Martin Bader June 25, On Reversal and Transposition Medians

Size: px
Start display at page:

Download "Martin Bader June 25, On Reversal and Transposition Medians"

Transcription

1 Martin Bader June 25, 2009 On Reversal and Transposition Medians

2 Page 2 On Reversal and Transposition Medians Martin Bader June 25, 2009 Genome Rearrangements During evolution, the gene order in a chromosome can change Gene order of two land snail mitochondrial DNAs Cepaea nemoralis cox1 V rrnl L1 A nad6 P nad5 nad1 nad4 L cob D C F cox2 Y W G H Q L2 atp8 N atp6 R E rrns M nad3 S2 T cox3 S1 nad4 I nad2 K Albinaria coerulea cox1 V rrnl L1 P A nad6 nad5 nad1 nad4 L cob D C F cox2 Y W G H Q L2 atp8 N atp6 R E rrns M nad3 S2 S1 nad4 T cox3 I nad2 K

3 Page 2 On Reversal and Transposition Medians Martin Bader June 25, 2009 Genome Rearrangements During evolution, the gene order in a chromosome can change Gene order of two land snail mitochondrial DNAs Cepaea nemoralis cox1 V rrnl L1 A nad6 P nad5 nad1 nad4 L cob D C F cox2 Y W G H Q L2 atp8 N atp6 R E rrns M nad3 S2 T cox3 S1 nad4 I nad2 K Albinaria coerulea cox1 V rrnl L1 P A nad6 nad5 nad1 nad4 L cob D C F cox2 Y W G H Q L2 atp8 N atp6 R E rrns M nad3 S2 S1 nad4 T cox3 I nad2 K Reconstruct evolutionary events Use as distance measure Use for phylogenetic reconstruction

4 Page 3 On Reversal and Transposition Medians Martin Bader June 25, 2009 The Median Problem Given gene orders π 1,π 2,π 3 Find M where 3 i=1 d(πi,m) is minimized π 1 d(π 1,M) M d(π 2,M) π 2 d(π 3,M) π 3

5 Page 3 On Reversal and Transposition Medians Martin Bader June 25, 2009 The Median Problem Given gene orders π 1,π 2,π 3 Find M where 3 i=1 d(πi,m) is minimized π 1 d(π 1,M) M d(π 2,M) π 2 d(π 3,M) π 3 NP-hard even for the most simple distance measures

6 Page 4 On Reversal and Transposition Medians Martin Bader June 25, 2009 Our contribution Exact algorithms for the Transposition Median Problem Exact algorithm for the weighted Reversal and Transposition Median Problem (Extension of Reversal Median solver, Caprara 2003) Improved exact algorithm for pairwise distances (Improvement of Christie 1998)

7 Page 5 On Reversal and Transposition Medians Martin Bader June 25, 2009 The Multiple Breakpoint Graph Edge-colored graph Contains neighborhood relations for each gene order

8 Page 5 On Reversal and Transposition Medians Martin Bader June 25, 2009 The Multiple Breakpoint Graph Edge-colored graph Contains neighborhood relations for each gene order Example: 1 h 5 t 1 5 π 1 = ( ) π 2 = ( ) π 3 = ( ) M = ( ) 1 t 2 h 2 2 t 5 h 4 t 4 h 4 3 h 3 3 t

9 Page 5 On Reversal and Transposition Medians Martin Bader June 25, 2009 The Multiple Breakpoint Graph Edge-colored graph Contains neighborhood relations for each gene order Example: 1 h 5 t 1 5 π 1 = ( ) π 2 = ( ) π 3 = ( ) M = ( ) 1 t 2 h 2 2 t 5 h 4 t 4 h 4 3 h 3 3 t

10 Page 5 On Reversal and Transposition Medians Martin Bader June 25, 2009 The Multiple Breakpoint Graph Edge-colored graph Contains neighborhood relations for each gene order Example: 1 h 5 t 1 5 π 1 = ( ) π 2 = ( ) π 3 = ( ) M = ( ) 1 t 2 h 2 2 t 5 h 4 t 4 h 4 3 h 3 3 t

11 Page 5 On Reversal and Transposition Medians Martin Bader June 25, 2009 The Multiple Breakpoint Graph Edge-colored graph Contains neighborhood relations for each gene order Example: 1 h 5 t 1 5 π 1 = ( ) π 2 = ( ) π 3 = ( ) M = ( ) 1 t 2 h 2 2 t 5 h 4 t 4 h 4 3 h 3 3 t

12 Page 5 On Reversal and Transposition Medians Martin Bader June 25, 2009 The Multiple Breakpoint Graph Edge-colored graph Contains neighborhood relations for each gene order Example: 1 h 5 t 1 5 π 1 = ( ) π 2 = ( ) π 3 = ( ) M = ( ) 1 t 2 h 2 2 t 5 h 4 t 4 h 4 3 h 3 3 t

13 Page 5 On Reversal and Transposition Medians Martin Bader June 25, 2009 The Multiple Breakpoint Graph Edge-colored graph Contains neighborhood relations for each gene order Example: 1 h 5 t 1 5 π 1 = ( ) π 2 = ( ) π 3 = ( ) M = ( ) 1 t 2 h 2 2 t 5 h 4 t 4 h 4 3 h 3 3 t

14 Page 6 On Reversal and Transposition Medians Martin Bader June 25, 2009 Cycles and distances Edges of two colors form cycles 1 h 5t 1 5 π 1 = ( ) M = ( ) 1t 2 h 2 2t 5 h 4t 4 h 4 3 h 3 3t

15 Page 6 On Reversal and Transposition Medians Martin Bader June 25, 2009 Cycles and distances Edges of two colors form cycles 1 h 5t 1 5 π 2 = ( ) M = ( ) 1t 2 h 2 2t 5 h 4t 4 h 4 3 h 3 3t

