Deterministic APSP, Orthogonal Vectors, and More:

Size: px
Start display at page:

Download "Deterministic APSP, Orthogonal Vectors, and More:"

Transcription

1 Deterministic APSP, Orthogonal Vectors, and More: Quickly Derandomizing Razborov Smolensky Timothy Chan U of Waterloo Ryan Williams Stanford

2 Problem 1: All-Pairs Shortest Paths (APSP) Given real-weighted graph with n vertices, compute the shortest path between every pair of vertices textbook: O(n 3 ) time Big Open Q: O(n 3 ε )?? importance: many applications, & various APSP-hardness results...

3 History of APSP Alg ms Fredman 75 n 3 (log log n/ log n) 1/3 Takaoka 92 n 3 log log n/ log n Dobosiewicz 90 n 3 / log n Han 04 n 3 (log log n/ log n) 5/7 Takaoka 04 n 3 log 2 log n/ log n Zwick 04 n 3 log log n/ log n Chan 05 n 3 / log n Han 06 n 3 (log log n/ log n) 5/4 Chan 07 n 3 (log log n) 3 / log 2 n Han Takaoka 12 n 3 log log n/ log 2 n Williams [STOC 14] n 3 /2 Ω( log n) new n 3 /2 Ω( log n) rand. (Monte Carlo) det.

4 Problem 2: Orthogonal Vectors (OV) Given n Boolean vectors in d dims, is there a pair with dot product = 0? trivial: O(dn 2 ) time improvable by rect. matrix multiplication (e.g., O(n 2+ε ) for d n 0.30, or Õ(n2 ) for d n 0.17 ) trivial: O(2 d ) time Big Open Q: O(n 2 ε ) alg m for some d = ω(log n)?? importance: applications e.g. to k-sat (OV is SETH-hard), & numerous OV-hardness results...

5 History of OV Alg ms For d = c log n: Impagliazzo Lovett Paturi Schneider 14 n 2 1/cO(1) Abboud Williams Yu [SODA 15] n 2 1/O(log c) rand. (Monte Carlo) new n 2 1/O(log c) det.

6 Plan APSP OV Rect. Matrix Multiplication (RMM)

7 Plan APSP Funny RMM Funny RMM OV Standard RMM

8 Standard RMM Given vectors x (1),..., x (n), y (1),..., y (n) in d dims, compute x (1). x (n) y (1) y (n) = all dot products x (s) y (t) Õ(n2 ) time for d n 0.17 [Coppersmith 82]

9 Funny RMM Given vectors x (1),..., x (n), y (1),..., y (n) in d dims, compute x (1). x (n) y (1) y (n) = all values f(x (s), y (t) ) for some funny function f(x, y) Õ(n2 ) time for what d??

10 APSP... is known to be reducible to funny RMM with f(x, y) = min d (x k + y k ) (x, y R d ) k=1 called min-plus RMM by known techniques (Fredman s subtraction trick, Matoušek s dominance method,... ), can be further reduced to a less funny RMM with f(x, y) = d i=1 d which I ll call AND-OR-AND RMM (x ij y ij ) (x, y {0, 1} d d ) (d, d = poly(d)) (Williams original alg m used XOR-AND-OR-AND RMM... )

11 OV... by dividing into n/g groups of g vectors, can be reduced to funny RMM with f(x, y) = g i=1 g d k=1 (x ik y ik ) (x, y {0, 1} dg ) which is again AND-OR-AND RMM! (d = g 2, d = d)

12 Plan APSP AND-OR-AND RMM?? Standard RMM OV

13 Solving AND-OR-AND RMM: The Polynomial Method rewrite f(x, y) as a multivariate polynomial problem is then reduced to standard RMM where new dim. = # monomials of f Ex: f(x, y) = x 1 y 2 + 4x 2 y 1 y 2 + 3x 1 x 2 y 1 = (x 1, 4x 2, 3x 1 x 2 ) (y 2, y 1 y 2, y 1 )

14 Solving AND-OR-AND RMM: The Polynomial Method New Problem: rewrite AND-OR-AND(x, y) = d i=1 d (x ij y ij ) as a polynomial with small # monomials

15 Solving AND-OR-AND RMM: The Polynomial Method New Problem: rewrite AND-OR(z) = d i=1 d z ij as a polynomial with small # monomials aim for small degree...

16 Razborov Smolensky s OR Trick Q: how to write a polynomial for Easy Sol n: 1 d d z j? (1 z j ) (but degree = d, too big!)

17 Razborov Smolensky s OR Trick Q: how to write a polynomial for Randomized Sol n: d take random vector r {0, 1} d return d r j z j (mod 2) Analysis: degree = 1! false always correct true error prob. = 1/2 z j? can lower error prob. to 1/d by repeating log d times & taking product degree log d

18 Randomized AND-OR Polynomial just apply Razborov Smolensky twice (for the top AND, use de Morgan & const error prob.) degree log d # monomials d ( d log d ) O( log d d ) log d = 2 O(log2 d) for APSP (d, d = poly(d)) n 0.17 by setting d = 2 Θ( log n)

19 Derandomizing Razborov Smolensky 2 d choices for random vector r Idea 1: use a smaller sample space that behaves roughly the same ε-biased sets [Naor Naor 93, Alon Goldreich Hastad Peralta 92,... ] Fact 1: set R ε of poly(d, 1/ε) vectors s.t. if d z j is true, then Pr r R ε d r j z j 1 mod 2 (1/2 ε, 1/2+ε)

