of Precambrian Time

Chapter 11. The Archean Era of Precambrian Time Chapter 11 The Archean Era of Precambrian Time 1 Guiding Questions When and how did Earth and its moon come into being? How did the core, mantle, crust form? Where did Archean rocks form, and what is their

More information

Planetary Accretion Models and the

Planetary Accretion Models and the Planetary Accretion Models and the Mineralogy of Planetary Interiors DanFrost & DaveRubie Bayerisches Geoinstitut John Hernlund Earth Life Science Institute, Institute of TechnologyTokyo Alessandro Morbidelli

More information

From observations of newly formed stars it appears that the

From observations of newly formed stars it appears that the Vol 441 15 June 2006 doi:10.1038/nature04763 Accretion of the Earth and segregation of its core Bernard J. Wood 1, Michael J. Walter 2 & Jonathan Wade 2 The Earth took 30 40 million years to accrete from

More information

In class, Wednesday Oct 25. Please wait outside AT BACK until told to enter the room. Must write IN PEN. Non programming calculators allowed (and

In class, Wednesday Oct 25. Please wait outside AT BACK until told to enter the room. Must write IN PEN. Non programming calculators allowed (and Midterm material In class, Wednesday Oct 25. Please wait outside AT BACK until told to enter the room. Must write IN PEN. Non programming calculators allowed (and required) No notes or hats. Formulae provided

More information

Lecture 5. Introduction to Stable Isotopes

Lecture 5. Introduction to Stable Isotopes Lecture 5 Introduction to Stable Isotopes Stable Isotope Geochemistry Primarily concerned with the isotope ratios of H, C, N, O, and S Si and B often included and new instrumentation has opened up others

More information

Unit 3 Lesson 4 The Terrestrial Planets. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 3 Lesson 4 The Terrestrial Planets. Copyright Houghton Mifflin Harcourt Publishing Company Florida Benchmarks SC.8.N.1.5 Analyze the methods used to develop a scientific explanation as seen in different fields of science. SC.8.E.5.3 Distinguish the hierarchical relationships between planets

More information

Worked Example of Batch Melting: Rb and Sr

Worked Example of Batch Melting: Rb and Sr Worked Example of Batch Melting: Rb and Sr Basalt with the mode: Table 9.2. Conversion from mode to weight percent Mineral Mode Density Wt prop Wt% ol 15 3.6 54 0.18 cpx 33 3.4 112.2 0.37 plag 51 2.7 137.7

More information

Astrobiology in the inner Solar System

Astrobiology in the inner Solar System Venus Surface conditions Astrobiology in the inner Solar System Planets and Astrobiology (2016-2017) G. Vladilo T s =735 K p s =92 x 10 5 Pa Atmospheric composition dominated by CO 2, without O 2 Absence

More information

[17] Magnetic Fields, and long-term changes in climate (10/26/17)

[17] Magnetic Fields, and long-term changes in climate (10/26/17) 1 [17] Magnetic Fields, and long-term changes in climate (10/26/17) Upcoming Items 1. Read Chapter 11, do the self-study quizzes 2. Midterm #2 on Tuesday, November 7 On classes from Oct 5 through Oct 31

More information

Evidence of Earth s Interior Direct and Indirect Evidence

Evidence of Earth s Interior Direct and Indirect Evidence Into Which Layer Have We Drilled? Evidence of Earth s Interior Direct and Indirect Evidence 1. Crust 2. Mantle 3. Outer Core 4. Inner Core Why?? How Many Types of Crust Exist? Which of the following is

More information

Carbon and other light element contents in the Earth s core based on first-principles molecular dynamics

Carbon and other light element contents in the Earth s core based on first-principles molecular dynamics Carbon and other light element contents in the Earth s core based on first-principles molecular dynamics Yigang Zhang a and Qing-Zhu Yin b,1 a Key Laboratory of the Earth s Deep Interior, Institute of

More information

Lab 5: An Investigation of Meteorites Geology 202: Earth s Interior

Lab 5: An Investigation of Meteorites Geology 202: Earth s Interior Lab 5: An Investigation of Meteorites Geology 202: Earth s Interior Asteroids and Meteorites: What is the difference between asteroids and meteorites? Asteroids are rocky and metallic objects that orbit