16 Page 6 On Reversal and Transposition Medians Martin Bader June 25, 2009 Cycles and distances Edges of two colors form cycles 1 h 5t 1 5 π 3 = ( ) M = ( ) 1t 2 h 2 2t 5 h 4t 4 h 4 3 h 3 3t

17 Page 6 On Reversal and Transposition Medians Martin Bader June 25, 2009 Cycles and distances Edges of two colors form cycles 1 h 5t 1 5 π 3 = ( ) M = ( ) 1t 2 h 2 2t 5 h 4t 4 h 4 3t 3 Distances closely related to number of cycles 3 h d r = n c + h + f d t n c odd 2 d w w t 2 (n c odd (2 2w r w t )c even )

18 Page 7 On Reversal and Transposition Medians Martin Bader June 25, 2009 Sketch of the algorithm Solve Cycle Median Problem Verify solution

19 Page 7 On Reversal and Transposition Medians Martin Bader June 25, 2009 Sketch of the algorithm Solve Cycle Median Problem Start with empty M Subsequently add edges Estimate lower bound for partial solution Continue with partial solution with least lower bound (branch and bound) NEW: Consider cycle lengths Verify solution

20 Page 7 On Reversal and Transposition Medians Martin Bader June 25, 2009 Sketch of the algorithm Solve Cycle Median Problem Start with empty M Subsequently add edges Estimate lower bound for partial solution Continue with partial solution with least lower bound (branch and bound) NEW: Consider cycle lengths Verify solution Calculate edge weights... either by an exact algorithm for pairwise distances... or by an approximation algorithm (faster)

21 Page 8 On Reversal and Transposition Medians Martin Bader June 25, 2009 Experiments Create random input Start with id of size n (n = 37 and n = 100) Create 3 sequences of operations of length r (2 r 15) Use these sequences to obtain π 1, π 2, and π 3

22 Page 8 On Reversal and Transposition Medians Martin Bader June 25, 2009 Experiments Create random input Start with id of size n (n = 37 and n = 100) Create 3 sequences of operations of length r (2 r 15) Use these sequences to obtain π 1, π 2, and π 3 Testing Most inputs could be solved within a few seconds Verifying solutions with approximation algorithm is very accurate Much faster than previous algorithm for the Transposition Median Problem (Yue et al. 2008)

23 Page 9 On Reversal and Transposition Medians Martin Bader June 25, 2009 Conclusion We presented an algorithm that... can solve the TMP and wrtmp exactly is fast enough for practical use is FREE SOFTWARE (GPL v3.0) download it from inst.190/mitarbeiter/bader/phylo tar.gz

24 Page 9 On Reversal and Transposition Medians Martin Bader June 25, 2009 Conclusion We presented an algorithm that... can solve the TMP and wrtmp exactly is fast enough for practical use is FREE SOFTWARE (GPL v3.0) download it from inst.190/mitarbeiter/bader/phylo tar.gz Thanks for your attention!

On Reversal and Transposition Medians

On Reversal and Transposition Medians On Reversal and Transposition Medians Martin Bader International Science Index, Computer and Information Engineering waset.org/publication/7246 Abstract During the last years, the genomes of more and more

More information

AN EXACT SOLVER FOR THE DCJ MEDIAN PROBLEM

AN EXACT SOLVER FOR THE DCJ MEDIAN PROBLEM AN EXACT SOLVER FOR THE DCJ MEDIAN PROBLEM MENG ZHANG College of Computer Science and Technology, Jilin University, China Email: zhangmeng@jlueducn WILLIAM ARNDT AND JIJUN TANG Dept of Computer Science

More information

Genomes Comparision via de Bruijn graphs

Genomes Comparision via de Bruijn graphs Genomes Comparision via de Bruijn graphs Student: Ilya Minkin Advisor: Son Pham St. Petersburg Academic University June 4, 2012 1 / 19 Synteny Blocks: Algorithmic challenge Suppose that we are given two

More information

Multiple genome rearrangement: a general approach via the evolutionary genome graph

Multiple genome rearrangement: a general approach via the evolutionary genome graph BIOINFORMATICS Vol. 18 Suppl. 1 2002 Pages S303 S311 Multiple genome rearrangement: a general approach via the evolutionary genome graph Dmitry Korkin and Lev Goldfarb Faculty of Computer Science, University

More information

On the complexity of unsigned translocation distance

On the complexity of unsigned translocation distance Theoretical Computer Science 352 (2006) 322 328 Note On the complexity of unsigned translocation distance Daming Zhu a, Lusheng Wang b, a School of Computer Science and Technology, Shandong University,

More information

Graphs, permutations and sets in genome rearrangement

Graphs, permutations and sets in genome rearrangement ntroduction Graphs, permutations and sets in genome rearrangement 1 alabarre@ulb.ac.be Universite Libre de Bruxelles February 6, 2006 Computers in Scientic Discovery 1 Funded by the \Fonds pour la Formation

More information

Bayesian phylogenetic inference from animal mitochondrial genome arrangements

Bayesian phylogenetic inference from animal mitochondrial genome arrangements J. R. Statist. Soc. B (2002) 64, Part 4, pp. 681 693 Bayesian phylogenetic inference from animal mitochondrial genome arrangements Bret Larget and Donald L. Simon Duquesne University, Pittsburgh, USA and

More information

Recent Advances in Phylogeny Reconstruction

Recent Advances in Phylogeny Reconstruction Recent Advances in Phylogeny Reconstruction from Gene-Order Data Bernard M.E. Moret Department of Computer Science University of New Mexico Albuquerque, NM 87131 Department Colloqium p.1/41 Collaborators

More information

BIOINFORMATICS. New approaches for reconstructing phylogenies from gene order data. Bernard M.E. Moret, Li-San Wang, Tandy Warnow and Stacia K.

