Chapter 9. Molecular Geometry and Bonding Theories

Size: px
Start display at page:

Download "Chapter 9. Molecular Geometry and Bonding Theories"

Transcription

1 Sample Exercise 9.1 (p. 347) Use the VSEPR model to predict the molecular geometries of a) O 3 b) SnCl 3 - Practice Exercise 1 (9.1) Consider the AB 3 molecules and ions: PCl 3, SO 3, AlCl 3, SO 3 2-, and CH 3 +. How many of these molecules and ions do you predict to have a trigonal-planar geometry? a) 1 b) 2 c) 3 d) 4 e) 5 Practice Exercise 9.1 Predict the electron-domain geometry and the molecular geometry for a) SeCl 2 b) CO

2 Sample Exercise 9.2 (p. 354) Use the VSEPR model to predict the molecular geometry of a) SF 4 b) IF 5 Practice Exercise 1 (9.2) A certain AB 4 molecule has a square-planar molecular geometry. Which of the following statements about the molecule is or are true? (i) The molecule has four electron domains about the central atom (ii) The B-A-B angles between neighboring B atoms is 90 o. (iii) The molecule has two nonbonding pairs of electrons on atom A. a) Only one of the statements is true. b) Statements (i) and (ii) are true. c) Statements (i) and (iii) are true. d) Statements (ii) and (iii) are true. e) All three statements are true. Practice Exercise 2 (9.2) Predict the electron-domain geometry and molecular geometry of a) BrF 5 + b) SF

3 Sample Exercise 9.3 (p. 355) Eyedrops for dry eyes usually contain a water-soluble polymer called polyvinylalcohol, which is based on the unstable organic molecule called vinyl alcohol. Predict the approximate values for the H-O-C and O-C-C bond angles in vinyl alcohol. Practice Exercise 1 (9.3) The atoms of the compound methylhydrazine, CH 6 N 2, which is used as a rocket propellant, are connected as follows (note that lone pairs are not shown): See p. 356 in your textbook. What do you predict for the ideal values of the C-N-N and H-N-H angles, respectively? a) o and o b) o and 120 o c) 120 o and o d) 120 o and 120 o e) None of the above Practice Exercise 2 (9.3) Predict the H C H and C C C bond angles in the molecule shown, called propyne

4 Sample Exercise 9.4 (p. 357) Predict whether the following molecules are polar or nonpolar: a) BrCl b) SO 2 c) SF 6 Practice Exercise 1 (9.4) Consider an AB 3 molecule in which A and B differ in electronegativity. You are told that the molecule has an overall dipole moment of zero. Which of the following could be the molecular geometry of the molecule? a) Trigonal pyramidal b) Trigonal planar c) T-shaped d) Tetrahedral e) More than one of the above Practice Exercise 2 (9.4) Determine whether the following molecules are polar or nonpolar: a) SF 4 b) SiCl 4-4 -

5 Sample Exercise 9.5 (p. 365) Describe the orbital hybridization around the central atom in NH 2 -. Practice Exercise 1 (9.5) For which of the following molecules or ions does the following description apply? The bonding can be explained using a set of sp 2 hybrid orbitals on the central atom, with one of the hybrid orbitals holding a nonbonding pair of electrons. 2- a) CO 2 b) H 2 S c) O 3 d) CO 3 e) more than one of the above Practice Exercise 2 (9.5) Predict the electron-domain geometry and the hybridization of the central atom in SO

6 Sample Exercise 9.6 (p. 368) Formaldehyde has the Lewis structure Describe how the bonds in formaldehyde are formed in terms of overlaps of hybridized and unhybridized orbitals. Practice Exercise 1 (9.6) We have just arrived at a bonding description for the formaldehyde molecule. Which of the following statements about the molecule is or are true? (i) Two of the electrons in the molecule are used to make the π bond in the molecule. (ii) Six of the electrons in the molecule are used to make the σ bonds in the molecule. (iii) The C-O bond length in formaldehyde should be shorter than that in methanol, H 3 COH. a) Only one of the statements is true. b) Statements (i) and (ii) are true. c) Statements (i) and (iii) are true. d) Statements (ii) and (iii) are true. e) All three statements are true. Practice Exercise 2 (9.6) Consider the acetonitrile molecule: a) Predict the bond angles around each carbon atom b) Describe the hybridization at each of the carbon atoms c) Determine the total number σ and π bonds in the molecule

7 Sample Exercise 9.7 (p. 371) Describe the localized π bonding in the nitrate ion, NO 3 -. Practice Exercise 1 (9.7) How many electrons are in the π system of the ozone molecule, O 3? a) 2 b) 4 c) 6 d) 14 e) 18 Practice Exercise 2 (9.7) Which of the following molecules or ions will exhibit delocalized bonding? SO 2, SO 3, SO 3 2-, H 2 CO, NH 4 +? Sample Integrative Exercise (p. 386) Elemental sulfur is a yellow solid that consists of S 8 molecules. The structure of the S 8 molecule is a puckered, eight-membered ring. Heating elemental sulfur to high temperatures produces gaseous S 2 molecules.: S 8(s) 4 S 2(g) a) With respect to electronic structure, which element in the second row of the periodic table is most similar to sulfur? b) Use the VSEPR model to predict the S-S-S bond angles in S 8 and the hybridization at S in S 8. d) Use bond enthalpies (Table 8.4) to estimate the enthalpy change for the reaction just described. Is the reaction exothermic or endothermic? - 7 -