20 Derandomizing Razborov Smolensky now try all random choices r R ε... but can t tally the results when working mod 2! Idea 2: use a larger modulus modulus-amplifying polynomials [Yao 90, Beigel Tarui 94, on ACC circuits,... ] Fact 2: polynomial F l of degree O(l) s.t. x 0 mod 2 F l (x) 0 mod 2 l x 1 mod 2 F l (x) 1 mod 2 l

21 Final Deterministic AND-OR Polynomial Rewrite AND-OR(z) = d i=1 d z ij as P (z) := d i=1 r R ε F l d r jz ij

22 Final Deterministic AND-OR Polynomial Rewrite AND-OR(z) = d P (z) := d i=1 r R ε F l i=1 d d r j z ij z ij as true P (z) d R ε (1/2±ε) mod 2 l false P (z) (d 1) R ε (1/2±ε) mod 2 l set 2 l d R ε, ε 1/d (to distinguish true vs. false) R ε = poly(d, 1/ε) = poly(d, d ) degree = O(l) = O(log R ε ) = O(log(d d )) so, # monomials basically same as randomized Q.E.D.

23 More Applications also works for SUM-OR instead of AND-OR can count # orthogonal pairs of vectors offline dominance, orthogonal range searching, or exact L nearest neighbor search in n 2 /2 Ω( log n) det. time in dim. d 2 O( log n) can solve #k-sat in 2 (1 1/O(k))n det. time

Geometric Problems in Moderate Dimensions

Geometric Problems in Moderate Dimensions Geometric Problems in Moderate Dimensions Timothy Chan UIUC Basic Problems in Comp. Geometry Orthogonal range search preprocess n points in R d s.t. we can detect, or count, or report points inside a query

More information

Faster Satisfiability Algorithms for Systems of Polynomial Equations over Finite Fields and ACC^0[p]

Faster Satisfiability Algorithms for Systems of Polynomial Equations over Finite Fields and ACC^0[p] Faster Satisfiability Algorithms for Systems of Polynomial Equations over Finite Fields and ACC^0[p] Suguru TAMAKI Kyoto University Joint work with: Daniel Lokshtanov, Ramamohan Paturi, Ryan Williams Satisfiability

More information

Complexity Theory of Polynomial-Time Problems

Complexity Theory of Polynomial-Time Problems Complexity Theory of Polynomial-Time Problems Lecture 3: The polynomial method Part I: Orthogonal Vectors Sebastian Krinninger Organization of lecture No lecture on 26.05. (State holiday) 2 nd exercise

More information

Deterministic APSP, Orthogonal Vectors, and More: Quickly Derandomizing Razborov-Smolensky

Deterministic APSP, Orthogonal Vectors, and More: Quickly Derandomizing Razborov-Smolensky Deterministic APSP, Orthogonal Vectors, and More: Quickly Derandomizing Razborov-Smolensky Timothy M Chan Ryan Williams Abstract We show how to solve all-pairs shortest paths on n nodes in deterministic

More information

Polynomial Representations of Threshold Functions and Algorithmic Applications. Joint with Josh Alman (Stanford) and Timothy M.

Polynomial Representations of Threshold Functions and Algorithmic Applications. Joint with Josh Alman (Stanford) and Timothy M. Polynomial Representations of Threshold Functions and Algorithmic Applications Ryan Williams Stanford Joint with Josh Alman (Stanford) and Timothy M. Chan (Waterloo) Outline The Context: Polynomial Representations,

More information

Finite fields, randomness and complexity. Swastik Kopparty Rutgers University

Finite fields, randomness and complexity. Swastik Kopparty Rutgers University Finite fields, randomness and complexity Swastik Kopparty Rutgers University This talk Three great problems: Polynomial factorization Epsilon-biased sets Function uncorrelated with low-degree polynomials

More information

Hardness for easy problems. An introduction

Hardness for easy problems. An introduction Hardness for easy problems An introduction The real world and hard problems I ve got data. I want to solve this algorithmic problem but I m stuck! Ok, thanks, I feel better that none of my attempts worked.

More information

Speeding up the Four Russians Algorithm by About One More Logarithmic Factor

Speeding up the Four Russians Algorithm by About One More Logarithmic Factor Speeding up the Four Russians Algorithm by About One More Logarithmic Factor Timothy M. Chan September 19, 2014 Abstract We present a new combinatorial algorithm for Boolean matrix multiplication that

More information

Recent Developments on Circuit Satisfiability Algorithms

Recent Developments on Circuit Satisfiability Algorithms Recent Developments on Circuit Satisfiability Algorithms Suguru TAMAKI Kyoto University Fine-Grained Complexity and Algorithm Design Reunion, December 14, 2016, Simons Institute, Berkeley, CA After the

More information

A FINE-GRAINED APPROACH TO ALGORITHMS AND COMPLEXITY. Virginia Vassilevska Williams Stanford University

A FINE-GRAINED APPROACH TO ALGORITHMS AND COMPLEXITY. Virginia Vassilevska Williams Stanford University A FINE-GRAINED APPROACH TO ALGORITHMS AND COMPLEXITY Virginia Vassilevska Williams Stanford University THE CENTRAL QUESTION OF ALGORITHMS RESEARCH ``How fast can we solve fundamental problems, in the worst

More information

On The Hardness of Approximate and Exact (Bichromatic) Maximum Inner Product. Lijie Chen (Massachusetts Institute of Technology)

