Lecture II (continued) Anisotropy and Source Counts

Size: px
Start display at page:

Download "Lecture II (continued) Anisotropy and Source Counts"

Transcription

1 Lecture II (continued) Anisotropy and Source Counts

2 Exotica - Zoo events Topological defects from early Uni phase transtions (e.g., textures, magnetic monopoles,...) Super-Massive Heavy Particles (e.g., Wimpzillas, Mirror-Matter, See-saw masses, X&Y GUT bosons, cryptons,...) SUSY-rays (e.g., LSP, gluino-hadrons,...)

3 Magnetic Monopoles Expect (a) directions correlated with Galactic B field (spiral arm) (b) weak penetrating air-shower (c) strong Cherenkov signal in IceCube

4 Lecture III - Neutrino Astrophysics

5 Neutrino-rays versus Cosmic-Rays and Photons νs come from central engines - near R s of massive BHs - even from dense hidden sources cf. νs vs. γs from the sun νs not affected by cosmic radiation (except for annihilation resonance) νs not bent by magnetic fields - enables neutrino astronomy Also, besides Energy and Direction, ν s carry Flavor

6 Neutrinos are there, but hard to detect Existence of Xgal neutrinos inferred from CR spectrum, up to ev, and similarly, Galactic up to ev, Need gigaton (km 3 ) mass (volume) for TeV to PeV detection [e.g. IceCube Xpt] but a teraton of mass at ev SPACE-BASED [e.g. EUSO Xpt]

7 Model ν fluxes (Protheroe review 1996) atmosphere AGN pγ Ism GRB GZK GeV SMPs TDs M GUT

8 HiRes vs. AGASA UHE spectrum FlysEye event goes here discovery opportunity GZK recovery? Z-burst uncovery? EUSO reach x 10 3 better

9 AMANDA, RICE, Anita, IceCube, AURA, ARIANNA: Antarctic Cap = Antartic Trap

10 Neutrino cross-section measurement Neutrinos at ev probe the structure of the nucleon at unprecedented small-x values ; Provides new QCD information CM energy at HERA is 0.3 TeV; while at E ν ~ ev, Nature gives us E cm ~ PeV! And so probes new thresholds, e.g. SUSY, X-Dimensions, TeV-Scale Gravity, EW Instantons (NonPert. EW),

11 σ νν can be big, or small-ish Large extra dimensions Std. model Anchordoqui et al. Astro-ph/ GZK ν Also Kansans; Chicagoans; etc

12 Cross-section corresponds to MFP which matches shown chord length Earth Absorption versus Neutrino Cross-Section

13 Upward and Horizontal Air-shower Rates Versus Neutrino Cross-section (=> Can t Lose Theorem) HAS ν τ ν e UAS Kusenko, TJW, PRL2002

14 Cosmic Neutrino Flavor Physics Besides energy and direction, cosmic quanta carry intrinsic information. For cosmic-rays, it is A and Z; For photons, it is spin polarization; For neutrinos, it is flavor: electron-neutrino (which showers) muon neutrino (whose CC tracks) tau neutrino (which showers below a PeV, tracks above) Moreover, the flavors mix in a calculable/known way, which means the flavors oscillate in an L/E-dependent way, enabling: Neutrino Interferometry over Cosmic baselines!!

15 Flavor ID (windows) at IceCube Neutrino flavor T. DeYoung ν τ double full flavor bang*** ID ν e ν e (supernovæ) showers vs. tracks ν µ Log(ENERGY/eV)

16 The cosmic ν flavor-mixing theorem If theta 32 is maximal (it is), And if Re(U e3 ) is minimal (it is), Then ν µ and ν τ equilibrate; Further, if initial ν e flux is 1/3 (as from pion-muon decay chain), Then all three flavors equilibrate. (E.g., for pion source, get) ν e :ν µ :ν τ = 1 : 1 : 1 at Earth

17 Muon-damped (or, Incomplete) pion decay Predict change in cosmic flavor ratio with energy: From complete pi-decay chain, 1:1:1 at Earth, To partial pi-decay chain (~ pure ν µ beam), 4:7:7 at Earth; Diagnostic for ambient density: decay mfp vs. interaction mfp.

18 Democracy Broken: Galactic β-beam Muon-damped pion decay Source dynamics (pp vs, p-gamma) ν decay (15 minutes of fame) Vacuum resonance (MaVaNs, LIV vector) Pseudo-Dirac ν oscillations

19 Cosmic decoherence of the neutrino-mixing matrix R(theta32) R(theta13*) R(theta21) x MajoranaPhases ν 1 ν 2 ν 3 νe TB ν m ν t e.g., ν e = 2/3 ν 1 + 1/3 ν 2 ν e : ν µ : ν τ = 5:2:2

20 From (initial) flavor to (propagating) mass to (detected) flavor again: ν e ν m ν t P = ν e ν m ν t

21 Neutrino Flavor Ratios for various Astro processes 1:2:0

22 Galactic β-beam also offers excellent opportunity to improve limits (by up to ) or discover democracy-restoration due to QG Foam no-hair on virtual Black Holes 1:1:1 flavor equilibrium Anchordoqui, Gonzalez-Garcia, Goldberg, Halzen, Sarkar, TJW, [hep-ph/ ] 22

23 ν diagnostic of cosmic pion-engines: pp π vs. The process ν e +e -- W -- is resonant at 6.4 PeV; pp make nearly equal π + π, with P π /P CR ~ 0.6 ν µ :ν µ :ν e :ν e = 2:2:1:1 flavor democracy, ν e = 1/6 total pγ via Δ + make π + (per two π 0 ), with P π /P CR ~ 0.25 ν µ :ν µ :ν e = 1:1:1 (no ν e ) ν e = 1/15 total IceCube will have flavor ID, and ΔE/E of 25%, and so can measure On-Res/Off-Res ratio Ans resolve this (AGHW, hep-ph/ )

