An electrochemical and quantum chemical investigation of some corrosion inhibitors on aluminium alloy in 0.6 M aqueous sodium chloride solution

Size: px
Start display at page:

Download "An electrochemical and quantum chemical investigation of some corrosion inhibitors on aluminium alloy in 0.6 M aqueous sodium chloride solution"

Transcription

1 Indian Journal of Chemical Technology Vol. 18, July 2011, pp An electrochemical and quantum chemical investigation of some corrosion inhibitors on aluminium alloy in 0.6 M aqueous sodium chloride solution R Banerjee, Ranjana, S S Panja & M M Nandi* Department of Chemistry, National Institute of Technology, Durgapur , India Received 13 August 2010; accepted 11 April 2011 The role of phthalic acid (I) and related compounds, viz., o-phenylenediamine (II) and anthranilic acid (III) to protect aluminium alloy against corrosion in 0.6 M aqueous sodium chloride solution is studied using potentiodynamic polarization technique and impedance studies. The order of inhibition effect of these compounds is found to be I < II < III. Density functional theory (DFT) has been used to analyze the characteristics of the inhibition mechanism and to describe electronic and structural nature of the inhibitor on the corrosion process. Attempt has been made to correlate the inhibiting properties with the electronic parameters and molecular area of the inhibitors Keywords: Aluminium, Polarization, Corrosion inhibition, Molecular size, Quantum chemical calculation, DFT calculation Aluminium and its alloys are used in a wide range of industrial applications owing to their low cost, light weight, high thermal and electrical conductivity and good corrosion resistance 1. The corrosion resistance arises from the ability of aluminium and its alloys to form a natural oxide film on its surface in a wide variety of media 2,3. In aggressive media, such as chloride solution, localized corrosion can occur leading to the breakdown of the passive layer and pit formation. 4,5 The protection of aluminium and its oxide films from the corrosive chloride attack has been studied by many investigators using either inorganic 6 or organic compounds 7-13 as corrosion inhibitors. Recently, we have reported the effective inhibition of brass corrosion by imidazoline and hydropyrimidine derivatives synthesized from amino acids in 0.6 M aqueous sodium chloride solution Significant improvement in the inhibition property of the amino acids is observed by introducing C 6 H 5 -SO 2 group. 15 It further increased when carboxyl group was converted to imidazoline or tetrahydropyrimidine group 14,16. Recently, density functional theory (DFT) is being used to analyze the characteristics of the inhibition mechanism and to describe the electronic and structural nature of the inhibitor on the corrosion process The aim of the present work is to study effect of some organic compounds on the corrosion of *Corresponding author ( murarimohan_nandi@yahoo.co.in) aluminium alloy in 0.6 M aqueous sodium chloride solution. Organic compounds were chosen whose molecular structure was likely to lead to chemisorption, physisorption or complexation on the aluminium surface. They are characterized by the presence of O and N atoms which act as reaction centres on the metal surface 24. Furthermore, DFT is considered a very useful technique to probe the inhibitor/surface interaction as well as to analyze the experimental data. Here, we have studied the corrosion inhibition efficiency of the three molecules, namely phthalic acid (I), o-phenylenediamine (II) and anthranilic acid (III). All the quantum chemical ground electronic state calculations were performed by means of the Gaussian03 program 25. Exchange and correlation calculations were carried out using the functional hybrid B3LYP 26,27 and the 6-31+G** orbital basis sets for all atoms. In all cases, the ground state geometrical structure of the species were fully optimized and frequency calculations were performed with the same B3LYP/6-31+G** orbital basis set. All the frequency calculations were carried out to make sure that all the frequencies are found positive which basically reflects that ground state optimized structures corresponds indeed to global minima. Since the ph of the reaction media is 6, the molecules preferably remain in solution either in neutral (for II and III) or monobasic form (I). The energies of the frontier molecular orbitals were calculated and chemical reactivity was analyzed mainly from those

2 310 INDIAN J. CHEM TECHNOL., JULY 2011 molecular orbitals. The frontier orbital surfaces were visualized using Gauss View 28. The compounds used in this study are shown below: Two electrochemical techniques potentiodynamic polarization and electrochemical impedance spectroscopy have been used to study the effect of addition of these compounds on the corrosion of aluminium in 0.6 M aqueous sodium chloride solution. Experimental Procedure Materials and Methods The chemical composition of the commercial aluminium alloy used in the present study was 0.55% Mg, 0.25% Si, 0.05% Zn, 0.004% Cu, balance Al. The working electrode for potentiodynamic study and EIS measurement was prepared from the aluminium rod from which only the circular cross-section (0.25 cm 2 ) of rod was exposed. The alloy sample was polished successively with (i) belt grinding polishing machine, (ii) metallographic emery paper of increasing fineness of up to 1200 grade and (iii) cloth polishing by Single Disc Polishing Machine CENSICO PMV-T Then the samples were degreased with AR grade ethanol and acetone and rinsed with double distilled water prior to each experiment. All compounds (I-III) were properly purified. The aggressive environment used was 0.6 M aqueous NaCl solution prepared from AR grade reagent and double distilled water. The ph of the solution was adjusted to 6.0. Oxygen content of the sodium chloride solution was 7.3 mg/l. All other reagents were of AR quality. Potentiodynamic polarization study The potentiodynamic polarization studies were carried out with polished and degreased aluminium specimens having an exposed surface area of 0.25 cm 2. The electrochemical measurements were carried out in a standard three-electrode electrochemical cell of volume 100 ml. The counter electrode was a platinum plate with 1 cm 2 surface area, the reference electrode consisted of a commercial saturated calomel electrode with a Luggin capillary bridge and the working electrode was made up of aluminium alloy. Polarization studies were carried out using potentiostat/galvanostat (ACM Instruments Gill AC) and the data obtained were analyzed using the software ACM Instruments version 5 in air atmosphere. The degreased working electrode was immersed in 0.6 M aqueous NaCl solution and allowed to stabilize for 30 min 29. The cathodic and anodic polarization curves of aluminium alloy specimen in the test solution with and without inhibitors were recorded at a scan rate of 1 mv/s in 0.6 M aqueous NaCl solution (ph=6) at 30±0.5 C. The inhibition efficiencies of the compounds were determined from corrosion current density using the Tafel extrapolation method. Electrochemical AC impedance studies AC impedance measurements were conducted at room temperature using ACM Instruments Gill AC. The instruments were controlled by the software ACM Instruments version 5 between 1 mhz and 100 khz. An AC sinusoid of ~ ± 10 mv was applied at corrosion potential (E corr ). The aluminium sample with an exposing surface area of 0.25 cm 2 was used as the working electrode. A three electrode electrochemical cell of volume 100 ml with a platinum plate electrode and a saturated calomel electrode was used 30. Results and Discussion It is known that the adsorption efficiency over the metal surface is directly linked to the structure and electronic nature of the corrosion inhibitors. Chemisorptions, require charge sharing or charge transfer between organic molecules and the metal surface, which occurs by a favorable overlap of frontier orbitals, that is, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) 31. When chemisorptions takes place, one of the reacting species acts as an electron pair donor and the other one acts as an electron pair acceptor, so the energies of the frontier orbitals should be considered. The energies (ev) of the frontier orbitals for the three inhibitor molecules and aluminium, along with their energy gaps for the interaction (ev) are given in Table 1. From this table, it is found that as the HOMO energy of the inhibitor