BIOINFORMATICS. New approaches for reconstructing phylogenies from gene order data. Bernard M.E. Moret, Li-San Wang, Tandy Warnow and Stacia K. BIOINFORMATICS Vol. 17 Suppl. 1 21 Pages S165 S173 New approaches for reconstructing phylogenies from gene order data Bernard M.E. Moret, Li-San Wang, Tandy Warnow and Stacia K. Wyman Department of Computer

More information

Genome Rearrangements In Man and Mouse. Abhinav Tiwari Department of Bioengineering

Genome Rearrangements In Man and Mouse. Abhinav Tiwari Department of Bioengineering Genome Rearrangements In Man and Mouse Abhinav Tiwari Department of Bioengineering Genome Rearrangement Scrambling of the order of the genome during evolution Operations on chromosomes Reversal Translocation

More information

An Improved Algorithm for Ancestral Gene Order Reconstruction

An Improved Algorithm for Ancestral Gene Order Reconstruction V. Kůrková et al. (Eds.): ITAT 2014 with selected papers from Znalosti 2014, CEUR Workshop Proceedings Vol. 1214, pp. 46 53 http://ceur-ws.org/vol-1214, Series ISSN 1613-0073, c 2014 A. Herencsár B. Brejová

More information

BIOINFORMATICS. Scaling Up Accurate Phylogenetic Reconstruction from Gene-Order Data. Jijun Tang 1 and Bernard M.E. Moret 1

BIOINFORMATICS. Scaling Up Accurate Phylogenetic Reconstruction from Gene-Order Data. Jijun Tang 1 and Bernard M.E. Moret 1 BIOINFORMATICS Vol. 1 no. 1 2003 Pages 1 8 Scaling Up Accurate Phylogenetic Reconstruction from Gene-Order Data Jijun Tang 1 and Bernard M.E. Moret 1 1 Department of Computer Science, University of New

More information

Algorithms for Bioinformatics

Algorithms for Bioinformatics Adapted from slides by Alexandru Tomescu, Leena Salmela, Veli Mäkinen, Esa Pitkänen 582670 Algorithms for Bioinformatics Lecture 5: Combinatorial Algorithms and Genomic Rearrangements 1.10.2015 Background

More information

Fast Phylogenetic Methods for the Analysis of Genome Rearrangement Data: An Empirical Study

Fast Phylogenetic Methods for the Analysis of Genome Rearrangement Data: An Empirical Study Fast Phylogenetic Methods for the Analysis of Genome Rearrangement Data: An Empirical Study Li-San Wang Robert K. Jansen Dept. of Computer Sciences Section of Integrative Biology University of Texas, Austin,

More information

New Approaches for Reconstructing Phylogenies from Gene Order Data

New Approaches for Reconstructing Phylogenies from Gene Order Data New Approaches for Reconstructing Phylogenies from Gene Order Data Bernard M.E. Moret Li-San Wang Tandy Warnow Stacia K. Wyman Abstract We report on new techniques we have developed for reconstructing

More information

Steps Toward Accurate Reconstructions of Phylogenies from Gene-Order Data 1

Steps Toward Accurate Reconstructions of Phylogenies from Gene-Order Data 1 Steps Toward Accurate Reconstructions of Phylogenies from Gene-Order Data Bernard M.E. Moret, Jijun Tang, Li-San Wang, and Tandy Warnow Department of Computer Science, University of New Mexico Albuquerque,

More information

Phylogenetic Reconstruction from Arbitrary Gene-Order Data

Phylogenetic Reconstruction from Arbitrary Gene-Order Data Phylogenetic Reconstruction from Arbitrary Gene-Order Data Jijun Tang and Bernard M.E. Moret University of New Mexico Department of Computer Science Albuquerque, NM 87131, USA jtang,moret@cs.unm.edu Liying

More information

A Practical Algorithm for Ancestral Rearrangement Reconstruction

A Practical Algorithm for Ancestral Rearrangement Reconstruction A Practical Algorithm for Ancestral Rearrangement Reconstruction Jakub Kováč, Broňa Brejová, and Tomáš Vinař 2 Department of Computer Science, Faculty of Mathematics, Physics, and Informatics, Comenius

More information

CREATING PHYLOGENETIC TREES FROM DNA SEQUENCES

CREATING PHYLOGENETIC TREES FROM DNA SEQUENCES INTRODUCTION CREATING PHYLOGENETIC TREES FROM DNA SEQUENCES This worksheet complements the Click and Learn developed in conjunction with the 2011 Holiday Lectures on Science, Bones, Stones, and Genes:

More information

The Saguaro Genome. Toward the Ecological Genomics of a Sonoran Desert Icon. Dr. Dario Copetti June 30, 2015 STEMAZing workshop TCSS

The Saguaro Genome. Toward the Ecological Genomics of a Sonoran Desert Icon. Dr. Dario Copetti June 30, 2015 STEMAZing workshop TCSS The Saguaro Genome Toward the Ecological Genomics of a Sonoran Desert Icon Dr. Dario Copetti June 30, 2015 STEMAZing workshop TCSS Why study a genome? - the genome contains the genetic information of an

More information

A New Fast Heuristic for Computing the Breakpoint Phylogeny and Experimental Phylogenetic Analyses of Real and Synthetic Data

A New Fast Heuristic for Computing the Breakpoint Phylogeny and Experimental Phylogenetic Analyses of Real and Synthetic Data A New Fast Heuristic for Computing the Breakpoint Phylogeny and Experimental Phylogenetic Analyses of Real and Synthetic Data Mary E. Cosner Dept. of Plant Biology Ohio State University Li-San Wang Dept.