On The Hardness of Approximate and Exact (Bichromatic) Maximum Inner Product. Lijie Chen (Massachusetts Institute of Technology) On The Hardness of Approximate and Exact (Bichromatic) Maximum Inner Product Max a,b A B a b Lijie Chen (Massachusetts Institute of Technology) Max-IP and Z-Max-IP (Boolean) Max-IP: Given sets A and B

More information

Meta-Algorithms vs. Circuit Lower Bounds Valentine Kabanets

Meta-Algorithms vs. Circuit Lower Bounds Valentine Kabanets Meta-Algorithms vs. Circuit Lower Bounds Valentine Kabanets Tokyo Institute of Technology & Simon Fraser University Understanding Efficiency Better understanding of Efficient Computation Good Algorithms

More information

CSC 2429 Approaches to the P vs. NP Question and Related Complexity Questions Lecture 2: Switching Lemma, AC 0 Circuit Lower Bounds

CSC 2429 Approaches to the P vs. NP Question and Related Complexity Questions Lecture 2: Switching Lemma, AC 0 Circuit Lower Bounds CSC 2429 Approaches to the P vs. NP Question and Related Complexity Questions Lecture 2: Switching Lemma, AC 0 Circuit Lower Bounds Lecturer: Toniann Pitassi Scribe: Robert Robere Winter 2014 1 Switching

More information

Orthogonal Range Searching in Moderate Dimensions: k-d Trees and Range Trees Strike Back

Orthogonal Range Searching in Moderate Dimensions: k-d Trees and Range Trees Strike Back Orthogonal Range Searching in Moderate Dimensions: k-d Trees and Range Trees Strike Back Timothy M. Chan March 20, 2017 Abstract We revisit the orthogonal range searching problem and the exact l nearest

More information

Connections between exponential time and polynomial time problem Lecture Notes for CS294

Connections between exponential time and polynomial time problem Lecture Notes for CS294 Connections between exponential time and polynomial time problem Lecture Notes for CS294 Lecturer: Russell Impagliazzo Scribe: Stefan Schneider November 10, 2015 We connect problems that have exponential

More information

6.S078 A FINE-GRAINED APPROACH TO ALGORITHMS AND COMPLEXITY LECTURE 1

6.S078 A FINE-GRAINED APPROACH TO ALGORITHMS AND COMPLEXITY LECTURE 1 6.S078 A FINE-GRAINED APPROACH TO ALGORITHMS AND COMPLEXITY LECTURE 1 Not a requirement, but fun: OPEN PROBLEM Sessions!!! (more about this in a week) 6.S078 REQUIREMENTS 1. Class participation: worth

More information

Complexity Theory of Polynomial-Time Problems

Complexity Theory of Polynomial-Time Problems Complexity Theory of Polynomial-Time Problems Lecture 1: Introduction, Easy Examples Karl Bringmann and Sebastian Krinninger Audience no formal requirements, but: NP-hardness, satisfiability problem, how

More information

An O(n 3 log log n/ log n) Time Algorithm for the All-Pairs Shortest Path Problem

An O(n 3 log log n/ log n) Time Algorithm for the All-Pairs Shortest Path Problem An O(n 3 log log n/ log n) Time Algorithm for the All-Pairs Shortest Path Problem Tadao Takaoka Department of Computer Science University of Canterbury Christchurch, New Zealand October 27, 2004 1 Introduction

More information

More Applications of the Polynomial Method to Algorithm Design

More Applications of the Polynomial Method to Algorithm Design More Applications of the Polynomial Method to Algorithm Design Amir Abboud Ryan Williams Huacheng Yu Abstract In low-depth circuit complexity, the polynomial method is a way to prove lower bounds by translating

More information

Complexity of Finding a Duplicate in a Stream: Simple Open Problems

Complexity of Finding a Duplicate in a Stream: Simple Open Problems Complexity of Finding a Duplicate in a Stream: Simple Open Problems Jun Tarui Univ of Electro-Comm, Tokyo Shonan, Jan 2012 1 Duplicate Finding Problem Given: Stream a 1,,a m a i {1,,n} Assuming m > n,

More information

complexity distributions

complexity distributions The of complexity distributions Emanuele Viola Northeastern University March 2012 Local functions (a.k.a. Junta, NC 0 ) f : {0,1}n {0,1} d-local : output depends on d input bits Input x d f Fact: Parity(x)

More information

Some Depth Two (and Three) Threshold Circuit Lower Bounds. Ryan Williams Stanford Joint work with Daniel Kane (UCSD)

Some Depth Two (and Three) Threshold Circuit Lower Bounds. Ryan Williams Stanford Joint work with Daniel Kane (UCSD) Some Depth Two (and Three) Threshold Circuit Lower Bounds Ryan Williams Stanford Joint wor with Daniel Kane (UCSD) Introduction Def. f n : 0,1 n 0,1 is a linear threshold function (LTF) if there are w

More information

Complexity Theory of Polynomial-Time Problems

Complexity Theory of Polynomial-Time Problems Complexity Theory of Polynomial-Time Problems Lecture 11: Nondeterministic SETH Karl Bringmann Complexity Inside P SAT 2 n 3SUM n 2 OV n 2 Colinearity n 2 3SUM-hard APSP n 3 APSP equivalent Radius n 3

More information

Hardness amplification proofs require majority

Hardness amplification proofs require majority Hardness amplification proofs require majority Emanuele Viola Columbia University Work done at Harvard, IAS, and Columbia Joint work with Ronen Shaltiel University of Haifa January 2008 Circuit lower bounds