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories 9.1 Molecular Shapes Read Sec. 9.1 and 9.2, then complete the Sample and Practice Exercises in these sections. Sample Exercise 9.1 (p. 347) Use the VSEPR model to predict the molecular geometries of a)

More information

Molecular shape is determined by the number of bonds that form around individual atoms.

Molecular shape is determined by the number of bonds that form around individual atoms. Chapter 9 CH 180 Major Concepts: Molecular shape is determined by the number of bonds that form around individual atoms. Sublevels (s, p, d, & f) of separate atoms may overlap and result in hybrid orbitals

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Linear Trigonal 180 o planar 120 o Tetrahedral 109.5 o Trigonal Bipyramidal 120 and 90 o Octahedral 90 o linear Linear

More information

Valence Bond Theory - Description

Valence Bond Theory - Description Bonding and Molecular Structure - PART 2 - Valence Bond Theory and Hybridization 1. Understand and be able to describe the Valence Bond Theory description of covalent bond formation. 2. Understand and

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals 1 Chemical Bonding II Molecular Geometry (10.1) Dipole Moments (10.2) Valence Bond Theory (10.3) Hybridization of Atomic Orbitals

More information

Form J. Test #4 Last Name First Name Zumdahl, Chapters 8 and 9 November 23, 2004

Form J. Test #4 Last Name First Name Zumdahl, Chapters 8 and 9 November 23, 2004 Form J Chemistry 1441-023 Name (please print) Test #4 Last Name First Name Zumdahl, Chapters 8 and 9 November 23, 2004 Instructions: 1. This exam consists of 27 questions. 2. No scratch paper is allowed.

More information

Chapter 9 practice questions

Chapter 9 practice questions Class: Date: Chapter 9 practice questions Multiple Choice Identify the choice that best completes the statement or answers the question. 1. All of the following statements concerning valence bond (VB)

More information

CHEM 110 Exam 2 - Practice Test 1 - Solutions

CHEM 110 Exam 2 - Practice Test 1 - Solutions CHEM 110 Exam 2 - Practice Test 1 - Solutions 1D 1 has a triple bond. 2 has a double bond. 3 and 4 have single bonds. The stronger the bond, the shorter the length. 2A A 1:1 ratio means there must be the

More information

Name Unit Three MC Practice March 15, 2017

Name Unit Three MC Practice March 15, 2017 Unit Three: Bonding & Molecular Geometry Name Unit Three MC Practice March 15, 2017 1. What is the hybridization of the oxygen atom in water? a) sp b) sp 2 c) sp 3 d) It is not hybridized 2. When a double

More information

Molecular Geometry and Chemical Bonding Theory

Molecular Geometry and Chemical Bonding Theory Molecular Geometry and Chemical Bonding Theory The Valence -Shell Electron -Pair Repulsion (VSEPR) Model predicts the shapes of the molecules and ions by assuming that the valence shell electron pairs

More information

STD-XI-Science-Chemistry Chemical Bonding & Molecular structure

STD-XI-Science-Chemistry Chemical Bonding & Molecular structure STD-XI-Science-Chemistry Chemical Bonding & Molecular structure Chemical Bonding Question 1 What is meant by the term chemical bond? How does Kessel-Lewis approach of bonding differ from the modern views?

More information

Organic Chemistry. Review Information for Unit 1. VSEPR Hybrid Orbitals Polar Molecules

Organic Chemistry. Review Information for Unit 1. VSEPR Hybrid Orbitals Polar Molecules rganic hemistry Review Information for Unit 1 VSEPR ybrid rbitals Polar Molecules VSEPR The valence shell electron pair repulsion model (VSEPR) can be used to predict the geometry around a particular atom

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 1

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 1 Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. How to get the book of

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Valence shell electron

More information

Chemical Bonding II. Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO theory

Chemical Bonding II. Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO theory Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds ybridization MO theory 1 Molecular Geometry 3-D arrangement of atoms 2 VSEPR Valence-shell

More information

REVIEW: VALENCE ELECTRONS CHEMICAL BONDS: LEWIS SYMBOLS: CHEMICAL BONDING. What are valence electrons?

REVIEW: VALENCE ELECTRONS CHEMICAL BONDS: LEWIS SYMBOLS: CHEMICAL BONDING. What are valence electrons? REVIEW: VALENCE ELECTRONS 13 CHEMICAL BONDING What are valence electrons? Which groups on the periodic table readily give up electrons? What group readily accepts electrons? CHEMICAL BONDS: What are chemical

More information

Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model.

Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model. Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model. Determine whether a molecule is polar or nonpolar based

More information

Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories

Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories C h e m i s t r y 1 A : C h a p t e r 1 0 P a g e 1 Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories Homework: Read Chapter 10: Work out sample/practice

More information

For more info visit Chemical bond is the attractive force which holds various constituents together in a molecule.

For more info visit  Chemical bond is the attractive force which holds various constituents together in a molecule. Chemical bond:- Chemical bond is the attractive force which holds various constituents together in a molecule. There are three types of chemical bonds: Ionic Bond, Covalent Bond, Coordinate Bond. Octet

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 10. The Shapes of Molecules 10-1

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 10. The Shapes of Molecules 10-1 Chapter 10 The Shapes of Molecules 10-1 The Shapes of Molecules 10.1 Depicting Molecules and Ions with Lewis Structures 10.2 Valence-Shell Electron-Pair Repulsion (VSEPR) Theory and Molecular Shape 10.3

More information

CHAPTER TEN MOLECULAR GEOMETRY MOLECULAR GEOMETRY V S E P R CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS

CHAPTER TEN MOLECULAR GEOMETRY MOLECULAR GEOMETRY V S E P R CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS CHAPTER TEN CHEMICAL BONDING II: AND HYBRIDIZATION O ATOMIC ORBITALS V S E P R VSEPR Theory In VSEPR theory, multiple bonds behave like a single electron pair Valence shell electron pair repulsion (VSEPR)

More information

Experiment 15. The Valence Shell Electron Pair Repulsion (VSEPR) Theory of Directed Valency: An exercise

Experiment 15. The Valence Shell Electron Pair Repulsion (VSEPR) Theory of Directed Valency: An exercise Experiment 15 The Valence Shell Electron Pair Repulsion (VSEPR) Theory of Directed Valency: An exercise Attempts to understand and predict the shapes of molecules using either the valencebond theory or

More information

Chapter 9. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory

Chapter 9. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Chapter 9 Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Problems with Lewis Theory Lewis theory generally predicts trends in properties, but does not give good numerical predictions.

More information

Chapter 9 Molecular Geometry. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory

Chapter 9 Molecular Geometry. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Chapter 9 Molecular Geometry Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Sulfanilamide Lewis Structures and the Real 3D-Shape of Molecules Lewis Theory of Molecular Shape and Polarity

More information

1. Sodium nitrite is an ionic compound containing a polyatomic ion. Answer the following questions relative to nitrite.

1. Sodium nitrite is an ionic compound containing a polyatomic ion. Answer the following questions relative to nitrite. Ch 10-11 Practice Problems - KEY The following problems are intended to provide you with additional practice in preparing for the exam. Questions come from the textbook, previous quizzes, previous exams,

More information

Electron Geometry Hybrid Orbitals

Electron Geometry Hybrid Orbitals Molecular Shape and Hybridized Orbitals CH2000: Introduction to General Chemistry, Plymouth State University Introduction: In chemistry, the three dimensional shape of a molecule is as important as the

More information

Name Date Class. covalent bond molecule sigma bond exothermic pi bond

Name Date Class. covalent bond molecule sigma bond exothermic pi bond Date Class 8 Covalent Bonding Section 8.1 The Covalent Bond In your textbook, read about the nature of covalent bonds. Use each of the terms below just once to complete the passage. covalent bond molecule

More information

Chemistry: The Central Science. Chapter 9: Molecular Geometry and Bonding Theory

Chemistry: The Central Science. Chapter 9: Molecular Geometry and Bonding Theory Chemistry: The Central Science Chapter 9: Molecular Geometry and Bonding Theory The shape and size of a molecule of a particular substance, together with the strength and polarity of its bonds, largely

More information

Chapter 9 Molecular Geometries. and Bonding Theories

Chapter 9 Molecular Geometries. and Bonding Theories Chapter 9 Molecular Geometries and Bonding Theories Coverage of Chapter 9 9.1 All 9.2 All 9.3 All 9.4 All 9.5 Omit Hybridization Involving d Orbitals 9.6 All 9.7 and 9.8 Omit ALL MOLECULAR SHAPES The shape

More information

Molecular Geometry and Bonding Theories. Chapter 9

Molecular Geometry and Bonding Theories. Chapter 9 Molecular Geometry and Bonding Theories Chapter 9 Molecular Shapes CCl 4 Lewis structures give atomic connectivity; The shape of a molecule is determined by its bond angles VSEPR Model Valence Shell Electron

More information

Experiment 21 Lewis structures and VSEPR Theory

Experiment 21 Lewis structures and VSEPR Theory Experiment 21 Lewis structures and VSEPR Theory Introduction 1. Lewis Structures and Formal Charge LG.N. Lewis, at the University of California at Berkeley devised a simple way to understand the nature

More information

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 9 Theories John D. Bookstaver St. Charles Community College Cottleville, MO Shapes The shape of a molecule plays an important role in its reactivity. By noting the number of