24 ν decay (via majoron emission) P(survive)= e t/ τ = e (L/E)(m/ τ 0 ) Beacom, Bell, Hooper, Pakvasa, TJW, PRL2003

25 Pseudo-Dirac Neutrinos Pseudo-Dirac Neutrinos, a Challenge for Neutrino Telescopes John F. Beacom, 1 Nicole F. Bell, 1, 2 Dan Hooper, 3 John G. Learned, 4, 2 Sandip Pakvasa, 4, 2 and Thomas J. Weiler 5, 2 arxiv:he Text the only way to reveal their existence. The generic mass matrix in the ( ν L, (ν R ) C) basis is ( ) ml m D. (1) m D m R A Dirac neutrino corresponds to the case where m L = m R = 0, and may be thought of as the limit of two degenerate Majorana neutrinos with opposite CP parity. Alternatively, we may form a pseudo-dirac neutrino [1, 2] by the addition of tiny Majorana mass terms m L, m R m D, which have the effect of splitting the Dirac neutrino into a pair of almost degenerate Majorana neutrinos, each with mass m D. The mixing angle between the active and sterile states is very close to maximal, tan(2θ) = 2m D /(m R m L ) 1, and the mass-squared difference is δm 2 2m D (m L + m R ). For three generations, the mass spectrum is shown in Fig. 1. The mirror model can produce a very similar mass spectrum [3, 4]. The current theoretical prejudice is for the right- m 3 + m 3 -- m 2 + m 2 -- m 1 + m 1 -- atmospheric solar } } }! 3a,! 3s! 2a,! 2s! 1a,! 1s FIG. 1: The neutrino mass spectrum, showing the usual solar and atmospheric mass differences, as well as the pseudo-dirac splittings in each generation (though shown as equal, we assume they are independent). The active and sterile components of each pseudo-dirac pair are ν ja and ν js, and are maximal mixtures of the mass eigenstates ν + j and ν j. Neither the ordering of the active neutrino hierarchy, nor the signs of the pseudo-dirac splittings, has any effect on our discussion.

26 Z-Bursts/Dips Seeking the CνB at Extreme Energy

27 Z-Dips/Bursts TJW, 1982; Revival 1997 (Fargion, Mele, Salis; TJW) 50 Mpc

28 Resonant Neutrino Annihilation Mean-Free-Path Fig from Fargion, Mele, Salis λ=(n ν σ ν ) 1 = 40 D H /h 70 (neglecting higher densities at earlier times)

29 Escher s Angels and Devils Looking back, n ν ~(1+z) 3, And so the absorption is greatly enhanced for ν s from high-z sources

30 Neutrino mass-spectroscopy: absorption (Z-dips) and emission (Z-bursts)

31 BB: Neutrino Decoupling, Temperature, Density

32 The (challenging) Z-burst energy With Cosmic Structure Formation restricting neutrino masses to less than ev, have Z-burst energies > ev. The whole shebangbang depends on F ν (E ν > ev)!! (Here enters GLUE, FORTE, ANITA, AURA, ARIANNA,...)

33 ν-mass spectroscopy z max =2, 5, 20 (top to bottom), n-α=2 Eberle, Ringwald, Song, TJW, 2004 The whole shebangbang depends on F ν (E ν > ev)!!

34 Summary I. Cosmic Ray physics: Now entering a golden era of ev exploration. At this energy, protons point, enabling CR astronomy. In addition, particle physics thresholds may have been breached, and there may be a Cosmic Zoo awaiting discovery. II. Neutrinos from the Cosmos: Next one to ten years will be critical, and, the deities/gods willing, most fruitful! Neutrino Flavor will play a big role.

Probing New Physics with Astrophysical Neutrinos

Probing New Physics with Astrophysical Neutrinos 1 Probing New Physics with Astrophysical Neutrinos Nicole Bell The University of Melbourne 2 Introduction New Physics New Particle Physics Astrophysical Neutrinos from beyond Neutrinos the solar system

More information

Neutrino Astronomy. Ph 135 Scott Wilbur

Neutrino Astronomy. Ph 135 Scott Wilbur Neutrino Astronomy Ph 135 Scott Wilbur Why do Astronomy with Neutrinos? Stars, active galactic nuclei, etc. are opaque to photons High energy photons are absorbed by the CMB beyond ~100 Mpc 10 20 ev protons,

More information

Possible sources of very energetic neutrinos. Active Galactic Nuclei

Possible sources of very energetic neutrinos. Active Galactic Nuclei Possible sources of very energetic neutrinos Active Galactic Nuclei 1 What might we learn from astrophysical neutrinos? Neutrinos not attenuated/absorbed Information about central engines of astrophysical

More information

Particle Physics Beyond Laboratory Energies

Particle Physics Beyond Laboratory Energies Particle Physics Beyond Laboratory Energies Francis Halzen Wisconsin IceCube Particle Astrophysics Center Nature s accelerators have delivered the highest energy protons, photons and neutrinos closing

More information

TeV Particle Physics and Physics Beyond the Standard Model

TeV Particle Physics and Physics Beyond the Standard Model TeV Particle Physics and Physics Beyond the Standard Model Ivone Albuquerque, Alex Kusenko, Tom Weiler TeV Particle Astrophysics Madison, 28-31 Aug, 2006 TeV Particle Physics and Physics Beyond the Standard