More information

The idea is that if we restrict our attention to any k positions in x, no matter how many times we

The idea is that if we restrict our attention to any k positions in x, no matter how many times we k-wise Independence and -biased k-wise Indepedence February 0, 999 Scribe: Felix Wu Denitions Consider a distribution D on n bits x x x n. D is k-wise independent i for all sets of k indices S fi ;:::;i

More information

A FINE-GRAINED APPROACH TO

A FINE-GRAINED APPROACH TO A FINE-GRAINED APPROACH TO ALGORITHMS AND COMPLEXITY Virginia Vassilevska Williams MIT ICDT 2018 THE CENTRAL QUESTION OF ALGORITHMS RESEARCH ``How fast can we solve fundamental problems, in the worst case?

More information

Polynomial Identity Testing and Circuit Lower Bounds

Polynomial Identity Testing and Circuit Lower Bounds Polynomial Identity Testing and Circuit Lower Bounds Robert Špalek, CWI based on papers by Nisan & Wigderson, 1994 Kabanets & Impagliazzo, 2003 1 Randomised algorithms For some problems (polynomial identity

More information

1 Randomized reduction: a first start

1 Randomized reduction: a first start 6.S078 Fine-Grained Algorithms and Complexity MIT Lectures 3 and 4 February 14 and 21, 2018 Today: In the previous two lectures, we mentioned ETH and SETH, about the time complexity of SAT. Today we want

More information

Fine Grained Counting Complexity I

Fine Grained Counting Complexity I Fine Grained Counting Complexity I Holger Dell Saarland University and Cluster of Excellence (MMCI) & Simons Institute for the Theory of Computing 1 50 Shades of Fine-Grained #W[1] W[1] fixed-parameter

More information

More Consequences of Falsifying SETH and the Orthogonal Vectors Conjecture [Full version]

More Consequences of Falsifying SETH and the Orthogonal Vectors Conjecture [Full version] More Consequences of Falsifying SETH and the Orthogonal Vectors Conjecture [Full version] Amir Abboud Karl Bringmann Holger Dell Jesper Nederlof February 24, 2018 Abstract The Strong Exponential Time Hypothesis

More information

Algebraic approach to exact algorithms, Part III: Polynomials over nite elds of characteristic two

Algebraic approach to exact algorithms, Part III: Polynomials over nite elds of characteristic two Algebraic approach to exact algorithms, Part III: Polynomials over nite elds of characteristic two Šukasz Kowalik University of Warsaw ADFOCS, Saarbrücken, August 2013 Šukasz Kowalik (UW) Algebraic approach...

More information

Umans Complexity Theory Lectures

Umans Complexity Theory Lectures Complexity Theory Umans Complexity Theory Lectures Lecture 1a: Problems and Languages Classify problems according to the computational resources required running time storage space parallelism randomness

More information

Notes for Lecture 25

Notes for Lecture 25 U.C. Berkeley CS278: Computational Complexity Handout N25 ofessor Luca Trevisan 12/1/2004 Notes for Lecture 25 Circuit Lower Bounds for Parity Using Polynomials In this lecture we prove a lower bound on

More information

On the correlation of parity and small-depth circuits

On the correlation of parity and small-depth circuits Electronic Colloquium on Computational Complexity, Report No. 137 (2012) On the correlation of parity and small-depth circuits Johan Håstad KTH - Royal Institute of Technology November 1, 2012 Abstract

More information

2 Completing the Hardness of approximation of Set Cover

2 Completing the Hardness of approximation of Set Cover CSE 533: The PCP Theorem and Hardness of Approximation (Autumn 2005) Lecture 15: Set Cover hardness and testing Long Codes Nov. 21, 2005 Lecturer: Venkat Guruswami Scribe: Atri Rudra 1 Recap We will first

More information

ENTROPY OF OPERATORS OR WHY MATRIX MULTIPLICATION IS HARD FOR DEPTH-TWO CIRCUITS

ENTROPY OF OPERATORS OR WHY MATRIX MULTIPLICATION IS HARD FOR DEPTH-TWO CIRCUITS Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 19 (2008) ENTROPY OF OPERATORS OR WHY MATRIX MULTIPLICATION IS HARD FOR DEPTH-TWO CIRCUITS STASYS JUKNA Abstract. We consider

More information

Strong ETH Breaks With Merlin and Arthur. Or: Short Non-Interactive Proofs of Batch Evaluation

Strong ETH Breaks With Merlin and Arthur. Or: Short Non-Interactive Proofs of Batch Evaluation Strong ETH Breaks With Merlin and Arthur Or: Short Non-Interactive Proofs of Batch Evaluation Ryan Williams Stanford Two Stories Story #1: The ircuit and the Adversarial loud. Given: a 1,, a K F n Want:

More information

Almost k-wise independence versus k-wise independence

Almost k-wise independence versus k-wise independence Almost k-wise independence versus k-wise independence Noga Alon Sackler Faculty of Exact Sciences Tel Aviv University Ramat-Aviv, Israel. nogaa@post.tau.ac.il Yishay Mansour School of Computer Science

More information

Last time, we described a pseudorandom generator that stretched its truly random input by one. If f is ( 1 2

Last time, we described a pseudorandom generator that stretched its truly random input by one. If f is ( 1 2 CMPT 881: Pseudorandomness Prof. Valentine Kabanets Lecture 20: N W Pseudorandom Generator November 25, 2004 Scribe: Ladan A. Mahabadi 1 Introduction In this last lecture of the course, we ll discuss the