More information

Chapter 4. Molecular Structure and Orbitals

Chapter 4. Molecular Structure and Orbitals Chapter 4 Molecular Structure and Orbitals Chapter 4 Table of Contents (4.1) (4.2) (4.3) (4.4) (4.5) (4.6) (4.7) Molecular structure: The VSEPR model Bond polarity and dipole moments Hybridization and

More information

Hybridization of Orbitals

Hybridization of Orbitals Hybridization of Orbitals Structure & Properties of Matter 1 Atomic Orbitals and Bonding Previously: Electron configurations Lewis structures Bonding Shapes of molecules Now: How do atoms form covalent

More information

Chapter 9 The Shapes of Molecules Cocaine

Chapter 9 The Shapes of Molecules Cocaine Chapter 9 The Shapes of Molecules 1 Cocaine 10.1 Depicting Molecules & Ions with Lewis Structures 2 Number of Covalent Bonds 3 The number of covalent bonds can be determined from the number of electrons

More information

CH 222 Sample Exam Exam I Name: Lab Section:

CH 222 Sample Exam Exam I Name: Lab Section: 222 Sample Exam Exam I Name: Lab Section: Part I: Multiple hoice Questions (100 Points) Use a scantron sheet for Part I. There is only one best answer for each question. 1. Which of the following statements

More information

Electron Geometry Hybrid Orbitals

Electron Geometry Hybrid Orbitals Molecular Shape and Hybridized Orbitals CH2000: Introduction to General Chemistry, Plymouth State University, Fall 2014 Introduction: In chemistry, the three dimensional shape of a molecule is as important

More information

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 9 Theories John D. Bookstaver St. Charles Community College Cottleville, MO Shapes The shape of a molecule plays an important role in its reactivity. By noting the number of

More information

Test bank for Chemistry The Central Science 10th Edition by Brown, LeMay, Bursten

Test bank for Chemistry The Central Science 10th Edition by Brown, LeMay, Bursten Test bank for Chemistry The Central Science 10th Edition by Brown, LeMay, Bursten Chapter 9, Molecular Geometry and Bonding Theories Multiple-Choice and Bimodal 1) For a molecule with the formula A) linear

More information

AP Chemistry- Practice Bonding Questions for Exam

AP Chemistry- Practice Bonding Questions for Exam AP Chemistry- Practice Bonding Questions for Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is a correct Lewis structure for

More information

Molecular shape is only discussed when there are three or more atoms connected (diatomic shape is obvious).

Molecular shape is only discussed when there are three or more atoms connected (diatomic shape is obvious). Chapter 10 Molecular Geometry (Ch9 Jespersen, Ch10 Chang) The arrangement of the atoms of a molecule in space is the molecular geometry. This is what gives the molecules their shape. Molecular shape is

More information

General and Inorganic Chemistry I.

General and Inorganic Chemistry I. General and Inorganic Chemistry I. Lecture 1 István Szalai Eötvös University István Szalai (Eötvös University) Lecture 1 1 / 29 Outline István Szalai (Eötvös University) Lecture 1 2 / 29 Lewis Formulas

More information

Instant download Test bank for Chemistry The Central Science 10th Edition by Brown, LeMay, Bursten CLICK HERE

Instant download Test bank for Chemistry The Central Science 10th Edition by Brown, LeMay, Bursten CLICK HERE Chemistry, 10e (Brown) Chapter 9, Molecular Geometry and Bonding Theories Instant download Test bank for Chemistry The Central Science 10th Edition by Brown, LeMay, Bursten CLICK HERE http://testbankair.com/download/test-bank-for-chemistry-the-central-science-10th-edition-by-brown-lemay-bursten/

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chemical Bonding II: and Hybridization of Atomic Orbitals Chapter 10 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Valence shell electron pair repulsion (VSEPR)

More information

Chapter 7 Chemical Bonding and Molecular Structure

Chapter 7 Chemical Bonding and Molecular Structure Chapter 7 Chemical Bonding and Molecular Structure Three Types of Chemical Bonding (1) Ionic: formed by electron transfer (2) Covalent: formed by electron sharing (3) Metallic: attraction between metal

More information

Check Your Solution A comparison with the figures in Figure 4.31 on page 234 of the student textbook confirms the results.