More information

I519 Introduction to Bioinformatics, Genome Comparison. Yuzhen Ye School of Informatics & Computing, IUB

I519 Introduction to Bioinformatics, Genome Comparison. Yuzhen Ye School of Informatics & Computing, IUB I519 Introduction to Bioinformatics, 2015 Genome Comparison Yuzhen Ye (yye@indiana.edu) School of Informatics & Computing, IUB Whole genome comparison/alignment Build better phylogenies Identify polymorphism

More information

An experimental investigation on the pancake problem

An experimental investigation on the pancake problem An experimental investigation on the pancake problem Bruno Bouzy Paris Descartes University IJCAI Computer Game Workshop Buenos-Aires July, 0 Outline The pancake problem The genome rearrangement problem

More information

Greedy Algorithms. CS 498 SS Saurabh Sinha

Greedy Algorithms. CS 498 SS Saurabh Sinha Greedy Algorithms CS 498 SS Saurabh Sinha Chapter 5.5 A greedy approach to the motif finding problem Given t sequences of length n each, to find a profile matrix of length l. Enumerative approach O(l n

More information

Multiple Whole Genome Alignment

Multiple Whole Genome Alignment Multiple Whole Genome Alignment BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 206 Anthony Gitter gitter@biostat.wisc.edu These slides, excluding third-party material, are licensed under CC BY-NC 4.0 by

More information

Isolating - A New Resampling Method for Gene Order Data

Isolating - A New Resampling Method for Gene Order Data Isolating - A New Resampling Method for Gene Order Data Jian Shi, William Arndt, Fei Hu and Jijun Tang Abstract The purpose of using resampling methods on phylogenetic data is to estimate the confidence

More information

Bioinformatics tools for phylogeny and visualization. Yanbin Yin

Bioinformatics tools for phylogeny and visualization. Yanbin Yin Bioinformatics tools for phylogeny and visualization Yanbin Yin 1 Homework assignment 5 1. Take the MAFFT alignment http://cys.bios.niu.edu/yyin/teach/pbb/purdue.cellwall.list.lignin.f a.aln as input and

More information

Analysis of Gene Order Evolution beyond Single-Copy Genes

Analysis of Gene Order Evolution beyond Single-Copy Genes Analysis of Gene Order Evolution beyond Single-Copy Genes Nadia El-Mabrouk Département d Informatique et de Recherche Opérationnelle Université de Montréal mabrouk@iro.umontreal.ca David Sankoff Department

More information

10-810: Advanced Algorithms and Models for Computational Biology. microrna and Whole Genome Comparison

10-810: Advanced Algorithms and Models for Computational Biology. microrna and Whole Genome Comparison 10-810: Advanced Algorithms and Models for Computational Biology microrna and Whole Genome Comparison Central Dogma: 90s Transcription factors DNA transcription mrna translation Proteins Central Dogma:

More information

Chapter 26: Phylogeny and the Tree of Life Phylogenies Show Evolutionary Relationships

Chapter 26: Phylogeny and the Tree of Life Phylogenies Show Evolutionary Relationships Chapter 26: Phylogeny and the Tree of Life You Must Know The taxonomic categories and how they indicate relatedness. How systematics is used to develop phylogenetic trees. How to construct a phylogenetic

More information

The combinatorics and algorithmics of genomic rearrangements have been the subject of much

The combinatorics and algorithmics of genomic rearrangements have been the subject of much JOURNAL OF COMPUTATIONAL BIOLOGY Volume 22, Number 5, 2015 # Mary Ann Liebert, Inc. Pp. 425 435 DOI: 10.1089/cmb.2014.0096 An Exact Algorithm to Compute the Double-Cutand-Join Distance for Genomes with

More information

Computational Genetics Winter 2013 Lecture 10. Eleazar Eskin University of California, Los Angeles

Computational Genetics Winter 2013 Lecture 10. Eleazar Eskin University of California, Los Angeles Computational Genetics Winter 2013 Lecture 10 Eleazar Eskin University of California, Los ngeles Pair End Sequencing Lecture 10. February 20th, 2013 (Slides from Ben Raphael) Chromosome Painting: Normal

More information

Jijun Tang and Bernard M.E. Moret. Department of Computer Science, University of New Mexico, Albuquerque, NM 87131, USA

Jijun Tang and Bernard M.E. Moret. Department of Computer Science, University of New Mexico, Albuquerque, NM 87131, USA BIOINFORMATICS Vol. 19 Suppl. 1 2003, pages i30 i312 DOI:.93/bioinformatics/btg42 Scaling up accurate phylogenetic reconstruction from gene-order data Jijun Tang and Bernard M.E. Moret Department of Computer

More information

Multiple genome rearrangement

Multiple genome rearrangement Multiple genome rearrangement David Sankoff Mathieu Blanchette 1 Introduction Multiple alignment of macromolecular sequences, an important topic of algorithmic research for at least 25 years [13, 10],

More information

Phylogenetic Reconstruction: Handling Large Scale

Phylogenetic Reconstruction: Handling Large Scale p. Phylogenetic Reconstruction: Handling Large Scale and Complex Data Bernard M.E. Moret Department of Computer Science University of New Mexico p. Acknowledgments Main collaborators: Tandy Warnow (UT

More information

Burnt Pancake Problem : New Results (New Lower Bounds on the Diameter and New Experimental Optimality Ratios)

Burnt Pancake Problem : New Results (New Lower Bounds on the Diameter and New Experimental Optimality Ratios) Burnt Pancake Problem : New Results (New Lower Bounds on the Diameter and New Experimental Optimality Ratios) Bruno Bouzy Paris Descartes University SoCS 06 Tarrytown July 6-8, 06 Outline The Burnt Pancake