More information

2. If the values for f(x) can be made as close as we like to L by choosing arbitrarily large. lim

2. If the values for f(x) can be made as close as we like to L by choosing arbitrarily large. lim Limits at Infinity and Horizontal Asymptotes As we prepare to practice graphing functions, we should consider one last piece of information about a function that will be helpful in drawing its graph the

More information

CPSC 536N: Randomized Algorithms Term 2. Lecture 9

CPSC 536N: Randomized Algorithms Term 2. Lecture 9 CPSC 536N: Randomized Algorithms 2011-12 Term 2 Prof. Nick Harvey Lecture 9 University of British Columbia 1 Polynomial Identity Testing In the first lecture we discussed the problem of testing equality

More information

On the Exponent of the All Pairs Shortest Path Problem

On the Exponent of the All Pairs Shortest Path Problem On the Exponent of the All Pairs Shortest Path Problem Noga Alon Department of Mathematics Sackler Faculty of Exact Sciences Tel Aviv University Zvi Galil Department of Computer Science Sackler Faculty

More information

Lecture 3 Small bias with respect to linear tests

Lecture 3 Small bias with respect to linear tests 03683170: Expanders, Pseudorandomness and Derandomization 3/04/16 Lecture 3 Small bias with respect to linear tests Amnon Ta-Shma and Dean Doron 1 The Fourier expansion 1.1 Over general domains Let G be

More information

1 Randomized Computation

1 Randomized Computation CS 6743 Lecture 17 1 Fall 2007 1 Randomized Computation Why is randomness useful? Imagine you have a stack of bank notes, with very few counterfeit ones. You want to choose a genuine bank note to pay at

More information

Local Reductions. September Emanuele Viola Northeastern University

Local Reductions. September Emanuele Viola Northeastern University Local Reductions September 2014 Emanuele Viola Northeastern University Papers: Local Reductions with Hamid Jahanjou and Eric Miles Succinct and explicit circuits for sorting and connectivity With Hamid

More information

Applications of Chebyshev Polynomials to Low-Dimensional Computational Geometry

Applications of Chebyshev Polynomials to Low-Dimensional Computational Geometry Applications of Chebyshev Polynomials to Low-Dimensional Computational Geometry Timothy M. Chan 1 1 Department of Computer Science, University of Illinois at Urbana-Champaign tmc@illinois.edu Abstract

More information

On Probabilistic ACC Circuits. with an Exact-Threshold Output Gate. Richard Beigel. Department of Computer Science, Yale University

On Probabilistic ACC Circuits. with an Exact-Threshold Output Gate. Richard Beigel. Department of Computer Science, Yale University On Probabilistic ACC Circuits with an Exact-Threshold Output Gate Richard Beigel Department of Computer Science, Yale University New Haven, CT 06520-2158, USA. beigel-richard@cs.yale.edu Jun Tarui y Department

More information

(x 1 +x 2 )(x 1 x 2 )+(x 2 +x 3 )(x 2 x 3 )+(x 3 +x 1 )(x 3 x 1 ).

(x 1 +x 2 )(x 1 x 2 )+(x 2 +x 3 )(x 2 x 3 )+(x 3 +x 1 )(x 3 x 1 ). CMPSCI611: Verifying Polynomial Identities Lecture 13 Here is a problem that has a polynomial-time randomized solution, but so far no poly-time deterministic solution. Let F be any field and let Q(x 1,...,

More information

Lecture 1: January 16

Lecture 1: January 16 CS271 Randomness & Computation Spring 2018 Instructor: Alistair Sinclair Lecture 1: January 16 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They

More information

Lecture 10. Sublinear Time Algorithms (contd) CSC2420 Allan Borodin & Nisarg Shah 1

Lecture 10. Sublinear Time Algorithms (contd) CSC2420 Allan Borodin & Nisarg Shah 1 Lecture 10 Sublinear Time Algorithms (contd) CSC2420 Allan Borodin & Nisarg Shah 1 Recap Sublinear time algorithms Deterministic + exact: binary search Deterministic + inexact: estimating diameter in a

More information

Complexity. Complexity Theory Lecture 3. Decidability and Complexity. Complexity Classes

Complexity. Complexity Theory Lecture 3. Decidability and Complexity. Complexity Classes Complexity Theory 1 Complexity Theory 2 Complexity Theory Lecture 3 Complexity For any function f : IN IN, we say that a language L is in TIME(f(n)) if there is a machine M = (Q, Σ, s, δ), such that: L

More information

THE COMPLEXITY OF CONSTRUCTING PSEUDORANDOM GENERATORS FROM HARD FUNCTIONS

THE COMPLEXITY OF CONSTRUCTING PSEUDORANDOM GENERATORS FROM HARD FUNCTIONS comput. complex. 13 (2004), 147 188 1016-3328/04/030147 42 DOI 10.1007/s00037-004-0187-1 c Birkhäuser Verlag, Basel 2004 computational complexity THE COMPLEXITY OF CONSTRUCTING PSEUDORANDOM GENERATORS

More information

Holger Dell Saarland University and Cluster of Excellence (MMCI) Simons Institute for the Theory of Computing

Holger Dell Saarland University and Cluster of Excellence (MMCI) Simons Institute for the Theory of Computing Fine-Grained Complexity Classification of Counting Problems Holger Dell Saarland University and Cluster of Excellence (MMCI) Simons Institute for the Theory of Computing 1 In P or not in P? Exact counting