Check Your Solution A comparison with the figures in Figure 4.31 on page 234 of the student textbook confirms the results. Predicting the Shape of a Molecule (Student textbook page 236) 11. What molecular shape is represented by each of the following VSEPR notations? a. AX 3 b. AX 5 E You need to assign a molecular shape that

More information

SUPeR Chemistry CH 222 Practice Exam

SUPeR Chemistry CH 222 Practice Exam SUPeR Chemistry CH 222 Practice Exam This exam has been designed to help you practice working multiple choice problems over the material that will be covered on the first CH 222 midterm. The actual exams

More information

Chapter 8. Bonding: General Concepts

Chapter 8. Bonding: General Concepts Chapter 8 Bonding: General Concepts Chapter 8 Table of Contents 8.1 Types of Chemical Bonds 8.3 Bond Polarity and Dipole Moments 8.5 Energy Effects in Binary Ionic Compounds 8.6 Partial Ionic Character

More information

Find the difference in electronegativity between the hydrogen and chlorine atoms

Find the difference in electronegativity between the hydrogen and chlorine atoms Answers Questions 16.2 Molecular polarity 1. Write a dot diagram for the HCl molecule. Find the difference in electronegativity between the hydrogen and chlorine atoms Difference in electronegativity =

More information

C PM RESURRECTION

C PM RESURRECTION Announcements Final Exam TIME: October 8, 7:30-9:30AM VENUE: CTC 105 65-Multiple Choice Questions 3 Questions Each Chapter 2-5 7 Questions Each Chapter 6-8 30 Questions From Chapter 9-11 Saturday Review

More information

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. Dr. V.M. Williamson Texas A & M University Student Version

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. Dr. V.M. Williamson Texas A & M University Student Version Molecular Geometry Dr. V.M. Williamson Texas A & M University Student Version Valence Shell Electron Pair Repulsion- VSEPR 1. Valence e- to some extent 2. Electron pairs move as far away as possible to

More information

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. VSEPR: Electronic Geometries VSEPR

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. VSEPR: Electronic Geometries VSEPR Molecular Geometry Dr. V.M. Williamson Texas A & M University Student Version Valence Shell Electron Pair Repulsion- VSEPR 1. Valence e- to some extent 2. Electron pairs move as far away as possible to

More information

Molecular Geometry and intermolecular forces. Unit 4 Chapter 9 and 11.2

Molecular Geometry and intermolecular forces. Unit 4 Chapter 9 and 11.2 1 Molecular Geometry and intermolecular forces Unit 4 Chapter 9 and 11.2 2 Unit 4.1 Chapter 9.1-9.3 3 Review of bonding Ionic compound (metal/nonmetal) creates a lattice Formula doesn t tell the exact

More information

Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory

Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory 10.1 Artificial Sweeteners: Fooled by Molecular Shape 425 10.2 VSEPR Theory: The Five Basic Shapes 426 10.3 VSEPR Theory: The Effect of Lone Pairs 430 10.4 VSEPR Theory: Predicting Molecular Geometries

More information

VSEPR. Valence Shell Electron Pair Repulsion Theory

VSEPR. Valence Shell Electron Pair Repulsion Theory VSEPR Valence Shell Electron Pair Repulsion Theory Vocabulary: domain = any electron pair or bond (single, double or triple) is considered one domain. bonding pair = shared pair = any electron pair that

More information

Carbon-based molecules are held together by covalent bonds between atoms

Carbon-based molecules are held together by covalent bonds between atoms hapter 1: hemical bonding and structure in organic compounds arbon-based molecules are held together by covalent bonds between atoms omposition: Mainly nonmetals; especially,, O, N, S, P and the halogens

More information

CHAPTER 5: Bonding Theories - Explaining Molecular Geometry. Chapter Outline

CHAPTER 5: Bonding Theories - Explaining Molecular Geometry. Chapter Outline CHAPTER 5: Bonding Theories - Explaining Molecular Geometry Chapter Outline 5.1 Molecular Shape 5.2 Valence-Shell Electron-Pair Repulsion Theory (VSEPR) 5.3 Polar Bonds and Polar Molecules» What Makes

More information

Chapter 9 Molecular Geometry and Bonding Theories

Chapter 9 Molecular Geometry and Bonding Theories Chapter 9 Molecular Geometry and Bonding Theories molecular shapes the VSEPR model molecular shape and molecular polarity covalent bonding and orbital overlap hybrid orbitals multiple bonds 9.1 Molecular

More information

NOTES #28 Bonds & Thermochemistry AP Chemistry

NOTES #28 Bonds & Thermochemistry AP Chemistry NOTES #28 Bonds & Thermochemistry AP Chemistry - When studying thermochemistry, we determined ΔH or ΔH rxn of a reaction by using ΔH f values. For practice s sake, determine ΔH rxn for the formation of

More information

B. (i), (iii), and (v) C. (iv) D. (i), (ii), (iii), and (v) E. (i), (iii), (iv), and (v) Answer: B. SO 3, and NO 3 - both have 24 VE and have Lewis

B. (i), (iii), and (v) C. (iv) D. (i), (ii), (iii), and (v) E. (i), (iii), (iv), and (v) Answer: B. SO 3, and NO 3 - both have 24 VE and have Lewis SCCH 161 Homework 3 1. Give the number of lone pairs around the central atom and the molecular geometry of CBr 4. Answer: Carbon has 4 valence electrons and bonds to four bromine atoms (each has 7 VE s).