More information

Opportunities for Subdominant Dark Matter Candidates

Opportunities for Subdominant Dark Matter Candidates Opportunities for Subdominant Dark Matter Candidates A. Ringwald http://www.desy.de/ ringwald DESY Seminar, Institut de Física d Altes Energies, Universitat Autònoma de Barcelona, June 17, 2004, Barcelona,

More information

Neutrino Physics: an Introduction

Neutrino Physics: an Introduction Neutrino Physics: an Introduction Lecture 3: Neutrinos in astrophysics and cosmology Amol Dighe Department of Theoretical Physics Tata Institute of Fundamental Research, Mumbai SERC EHEP School 2017 NISER

More information

Understanding High Energy Neutrinos

Understanding High Energy Neutrinos Understanding High Energy Neutrinos Paolo Lipari: INFN Roma Sapienza NOW-2014 Conca Specchiulla 12th september 2014 An old dream is becoming a reality : Observing the Universe with Neutrinos ( A new way

More information

Extremely High Energy Neutrinos

Extremely High Energy Neutrinos Extremely High Energy Neutrinos A. Ringwald http://www.desy.de/ ringwald DESY 6 th National Astroparticle Physics Symposium February 3, 2006, Vrije Universiteit, Amsterdam, Netherlands Extremely high energy

More information

Lessons from Neutrinos in the IceCube Deep Core Array

Lessons from Neutrinos in the IceCube Deep Core Array Lessons from Neutrinos in the IceCube Deep Core Array Irina Mocioiu Penn State TeV 2009, July 15 2009 Point sources Diffuse fluxes from astrophysical objects from cosmic ray interactions from dark matter

More information

Possible Interpretations of IceCube High Energy Neutrinos

Possible Interpretations of IceCube High Energy Neutrinos Possible Interpretations of IceCube High Energy Neutrinos ~1 km² Geographic South Pole Program on Particle Physics at the Dawn of the LHC13. ICTP-SP. Boris Panes, USP. Nov 12-2015 Based on 1411.5318 and

More information

SEARCHES OF VERY HIGH ENERGY NEUTRINOS. Esteban Roulet CONICET, Centro Atómico Bariloche

SEARCHES OF VERY HIGH ENERGY NEUTRINOS. Esteban Roulet CONICET, Centro Atómico Bariloche SEARCHES OF VERY HIGH ENERGY NEUTRINOS Esteban Roulet CONICET, Centro Atómico Bariloche THE NEUTRINO SKY THE ENERGETIC UNIVERSE multimessenger astronomy γ ν p γ rays (Fermi) ν (Amanda) UHE Cosmic rays

More information

IMPACT OF OSCILLATIONS ON UHE NEUTRINO ASTRONOMY

IMPACT OF OSCILLATIONS ON UHE NEUTRINO ASTRONOMY IMPACT OF OSCILLATIONS ON UHE NEUTRINO ASTRONOMY V. Berezinsky INFN, Laboratori Nazionali del Gran Sasso, Italy Oscillations of HE and UHE cosmic neutrinos Characteristic distances to the sources are r

More information

Implications of recent cosmic ray results for ultrahigh energy neutrinos

Implications of recent cosmic ray results for ultrahigh energy neutrinos Implications of recent cosmic ray results for ultrahigh energy neutrinos Subir Sarkar Neutrino 2008, Christchurch 31 May 2008 Cosmic rays have energies upto ~10 11 GeV and so must cosmic neutrinos knee

More information

UHE NEUTRINOS AND THE GLASHOW RESONANCE

UHE NEUTRINOS AND THE GLASHOW RESONANCE UHE NEUTRINOS AND THE GLASHOW RESONANCE Raj Gandhi Harish Chandra Research Institute Allahabad (Work in progress with Atri Bhattacharya, Werner Rodejohann and Atsushi Watanabe) NuSKY, ICTP, June 25, 2011

More information

Those invisible neutrinos

Those invisible neutrinos Those invisible neutrinos and their astroparticle physics Amol Dighe Department of Theoretical Physics Tata Institute of Fundamental Research, Mumbai Bhoutics, IITM, March 31st, 2017 Those invisible neutrinos...

More information

Cosmogenic neutrinos II

Cosmogenic neutrinos II Cosmogenic neutrinos II Dependence of fluxes on the cosmic ray injection spectra and the cosmological evolution of the cosmic ray sources Expectations from the cosmic ray spectrum measured by the Auger

More information

PEV NEUTRINOS FROM THE PROPAGATION OF ULTRA-HIGH ENERGY COSMIC RAYS. Esteban Roulet CONICET, Bariloche, Argentina

PEV NEUTRINOS FROM THE PROPAGATION OF ULTRA-HIGH ENERGY COSMIC RAYS. Esteban Roulet CONICET, Bariloche, Argentina PEV NEUTRINOS FROM THE PROPAGATION OF ULTRA-HIGH ENERGY COSMIC RAYS Esteban Roulet CONICET, Bariloche, Argentina THE ENERGETIC UNIVERSE multi-messenger astronomy γ ν p γ rays neutrinos Fermi Amanda UHE

More information

IceCube Results & PINGU Perspectives

IceCube Results & PINGU Perspectives 1 IceCube Results & PINGU Perspectives D. Jason Koskinen for the IceCube-PINGU Collaboration koskinen@nbi.ku.dk September 2014 Neutrino Oscillation Workshop Otranto, Lecce, Italy 2 IceCube Detector ~1km

More information

Particle Physics with Neutrino Telescope Aart Heijboer, Nikhef

Particle Physics with Neutrino Telescope Aart Heijboer, Nikhef Particle Physics with Neutrino Telescope Aart Heijboer, Nikhef 1 high energy Quanta from the Universe (why look for neutrinos) Universe contains very high Energy particle accelerators (E = up to 10 6