More information

Derandomization, witnesses for Boolean matrix multiplication and construction of perfect hash functions

Derandomization, witnesses for Boolean matrix multiplication and construction of perfect hash functions Derandomization, witnesses for Boolean matrix multiplication and construction of perfect hash functions Noga Alon Moni Naor To appear in Algorithmica, final version Abstract Small sample spaces with almost

More information

Notes on Complexity Theory Last updated: December, Lecture 27

Notes on Complexity Theory Last updated: December, Lecture 27 Notes on Complexity Theory Last updated: December, 2011 Jonathan Katz Lecture 27 1 Space-Bounded Derandomization We now discuss derandomization of space-bounded algorithms. Here non-trivial results can

More information

Low-discrepancy sets for high-dimensional rectangles: a survey

Low-discrepancy sets for high-dimensional rectangles: a survey The Computational Complexity Column Eric Allender Rutgers University, Department of Computer Science Piscataway, NJ 08855 USA allender@cs.rutgers.edu With this issue of the Bulletin, my tenure as editor

More information

Lecture notes on OPP algorithms [Preliminary Draft]

Lecture notes on OPP algorithms [Preliminary Draft] Lecture notes on OPP algorithms [Preliminary Draft] Jesper Nederlof June 13, 2016 These lecture notes were quickly assembled and probably contain many errors. Use at your own risk! Moreover, especially

More information

Provability of weak circuit lower bounds

Provability of weak circuit lower bounds Provability of weak circuit lower bounds Moritz Müller Ján Pich Kurt Gödel Research Center for Mathematical Logic University of Vienna {moritz.mueller,jan.pich}@univie.ac.at September 2017 Abstract We

More information

arxiv: v3 [cs.ds] 27 Nov 2014

arxiv: v3 [cs.ds] 27 Nov 2014 Representative sets for multisets Ariel Gabizon Daniel Lokshtanov Michal Pilipczuk December 1, 2014 arxiv:1411.6756v3 [cs.ds] 27 Nov 2014 Abstract The notion of a q-representative set for a family of subsets

More information

CSE200: Computability and complexity Space Complexity

CSE200: Computability and complexity Space Complexity CSE200: Computability and complexity Space Complexity Shachar Lovett January 29, 2018 1 Space complexity We would like to discuss languages that may be determined in sub-linear space. Lets first recall

More information

Complexity Theory of Polynomial-Time Problems

Complexity Theory of Polynomial-Time Problems Complexity Theory of Polynomial-Time Problems Lecture 13: Recap, Further Directions, Open Problems Karl Bringmann I. Recap II. Further Directions III. Open Problems I. Recap Hard problems SAT: OV: APSP:

More information

Exam in Discrete Mathematics

Exam in Discrete Mathematics Exam in Discrete Mathematics First Year at the Faculty of Engineering and Science and the Technical Faculty of IT and Design June 4th, 018, 9.00-1.00 This exam consists of 11 numbered pages with 14 problems.

More information

arxiv: v2 [cs.ds] 22 May 2014

arxiv: v2 [cs.ds] 22 May 2014 Faster all-pairs shortest paths via circuit complexity Ryan Williams Stanford University arxiv:1312.6680v2 [cs.ds] 22 May 2014 May 23, 2014 Abstract We present a new randomized method for computing the

More information

Proving lower bounds in the LOCAL model. Juho Hirvonen, IRIF, CNRS, and Université Paris Diderot

Proving lower bounds in the LOCAL model. Juho Hirvonen, IRIF, CNRS, and Université Paris Diderot Proving lower bounds in the LOCAL model Juho Hirvonen, IRIF, CNRS, and Université Paris Diderot ADGA, 20 October, 2017 Talk outline Sketch two lower bound proof techniques for distributed graph algorithms

More information

Simple extractors via crypto pseudo-random generators

Simple extractors via crypto pseudo-random generators Simple extractors via crypto pseudo-random generators Marius Zimand (Towson University) Extractors vs. Pseudo-Rand. Generators Fundamental primitives in derandomization, cryptography,... They manufacture

More information

Norms, XOR lemmas, and lower bounds for GF(2) polynomials and multiparty protocols

Norms, XOR lemmas, and lower bounds for GF(2) polynomials and multiparty protocols Norms, XOR lemmas, and lower bounds for GF(2) polynomials and multiparty protocols Emanuele Viola, IAS (Work partially done during postdoc at Harvard) Joint work with Avi Wigderson June 2007 Basic questions

More information

Polynomial Identity Testing. Amir Shpilka Technion

Polynomial Identity Testing. Amir Shpilka Technion Polynomial Identity Testing Amir Shpilka Technion 1 Goal of talk Model: Arithmetic circuits Problem: Polynomial Identity Testing Example: Depth-3 circuits Some open problems 2 Holy grail: P vs. NP Boolean

More information

The sum of d small-bias generators fools polynomials of degree d

The sum of d small-bias generators fools polynomials of degree d The sum of d small-bias generators fools polynomials of degree d Emanuele Viola April 9, 2008 Abstract We prove that the sum of d small-bias generators L : F s F n fools degree-d polynomials in n variables

More information

The power and weakness of randomness (when you are short on time) Avi Wigderson Institute for Advanced Study