More information

Molecular Structure. Valence Bond Theory Overlap of atomic orbitals is a covalent bond that joins atoms together to form a molecule

Molecular Structure. Valence Bond Theory Overlap of atomic orbitals is a covalent bond that joins atoms together to form a molecule Molecular Structure Topics 3-D structure shape (location of atoms in space) Molecular Geometry Valence Bond Theory Hybrid Orbitals Multiple Bonds VSEPR (Valence Shell Electron Pair Repulsion) Valence Bond

More information

Ex. 1) F F bond in F = 0 < % covalent, no transfer of electrons

Ex. 1) F F bond in F = 0 < % covalent, no transfer of electrons #60 Notes Unit 8: Bonding Ch. Bonding I. Bond Character Bonds are usually combinations of ionic and covalent character. The electronegativity difference is used to determine a bond s character. Electronegativity

More information

Chapter 10. VSEPR Model: Geometries

Chapter 10. VSEPR Model: Geometries Chapter 10 Molecular Geometry VSEPR Model: Geometries Valence Shell Electron Pair Repulsion Theory Electron pairs repel and get as far apart as possible Example: Water Four electron pairs Farthest apart

More information

Adapted from CHM 130 Maricopa County, AZ Molecular Geometry and Lewis Dot Formulas Introduction

Adapted from CHM 130 Maricopa County, AZ Molecular Geometry and Lewis Dot Formulas Introduction Adapted from CHM 130 Maricopa County, AZ Molecular Geometry and Lewis Dot Formulas Introduction A chemical bond is an intramolecular (within the molecule) force holding two or more atoms together. Covalent

More information

51. Pi bonding occurs in each of the following species EXCEPT (A) CO 2 (B) C 2 H 4 (C) CN (D) C 6 H 6 (E) CH 4

51. Pi bonding occurs in each of the following species EXCEPT (A) CO 2 (B) C 2 H 4 (C) CN (D) C 6 H 6 (E) CH 4 Name AP Chemistry: Bonding Multiple Choice 41. Which of the following molecules has the shortest bond length? (A) N 2 (B) O 2 (C) Cl 2 (D) Br 2 (E) I 2 51. Pi bonding occurs in each of the following species

More information

Molecular Shape and Molecular Polarity. Molecular Shape and Molecular Polarity. Molecular Shape and Molecular Polarity

Molecular Shape and Molecular Polarity. Molecular Shape and Molecular Polarity. Molecular Shape and Molecular Polarity Molecular Shape and Molecular Polarity When there is a difference in electronegativity between two atoms, then the bond between them is polar. It is possible for a molecule to contain polar bonds, but

More information

14.1 Shapes of molecules and ions (HL)

14.1 Shapes of molecules and ions (HL) 14.1 Shapes of molecules and ions (HL) The octet is the most common electron arrangement because of its stability. Exceptions: a) Fewer electrons (incomplete octet) if the central atom is a small atoms,

More information

Hybridisation of Atomic Orbitals

Hybridisation of Atomic Orbitals Lecture 7 CHEM101 Hybridisation of Atomic Orbitals Dr. Noha Osman Learning Outcomes Understand the valence bond theory Understand the concept of hybridization. Understand the different types of orbital

More information

Covalent Compounds: Bonding Theories and Molecular Structure

Covalent Compounds: Bonding Theories and Molecular Structure CHM 123 Chapter 8 Covalent Compounds: Bonding Theories and Molecular Structure 8.1 Molecular shapes and VSEPR theory VSEPR theory proposes that the geometric arrangement of terminal atoms, or groups of

More information

I. Multiple Choice Questions (Type-I)

I. Multiple Choice Questions (Type-I) I. Multiple Choice Questions (Type-I) 1. Isostructural species are those which have the same shape and hybridisation. Among the given species identify the isostructural pairs. (i) [NF 3 and BF 3 ] [BF

More information

Chapter 6 PRETEST: Chemical Bonding

Chapter 6 PRETEST: Chemical Bonding Chapter 6 PRETEST: Chemical In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1.The charge on an ion is a. always positive.

More information

COVALENT BONDING CHEMICAL BONDING I: LEWIS MODEL. Chapter 7

COVALENT BONDING CHEMICAL BONDING I: LEWIS MODEL. Chapter 7 Chapter 7 P a g e 1 COVALENT BONDING Covalent Bonds Covalent bonds occur between two or more nonmetals. The two atoms share electrons between them, composing a molecule. Covalently bonded compounds are

More information

CHEMISTRY - ZUMDAHL 2E CH.4 - MOLECULAR STRUCTURE AND ORBITALS.