3 BANERJEE et al.: ELECTROCHEMICAL & QUANTUM CHEMICAL INVESTIGATION ON CORROSION INHIBITORS 311 Table 1 Various energy parameters of the frontier orbitals of the inhibitors Compounds I II III Al ev E LUMO ev E HOMO E a (ev) E b (ev) Ionization potential (ev) Inhibition efficiency (%) a=e Molecule LUMO E Al HOMO, b= E Al LUMO E Molecule HOMO molecule is increasing, the corrosion inhibitor efficiency is also getting better and better. This is obvious since as the HOMO energy increases, the tendency for acting as better electron donor also improves and hence interacts with the metal LUMO more efficiently 32. This can be attributed from a different perspective also. As we know from Koopman s theorem, the frontier orbital, HOMO can be correlated to ionization potential (IP) as 33 : -E HOMO = IP So, the IP values for the three species are 1.82 ev (III), 2.4 ev (II) and 3.13 ev (I). If these IP values are plotted against the corrosion efficiency, a nice correlation is found 34 which is shown in Fig. 1. In Fig. 2, the correlation between the energy gap ( E b ) and the experimentally found corrosion inhibition efficiency has been shown 35. From the Table 1, the most efficient inhibitor is molecule III and least efficient is molecule I and molecule II resides in between them. If we see the E b (ev) value (energy difference between the LUMO orbital of aluminium metal and HOMO orbital of the corresponding molecular species) for the three molecular species, they follow the same order as the corrosion inhibition efficiency. It is also clear that the interaction between the HOMO of metal atom and LUMO of inhibitor molecules are weaker as the corresponding energy gaps are much higher than that between the HOMO of the inhibitor molecules and the LUMO of aluminium. This observation clearly depicts that when adsorption takes place, the inhibitor molecules act as electron pair donors through their highest occupied molecular orbital and aluminium receives electron density through its lowest unoccupied molecular orbital. The energy gap is lowest for molecule III (1.36 ev) and highest for molecule I (2.67 ev). One noticeable point is that among the three species, molecule I behaves in a little Fig. 1 Ionization potential versus inhibition efficiency Fig. 2 E b versus inhibition efficiency unusual manner (efficiency is very small, 57.6%) which may be due to strong in plane intramolecular hydrogen bonding. From the optimized geometry of mono anion of molecule I, it is found that the acidic hydrogen atom is totally symmetrically hydrogen bonded to both the oxygen atoms of the two carboxylic groups and the mono-anion is perfectly planar in nature, which makes the species least interactive towards the aluminium metal surface. The electron density of the HOMO of the studied compounds is found to be delocalized over the benzene ring as well as the corresponding substituent groups. But most noticeably, for the case of molecule

4 312 INDIAN J. CHEM TECHNOL., JULY 2011 III, which is the most efficient corrosion inhibitor, the electron density is distributed homogeneously over the benzene ring and the substituent NH 2 and COO - groups, which makes the species susceptible for interacting better with Al metal surface. Potentiodynamic polarization study The cathodic and anodic polarization curves of aluminium in 0.6 M aqueous NaCl solution with varying concentrations of I, II and III and without inhibitor were recorded and are shown in the Figs 3-5. The potentiodynamic polarization parameters are listed in Table 2. Inhibition efficiencies 36 are calculated using the following equation Inhibition efficiency= [I corr - I corr (inh) / I corr ] 100 where I corr (inh) and I corr are the corrosion current density value with and without inhibitor, respectively. In NaCl solution with the inhibitors, the cathodic and anodic current densities are both much lower than those in NaCl solution, which indicates that oxygen reduction and alloy substrate dissolution process are limited by the inhibitors and they are mixed type inhibitors and inhibit the corrosion of aluminium by blocking the active sites of the metal surface 37. The inhibition efficiency of these compounds increases in the order I < II < III. Nitrogen and oxygen donor Fig. 4 Polarization curves for aluminium alloy in 0.6 M NaCl solution containing different concentrations of II Fig. 3 Polarization curves for aluminium alloy in 0.6 M NaCl solution containing different concentrations of I Fig. 5 Potentiodynamic polarization of aluminium alloy in 0.6 M NaCl solution containing different concentrations of III Table 2 The electrochemical parameters and inhibition efficiency values for the corrosion of aluminium in 0.6 M NaCl solution Inhibitors Concentration E corr I corr IE % (mv) vs SCE (µa/cm 2 ) I M I M I M II M II M II M III M III M III M