More information

On the tandem duplication-random loss model of genome rearrangement

On the tandem duplication-random loss model of genome rearrangement On the tandem duplication-random loss model of genome rearrangement Kamalika Chaudhuri Kevin Chen Radu Mihaescu Satish Rao November 1, 2005 Abstract We initiate the algorithmic study of a new model of

More information

Eric Tannier* - Chunfang Zheng - David Sankoff - *Corresponding author

Eric Tannier* - Chunfang Zheng - David Sankoff - *Corresponding author BMC Bioinformatics BioMed Central Methodology article Multichromosomal median and halving problems under different genomic distances Eric Tannier* 1,, Chunfang Zheng 3 and David Sankoff 3 Open Access Address:

More information

GASTS: Parsimony Scoring under Rearrangements

GASTS: Parsimony Scoring under Rearrangements GASTS: Parsimony Scoring under Rearrangements Andrew Wei Xu and Bernard M.E. Moret Laboratory for Computational Biology and Bioinformatics, EPFL, EPFL-IC-LCBB INJ230, Station 14, CH-1015 Lausanne, Switzerland

More information

Advances in Phylogeny Reconstruction from Gene Order and Content Data

Advances in Phylogeny Reconstruction from Gene Order and Content Data Advances in Phylogeny Reconstruction from Gene Order and Content Data Bernard M.E. Moret Department of Computer Science, University of New Mexico, Albuquerque NM 87131 Tandy Warnow Department of Computer

More information

BMI/CS 776 Lecture #20 Alignment of whole genomes. Colin Dewey (with slides adapted from those by Mark Craven)

BMI/CS 776 Lecture #20 Alignment of whole genomes. Colin Dewey (with slides adapted from those by Mark Craven) BMI/CS 776 Lecture #20 Alignment of whole genomes Colin Dewey (with slides adapted from those by Mark Craven) 2007.03.29 1 Multiple whole genome alignment Input set of whole genome sequences genomes diverged

More information

Discrete Applied Mathematics

Discrete Applied Mathematics Discrete Applied Mathematics 159 (2011) 1641 1645 Contents lists available at ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam Note Girth of pancake graphs Phillip

More information

17 Non-collinear alignment Motivation A B C A B C A B C A B C D A C. This exposition is based on:

17 Non-collinear alignment Motivation A B C A B C A B C A B C D A C. This exposition is based on: 17 Non-collinear alignment This exposition is based on: 1. Darling, A.E., Mau, B., Perna, N.T. (2010) progressivemauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5(6):e11147.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary information S1 (box). Supplementary Methods description. Prokaryotic Genome Database Archaeal and bacterial genome sequences were downloaded from the NCBI FTP site (ftp://ftp.ncbi.nlm.nih.gov/genomes/all/)

More information

High-Performance Algorithm Engineering for Large-Scale Graph Problems and Computational Biology

High-Performance Algorithm Engineering for Large-Scale Graph Problems and Computational Biology High-Performance Algorithm Engineering for Large-Scale Graph Problems and Computational Biology David A. Bader Electrical and Computer Engineering Department, University of New Mexico, Albuquerque, NM

More information

A Framework for Orthology Assignment from Gene Rearrangement Data

A Framework for Orthology Assignment from Gene Rearrangement Data A Framework for Orthology Assignment from Gene Rearrangement Data Krister M. Swenson, Nicholas D. Pattengale, and B.M.E. Moret Department of Computer Science University of New Mexico Albuquerque, NM 87131,

More information

Comparing whole genomes

Comparing whole genomes BioNumerics Tutorial: Comparing whole genomes 1 Aim The Chromosome Comparison window in BioNumerics has been designed for large-scale comparison of sequences of unlimited length. In this tutorial you will

More information

Tree of Life iological Sequence nalysis Chapter http://tolweb.org/tree/ Phylogenetic Prediction ll organisms on Earth have a common ancestor. ll species are related. The relationship is called a phylogeny

More information

I. Molecules and Cells: Cells are the structural and functional units of life; cellular processes are based on physical and chemical changes.

I. Molecules and Cells: Cells are the structural and functional units of life; cellular processes are based on physical and chemical changes. I. Molecules and Cells: Cells are the structural and functional units of life; cellular processes are based on physical and chemical changes. A. Chemistry of Life B. Cells 1. Water How do the unique chemical

More information

Phenotypic Evolution. and phylogenetic comparative methods. G562 Geometric Morphometrics. Department of Geological Sciences Indiana University

Phenotypic Evolution. and phylogenetic comparative methods. G562 Geometric Morphometrics. Department of Geological Sciences Indiana University Phenotypic Evolution and phylogenetic comparative methods Phenotypic Evolution Change in the mean phenotype from generation to generation... Evolution = Mean(genetic variation * selection) + Mean(genetic

More information

Presentation by Julie Hudson MAT5313

Presentation by Julie Hudson MAT5313 Proc. Natl. Acad. Sci. USA Vol. 89, pp. 6575-6579, July 1992 Evolution Gene order comparisons for phylogenetic inference: Evolution of the mitochondrial genome (genomics/algorithm/inversions/edit distance/conserved

More information

Time to learn about NP-completeness!