CHEMISTRY - ZUMDAHL 2E CH.4 - MOLECULAR STRUCTURE AND ORBITALS. !! www.clutchprep.com CONCEPT: ELECTRONIC GEOMETRY When drawing a compound you have to take into account two different systems of geometrical shape. The simpler system known as electronic geometry or shape

More information

Subtopic 4.2 MOLECULAR SHAPE AND POLARITY

Subtopic 4.2 MOLECULAR SHAPE AND POLARITY Subtopic 4.2 MOLECULAR SHAPE AND POLARITY 1 LEARNING OUTCOMES (covalent bonding) 1. Draw the Lewis structure of covalent molecules (octet rule such as NH 3, CCl 4, H 2 O, CO 2, N 2 O 4, and exception to

More information

AP Chemistry - Problem Drill 15: Lewis Structures and VSEPR Theory

AP Chemistry - Problem Drill 15: Lewis Structures and VSEPR Theory AP Chemistry - Problem Drill 15: Lewis Structures and VSEPR Theory No. 1 of 10 1. Which shape would have sp 3 hybridization? (A) Linear (B) Bent (C) Tetrahedron (D) Trigonal planar (E) Octahedron C. Correct.

More information

Section 8.13 Molecular Hybridization Structure: The VSEPR Model

Section 8.13 Molecular Hybridization Structure: The VSEPR Model Molecular Hybridization Structure: The VSEPR Model Covalent bonds are formed by the sharing of electrons; orbitals overlap to allow for this sharing. The mixing of two or more atomic orbitals of an atom

More information

CHEMISTRY 102B Hour Exam III. Dr. D. DeCoste T.A. Show all of your work and provide complete answers to questions 16 and (45 pts.

CHEMISTRY 102B Hour Exam III. Dr. D. DeCoste T.A. Show all of your work and provide complete answers to questions 16 and (45 pts. CHEMISTRY 102B Hour Exam III April 28, 2016 Dr. D. DeCoste Name Signature T.A. This exam contains 17 questions on 8 numbered pages. Check now to make sure you have a complete exam. You have one hour and

More information

Name: Class: Date: 3. How many lone pairs of electrons are assigned to the carbon atom in carbon monoxide? a. 0 b. 1 c. 2 d. 3

Name: Class: Date: 3. How many lone pairs of electrons are assigned to the carbon atom in carbon monoxide? a. 0 b. 1 c. 2 d. 3 Class: Date: Midterm 3, Fall 2009 Record your name on the top of this exam and on the scantron form. Record the test ID letter in the top right box of the scantron form. Record all of your answers on the

More information

VSEPR Theory. Shapes of Molecules. Molecular Structure or Molecular Geometry

VSEPR Theory. Shapes of Molecules. Molecular Structure or Molecular Geometry VSEPR Theory VSEPR Theory Shapes of Molecules Molecular Structure or Molecular Geometry The 3-dimensional arrangement of the atoms that make-up a molecule. Determines several properties of a substance,

More information

HYBRIDIZATION THEORY

HYBRIDIZATION THEORY HYBRIDIZATION THEORY According to carbon's orbital diagram, it should only be able to form two bonds... 1s 2s 2p But we know carbon forms 4 bonds, not 2!!! Dec 5 8:19 PM HYBRIDIZATION THEORY Scientists

More information

Contents. 1. Basic Concepts. 2. The Covalent Bond. 3. The Valence-Shell Electron-Pair Repulsion Models 4. Bond theories. 5. The Metallic Bond.

Contents. 1. Basic Concepts. 2. The Covalent Bond. 3. The Valence-Shell Electron-Pair Repulsion Models 4. Bond theories. 5. The Metallic Bond. Chemical Bonding (II) Topic 4. Chemical Bonding (II) (II) 1 Contents 1. Basic Concepts. a) Molecular parameters b) Lewis Dot Symbols 2. The Covalent Bond a) Polar Covalent Bond b) Formal Charge c) Exceptions

More information

Assignment 09 A. 2- The image below depicts a seesaw structure. Which of the following has such a structure?

Assignment 09 A. 2- The image below depicts a seesaw structure. Which of the following has such a structure? Assignment 09 A 1- Give the total number of electron domains, the number of bonding and nonbonding domains, and the molecular geometry, respectively, for the central atom of P 3. a) four electron domains,

More information

Chapter 9. and Bonding Theories

Chapter 9. and Bonding Theories Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chapter 9 Theories John D. Bookstaver St. Charles Community College Cottleville, MO Shapes The

More information

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8. Na Mg Al Si P S Cl Ar

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8. Na Mg Al Si P S Cl Ar CHM 111 Chapters 7 and 8 Worksheet and Study Guide Purpose: This is a guide for your as you work through the chapter. The major topics are provided so that you can write notes on each topic and work the

More information

AP CHEMISTRY CHAPTERS 5 & 6 Problem Set #4. (Questions 1-13) Choose the letter that best answers the question or completes the statement.

AP CHEMISTRY CHAPTERS 5 & 6 Problem Set #4. (Questions 1-13) Choose the letter that best answers the question or completes the statement. NAME: AP CHEMISTRY CHAPTERS 5 & 6 Problem Set #4 (Questions 1-13) Choose the letter that best answers the question or completes the statement. (Questions 1-2) Consider atoms of the following elements.