5 BANERJEE et al.: ELECTROCHEMICAL & QUANTUM CHEMICAL INVESTIGATION ON CORROSION INHIBITORS 313 atoms combination is found to be best inhibitor. It may be mentioned here that chromium forms unstable peroxo compounds in the higher oxidation states. But with nitrogen ligands these complexes are found to be remarkably stable 38. Ethylene glycol 39 and 1,2- diaminoethane 13,1,4-naphthaquinone 24 are found to be good inhibitors for aluminium. Inhibition efficiency of these inhibitors may be further improved if nitrogen or oxygen donor atoms are incorporated in these inhibitors. Electrochemical AC impedance studies Impedance plots indicate that addition of inhibitors did not change the general shape of the semicircles 24. It may be considered that the electrode surface and the reaction mechanism are not changed by the addition of inhibitors 40. Conclusions The following conclusions may be drawn from this study: (i) The investigated compounds exhibit inhibiting properties in aluminium alloy corrosion in 0.6 M aqueous sodium chloride solution. (ii) The order of IE is I < II < III. (iii) The inhibiting property and structure is correlated with the electronic parameters and structural of the molecular species. (iv) Inhibitor with N-O donor atoms combination exhibit highest inhibition efficiency. Acknowledgement The authors are thankful to Prof. A K Mukherjee, University of Burdwan, for helping in quantum chemical calculations. References 1 Despic A, Parkhutik V & Bockris, in Modern Aspects of electrochemistry, edited by White R E & Conway B E, (Plenum, New York), Rehim S S A, Hassan H H & Amin M A, Appl Surf Sci, 187 (2002) El-Shafei A A, Abd El-Maksoud S A & Fouda A S, Corros Sci, 46 (2004) Ambat R & Dwarakodasa E S, J Appl Electrochem, 24 (1994) Sun S, Zheng Q, Li D & Wen J, Corros Sci, 51 (2009) Emregul K C & Aksut A A, Corros Sci, 45 (2003) Sherif E M & Park S M, J Electrochem Soc, 152 (2005) B Ogurtsov N A, Pud A A, Kamarchik P & Shapoval G S, Synth Met, 143 (2004) Daulami S, Beligiannis K, Dimogerontakis Th, Ninni V & Tsangaraki-Kaplano Glou, Corros Sci, 46 (2004) Ferreria E S, Giacomelli C, Giacomelli F C & Spinelli A, Mater Chem Phys, 83 (2004) Khaled K F, Corros Sci, 52 (2010) Mercier D & Barthes-Labrouses M G, Corros Sci, 51(2009) Mercier D Heriux M & Barthes-Labrouses M G, Corros Sci, 52 (2010) Ranjana, Maji M & Nandi M M, Indian J Chem Technol, 16 (2009) Ranjana, Banerjee Ranu & Nandi M M, Indian J Chem Technol, 17 (2010) Ranjana & Nandi M M, Indian J Chem, 18 (2011) Bentiss F, Bouanis M, Mernari B, Traisnel M, Vezin H & Lagrenee M, Appl Surf Sci, 253 (2007) Cai X, Zhang Y, Zhang X & Jiang J, J Mol Struct, 801 (2006) Larabi L, Benali O, Mekelleche S M & Harek Y, Appl Surf Sci, 253 (2006). 20 Rodriguez-Valdez L, Martinez-Villafan e A & Glossman- Mitnik D, J Mol Struct, 716 (2005) Rodriguez-Valdez, Martinez-Villafan e A & Glossman- Mitnik D, J Mol Struct, 713 (2005) Roque Morales Jacinto, Pandiyan T, Cruz J & Garcı a-ocho E, Corros Sci, 50 (2007) Rodriguez-Valdez L, Villamisar W, Casales M, Gonzalez- Rodriguez J G, Martinez-Villafan e A, Martinez L & Glossman-Mitnik D, Corros Sci, 48 (2006) Sherif E M & Park S M, Electrochimica Acta, 51 (2006) Frisch M J et al., Gaussian 03, Revision D.01, Gaussian Inc, Wallingford, CT, Becke D, J Chem Phys, 98 (1993) Lee C, Yang W & Parr R G, Phys Rev B, 37 (1988) Gauss View, version 3.0, Gaussian, Inc., Pittsburg PA, Petkova G, Sokolova E & Ivan Brit, Corros J, 31 (1996) Gasparac R, Martin C R, Stupu Lisac E & Mandic Z, J Electrochem Soc,147 (2000) Martinez S, Mater Chem Phys, 77 (2003) Huang W, Tan Y, Chen B, Dong J & Wang X, Tribol Int, 36 (2003) Pearson R G, Inorg Chem, 27 (1988) Stoyanova A, Petkova G, Peyerimhoff S D, Chem Phys, 279 (2002) Ozcan M, Karadag H & Dehri I, Acta Phys-Chim Sin, 24 (2008) Khamis E, El-Ashry E S H & Ibrahim A K, Brit Corros J, 35 (2000) Li Song-mei, Zhang H & Liu J, Trans Nonferrous Met Soc China, 17 (2007) Ghosh S K & Gould ES, Inorg Chem, 28 (1989) Xu L Y & Cheng Y F, Corros Sci, 50 (2008) Li S, Zhang H & Liu J, Trans Non-ferrous Met Soc China, 17 (2007) 318.

Inhibition effect of amino acid derivatives on the corrosion of brass in 0.6 M aqueous sodium chloride solution

Inhibition effect of amino acid derivatives on the corrosion of brass in 0.6 M aqueous sodium chloride solution Indian Journal of Chemical Technology Vol. 17, May 2010, pp. 176-180 Inhibition effect of amino acid derivatives on the corrosion of brass in 0.6 M aqueous sodium chloride solution Ranjana, Ranu Banerjee

More information

Journal of Chemical and Pharmaceutical Research

Journal of Chemical and Pharmaceutical Research Available on line www.jocpr.com Journal of Chemical and Pharmaceutical Research ISSN No: 0975-7384 CODEN(USA): JCPRC5 J. Chem. Pharm. Res., 2011, 3(1):501-507 Ziprasidone as a corrosion inhibitor for zinc

More information

Corrosion and Inhibition of Cu-Zn Alloys in Acidic Medium by Using Isatin

Corrosion and Inhibition of Cu-Zn Alloys in Acidic Medium by Using Isatin Int. J. Electrochem. Sci., 3 (2008) 167-176 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Corrosion and Inhibition of Cu-Zn Alloys in Acidic Medium by Using Isatin S. A. M. Refaey

More information

Cyclic Voltametric Studies on the Interaction of Adrenaline With Formic Acid and Acetic Acid

Cyclic Voltametric Studies on the Interaction of Adrenaline With Formic Acid and Acetic Acid Int. J. Electrochem. Sci., 6 (2011) 6662-6669 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Cyclic Voltametric Studies on the Interaction of Adrenaline With Formic Acid and Acetic

More information

Ethoxylated fatty amines as corrosion inhibitors for carbon steel in hydrochloric acid solutions

Ethoxylated fatty amines as corrosion inhibitors for carbon steel in hydrochloric acid solutions Int. J. Corros. Scale Inhib., 2013, 2, no. 2, 82 91 Ethoxylated fatty amines as corrosion inhibitors for carbon steel in hydrochloric acid solutions I. A. Zaafarany 1* and Hamza A. Ghulman 2 1 Chemistry

More information

Journal of Advanced Scientific Research DFT APPROACH ON CORROSION INHIBITION PERFORMANCE OF THIOSEMICARBAZONE DERIVATIVES ON METALLIC IRON

Journal of Advanced Scientific Research DFT APPROACH ON CORROSION INHIBITION PERFORMANCE OF THIOSEMICARBAZONE DERIVATIVES ON METALLIC IRON Rajendran et al., J Adv Sci Res, 2016, 7(1): 32-37 32 Journal of Advanced Scientific Research Available online through http://www.sciensage.info/jasr ISSN 0976-9595 Research Article DFT APPROACH ON CORROSION

More information

Bincy Joseph, Sam John, K K Aravindakshan & Abraham Joseph*

Bincy Joseph, Sam John, K K Aravindakshan & Abraham Joseph* Indian Journal of Chemical Technology Vol. 17, November 2010, pp. 425-430 Inhibition of mild steel corrosion in 1 M hydrochloric acid using (E)-4-(2- chlorobenzylideneamino)-6-methyl-3-thioxo-3,4-dihydro-1,2,4-triazin-5(2h)-one

More information

Inhibition effect of 1,2,4-triazole-5-thione derivative on the Corrosion of Brass in 3% NaCl solution

Inhibition effect of 1,2,4-triazole-5-thione derivative on the Corrosion of Brass in 3% NaCl solution Inhibition effect of 1,2,4-triazole-5-thione derivative on the Corrosion of Brass in 3% NaCl solution M. Damej 1*, H. Benassaoui 1, D. Chebabe 1, M. Benmessaoud 2, H. Erramli 1. A. Dermaj 1, N. Hajjaji

More information

THE USE OF SOME 4-PHENYLTHIOSEMICARBAZONE DERIVATIVES AS CORROSION INHIBITORS FOR COPPER IN NITRIC ACID SOLUTION" H.A.