Time to learn about NP-completeness! Time to learn about NP-completeness! Harvey Mudd College March 19, 2007 Languages A language is a set of strings Examples The language of strings of all zeros with odd length The language of strings with

More information

Michael Yaffe Lecture #5 (((A,B)C)D) Database Searching & Molecular Phylogenetics A B C D B C D

Michael Yaffe Lecture #5 (((A,B)C)D) Database Searching & Molecular Phylogenetics A B C D B C D 7.91 Lecture #5 Database Searching & Molecular Phylogenetics Michael Yaffe B C D B C D (((,B)C)D) Outline Distance Matrix Methods Neighbor-Joining Method and Related Neighbor Methods Maximum Likelihood

More information

Haploid & diploid recombination and their evolutionary impact

Haploid & diploid recombination and their evolutionary impact Haploid & diploid recombination and their evolutionary impact W. Garrett Mitchener College of Charleston Mathematics Department MitchenerG@cofc.edu http://mitchenerg.people.cofc.edu Introduction The basis

More information

BINF6201/8201. Molecular phylogenetic methods

BINF6201/8201. Molecular phylogenetic methods BINF60/80 Molecular phylogenetic methods 0-7-06 Phylogenetics Ø According to the evolutionary theory, all life forms on this planet are related to one another by descent. Ø Traditionally, phylogenetics

More information

The Hamiltonian Strictly Alternating Cycle Problem

The Hamiltonian Strictly Alternating Cycle Problem Advanced Studies in Biology, Vol. 4, 2012, no. 10, 491-495 The Hamiltonian Strictly Alternating Cycle Problem Anna Gorbenko Department of Intelligent Systems and Robotics Ural Federal University 620083

More information

Evolution of sex-dependent mtdna transmission in freshwater mussels (Bivalvia: Unionida)

Evolution of sex-dependent mtdna transmission in freshwater mussels (Bivalvia: Unionida) Evolution of sex-dependent mtdna transmission in freshwater mussels (Bivalvia: Unionida) Davide Guerra 1, Federico Plazzi 2, Donald T. Stewart 3, Arthur E. Bogan 4, Walter R. Hoeh 5 & Sophie Breton 1 1

More information

I519 Introduction to Bioinformatics, Genome Comparison. Yuzhen Ye School of Informatics & Computing, IUB

I519 Introduction to Bioinformatics, Genome Comparison. Yuzhen Ye School of Informatics & Computing, IUB I519 Introduction to Bioinformatics, 2011 Genome Comparison Yuzhen Ye (yye@indiana.edu) School of Informatics & Computing, IUB Whole genome comparison/alignment Build better phylogenies Identify polymorphism

More information

Synteny Portal Documentation

Synteny Portal Documentation Synteny Portal Documentation Synteny Portal is a web application portal for visualizing, browsing, searching and building synteny blocks. Synteny Portal provides four main web applications: SynCircos,

More information

Multiple Sequence Alignment. Sequences

Multiple Sequence Alignment. Sequences Multiple Sequence Alignment Sequences > YOR020c mstllksaksivplmdrvlvqrikaqaktasglylpe knveklnqaevvavgpgftdangnkvvpqvkvgdqvl ipqfggstiklgnddevilfrdaeilakiakd > crassa mattvrsvksliplldrvlvqrvkaeaktasgiflpe

More information

Chromosomal rearrangements in mammalian genomes : characterising the breakpoints. Claire Lemaitre

Chromosomal rearrangements in mammalian genomes : characterising the breakpoints. Claire Lemaitre PhD defense Chromosomal rearrangements in mammalian genomes : characterising the breakpoints Claire Lemaitre Laboratoire de Biométrie et Biologie Évolutive Université Claude Bernard Lyon 1 6 novembre 2008

More information

GENETICS - CLUTCH CH.22 EVOLUTIONARY GENETICS.

GENETICS - CLUTCH CH.22 EVOLUTIONARY GENETICS. !! www.clutchprep.com CONCEPT: OVERVIEW OF EVOLUTION Evolution is a process through which variation in individuals makes it more likely for them to survive and reproduce There are principles to the theory

More information

Improving Tree Search in Phylogenetic Reconstruction from Genome Rearrangement Data

Improving Tree Search in Phylogenetic Reconstruction from Genome Rearrangement Data Improving Tree Search in Phylogenetic Reconstruction from Genome Rearrangement Data Fei Ye 1,YanGuo, Andrew Lawson 1, and Jijun Tang, 1 Department of Epidemiology and Biostatistics University of South

More information

A greedy, graph-based algorithm for the alignment of multiple homologous gene lists

A greedy, graph-based algorithm for the alignment of multiple homologous gene lists A greedy, graph-based algorithm for the alignment of multiple homologous gene lists Jan Fostier, Sebastian Proost, Bart Dhoedt, Yvan Saeys, Piet Demeester, Yves Van de Peer, and Klaas Vandepoele Bioinformatics

More information

Case Study. Who s the daddy? TEACHER S GUIDE. James Clarkson. Dean Madden [Ed.] Polyploidy in plant evolution. Version 1.1. Royal Botanic Gardens, Kew

Case Study. Who s the daddy? TEACHER S GUIDE. James Clarkson. Dean Madden [Ed.] Polyploidy in plant evolution. Version 1.1. Royal Botanic Gardens, Kew TEACHER S GUIDE Case Study Who s the daddy? Polyploidy in plant evolution James Clarkson Royal Botanic Gardens, Kew Dean Madden [Ed.] NCBE, University of Reading Version 1.1 Polypoidy in plant evolution

More information

Phylogenetic Tree Reconstruction

Phylogenetic Tree Reconstruction I519 Introduction to Bioinformatics, 2011 Phylogenetic Tree Reconstruction Yuzhen Ye (yye@indiana.edu) School of Informatics & Computing, IUB Evolution theory Speciation Evolution of new organisms is driven

More information

Draft document version 0.6; ClustalX version 2.1(PC), (Mac); NJplot version 2.3; 3/26/2012

Draft document version 0.6; ClustalX version 2.1(PC), (Mac); NJplot version 2.3; 3/26/2012 Comparing DNA Sequences to Determine Evolutionary Relationships of Molluscs This activity serves as a supplement to the online activity Biodiversity and Evolutionary Trees: An Activity on Biological Classification