More information

CHEMISTRY. Chapter 10 Theories of Bonding and Structure. The Molecular Nature of Matter. Jespersen Brady Hyslop SIXTH EDITION

CHEMISTRY. Chapter 10 Theories of Bonding and Structure. The Molecular Nature of Matter. Jespersen Brady Hyslop SIXTH EDITION CHEMISTRY The Molecular Nature of Matter SIXTH EDITION Jespersen Brady Hyslop Chapter 10 Theories of Bonding and Structure Copyright 2012 by John Wiley & Sons, Inc. Molecular Structures Molecules containing

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9. Molecular Geometry and Bonding Theories 9.1 Molecular Shapes Lewis structures give atomic connectivity: they tell us which atoms are physically connected to which atoms. The shape of a molecule

More information

Chapter 10. Geometry

Chapter 10. Geometry Chapter 10 Molec cular Geometry 1 CHAPTER OUTLINE Molecular Geometry Molecular Polarity VSEPR Model Summary of Molecular Shapes Hybridization Molecular Orbital Theory Bond Angles 2 MOLECULAR GEOMETRY Molecular

More information

Chapter 9. and Bonding Theories. Molecular Shapes. What Determines the Shape of a Molecule? 3/8/2013

Chapter 9. and Bonding Theories. Molecular Shapes. What Determines the Shape of a Molecule? 3/8/2013 Chemistry, The Central Science, 10th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chapter 9 Theories John D. Bookstaver St. Charles Community College St. Peters, MO 2006, Prentice-Hall,

More information

How does the number of bonds and nonbonded pairs of electrons affect the shape of a molecule?

How does the number of bonds and nonbonded pairs of electrons affect the shape of a molecule? Reading: Chapter 9, sections 9.1-9.6 As you read these sections ask yourself: ow does the number of bonds and nonbonded pairs of electrons affect the shape of a molecule? Why is the repulsion between two

More information

CHM1045 Exam 3 Chapters 5, 8, & 9

CHM1045 Exam 3 Chapters 5, 8, & 9 1. Which of the following conditions will never result in a decrease in the internal energy of a system? CHM1045 Exam 3 Chapters 5, 8, & 9 a. System loses heat and does work on the surroundings. b. System

More information

2011, Robert Ayton. All rights reserved.

2011, Robert Ayton. All rights reserved. Chemical Bonding Outline 1. Lewis Dot Structures 2. Bonds 3. Formal Charges 4. VSEPR (Molecular Geometry and Hybridzation) 5. Common Resonance Structures and Dimerization Review 1. Lewis Dot Structures

More information

At the end of this lesson, students should be able to :

At the end of this lesson, students should be able to : At the end of this lesson, students should be able to : (a) Explain Valence Shell Electron Pair Repulsion theory (VSEPR) (b) Draw the basic molecular shapes: linear, planar, tetrahedral, and octahedral.

More information

Chemistry 1B Fall 2012 Lectures Chemistry 1B. Fall Lectures Classical theories of bonding and molecular geometry (ch 13)

Chemistry 1B Fall 2012 Lectures Chemistry 1B. Fall Lectures Classical theories of bonding and molecular geometry (ch 13) Chemistry 1B Fall 2012 1 Classical theories of bonding and molecular geometry (ch 13) Lewis electron-dot structures Bond energies and ΔH (back to pp. 606-610, much of this in Chem 1C) Valence State Electron-Pair

More information

Chapter 9. Chemical Bonding II: Molecular Geometry and Bonding Theories

Chapter 9. Chemical Bonding II: Molecular Geometry and Bonding Theories Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories Topics Molecular Geometry Molecular Geometry and Polarity Valence Bond Theory Hybridization of Atomic Orbitals Hybridization in Molecules

More information

Chemistry 1B Fall 2012

Chemistry 1B Fall 2012 Chemistry 1B Fall 2012 Lectures 10-11-12 1 Classical theories of bonding and molecular geometry (ch 13) Lewis electron-dot structures Bond energies and ΔH (back to pp. 606-610, much of this in Chem 1C)

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9. Molecular Geometry and Bonding Theories PART I Molecular Shapes Lewis structures give atomic connectivity: they tell us which atoms are physically connected to which atoms. The shape of a molecule

More information

Review questions CHAPTER 5. Practice exercises 5.1 F F 5.3

Review questions CHAPTER 5. Practice exercises 5.1 F F 5.3 CHAPTER 5 Practice exercises 5.1 S 5.3 5.5 Ethane is symmetrical, so does not have a dipole moment. However, ethanol has a polar H group at one end and so has a dipole moment. 5.7 xygen has the valence

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chemical Bonding II: and ybridization of Atomic rbitals Chapter 10 Valence shell electron pair repulsion (VSEPR) model: Predict the geometry of the molecule from the electrostatic repulsions between the

More information

Chapter 8. Basic Concepts of Chemical Bonding

Chapter 8. Basic Concepts of Chemical Bonding Chapter 8 Basic Concepts of Chemical Bonding Chemical Bonds An attractive force that holds two atoms together in a more complex unit Three basic types of bonds Ionic Electrons are transferred from one

More information