THE USE OF SOME 4-PHENYLTHIOSEMICARBAZONE DERIVATIVES AS CORROSION INHIBITORS FOR COPPER IN NITRIC ACID SOLUTION H.A. THE USE OF SOME 4-PHENYLTHIOSEMICARBAZONE DERIVATIVES AS CORROSION INHIBITORS FOR COPPER IN NITRIC ACID SOLUTION" H.A. Mostafa Department of Chemistry, Faculty ofscicnce, El-Mansoura University, El-Mansoura,

More information

Corrosion Inhibition Efficiency of 3-Hydroxy-2- Methylquinazoline-4-one on Mild Steel in 1 M H 2 SO 4 and 1 M HCl Acid at Different Temperatures

Corrosion Inhibition Efficiency of 3-Hydroxy-2- Methylquinazoline-4-one on Mild Steel in 1 M H 2 SO 4 and 1 M HCl Acid at Different Temperatures Portugaliae Electrochimica Acta 26 (2008) 221-233 PORTUGALIAE ELECTROCHIMICA ACTA Corrosion Inhibition Efficiency of 3-Hydroxy-2- Methylquinazoline-4-one on Mild Steel in 1 M H 2 SO 4 and 1 M HCl Acid

More information

Molecular simulation, quantum chemical calculations and electrochemical studies for inhibition of mild steel by triazoles

Molecular simulation, quantum chemical calculations and electrochemical studies for inhibition of mild steel by triazoles Available online at www.sciencedirect.com Electrochimica Acta 53 (2008) 3484 3492 Molecular simulation, quantum chemical calculations and electrochemical studies for inhibition of mild steel by triazoles

More information

Corrosion and Inhibition of 316L stainless steel in neutral medium by 2-Mercaptobenzimidazole

Corrosion and Inhibition of 316L stainless steel in neutral medium by 2-Mercaptobenzimidazole Int. J. Electrochem. Sci., 1(2006)80-91 www.electrochemsci.org Corrosion and Inhibition of 316L stainless steel in neutral medium by 2-Mercaptobenzimidazole S. A. M. Refaey*, F. Taha and A. M. Abd El-Malak

More information

Research of Self-assembled Monolayer of Alkanethiol for Corrosion Protection of Brass

Research of Self-assembled Monolayer of Alkanethiol for Corrosion Protection of Brass Int. J. Electrochem. Sci., 10 (01) 888-8868 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Research of Self-assembled Monolayer of Alkanethiol for Corrosion Protection of Brass

More information

Inhibition of mild steel corrosion in formic and acetic acid solutions

Inhibition of mild steel corrosion in formic and acetic acid solutions Indian Journal of Chemical Technology Vol. 11, May 2004, pp 331-336 Inhibition of mild steel corrosion in formic and acetic acid solutions M A Quraishi*& H K Sharma Corrosion Research Laboratory, Department

More information

Australian Journal of Basic and Applied Sciences

Australian Journal of Basic and Applied Sciences AENSI Journals Australian Journal of Basic and Applied Sciences ISSN:1991-8178 Journal home page: www.ajbasweb.com Theoretical Study for the Effect of Hydroxyl Radical on the Electronic Properties of Cyclobutadiene

More information

Pelagia Research Library

Pelagia Research Library Available online at www.pelagiaresearchlibrary.com Der Chemica Sinica, 2015, 6(5):96-103 ISSN: 0976-8505 CODEN (USA) CSHIA5 N-((4-Chlorophenyl)(morpholin-4-yl)methyl)acetamide as corrosion inhibitor for

More information

ABSTRACT. ds bond and raised the hydrogen over voltage. Key words: Cyclic voltammetry, Zinc-glycine complexes, Hydrogen evolution, Thiourea

ABSTRACT. ds bond and raised the hydrogen over voltage. Key words: Cyclic voltammetry, Zinc-glycine complexes, Hydrogen evolution, Thiourea 89 ROLE OF THIOUREA ON THE ELECTROCHEMICAL BEHAVIOUR OF ZINC GLYCINE COMPLEXES S.Shabanna Begum, C.Siva Kumar, S.M.Mayanna*, and V S.Muralidharan " Department of Chemistry, Central College, Bangalore,

More information

1,2,3 BENZOTRIAZOLE AS CORROSION INHIBITOR

1,2,3 BENZOTRIAZOLE AS CORROSION INHIBITOR CHAPTER - V 1,2,3 BENZOTRIAZOLE AS CORROSION INHIBITOR In general, organic corrosion inhibitors have reactive functional groups which are the sites for the adsorption process. Electron density of the organic

More information

Doctor of Philosophy

Doctor of Philosophy STUDIES ON THE CORROSION INHIBITION BEHAVIOUR OF SOME AMINO ACID SURFACTANT ADDITIVES ABSTRACT SUBMITTED FOR THE AWARD OF THE DEGREE OF Doctor of Philosophy IN APPLIED CHEMISTRY By MOSARRAT PARVEEN UNDER

More information

Inhibition of acidic corrosion of iron by some Carrageenan compounds

Inhibition of acidic corrosion of iron by some Carrageenan compounds Current World Environment Vol. 1(2), 101-108 (2006) Inhibition of acidic corrosion of iron by some Carrageenan compounds I. ZAAFARANY Department of Chemistry, Faculty of Applied Sciences, Umm Al- Qura

More information

Inhibition of Aluminium Corrosion in Hydrochloric Acid Using Nizoral and the Effect of Iodide Ion Addition

Inhibition of Aluminium Corrosion in Hydrochloric Acid Using Nizoral and the Effect of Iodide Ion Addition ISSN: 0973-4945; CODEN ECJHAO E- Chemistry http://www.e-journals.net 2010, 7(3), 837-843 Inhibition of Aluminium Corrosion in Hydrochloric Acid Using Nizoral and the Effect of Iodide Ion Addition I.B.