More information

Reconstructing genome mixtures from partial adjacencies

Reconstructing genome mixtures from partial adjacencies PROCEEDINGS Open Access Reconstructing genome mixtures from partial adjacencies Ahmad Mahmoody *, Crystal L Kahn, Benjamin J Raphael * From Tenth Annual Research in Computational Molecular Biology (RECOMB)

More information

Processes of Evolution

Processes of Evolution 15 Processes of Evolution Forces of Evolution Concept 15.4 Selection Can Be Stabilizing, Directional, or Disruptive Natural selection can act on quantitative traits in three ways: Stabilizing selection

More information

An Efficient Probabilistic Population-Based Descent for the Median Genome Problem

An Efficient Probabilistic Population-Based Descent for the Median Genome Problem An Efficient Probabilistic Population-Based Descent for the Median Genome Problem Adrien Goëffon INRIA Bordeaux Sud-Ouest 351 cours de la Libération 33400 Talence, France goeffon@labri.fr Macha Nikolski

More information

Section 1.4. Meaning of Slope for Equations, Graphs, and Tables

Section 1.4. Meaning of Slope for Equations, Graphs, and Tables Section 1.4 Meaning of Slope for Equations, Graphs, and Tables Finding Slope from a Linear Equation Finding Slope from a Linear Equation Example Find the slope of the line Solution Create a table using

More information

Genome Rearrangement. 1 Inversions. Rick Durrett 1

Genome Rearrangement. 1 Inversions. Rick Durrett 1 Genome Rearrangement Rick Durrett 1 Dept. of Math., Cornell U., Ithaca NY, 14853 rtd1@cornell.edu Genomes evolve by chromosomal fissions and fusions, reciprocal translocations between chromosomes, and

More information

that of Phylotree.org, mtdna tree Build 1756 (Supplementary TableS2). is resulted in 78 individuals allocated to the hg B4a1a1 and three individuals to hg Q. e control region (nps 57372 and nps 1602416526)

More information

Some Algorithmic Challenges in Genome-Wide Ortholog Assignment

Some Algorithmic Challenges in Genome-Wide Ortholog Assignment Jiang T. Some algorithmic challenges in genome-wide ortholog assignment. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 25(1): 1 Jan. 2010 Some Algorithmic Challenges in Genome-Wide Ortholog Assignment Tao

More information

This is a survey designed for mathematical programming people who do not know molecular biology and

This is a survey designed for mathematical programming people who do not know molecular biology and INFORMS Journal on Computing Vol. 16, No. 3, Summer 2004, pp. 211 231 issn 0899-1499 eissn 1526-5528 04 1603 0211 informs doi 10.1287/ijoc.1040.0073 2004 INFORMS Opportunities for Combinatorial Optimization

More information

Phylogenetic Reconstruction

Phylogenetic Reconstruction Phylogenetic Reconstruction from Gene-Order Data Bernard M.E. Moret compbio.unm.edu Department of Computer Science University of New Mexico p. 1/71 Acknowledgments Close Collaborators: at UNM: David Bader

More information

Hexapoda Origins: Monophyletic, Paraphyletic or Polyphyletic? Rob King and Matt Kretz

Hexapoda Origins: Monophyletic, Paraphyletic or Polyphyletic? Rob King and Matt Kretz Hexapoda Origins: Monophyletic, Paraphyletic or Polyphyletic? Rob King and Matt Kretz Outline Review Hexapod Origins Response to Hexapod Origins How the same data = different trees Arthropod Origins The

More information

Phylogenetic Reconstruction from Gene-Order Data

Phylogenetic Reconstruction from Gene-Order Data p.1/7 Phylogenetic Reconstruction from Gene-Order Data Bernard M.E. Moret compbio.unm.edu Department of Computer Science University of New Mexico p.2/7 Acknowledgments Close Collaborators: at UNM: David

More information

Chapter 3: Phylogenetics

Chapter 3: Phylogenetics Chapter 3: Phylogenetics 3. Computing Phylogeny Prof. Yechiam Yemini (YY) Computer Science epartment Columbia niversity Overview Computing trees istance-based techniques Maximal Parsimony (MP) techniques

More information

EVOLUTIONARY DISTANCES

EVOLUTIONARY DISTANCES EVOLUTIONARY DISTANCES FROM STRINGS TO TREES Luca Bortolussi 1 1 Dipartimento di Matematica ed Informatica Università degli studi di Trieste luca@dmi.units.it Trieste, 14 th November 2007 OUTLINE 1 STRINGS:

More information

A Phylogenetic Network Construction due to Constrained Recombination

A Phylogenetic Network Construction due to Constrained Recombination A Phylogenetic Network Construction due to Constrained Recombination Mohd. Abdul Hai Zahid Research Scholar Research Supervisors: Dr. R.C. Joshi Dr. Ankush Mittal Department of Electronics and Computer

More information

Molecular phylogeny How to infer phylogenetic trees using molecular sequences

Molecular phylogeny How to infer phylogenetic trees using molecular sequences Molecular phylogeny How to infer phylogenetic trees using molecular sequences ore Samuelsson Nov 2009 Applications of phylogenetic methods Reconstruction of evolutionary history / Resolving taxonomy issues

More information

Sorting by Transpositions is Difficult

Sorting by Transpositions is Difficult Sorting by Transpositions is Difficult Laurent Bulteau, Guillaume Fertin, Irena Rusu Laboratoire d Informatique de Nantes-Atlantique (LINA), UMR CNRS 6241 Université de Nantes, 2 rue de la Houssinière,