More information

Probing Leptoquarks at IceCube. Haim Goldberg

Probing Leptoquarks at IceCube. Haim Goldberg 1 Leptoquarks in theory Experimental limits: HERA and Tevatron Phenomenology: cross sections and inelasticity Sensitivity reach at IceCube Work done with L. Anchordoqui, C. A. Garcia Canal, D. G. Dumm,

More information

Looking Beyond the Standard Model with Energetic Cosmic Particles

Looking Beyond the Standard Model with Energetic Cosmic Particles Looking Beyond the Standard Model with Energetic Cosmic Particles Andreas Ringwald http://www.desy.de/ ringwald DESY Seminar Universität Dortmund June 13, 2006, Dortmund, Germany 1. Introduction Looking

More information

Neutrino induced muons

Neutrino induced muons Neutrino induced muons The straight part of the depth intensity curve at about 10-13 is that of atmospheric neutrino induced muons in vertical and horizontal direction. Types of detected neutrino events:

More information

Topics in Nuclear Astrophysics. John Beacom, Theoretical Astrophysics Group, Fermilab

Topics in Nuclear Astrophysics. John Beacom, Theoretical Astrophysics Group, Fermilab Topics in Nuclear Astrophysics John Beacom Theoretical Astrophysics Group, Fermilab Classical Nuclear Astrophysics How do stars shine? How old is the Universe? How do supernovae work? How do neutron stars

More information

IceCube. francis halzen. why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector

IceCube. francis halzen. why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector IceCube francis halzen why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector the discovery (and confirmation) of cosmic neutrinos from discovery to astronomy

More information

Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002

Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002 Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002 n High Energy Astronomy Multi-Messanger Astronomy Cosmic Rays

More information

Produced in nuclear processes (e.g. fusion reactions) Solar neutrinos and supernova neutrinos

Produced in nuclear processes (e.g. fusion reactions) Solar neutrinos and supernova neutrinos Sources of Neutrinos Low energy neutrinos (10 th of MeV) Produced in nuclear processes (e.g. fusion reactions) Solar neutrinos and supernova neutrinos High energy neutrinos (10 th of GeV) Produced in high

More information

Secondary particles generated in propagation neutrinos gamma rays

Secondary particles generated in propagation neutrinos gamma rays th INT, Seattle, 20 Feb 2008 Ultra High Energy Extragalactic Cosmic Rays: Propagation Todor Stanev Bartol Research Institute Dept Physics and Astronomy University of Delaware Energy loss processes protons

More information

Neutrino Physics: Lecture 1

Neutrino Physics: Lecture 1 Neutrino Physics: Lecture 1 Overview: discoveries, current status, future Amol Dighe Department of Theoretical Physics Tata Institute of Fundamental Research Feb 1, 2010 Plan of the course Omnipresent

More information

New physics and astrophysical neutrinos in IceCube

New physics and astrophysical neutrinos in IceCube New physics and astrophysical neutrinos in IceCube Atsushi Watanabe (Maskawa Institute, Kyoto Sangyo University) November 10 th, 2015, @Particle Physics Theory Group, Osaka University Outline We review

More information

neutrino astronomy francis halzen university of wisconsin

neutrino astronomy francis halzen university of wisconsin neutrino astronomy francis halzen university of wisconsin http://icecube.wisc.edu 50,000 year old sterile ice instead of water we built a km 3 neutrino detector 3 challenges: drilling optics of ice atmospheric

More information

Neutrinos From The Sky and Through the Earth

Neutrinos From The Sky and Through the Earth Neutrinos From The Sky and Through the Earth Kate Scholberg, Duke University DNP Meeting, October 2016 Neutrino Oscillation Nobel Prize! The fourth Nobel for neutrinos: 1988: neutrino flavor 1995: discovery

More information

Ultra High Energy Cosmic Rays I

Ultra High Energy Cosmic Rays I Ultra High Energy Cosmic Rays I John Linsley (PRL 10 (1963) 146) reports on the detection in Vulcano Ranch of an air shower of energy above 1020 ev. Problem: the microwave background radiation is discovered

More information

Cosmic Rays. Discovered in 1912 by Viktor Hess using electroscopes to measure ionization at altitudes via balloon

Cosmic Rays. Discovered in 1912 by Viktor Hess using electroscopes to measure ionization at altitudes via balloon Cosmic Rays Discovered in 1912 by Viktor Hess using electroscopes to measure ionization at altitudes via balloon Nobel Prize in 1936 Origin of high energy cosmic rays is still not completely understood

More information

Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics

Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics Winter school Schladming 2010 Masses and constants 02.03.2010 Walter Winter Universität Würzburg ν Contents (overall) Lecture 1: Testing

More information

PoS(NOW2016)041. IceCube and High Energy Neutrinos. J. Kiryluk (for the IceCube Collaboration)

PoS(NOW2016)041. IceCube and High Energy Neutrinos. J. Kiryluk (for the IceCube Collaboration) IceCube and High Energy Neutrinos Stony Brook University, Stony Brook, NY 11794-3800, USA E-mail: Joanna.Kiryluk@stonybrook.edu IceCube is a 1km 3 neutrino telescope that was designed to discover astrophysical

More information

The Pierre Auger Observatory

The Pierre Auger Observatory The Pierre Auger Observatory Hunting the Highest Energy Cosmic Rays I High Energy Cosmic Rays and Extensive Air Showers March 2007 E.Menichetti - Villa Gualino, March 2007 1 Discovery of Cosmic Rays Altitude