More information

CHAPTER IV MATERIALS AND METHODS FOR CORROSION INHIBITION STUDIES 4.1 MATERIALS 4.2 METHODS FOR STUDYING CORROSION 4.3 REFERENCES

CHAPTER IV MATERIALS AND METHODS FOR CORROSION INHIBITION STUDIES 4.1 MATERIALS 4.2 METHODS FOR STUDYING CORROSION 4.3 REFERENCES CHAPTER IV MATERIALS AND METHODS FOR CORROSION INHIBITION STUDIES 4.1 MATERIALS 4.2 METHODS FOR STUDYING CORROSION 4.3 REFERENCES 4.1 MATERIALS The metals used for the corrosion studies are copper and

More information

Corrosion inhibition of Al-Mg alloy by gentisic acid

Corrosion inhibition of Al-Mg alloy by gentisic acid Indian Journal of Chemical Technology Vol. 17, March 2010, pp. 89-94 Corrosion inhibition of Al-Mg alloy by gentisic acid L Vrsalović*, M Kliškić, S Gudić & I Smoljko Department of Electrochemistry and

More information

Poly(p-Phenylenediamine) as an Inhibitor for Mild Steel in Hydrochloric Acid Medium

Poly(p-Phenylenediamine) as an Inhibitor for Mild Steel in Hydrochloric Acid Medium Portugaliae Electrochimica Acta 2012, 30(1), 67-80 DOI: 10.4152/pea.201201067 PORTUGALIAE ELECTROCHIMICA ACTA ISSN 1647-1571 Poly(p-Phenylenediamine) as an Inhibitor for Mild Steel in Hydrochloric Acid

More information

Polyethylene Glycol Compounds As Corrosion Inhibitors for Aluminium in 0.5M Hydrochloric Acid Solutions

Polyethylene Glycol Compounds As Corrosion Inhibitors for Aluminium in 0.5M Hydrochloric Acid Solutions Polyethylene Glycol Compounds As Corrosion Inhibitors for Aluminium in 0.5M Hydrochloric Acid Solutions M. Abdallah (1, 3) H.E. Megahed (1), M. A. Radwan (2) E. Abdfattah (2) 1 Chemistry Department, Faculty

More information

Corrosion inhibition of stainless steel 302 by 1-methyl-3-pyridine- 2-Yl thiourea in acidic media

Corrosion inhibition of stainless steel 302 by 1-methyl-3-pyridine- 2-Yl thiourea in acidic media Indian Journal of Chemical Technology Vol. 16, November 2009, pp. 480-485 Corrosion inhibition of stainless steel 302 by 1-methyl-3-pyridine- 2-Yl thiourea in acidic media S M A Hosseini* & M Salari Department

More information

Analytical & Bioanalytical Electrochemistry

Analytical & Bioanalytical Electrochemistry Anal. Bioanal. Electrochem., Vol. 1, No. 4, 2009, 239-245 Analytical & Bioanalytical Electrochemistry 2009 by CEE www.abechem.com Full Paper Use of Electrochemical Impedance Spectroscopy to Study the Corrosion

More information

Effect Formazan of Benzaldehyde as Corrosion Inhibitor on Preventing the Mild Steel Corrosion in Acidic Medium

Effect Formazan of Benzaldehyde as Corrosion Inhibitor on Preventing the Mild Steel Corrosion in Acidic Medium Chem Sci Trans., 2013, 2(4), 1126-1135 Chemical Science Transactions DOI:10.7598/cst2013.485 ISSN/E-ISSN: 2278-3458/2278-3318 RESEARCH ARTICLE Effect Formazan of Benzaldehyde as Corrosion Inhibitor on

More information

Inhibitor effects of Tolytriazole on zinc, cupper and brass surfaces to corrosion effect of environment

Inhibitor effects of Tolytriazole on zinc, cupper and brass surfaces to corrosion effect of environment Inhibitor effects of Tolytriazole on zinc, cupper and brass surfaces to corrosion effect of environment Tülin Kıyak Gazi University, Faculty of Science, Department of Chemistry, Teknikokullar, 06500 Ankara

More information

Cinnamon Plant Extract as Corrosion Inhibitor for Steel Used in Waste Water Treatment Plants and Its Biological Effect on Escherichia coli

Cinnamon Plant Extract as Corrosion Inhibitor for Steel Used in Waste Water Treatment Plants and Its Biological Effect on Escherichia coli Journal of the Korean Chemical Society Printed in the Republic of Korea http://dx.doi.org/10.5012/jkcs.2014.58.4.359 Cinnamon Plant Extract as Corrosion Inhibitor for Steel Used in Waste Water Treatment

More information

Pelagia Research Library

Pelagia Research Library Der Chemica Sinica, 2012, 3(5):1239-1244 ISSN: 0976-8505 CODEN (USA) CSHIA5 Evaluation of corrosion inhibition of copper in nitric acid solutions using Organic sulphide compound A. Jamal Abdul Nasser 1

More information

Theoretical Study on the Structural Effect of Sulfur Containing Amino Acids As Corrosion Inhibitors On Brass In HClO 4

Theoretical Study on the Structural Effect of Sulfur Containing Amino Acids As Corrosion Inhibitors On Brass In HClO 4 Theoretical Study on the Structural Effect of Sulfur Containing Amino Acids As Corrosion Inhibitors On Brass In HClO 4 Musa E. Mohamed 1,*, Kamal K. Taha 2 1, 2 Department of Chemistry, College of Applied

More information

J. Environ. Res. Develop. Journal of Environmental Research And Development Vol. 9 No. 02, October-December 2014

J. Environ. Res. Develop. Journal of Environmental Research And Development Vol. 9 No. 02, October-December 2014 ANISIDINE ISOMERS AS CORROSION INHIBITORS FOR ZINC IN HYDROCHLORIC ACID Vashi R. T.* and Desai Krunal Department of Chemistry, Navyug Science College, Surat (INDIA) Received July 10, 2014 Accepted December

More information

Hexamine as Corrosion Inhibitors for Zinc in Phosphoric Acid

Hexamine as Corrosion Inhibitors for Zinc in Phosphoric Acid http://www.e-journals.net ISS: 0973-4945; CODE ECJHAO E- Chemistry 2010, 7(S1), S1-S6 Hexamine as Corrosion Inhibitors for Zinc in Phosphoric Acid R. T. VASHI * and DIKSHA AIK * Department of Chemistry,

More information

Competition between Alkalide Characteristics and Nonlinear Optical Properties in OLi 3 M Li 3 O (M = Li, Na, and K) Complexes

Competition between Alkalide Characteristics and Nonlinear Optical Properties in OLi 3 M Li 3 O (M = Li, Na, and K) Complexes Competition between Alkalide Characteristics and Nonlinear Optical Properties in OLi 3 M Li 3 O (M = Li, Na, and K) Complexes Ambrish Kumar Srivastava and Neeraj Misra * Department of Physics, University

More information

Inhibition of corrosion of -brass (Cu-Zn, 67/33) in acid chloride solutions by some amino pyrazole derivatives

Inhibition of corrosion of -brass (Cu-Zn, 67/33) in acid chloride solutions by some amino pyrazole derivatives JOURNAL OF APPLIED ELECTROCHEMISTRY 19 (1989) 928-932 Inhibition of corrosion of -brass (Cu-Zn, 6733) in acid chloride solutions by some amino pyrazole derivatives A. G. GAD ALLAH, M. W. BADAWY, H. H.