More information

Essentiality in B. subtilis

Essentiality in B. subtilis Essentiality in B. subtilis 100% 75% Essential genes Non-essential genes Lagging 50% 25% Leading 0% non-highly expressed highly expressed non-highly expressed highly expressed 1 http://www.pasteur.fr/recherche/unites/reg/

More information

OGtree: a tool for creating genome trees of prokaryotes based on overlapping genes

OGtree: a tool for creating genome trees of prokaryotes based on overlapping genes Published online 2 May 2008 Nucleic Acids Research, 2008, Vol. 36, Web Server issue W475 W480 doi:10.1093/nar/gkn240 OGtree: a tool for creating genome trees of prokaryotes based on overlapping genes Li-Wei

More information

Breakpoint Graphs and Ancestral Genome Reconstructions

Breakpoint Graphs and Ancestral Genome Reconstructions Breakpoint Graphs and Ancestral Genome Reconstructions Max A. Alekseyev and Pavel A. Pevzner Department of Computer Science and Engineering University of California at San Diego, U.S.A. {maxal,ppevzner}@cs.ucsd.edu

More information

Molecular phylogeny How to infer phylogenetic trees using molecular sequences

Molecular phylogeny How to infer phylogenetic trees using molecular sequences Molecular phylogeny How to infer phylogenetic trees using molecular sequences ore Samuelsson Nov 200 Applications of phylogenetic methods Reconstruction of evolutionary history / Resolving taxonomy issues

More information

a-dB. Code assigned:

a-dB. Code assigned: This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the

More information

A Genetic Algorithm with Expansion and Exploration Operators for the Maximum Satisfiability Problem

A Genetic Algorithm with Expansion and Exploration Operators for the Maximum Satisfiability Problem Applied Mathematical Sciences, Vol. 7, 2013, no. 24, 1183-1190 HIKARI Ltd, www.m-hikari.com A Genetic Algorithm with Expansion and Exploration Operators for the Maximum Satisfiability Problem Anna Gorbenko

More information

Solution Choose several values for x, and find the corresponding values of (x), or y.

Solution Choose several values for x, and find the corresponding values of (x), or y. Example 1 GRAPHING FUNCTIONS OF THE FORM (x) = ax n Graph the function. 3 a. f ( x) x Solution Choose several values for x, and find the corresponding values of (x), or y. f ( x) x 3 x (x) 2 8 1 1 0 0

More information

Allen Holder - Trinity University

Allen Holder - Trinity University Haplotyping - Trinity University Population Problems - joint with Courtney Davis, University of Utah Single Individuals - joint with John Louie, Carrol College, and Lena Sherbakov, Williams University

More information

A Minimum Spanning Tree Framework for Inferring Phylogenies

A Minimum Spanning Tree Framework for Inferring Phylogenies A Minimum Spanning Tree Framework for Inferring Phylogenies Daniel Giannico Adkins Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-010-157

More information

F1 Parent Cell R R. Name Period. Concept 15.1 Mendelian inheritance has its physical basis in the behavior of chromosomes

F1 Parent Cell R R. Name Period. Concept 15.1 Mendelian inheritance has its physical basis in the behavior of chromosomes Name Period Concept 15.1 Mendelian inheritance has its physical basis in the behavior of chromosomes 1. What is the chromosome theory of inheritance? 2. Explain the law of segregation. Use two different

More information

Algorithms in Bioinformatics FOUR Pairwise Sequence Alignment. Pairwise Sequence Alignment. Convention: DNA Sequences 5. Sequence Alignment

Algorithms in Bioinformatics FOUR Pairwise Sequence Alignment. Pairwise Sequence Alignment. Convention: DNA Sequences 5. Sequence Alignment Algorithms in Bioinformatics FOUR Sami Khuri Department of Computer Science San José State University Pairwise Sequence Alignment Homology Similarity Global string alignment Local string alignment Dot

More information

1 Introduction. Abstract

1 Introduction. Abstract CBS 530 Assignment No 2 SHUBHRA GUPTA shubhg@asu.edu 993755974 Review of the papers: Construction and Analysis of a Human-Chimpanzee Comparative Clone Map and Intra- and Interspecific Variation in Primate

More information

OMICS Journals are welcoming Submissions

OMICS Journals are welcoming Submissions OMICS Journals are welcoming Submissions OMICS International welcomes submissions that are original and technically so as to serve both the developing world and developed countries in the best possible

More information

Assembly improvement: based on Ragout approach. student: Anna Lioznova scientific advisor: Son Pham

Assembly improvement: based on Ragout approach. student: Anna Lioznova scientific advisor: Son Pham Assembly improvement: based on Ragout approach student: Anna Lioznova scientific advisor: Son Pham Plan Ragout overview Datasets Assembly improvements Quality overlap graph paired-end reads Coverage Plan

More information

Phylogenetic Networks with Recombination

Phylogenetic Networks with Recombination Phylogenetic Networks with Recombination October 17 2012 Recombination All DNA is recombinant DNA... [The] natural process of recombination and mutation have acted throughout evolution... Genetic exchange

More information

ATLAS of Biochemistry

ATLAS of Biochemistry ATLAS of Biochemistry USER GUIDE http://lcsb-databases.epfl.ch/atlas/ CONTENT 1 2 3 GET STARTED Create your user account NAVIGATE Curated KEGG reactions ATLAS reactions Pathways Maps USE IT! Fill a gap

More information

On the rank-distance median of 3 permutations

On the rank-distance median of 3 permutations Chindelevitch et al. BMC Bioinformatics 018, 19(Suppl 6):14 https://doi.org/10.1186/s1859-018-131-4 RESEARCH On the rank-distance median of 3 permutations Leonid Chindelevitch 1*, João Paulo Pereira Zanetti

More information