More information

Christian Spiering, DESY

Christian Spiering, DESY Christian Spiering, DESY EPS-ECFA 2009 Cracow, July 2009 C. Spiering, Planck 09 1. No black holes from LHC which would eat the Earth! C. Spiering, Planck 09 2. Cross section @ high energies TOTEM @ CMS

More information

Neutrinos and Beyond: New Windows on Nature

Neutrinos and Beyond: New Windows on Nature Neutrinos and Beyond: New Windows on Nature Neutrino Facilities Assessment Committee Board on Physics and Astronomy National Research Council December 10, 2002 Charge The Neutrino Facilities Assessment

More information

IceCube: Dawn of Multi-Messenger Astronomy

IceCube: Dawn of Multi-Messenger Astronomy IceCube: Dawn of Multi-Messenger Astronomy Introduction Detector Description Multi-Messenger look at the Cosmos Updated Diffuse Astrophysical Neutrino Data Future Plans Conclusions Ali R. Fazely, Southern

More information

High Energy Neutrino Astrophysics with IceCube

High Energy Neutrino Astrophysics with IceCube High Energy Neutrino Astrophysics with IceCube Konstancja Satalecka, DESY Zeuthen UCM, 25th February 2011 OUTLINE Neutrino properties Cosmic Neutrinos Neutrino detection Ice/Water Cerenkov Detectors Neutrino

More information

Tau Neutrino Physics Introduction. Barry Barish 18 September 2000

Tau Neutrino Physics Introduction. Barry Barish 18 September 2000 Tau Neutrino Physics Introduction Barry Barish 18 September 2000 ν τ the third neutrino The Number of Neutrinos big-bang nucleosynthesis D, 3 He, 4 He and 7 Li primordial abundances abundances range over

More information

STATUS OF ULTRA HIGH ENERGY COSMIC RAYS

STATUS OF ULTRA HIGH ENERGY COSMIC RAYS STATUS OF ULTRA HIGH ENERGY COSMIC RAYS Esteban Roulet (Bariloche) COSMO / CosPA 2010, Tokyo Power law flux stochastic (Fermi) acceleration in shocks cosmic ray flux Small fractional energy gain after

More information

PeV Neutrinos from Star-forming Regions. Hajime Takami KEK, JSPS Fellow

PeV Neutrinos from Star-forming Regions. Hajime Takami KEK, JSPS Fellow PeV Neutrinos from Star-forming Regions Hajime Takami KEK, JSPS Fellow Outline 0. Basic requirements for PeV neutrinos. Review on cosmogenic neutrinos for the PeV neutrinos. PeV neutrinos from Star-forming

More information

Neutrinos and Astrophysics

Neutrinos and Astrophysics Neutrinos and Astrophysics Astrophysical neutrinos Solar and stellar neutrinos Supernovae High energy neutrinos Cosmology Leptogenesis Big bang nucleosynthesis Large-scale structure and CMB Relic neutrinos

More information

NEUTRINO ASTRONOMY AT THE SOUTH POLE

NEUTRINO ASTRONOMY AT THE SOUTH POLE NEUTRINO ASTRONOMY AT THE SOUTH POLE D.J. BOERSMA The IceCube Project, 222 West Washington Avenue, Madison, Wisconsin, USA E-mail: boersma@icecube.wisc.edu A brief overview of AMANDA and IceCube is presented,

More information

Absorption and production of high energy particles in the infrared background

Absorption and production of high energy particles in the infrared background Roma I, 16 March 2007 Absorption and production of high energy particles in the infrared background Todor Stanev Bartol Research Institute University of Delaware Newark, DE19716 We discuss the role of

More information

Astroparticle Physics with IceCube

Astroparticle Physics with IceCube Astroparticle Physics with IceCube Nick van Eijndhoven nickve.nl@gmail.com http://w3.iihe.ac.be f or the IceCube collaboration Vrije Universiteit Brussel - IIHE(ULB-VUB) Pleinlaan 2, B-1050 Brussel, Belgium

More information

Probing New Physics at the Highest Energies

Probing New Physics at the Highest Energies Probing New Physics at the Highest Energies OUTLINE: José I Illana CAFPE & Granada U in collaboration with: Manuel Masip and Davide Meloni 1 Ultrahigh energy cosmic rays vs New Physics 2 TeV gravity explored

More information

Reminder : scenarios of light new physics

Reminder : scenarios of light new physics Reminder : scenarios of light new physics No new particle EW scale postulated Heavy neutral lepton AND well motivated! Neutrino masses Matter-antimatter asymmetry Dark matter Dark photon Muon g-2 anomaly

More information

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.:

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.: PHY326/426 Dark Matter and the Universe Dr. Vitaly Kudryavtsev F9b, Tel.: 0114 2224531 v.kudryavtsev@sheffield.ac.uk Indirect searches for dark matter WIMPs Dr. Vitaly Kudryavtsev Dark Matter and the Universe

More information

Atmospheric Neutrinos and Neutrino Oscillations

Atmospheric Neutrinos and Neutrino Oscillations FEATURE Principal Investigator Takaaki Kajita Research Area Experimental Physics Atmospheric Neutrinos and Neutrino Oscillations Introduction About a hundred years ago Victor Hess aboard a balloon measured

More information

Ultra-High Energy Cosmic Rays & Neutrinos above the Terascale

Ultra-High Energy Cosmic Rays & Neutrinos above the Terascale Ultra-High Energy Cosmic Rays & Neutrinos above the Terascale Angela V. Olinto A&A, KICP, EFI The University of Chicago Nature sends 10 20 ev particles QuickTime and a YUV420 codec decompressor are needed