More information

The Inhibition of Mild Steel Corrosion in Acidic Solution by Amine Melamine Chloral Resin

The Inhibition of Mild Steel Corrosion in Acidic Solution by Amine Melamine Chloral Resin Abdel-Amir Hussain Taobi The Inhibition of Mild. The Inhibition of Mild Steel Corrosion in Acidic Solution by Amine Melamine Chloral Resin Abdel-Amir Hussain Taobi Chemistry Department, College of Science,

More information

Corrosion Inhibition Studies of Ecbolium Viride Extracts on Mild Steel in HCl

Corrosion Inhibition Studies of Ecbolium Viride Extracts on Mild Steel in HCl Corrosion Inhibition Studies of Ecbolium Viride Extracts on Mild Steel in HCl S. L. Ashok Kumar, P. Iniyavan, M. Saravana Kumar, A. Sreekanth* Department of Chemistry, Center of Excellence in Corrosion

More information

J. Mater. Environ. Sci. 2 (1) (2011) Bentiss et Lagrenée

J. Mater. Environ. Sci. 2 (1) (2011) Bentiss et Lagrenée eterocyclic compounds as corrosion inhibitors for mild steel in hydrochloric acid medium correlation between electronic structure and inhibition efficiency F. Bentiss a, *, M. Lagrenée b a Laboratoire

More information

Materials Chemistry and Physics

Materials Chemistry and Physics Materials Chemistry and Physics 112 (2008) 290 300 Contents lists available at ScienceDirect Materials Chemistry and Physics journal homepage: www.elsevier.com/locate/matchemphys Application of electrochemical

More information

Quantum Mechanical Study on the Adsorption of Drug Gentamicin onto γ-fe 2

Quantum Mechanical Study on the Adsorption of Drug Gentamicin onto γ-fe 2 ORIENTAL JOURNAL OF CHEMISTRY An International Open Free Access, Peer Reviewed Research Journal www.orientjchem.org ISSN: 0970-00 X CODEN: OJCHEG 015, Vol. 31, No. (3): Pg. 1509-1513 Quantum Mechanical

More information

Azodyes as corrosion inhibitors for dissolution of C-steel in hydrochloric acid solution

Azodyes as corrosion inhibitors for dissolution of C-steel in hydrochloric acid solution African Journal of Pure and Applied Chemistry Vol. 2 (9), pp. 0891, September, 2008 Available online at http://www.academicjournals.org/ajpac ISSN 1996 08 2008 Academic Journals Full Length Research Paper

More information

Introduction. Loutfy H. Madkour 1 S. K. Elroby. bonding the metal iron surface by donating electrons to the metal.

Introduction. Loutfy H. Madkour 1 S. K. Elroby. bonding the metal iron surface by donating electrons to the metal. Int J Ind Chem (2015) 6:165 184 DI 10.1007/s40090-015-0039-7 RESEARC Inhibitive properties, thermodynamic, kinetics and quantum chemical calculations of polydentate Schiff base compounds as corrosion inhibitors

More information

Corrosion Inhibition Efficiency of Benzimidazole and Benzimidazole Derivatives for Zinc, Copper and Brass

Corrosion Inhibition Efficiency of Benzimidazole and Benzimidazole Derivatives for Zinc, Copper and Brass Asian Journal of Chemistry; Vol. 24, o. 1 (212), 47-52 Corrosion Inhibition Efficiency of Benzimidazole and Benzimidazole Derivatives for Zinc, Copper and Brass T. YAARDAG, S. ÖZBAY, S. DIÇER and A.A.

More information

Research & Reviews In. Study on kinetics behavior of the graphite felt electrode in the lead acid flow battery

Research & Reviews In. Study on kinetics behavior of the graphite felt electrode in the lead acid flow battery ISSN : 0974-7540 Study on kinetics behavior of the graphite felt electrode in the lead acid flow battery Liu Xudong*, Bi Xiaoguo, Tang Jian, Guan Xin, Niu Wei Shenyang Institute of Engineering, 110136,

More information

Journal of Chemical and Pharmaceutical Research

Journal of Chemical and Pharmaceutical Research Available on line www.jocpr.com Journal of Chemical and Pharmaceutical Research ISSN No: 0975-7384 CODEN(USA): JCPRC5 J. Chem. Pharm. Res., 2011, 3(2):388-396 Inhibitive Properties of Nitrogen Containing

More information

Investigation of the inhibition of copper corrosion in nitric acid solutions by organic sulphide compound

Investigation of the inhibition of copper corrosion in nitric acid solutions by organic sulphide compound Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 2012, 3 (3):1749-1756 ISSN: 0976-8610 CODEN (USA): AASRFC Investigation of the inhibition of copper corrosion in

More information

Quantum Chemical Studies on the Inhibiting Effect of Bipyrazoles on Steel Corrosion in HCl

Quantum Chemical Studies on the Inhibiting Effect of Bipyrazoles on Steel Corrosion in HCl ISS: 0973-4945; CODE ECJHAO E- Chemistry http://www.e-journals.net 2010, 7(2), 419-424 Quantum Chemical Studies on the Inhibiting Effect of Bipyrazoles on Steel Corrosion in HCl K. LAAREJ, M. BOUACHRIE

More information

Corrosion inhibition of the 316L stainless steel in sodium hypochlorite media by sodium silicate

Corrosion inhibition of the 316L stainless steel in sodium hypochlorite media by sodium silicate J. Mater. Environ. Sci. 7 (1) (216) 131-138 Tanane et al. Corrosion inhibition of the 316L stainless steel in sodium hypochlorite media by sodium silicate O. Tanane*, Y. Abboud, H. Aitenneite, A. El Bouari

More information

Inhibition effects of acetyl coumarines and thiazole derivatives on corrosion of zinc in acidic medium

Inhibition effects of acetyl coumarines and thiazole derivatives on corrosion of zinc in acidic medium Bull. Mater. Sci., Vol. 34, No. 3, June 2011, pp. 571 576. c Indian Academy of Sciences. Inhibition effects of acetyl coumarines and thiazole derivatives on corrosion of zinc in acidic medium A V SHANBHAG,

More information

Aniline as Corrosion Inhibitor for Zinc in Hydrochloric Acid

Aniline as Corrosion Inhibitor for Zinc in Hydrochloric Acid Chem Sci Trans., 2013, 2(2), 670-676 Chemical Science Transactions DOI:10.7598/cst2013.423 ISSN/E-ISSN: 2278-3458/2278-3318 RESEARCH ARTICLE Aniline as Corrosion Inhibitor for Zinc in Hydrochloric Acid

More information

Corrosion Inhibition of 6061 Al alloy 15 vol% SiC (p) Composite in 0.5 M Hydrochloric Acid Solution

Corrosion Inhibition of 6061 Al alloy 15 vol% SiC (p) Composite in 0.5 M Hydrochloric Acid Solution Corrosion Inhibition of 6061 Al alloy 15 vol% SiC (p Composite in 0.5 M Hydrochloric Acid Solution U Achutha Kini, Prakash Shetty, S Divakara Shetty and Arun Isloor Abstract--Aluminium, its alloys and

More information

Département de Chimie, Faculté des sciences, Université Abou Bakr Belkaïd, Tlemcen, Algérie.