The power and weakness of randomness (when you are short on time) Avi Wigderson Institute for Advanced Study The power and weakness of randomness (when you are short on time) Avi Wigderson Institute for Advanced Study Plan of the talk Computational complexity -- efficient algorithms, hard and easy problems, P

More information

Lecture 3: Randomness in Computation

Lecture 3: Randomness in Computation Great Ideas in Theoretical Computer Science Summer 2013 Lecture 3: Randomness in Computation Lecturer: Kurt Mehlhorn & He Sun Randomness is one of basic resources and appears everywhere. In computer science,

More information

Certifying polynomials for AC 0 [ ] circuits, with applications

Certifying polynomials for AC 0 [ ] circuits, with applications Certifying polynomials for AC 0 [ ] circuits, with applications Swastik Kopparty Srikanth Srinivasan Abstract In this paper, we introduce and develop the method of certifying polynomials for proving AC

More information

Additive Combinatorics and Computational Complexity

Additive Combinatorics and Computational Complexity Additive Combinatorics and Computational Complexity Luca Trevisan U.C. Berkeley Ongoing joint work with Omer Reingold, Madhur Tulsiani, Salil Vadhan Combinatorics: Studies: Graphs, hypergraphs, set systems

More information

Computing the Independence Polynomial: from the Tree Threshold Down to the Roots

Computing the Independence Polynomial: from the Tree Threshold Down to the Roots 1 / 16 Computing the Independence Polynomial: from the Tree Threshold Down to the Roots Nick Harvey 1 Piyush Srivastava 2 Jan Vondrák 3 1 UBC 2 Tata Institute 3 Stanford SODA 2018 The Lovász Local Lemma

More information

Nondeterministic Polynomial Time

Nondeterministic Polynomial Time Nondeterministic Polynomial Time 11/1/2016 Discrete Structures (CS 173) Fall 2016 Gul Agha Slides based on Derek Hoiem, University of Illinois 1 2016 CS Alumni Awards Sohaib Abbasi (BS 78, MS 80), Chairman

More information

Note: A file Algebra Unit 09 Practice X Patterns can be useful to prepare students to quickly find sum and product.

Note: A file Algebra Unit 09 Practice X Patterns can be useful to prepare students to quickly find sum and product. Note: This unit can be used as needed (review or introductory) to practice operations on polynomials. Math Background Previously, you Identified monomials and their characteristics Applied the laws of

More information

Direct product theorem for discrepancy

Direct product theorem for discrepancy Direct product theorem for discrepancy Troy Lee Rutgers University Joint work with: Robert Špalek Direct product theorems Knowing how to compute f, how can you compute f f f? Obvious upper bounds: If can

More information

Lecture 2: January 18

Lecture 2: January 18 CS271 Randomness & Computation Spring 2018 Instructor: Alistair Sinclair Lecture 2: January 18 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They

More information

EXPONENTIAL LOWER BOUNDS FOR DEPTH THREE BOOLEAN CIRCUITS

EXPONENTIAL LOWER BOUNDS FOR DEPTH THREE BOOLEAN CIRCUITS comput. complex. 9 (2000), 1 15 1016-3328/00/010001-15 $ 1.50+0.20/0 c Birkhäuser Verlag, Basel 2000 computational complexity EXPONENTIAL LOWER BOUNDS FOR DEPTH THREE BOOLEAN CIRCUITS Ramamohan Paturi,

More information

Math Lecture 18 Notes

Math Lecture 18 Notes Math 1010 - Lecture 18 Notes Dylan Zwick Fall 2009 In our last lecture we talked about how we can add, subtract, and multiply polynomials, and we figured out that, basically, if you can add, subtract,

More information

Lecture 16: Constraint Satisfaction Problems

Lecture 16: Constraint Satisfaction Problems A Theorist s Toolkit (CMU 18-859T, Fall 2013) Lecture 16: Constraint Satisfaction Problems 10/30/2013 Lecturer: Ryan O Donnell Scribe: Neal Barcelo 1 Max-Cut SDP Approximation Recall the Max-Cut problem

More information

Find the Missing Number or Numbers: An Exposition

Find the Missing Number or Numbers: An Exposition Find the Missing Number or Numbers: An Exposition William Gasarch Univ. of MD at College Park Introduction The following is a classic problem in streaming algorithms and often the first one taught. Assume

More information

Circuits with composite moduli

Circuits with composite moduli Circuits with composite moduli Dissertation Submitted to Tsinghua University in partial fulfillment of the requirement for the degree of Doctor of Philosophy in Computer Science and Technology by Shiteng

More information

CS151 Complexity Theory

CS151 Complexity Theory Introduction CS151 Complexity Theory Lecture 5 April 13, 2004 Power from an unexpected source? we know PEXP, which implies no polytime algorithm for Succinct CVAL poly-size Boolean circuits for Succinct

More information

Depth-reduction for composites

Depth-reduction for composites Electronic Colloquium on Computational Complexity, Report No. 85 (2016 Depth-reduction for composites Shiteng Chen Tsinghua University Periklis A. Papakonstantinou Rutgers University May 27, 2016 Abstract

More information

On Graph Complexity S. J U K N A

On Graph Complexity S. J U K N A On Graph Complexity S. J U K N A Universität Frankfurt, Institut für Informatik Robert-Mayer-Str. 11-15, D-60054 Frankfurt, Germany jukna@thi.informatik.uni-frankfurt.de and Institute of Mathematics and

More information

On the Locality of Distributed Sparse Spanner Constructions

On the Locality of Distributed Sparse Spanner Constructions On the Locality of Distributed Sparse Spanner Constructions B. Derbel, C. Gavoille, D. Peleg, L. Viennot University of Lille University of Bordeaux Weizmann Institute INRIA, Paris PODC 2008 Toronto What

More information

Admin NP-COMPLETE PROBLEMS. Run-time analysis. Tractable vs. intractable problems 5/2/13. What is a tractable problem?