More information

Measuring the neutrino mass hierarchy with atmospheric neutrinos in IceCube(-Gen2)

Measuring the neutrino mass hierarchy with atmospheric neutrinos in IceCube(-Gen2) Measuring the neutrino mass hierarchy with atmospheric neutrinos in IceCube(-Gen2) Beyond the Standard Model with Neutrinos and Nuclear Physics Solvay Workshop November 30, 2017 Darren R Grant The atmospheric

More information

Extensive Air Showers and Particle Physics Todor Stanev Bartol Research Institute Dept Physics and Astronomy University of Delaware

Extensive Air Showers and Particle Physics Todor Stanev Bartol Research Institute Dept Physics and Astronomy University of Delaware Extensive Air Showers and Particle Physics Todor Stanev Bartol Research Institute Dept Physics and Astronomy University of Delaware Extensive air showers are the cascades that develop in the atmosphere

More information

Probing Lorentz Invariance Violation

Probing Lorentz Invariance Violation University of Washington, Seattle, WA with high-energy astrophysical neutrinos based on PRD 87 116009 (2013) Department of Physics Arizona State University Enrico.Borriello@asu.edu June 8 th, 2015 In collaboration

More information

Implications of cosmic ray results for UHE neutrinos

Implications of cosmic ray results for UHE neutrinos Implications of cosmic ray results for UHE neutrinos Subir Sarkar Department of Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, UK E-mail: s.sarkar@physics.ox.ac.uk Abstract. Recent measurements

More information

Windows on the Cosmos

Windows on the Cosmos Windows on the Cosmos Three types of information carriers about what s out there arrive on Earth: Electromagnetic Radiation Visible light, UV, IR => telescopes (Earth/Space) Radio waves => Antennae ( Dishes

More information

arxiv:astro-ph/ v1 12 Oct 1999

arxiv:astro-ph/ v1 12 Oct 1999 The sun as a high energy neutrino source arxiv:astro-ph/9910208v1 12 Oct 1999 Christian Hettlage, Karl Mannheim Universitätssternwarte, Geismarlandstraße 11, D-37083 Göttingen, Germany and John G. Learned

More information

Ultra-High Energy Neutrinos and Fundamental Tests

Ultra-High Energy Neutrinos and Fundamental Tests Ultra-High Energy Neutrinos and Fundamental Tests A short introduction to primary cosmic rays Diffuse and point source fluxes of gamma-rays and neutrinos Neutrino flux sensitivities, detection techniques,

More information

Project Paper May 13, A Selection of Dark Matter Candidates

Project Paper May 13, A Selection of Dark Matter Candidates A688R Holly Sheets Project Paper May 13, 2008 A Selection of Dark Matter Candidates Dark matter was first introduced as a solution to the unexpected shape of our galactic rotation curve; instead of showing

More information

Detection of Ultra-high energy neutrinos The First Light of the high energy neutrino astronomy

Detection of Ultra-high energy neutrinos The First Light of the high energy neutrino astronomy Detection of Ultra-high energy neutrinos The First Light of the high energy neutrino astronomy Shigeru Yoshida Department of Physics Chiba University the 1 st discovery of the PeV ν Bert Physical Review

More information

Fundamental Physics with Cosmic Rays. Kate Scholberg MIT NEPPSR 2003

Fundamental Physics with Cosmic Rays. Kate Scholberg MIT NEPPSR 2003 Fundamental Physics with Cosmic Rays Kate Scholberg MIT NEPPSR 2003 OUTLINE Introduction to cosmic rays Cosmic rays in particle physics history A few selections from the smorgasbord: Ultrahigh energy cosmic

More information

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title Neutrino Physics with the IceCube Detector Permalink https://escholarship.org/uc/item/6rq7897p Authors Kiryluk, Joanna

More information

Dr. John Kelley Radboud Universiteit, Nijmegen

Dr. John Kelley Radboud Universiteit, Nijmegen arly impressive. An ultrahighoton triggers a cascade of particles mulation of the Auger array. The Many Mysteries of Cosmic Rays Dr. John Kelley Radboud Universiteit, Nijmegen Questions What are cosmic

More information

T2K and other long baseline experiments (bonus: reactor experiments) Justyna Łagoda

T2K and other long baseline experiments (bonus: reactor experiments) Justyna Łagoda T2K and other long baseline experiments (bonus: reactor experiments) Justyna Łagoda Neutrino mixing and oscillations mixing of flavor and mass eigenstates PMNS matrix parametrized as ( )( cxy = cosθxy

More information

David Saltzberg (UCLA), SLAC SUMMER INSTITUTE LECTURE, AUGUST 2008

David Saltzberg (UCLA), SLAC SUMMER INSTITUTE LECTURE, AUGUST 2008 UHE Neutrino Astronomy An Invitation to Nature s Laboratories David Saltzberg (UCLA), SLAC SUMMER INSTITUTE LECTURE, AUGUST 2008 What are the ways we get all our information about the universe beyond the

More information

Spectra of Cosmic Rays

Spectra of Cosmic Rays Spectra of Cosmic Rays Flux of relativistic charged particles [nearly exactly isotropic] Particle density Power-Law Energy spectra Exponent (p, Nuclei) : Why power laws? (constraint on the dynamics of

More information

Neutrino Oscillations and the Matter Effect

Neutrino Oscillations and the Matter Effect Master of Science Examination Neutrino Oscillations and the Matter Effect RAJARSHI DAS Committee Walter Toki, Robert Wilson, Carmen Menoni Overview Introduction to Neutrinos Two Generation Mixing and Oscillation

More information

Testing New Physics With Neutrino Astrophysics. John Beacom, The Ohio State University

Testing New Physics With Neutrino Astrophysics. John Beacom, The Ohio State University Testing New Physics With Neutrino Astrophysics John Beacom, The Ohio State University John Beacom, The Ohio State University Baryon and Lepton Number Violation, Case Western, May 2017 1 Plan of the Talk

More information

1 Neutrinos. 1.1 Introduction

1 Neutrinos. 1.1 Introduction 1 Neutrinos 1.1 Introduction It was a desperate attempt to rescue energy and angular momentum conservation in beta decay when Wolfgang Pauli postulated the existence of a new elusive particle, the neutrino.