Département de Chimie, Faculté des sciences, Université Abou Bakr Belkaïd, Tlemcen, Algérie. EFFECT OF SUBSTITUTION OF PHENYL GROUP BY NAPHTYL IN A DIPHENYLTHIOUREA MOLECULE TOWARDS INHIBITION OF CORROSION OF COLD ROLLED STEEL IN 1M HClO 4 O. Benali a L. Larabi b*, Y. Harek b a Département de

More information

Corrosion inhibition of carbon steel in 1M HCl solution by Ruta graveolens extract

Corrosion inhibition of carbon steel in 1M HCl solution by Ruta graveolens extract Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2014, 6(5): 996-1001 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Corrosion inhibition of carbon steel in 1M HCl

More information

NITRO ANILINE AS CORROSION INHIBITOR FOR ZINC IN NITRIC ACID

NITRO ANILINE AS CORROSION INHIBITOR FOR ZINC IN NITRIC ACID NITRO ANILINE AS CORROSION INHIBITOR FOR ZINC IN NITRIC ACID R.T. Vashi* 1, S.A. Desai and P.S. Desai 2 1. Department of Chemistry, Navyug Science College, Surat (INDIA) 2. Department of Bio Chemistry,

More information

Inhibition Effect of Azadirachta indica, a Natural Product, on the Corrosion of Zinc in Hydrochloric Acid Solution

Inhibition Effect of Azadirachta indica, a Natural Product, on the Corrosion of Zinc in Hydrochloric Acid Solution DOI 10.1007/s12666-014-0390-y TECHNICAL PAPER TP 2794 Inhibition Effect of Azadirachta indica, a Natural Product, on the Corrosion of Zinc in Hydrochloric Acid Solution R. A. Prabhu T. V. Venkatesha B.

More information

Influence of Tryptophan on the Corrosion Process of Carbon Steel in Aqueous Weak Acid Solutions

Influence of Tryptophan on the Corrosion Process of Carbon Steel in Aqueous Weak Acid Solutions Influence of Tryptophan on the Corrosion Process of Carbon Steel in Aqueous Weak Acid Solutions MARIAN BOBINA 1, NICOLAE VASZILCSIN 1*, CORNELIA MUNTEAN 1 1 University Politehnica of Timisoara, 2 Piata

More information

Study on functions of chrome and fluoride ions in plating process of tin free steel by means of cyclic voltammetry

Study on functions of chrome and fluoride ions in plating process of tin free steel by means of cyclic voltammetry Study on functions of chrome and fluoride ions in plating process of tin free steel by means of cyclic voltammetry Jianzhong Li*, Guofeng Du, Yanwen Tian, Xiuli Sun and Shaohu Tao School of metallurgy

More information

Corrosion Science 52 (2010) Contents lists available at ScienceDirect. Corrosion Science. journal homepage:

Corrosion Science 52 (2010) Contents lists available at ScienceDirect. Corrosion Science. journal homepage: Corrosion Science 52 (2010) 2905 2916 Contents lists available at ScienceDirect Corrosion Science journal homepage: www.elsevier.com/locate/corsci Electrochemical investigation and modeling of corrosion

More information

2-Thiophene Carboxaldehyde as Corrosion Inhibitor for Zinc in Phosphoric Acid Solution

2-Thiophene Carboxaldehyde as Corrosion Inhibitor for Zinc in Phosphoric Acid Solution Chem Sci Trans., 212, 1(2), 355-364 Chemical Science Transactions DOI:1.7598/cst212.473 ISSN/E-ISSN: 2278-3458/2278-3318 RESEARCH ARTICLE 2-Thiophene Carboxaldehyde as Corrosion Inhibitor for Zinc in Phosphoric

More information

Journal of Chemical and Pharmaceutical Research, 2017, 9(6): Research Article

Journal of Chemical and Pharmaceutical Research, 2017, 9(6): Research Article Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2017, 9(6):57-64 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Corrosion Inhibition Efficiency of Fenugreek Leaves

More information

Adsorption of Extract of Milletia pinnata on Mild Steel: A Green Inhibitor for Protection of Steel Surface at Different Corrosive Environments

Adsorption of Extract of Milletia pinnata on Mild Steel: A Green Inhibitor for Protection of Steel Surface at Different Corrosive Environments Research Article Adsorption of Extract of Milletia pinnata on Mild Steel: A Green Inhibitor for Protection of Steel Surface at Different Corrosive Environments Kavitha R 1,2, Kesavan D 1,3, * and Sankar

More information

Journal of Chemical and Pharmaceutical Research, 2012, 4(7): Research Article

Journal of Chemical and Pharmaceutical Research, 2012, 4(7): Research Article Journal of Chemical and Pharmaceutical Research, 2012, 4(7):3498-3504 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Inhibition of C38 steel corrosion in hydrochloric acid solution by 4,5- Diphenyl-1H-Imidazole-2-Thiol:

More information

First Order Hyperpolarizability and Homo-Lumo Analysis of L-Arginine Maleate (LArM) by Density Functional Theory Methods

First Order Hyperpolarizability and Homo-Lumo Analysis of L-Arginine Maleate (LArM) by Density Functional Theory Methods 51 Sciencia Acta Xaveriana An International Science Journal ISSN. 0976-1152 Volume 4 No. 2 pp. 51-58 September 2013 First Order Hyperpolarizability and Homo-Lumo Analysis of L-Arginine Maleate (LArM) by

More information

Substituted Dithiobiurets, their Molybdenum and Tungsten Complexes as Corrosion Inhibitors for Mild Steel in Sulphuric Acid

Substituted Dithiobiurets, their Molybdenum and Tungsten Complexes as Corrosion Inhibitors for Mild Steel in Sulphuric Acid Portugaliae Electrochimica Acta 22 (2004) 127-147 PORTUGALIAE ELECTROCHIMICA ACTA Substituted Dithiobiurets, their Molybdenum and Tungsten Complexes as Corrosion Inhibitors for Mild Steel in Sulphuric

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information Experimental section Synthesis of Ni-Co Prussian

More information

Corrosion Inhibition of Mild Steel using Fig Leaves Extract in Hydrochloric Acid Solution

Corrosion Inhibition of Mild Steel using Fig Leaves Extract in Hydrochloric Acid Solution Int. J. Electrochem. Sci., 6 (2011) 6442-6455 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Corrosion Inhibition of Mild Steel using Fig Leaves Extract in Hydrochloric Acid Solution

More information

2.5-Difuryl-N-Methylpyrrole as Corrosion Inhibitor for Steel in 1 M HCl

2.5-Difuryl-N-Methylpyrrole as Corrosion Inhibitor for Steel in 1 M HCl Portugaliae Electrochimica Acta 26 (2008) 283-289 PORTUGALIAE ELECTROCHIMICA ACTA 2.5-Difuryl-N-Methylpyrrole as Corrosion Inhibitor for Steel in 1 M HCl O. Krim a, M. Bouachrine b, B. Hammouti *,a, A.