More information

Today. Solar System Formation. a few more bits and pieces. Homework due

Today. Solar System Formation. a few more bits and pieces. Homework due Today Solar System Formation a few more bits and pieces Homework due Pluto Charon 3000 km Asteroids small irregular rocky bodies Comets icy bodies Formation of the Solar System How did these things come

More information

Mercury. Why is Mercury important? Background from Mariner 10 to MESSENGER. An unusual geochemistry. Pre-MESSENGER models

Mercury. Why is Mercury important? Background from Mariner 10 to MESSENGER. An unusual geochemistry. Pre-MESSENGER models Mercury TJ McCoy and LR Nittler 2014 (2003) Why is Mercury important? Background from Mariner 10 to MESSENGER An unusual geochemistry Pre-MESSENGER models Re-evaluation of models + discussion Mariner 10

More information

Cupid's Arrow: a small satellite to measure noble gases in the atmosphere of Venus and Titan

Cupid's Arrow: a small satellite to measure noble gases in the atmosphere of Venus and Titan Cupid's Arrow: a small satellite to measure noble gases in the atmosphere of Venus and Titan 1 Sotin C, 1 Arora N, 2 Avice G, 1 Baker J, 1 Darrach M, 1 Freeman A, 3 Lightsey G, 1 Madzunkov S, 4 Marty B,

More information

The History of the Earth

The History of the Earth The History of the Earth We have talked about how the universe and sun formed, but what about the planets and moons? Review: Origin of the Universe The universe began about 13.7 billion years ago The Big

More information

CHAPTER 01: The Earth in Context

CHAPTER 01: The Earth in Context CHAPTER 01: The Earth in Context MULTIPLE CHOICE 1. Our Sun belongs to a galaxy known as. a. Andromeda c. the Milky Way b. Cepheus d. the Stratosphere ANS: C DIF: Easy REF: 1.2 components. 2. The theory

More information

Highly Siderophile and Strongly Chalcophile Elements in High-Temperature Geochemistry and Cosmochemistry

Highly Siderophile and Strongly Chalcophile Elements in High-Temperature Geochemistry and Cosmochemistry Highly Siderophile and Strongly Chalcophile Elements in High-Temperature Geochemistry and Cosmochemistry 81 Reviews in Mineralogy and Geochemistry 81 TABLE OF CONTENTS 1 Experimental Results on Fractionation

More information

http://eps.mcgill.ca/~courses/c201_winter/ http://eps.mcgill.ca/~courses/c201_winter/ Neutron Proton Nucleosynthesis neutron!! electron!+!proton!!=!!é!!+!h +!! t 1/2 =!12!minutes H + +!neutron!! Deuterium!(D)

More information

The Solar System consists of

The Solar System consists of The Universe The Milky Way Galaxy, one of billions of other galaxies in the universe, contains about 400 billion stars and countless other objects. Why is it called the Milky Way? Welcome to your Solar

More information

10/11/2010. Acceleration due to gravity, a. Bulk Properties Mass = 6 x kg Diameter = 12,756 km Density = 5515 kg/m 3 (mix of rock and iron)

10/11/2010. Acceleration due to gravity, a. Bulk Properties Mass = 6 x kg Diameter = 12,756 km Density = 5515 kg/m 3 (mix of rock and iron) Acceleration due to gravity, a Bulk Properties Mass = 6 x 10 24 kg Diameter = 12,756 km Density = 5515 kg/m 3 (mix of rock and iron) Escape Velocity, v e Albedo Amount of sunlight reflected back into space

More information

PTYS 214 Spring Announcements. Next midterm 3/1!

PTYS 214 Spring Announcements. Next midterm 3/1! PTYS 214 Spring 2018 Announcements Next midterm 3/1! 1 Previously Solar flux decreases as radiation spreads out away from the Sun Planets are exposed to some small amount of the total solar radiation A

More information

(4) Meteorites: Remnants of Creation

(4) Meteorites: Remnants of Creation (4) Meteorites: Remnants of Creation Meteoroid: small piece of debris in space Meteor: space debris heated by friction as it plunges into the Earth s atmosphere Meteorite: Space debris that has reached

More information

Importance of Solar System Objects discussed thus far. Interiors of Terrestrial Planets. The Terrestrial Planets

Importance of Solar System Objects discussed thus far. Interiors of Terrestrial Planets. The Terrestrial Planets Importance of Solar System Objects discussed thus far Interiors of Terrestrial Planets Chapter 9 Sun: Major source of heat for the surfaces of planets Asteroids: Provide possible insight to the composition

More information