More information

Novel neutrino interactions at IceCube

Novel neutrino interactions at IceCube Novel neutrino interactions at IceCube Alex Friedland Los Alamos Dec 17, 2013 1 Collaborators JJ Cherry postdoc, Los Alamos Ian Shoemaker postdoc, Los Alamos -> CP3, Denmark 2 Generalities: new physics

More information

High Energy Neutrino Astronomy

High Energy Neutrino Astronomy High Energy Neutrino Astronomy VII International Pontecorvo School Prague, August 2017 Christian Spiering, DESY Zeuthen Content Lecture 1 Scientific context Operation principles The detectors Atmospheric

More information

arxiv: v4 [hep-ph] 27 Jul 2011

arxiv: v4 [hep-ph] 27 Jul 2011 The Glashow resonance as a discriminator of UHE cosmic neutrinos originating from pγ and pp collisions Zhi-zhong Xing Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

More information

IceCube: Ultra-high Energy Neutrinos

IceCube: Ultra-high Energy Neutrinos IceCube: Ultra-high Energy Neutrinos Aya Ishihara JSPS Research Fellow at Chiba University for the IceCube collaboration Neutrino2012 at Kyoto June 8 th 2012 1 Ultra-high Energy Neutrinos: PeV and above

More information

Cosmic Neutrinos in IceCube. Naoko Kurahashi Neilson University of Wisconsin, Madison IceCube Collaboration

Cosmic Neutrinos in IceCube. Naoko Kurahashi Neilson University of Wisconsin, Madison IceCube Collaboration Cosmic Neutrinos in IceCube Naoko Kurahashi Neilson University of Wisconsin, Madison IceCube Collaboration HEM KICP UChicago 6/9/2014 1 Outline IceCube capabilities The discovery analysis with updated

More information

Neutrinos Lecture Introduction

Neutrinos Lecture Introduction Neutrinos Lecture 16 1 Introduction Neutrino physics is discussed in some detail for several reasons. In the first place, the physics is interesting and easily understood, yet it is representative of the

More information

PoS(NEUTEL2015)037. The NOvA Experiment. G. Pawloski University of Minnesota Minneapolis, Minnesota 55455, USA

PoS(NEUTEL2015)037. The NOvA Experiment. G. Pawloski University of Minnesota Minneapolis, Minnesota 55455, USA University of Minnesota Minneapolis, Minnesota 5555, USA E-mail: pawloski@physics.umn.edu NOvA is a long-baseline accelerator neutrino experiment that studies neutrino oscillation phenomena governed by

More information

Neutrino Signals from Dark Matter Decay

Neutrino Signals from Dark Matter Decay Neutrino Signals from Dark Matter Decay Michael Grefe Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany COSMO/CosPA 2010 The University of Tokyo 27 September 2010 Based on work in collaboration with

More information

Recent results from Super-Kamiokande

Recent results from Super-Kamiokande Recent results from Super-Kamiokande ~ atmospheric neutrino ~ Yoshinari Hayato ( Kamioka, ICRR, U-Tokyo ) for the Super-Kamiokande collaboration 1 41.4m Super-Kamiokande detector 50000 tons Ring imaging

More information

High energy events in IceCube: hints of decaying leptophilic Dark Matter?

High energy events in IceCube: hints of decaying leptophilic Dark Matter? High energy events in IceCube: hints of decaying leptophilic Dark Matter? 33rd IMPRS Workshop Max Planck Institute for Physics (Main Auditorium), Munich 26/10/2015 Messengers from space Messengers from

More information

Multi-Messenger Astonomy with Cen A?

Multi-Messenger Astonomy with Cen A? Multi-Messenger Astonomy with Cen A? Michael Kachelrieß NTNU, Trondheim [] Outline of the talk 1 Introduction 2 Dawn of charged particle astronomy? Expectations vs. Auger data Effects of cluster fields

More information

Neutrino vs antineutrino. Lepton number

Neutrino vs antineutrino. Lepton number Introduction to Elementary Particle Physics. Note 18 Page 1 of Neutrino vs antineutrino Neutrino is a neutral particle a legitimate question: are neutrino and anti-neutrino the same particle? Compare:

More information

Gamma-ray bursts as the sources of the ultra-high energy cosmic rays?