Admin NP-COMPLETE PROBLEMS. Run-time analysis. Tractable vs. intractable problems 5/2/13. What is a tractable problem? Admin Two more assignments No office hours on tomorrow NP-COMPLETE PROBLEMS Run-time analysis Tractable vs. intractable problems We ve spent a lot of time in this class putting algorithms into specific

More information

Linear sketching for Functions over Boolean Hypercube

Linear sketching for Functions over Boolean Hypercube Linear sketching for Functions over Boolean Hypercube Grigory Yaroslavtsev (Indiana University, Bloomington) http://grigory.us with Sampath Kannan (U. Pennsylvania), Elchanan Mossel (MIT) and Swagato Sanyal

More information

CS369E: Communication Complexity (for Algorithm Designers) Lecture #8: Lower Bounds in Property Testing

CS369E: Communication Complexity (for Algorithm Designers) Lecture #8: Lower Bounds in Property Testing CS369E: Communication Complexity (for Algorithm Designers) Lecture #8: Lower Bounds in Property Testing Tim Roughgarden March 12, 2015 1 Property Testing We begin in this section with a brief introduction

More information

How proofs are prepared at Camelot

How proofs are prepared at Camelot How proofs are prepared at Camelot Andreas Björklund Lund University Petteri Kaski Aalto University Fine-Grained Complexity and Algorithm Design Reunion Simons Institute, UC Berkeley 15 December 2016 Fine-grained

More information

Modular Counting of Rational Points over Finite Fields

Modular Counting of Rational Points over Finite Fields Modular Counting of Rational Points over Finite Fields Daqing Wan Department of Mathematics University of California Irvine, CA 92697-3875 dwan@math.uci.edu Abstract Let F q be the finite field of q elements,

More information

Pseudorandom Generators for Regular Branching Programs

Pseudorandom Generators for Regular Branching Programs Pseudorandom Generators for Regular Branching Programs Mark Braverman Anup Rao Ran Raz Amir Yehudayoff Abstract We give new pseudorandom generators for regular read-once branching programs of small width.

More information

On some fine-grained questions in algorithms and complexity

On some fine-grained questions in algorithms and complexity On some fine-grained questions in algorithms and complexity Virginia Vassilevska Williams Massachusetts Institute of Technology, EECS and CSAIL Abstract In recent years, a new fine-grained theory of computational

More information

Lecture 19: Interactive Proofs and the PCP Theorem

Lecture 19: Interactive Proofs and the PCP Theorem Lecture 19: Interactive Proofs and the PCP Theorem Valentine Kabanets November 29, 2016 1 Interactive Proofs In this model, we have an all-powerful Prover (with unlimited computational prover) and a polytime

More information

1 Dimension Reduction in Euclidean Space

1 Dimension Reduction in Euclidean Space CSIS0351/8601: Randomized Algorithms Lecture 6: Johnson-Lindenstrauss Lemma: Dimension Reduction Lecturer: Hubert Chan Date: 10 Oct 011 hese lecture notes are supplementary materials for the lectures.

More information

arxiv: v2 [cs.ds] 3 Oct 2017

arxiv: v2 [cs.ds] 3 Oct 2017 Orthogonal Vectors Indexing Isaac Goldstein 1, Moshe Lewenstein 1, and Ely Porat 1 1 Bar-Ilan University, Ramat Gan, Israel {goldshi,moshe,porately}@cs.biu.ac.il arxiv:1710.00586v2 [cs.ds] 3 Oct 2017 Abstract

More information

Low-Depth Witnesses are Easy to Find

Low-Depth Witnesses are Easy to Find Low-Depth Witnesses are Easy to Find Luis Antunes U. Porto Lance Fortnow U. Chicago Alexandre Pinto U. Porto André Souto U. Porto Abstract Antunes, Fortnow, van Melkebeek and Vinodchandran captured the

More information

Lecture 4: LMN Learning (Part 2)

Lecture 4: LMN Learning (Part 2) CS 294-114 Fine-Grained Compleity and Algorithms Sept 8, 2015 Lecture 4: LMN Learning (Part 2) Instructor: Russell Impagliazzo Scribe: Preetum Nakkiran 1 Overview Continuing from last lecture, we will

More information

Problem Set 2. Assigned: Mon. November. 23, 2015

Problem Set 2. Assigned: Mon. November. 23, 2015 Pseudorandomness Prof. Salil Vadhan Problem Set 2 Assigned: Mon. November. 23, 2015 Chi-Ning Chou Index Problem Progress 1 SchwartzZippel lemma 1/1 2 Robustness of the model 1/1 3 Zero error versus 1-sided

More information

HARDNESS AMPLIFICATION VIA SPACE-EFFICIENT DIRECT PRODUCTS

HARDNESS AMPLIFICATION VIA SPACE-EFFICIENT DIRECT PRODUCTS HARDNESS AMPLIFICATION VIA SPACE-EFFICIENT DIRECT PRODUCTS Venkatesan Guruswami and Valentine Kabanets Abstract. We prove a version of the derandomized Direct Product lemma for deterministic space-bounded

More information