Gamma-ray bursts as the sources of the ultra-high energy cosmic rays? Gamma-ray bursts as the sources of the ultra-high energy cosmic rays? ACP seminar, IPMU Kashiwa, Japan Oct. 30, 2013 Walter Winter Universität Würzburg Contents Introduction Simulation of sources Multi-messenger

More information

Detection of Ultra High-Energy Tau-Neutrinos with Fluorescence Detectors

Detection of Ultra High-Energy Tau-Neutrinos with Fluorescence Detectors Brazilian Journal of Physics, vol. 37, no. 2B, June, 2007 617 Detection of Ultra High-Energy Tau-Neutrinos with Fluorescence Detectors C. A. Moura Jr. and M. M. Guzzo Instituto de Física Gleb Wataghin

More information

Black Holes and Extra Dimensions

Black Holes and Extra Dimensions Black Holes and Extra Dimensions Jonathan Feng UC Irvine Harvey Mudd Colloquium 7 December 2004 The Standard Model Carrier γ photon g gluon Z W Force E&M Strong Weak Group U(1) SU(3) SU(2) 7 December 2004

More information

Scientific Community Perspectives Physics

Scientific Community Perspectives Physics Scientific Community Perspectives Physics Barry C Barish Committee on Science, Engineering and Public Policy Board on Physics and Astronomy Committee on Setting Priorities for NSF s Large Research Facility

More information

Interactions/Weak Force/Leptons

Interactions/Weak Force/Leptons Interactions/Weak Force/Leptons Quantum Picture of Interactions Yukawa Theory Boson Propagator Feynman Diagrams Electromagnetic Interactions Renormalization and Gauge Invariance Weak and Electroweak Interactions

More information

Gamma-ray Astrophysics

Gamma-ray Astrophysics Gamma-ray Astrophysics AGN Pulsar SNR GRB Radio Galaxy The very high energy -ray sky NEPPSR 25 Aug. 2004 Many thanks to Rene Ong at UCLA Guy Blaylock U. of Massachusetts Why gamma rays? Extragalactic Background

More information

Dept. of Physics and Astronomy, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA

Dept. of Physics and Astronomy, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA EPJ Web of Conferences 116, 11004 (2016) DOI: 10.1051/epjconf/201611611004 C Owned by the authors, published by EDP Sciences, 2016 Results from IceCube Tyce DeYoung a for the IceCube Collaboration Dept.

More information

ANITA: Searching for Neutrinos at the Energy Frontier

ANITA: Searching for Neutrinos at the Energy Frontier ANITA: Searching for Neutrinos at the Energy Frontier Steve Barwick, UC Irvine APS Meeting, Philadelphia, April 2003 The energy frontier has traditionally led to tremendous breakthroughs in our understanding

More information

Multi-PeV Signals from a New Astrophysical Neutrino Flux Beyond the Glashow Resonance

Multi-PeV Signals from a New Astrophysical Neutrino Flux Beyond the Glashow Resonance Multi-PeV Signals from a New Astrophysical Neutrino Flux Beyond the Glashow Resonance Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) Stanford University and SLAC National Accelerator Laboratory

More information

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006 PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY Paolo Lipari Vulcano 27 may 2006 High Energy Neutrino Astrophysics will CERTAINLY become an essential field in a New Multi-Messenger Astrophysics What is

More information

SalSA. The Saltdome Shower Array: A Teraton UHE Neutrino Detector. Kevin Reil Stanford Linear Accelerator Center.

SalSA. The Saltdome Shower Array: A Teraton UHE Neutrino Detector. Kevin Reil Stanford Linear Accelerator Center. SalSA The Saltdome Shower Array: A Teraton UHE Neutrino Detector Kevin Reil Stanford Linear Accelerator Center UHE Neutrinos: A Quick Review GZK mechanism (p + + γ + π) guarantees UHE neutrinos (standard

More information

Neutrino Flavor Ratios Modified by Cosmic Ray Secondary- acceleration

Neutrino Flavor Ratios Modified by Cosmic Ray Secondary- acceleration Neutrino Flavor Ratios Modified by Cosmic Ray Secondary- acceleration ref.) NK & Ioka 2015, PRD accepted (arxiv:1504.03417) Norita Kawanaka (Univ. of Tokyo) Kunihito Ioka (KEK/Sokendai) TeV Particle Astrophysics

More information

Cosmology and particle physics

Cosmology and particle physics Cosmology and particle physics Lecture notes Timm Wrase Lecture 5 The thermal universe - part I In the last lecture we have shown that our very early universe was in a very hot and dense state. During

More information

Ultra-High Energy Cosmic Rays and Astrophysics. Hang Bae Kim Hanyang University Hangdang Workshop,

Ultra-High Energy Cosmic Rays and Astrophysics. Hang Bae Kim Hanyang University Hangdang Workshop, Ultra-High Energy Cosmic Rays and Astrophysics Hang Bae Kim Hanyang University Hangdang Workshop, 2012. 08. 22 Ultra High Energy Cosmic Rays Ultra High Energy Cosmic Ray (UHECR)» E 3 E & 10 18 ev Energy

More information

Ultrahigh Energy Cosmic Rays propagation II

Ultrahigh Energy Cosmic Rays propagation II Ultrahigh Energy Cosmic Rays propagation II The March 6th lecture discussed the energy loss processes of protons, nuclei and gamma rays in interactions with the microwave background. Today I will give

More information

Overview: UHECR spectrum and composition Arrival directions and magnetic field Method for search for UHE nuclei sources Application to the Auger data

Overview: UHECR spectrum and composition Arrival directions and magnetic field Method for search for UHE nuclei sources Application to the Auger data Overview: UHECR spectrum and composition Arrival directions and magnetic field Method for search for UHE nuclei sources Application to the Auger data Acceleration of UHECR A.G.N. GRB Radio Galaxy Lobe

More information

EXOTICA AT LHC. Philippe Miné LPNHE-Ecole Polytechnique, IN2P3-CNRS, France CMS collaboration.

EXOTICA AT LHC. Philippe Miné LPNHE-Ecole Polytechnique, IN2P3-CNRS, France CMS collaboration. EXOTICA AT LHC Philippe Miné LPNHE-Ecole Polytechnique, IN2P3-CNRS, France CMS collaboration pmine@poly.in2p3.fr Chia, Sardinia, Italy October 24-27 2001 1 EXOTICA AT LHC Beyond the Standard Model, Supersymmetry

More information