More information

Application of Hydroxytriazenes in Corrosion Protection of Brass

Application of Hydroxytriazenes in Corrosion Protection of Brass ISSN: 0973-4945; CODEN ECJHAO E- Chemistry http://www.e-journals.net 2009, 6(1), 257-260 Application of Hydroxytriazenes in Corrosion Protection of Brass S. KUMAR, MEENAKSHI GARG, N.S. CHUNDAWAT, J. S.

More information

Inhibition Effect of Organic Electron-Accepting Compounds on Corrosion of Iron in Acid Solution

Inhibition Effect of Organic Electron-Accepting Compounds on Corrosion of Iron in Acid Solution Technical Paper Boshoku Gijutsu, 32, 253-257 (1983) UDC 620. 193. 4: 669.12: 620. 197. 3 Inhibition Effect of Organic Electron-Accepting Compounds on Corrosion of Iron in Acid Solution Kunitsugu ARAMAKI*

More information

VI. EIS STUDIES LEAD NANOPOWDER

VI. EIS STUDIES LEAD NANOPOWDER VI. EIS STUDIES LEAD NANOPOWDER 74 26. EIS Studies of Pb nanospheres Impedance (valid for both DC and AC), a complex resistance occurs when current flows through a circuit (composed of various resistors,

More information

Congo Red Dye As A Novel Corrosion Inhibitor for Zinc in Hydrochloric Acid Solution

Congo Red Dye As A Novel Corrosion Inhibitor for Zinc in Hydrochloric Acid Solution International Journal of Scientific and Research Publications, Volume 3, Issue 12, December 2013 1 Congo Red Dye As A ovel Corrosion Inhibitor for Zinc in Hydrochloric Acid Solution A.Pasupathy 1 *, S.irmala

More information

SUPPORTING INFORMATION. Direct Observation on Reaction Intermediates and the Role of. Cu Surfaces

SUPPORTING INFORMATION. Direct Observation on Reaction Intermediates and the Role of. Cu Surfaces SUPPORTING INFORMATION Direct Observation on Reaction Intermediates and the Role of Bicarbonate Anions in CO 2 Electrochemical Reduction Reaction on Cu Surfaces Shangqian Zhu, Bei Jiang, Wen-Bin Cai, Minhua

More information

Sulfur-Infiltrated Porous Carbon Microspheres with Controllable. Multi-Modal Pore Size Distribution for High Energy Lithium-

Sulfur-Infiltrated Porous Carbon Microspheres with Controllable. Multi-Modal Pore Size Distribution for High Energy Lithium- Electronic Supplementary Information Sulfur-Infiltrated Porous Carbon Microspheres with Controllable Multi-Modal Pore Size Distribution for High Energy Lithium- Sulfur Batteries Cunyu Zhao, a Lianjun Liu,

More information

Corrosion Inhibition of Carbon Steel in Acid Chloride Solution by Schiff Base of N-(2-chlorobenzylidene)-4-acetylaniline

Corrosion Inhibition of Carbon Steel in Acid Chloride Solution by Schiff Base of N-(2-chlorobenzylidene)-4-acetylaniline Int. J. Electrochem. Sci., 8 (2013) 8329-8347 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Corrosion Inhibition of Carbon Steel in Acid Chloride Solution by Schiff Base of N-(2-chlorobenzylidene)-4-acetylaniline

More information

Single Catalyst Electrocatalytic Reduction of CO 2 in Water to H 2 :CO Syngas Mixtures with Water Oxidation to O 2

Single Catalyst Electrocatalytic Reduction of CO 2 in Water to H 2 :CO Syngas Mixtures with Water Oxidation to O 2 Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2014 Supporting Information Single Catalyst Electrocatalytic Reduction of CO 2

More information

EVALUATION OF THE PERFORMANCE OF SOME CHEMICAL INHIBITORS ON CORROSION INHIBITION OF COPPER IN ACID MEDIA

EVALUATION OF THE PERFORMANCE OF SOME CHEMICAL INHIBITORS ON CORROSION INHIBITION OF COPPER IN ACID MEDIA EVALUATION OF THE PERFORMANCE OF SOME CHEMICAL INHIBITORS ON CORROSION INHIBITION OF COPPER IN ACID MEDIA Dr. Aprael S. Yaro University of Baghdad College of Engineering Chemical Eng. Department Anees

More information

Hydrogen Evolution on InSb Semiconductor in Liquid Ammonia (223 K)

Hydrogen Evolution on InSb Semiconductor in Liquid Ammonia (223 K) Portugaliae Electrochimica Acta 20 (2002) 199-205 PORTUGALIAE ELECTROCHIMICA ACTA Hydrogen Evolution on InSb Semiconductor in Liquid Ammonia (223 K) C. Mathieu, O. Seitz, A.-M Gonçalves *, M. Herlem, A.

More information

Outstanding inhibitive effect of colchicine on aluminium alloy 6061 corrosion

Outstanding inhibitive effect of colchicine on aluminium alloy 6061 corrosion J. Electrochem. Sci. Eng. 5(3) (2015) 197-208; doi: 10.5599/jese.185 Original scientific paper Open Access : : ISSN 1847-9286 www.jese-online.org Outstanding inhibitive effect of colchicine on aluminium

More information

Effect of NaCl on the Corrosion of Cold Rolled Steel in Peracetic Acid Solution

Effect of NaCl on the Corrosion of Cold Rolled Steel in Peracetic Acid Solution Int. J. Electrochem. Sci., 7 (2012) 3773-3786 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Effect of NaCl on the Corrosion of Cold Rolled Steel in Peracetic Acid Solution Lei

More information

Inhibition of Acid Corrosion of Steel by Some S-Alkylisothiouronium Iodides

Inhibition of Acid Corrosion of Steel by Some S-Alkylisothiouronium Iodides Inhibition of Acid Corrosion of Steel by Some S-Alkylisothiouronium Iodides S.T. Arab and E.A. Noor* ABSTRACT Five selected S-alkylisothisothiouronium iodides have been studied as acid corrosion inhibitors

More information

Available online Research Article

Available online  Research Article Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 014, 6(7):63-81 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Experimental and quantum chemical studies on corrosion

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information High Electrocatalytic Activity of Self-standing Hollow NiCo 2 S 4 Single Crystalline Nanorod Arrays towards Sulfide Redox Shuttles in Quantum Dot-sensitized Solar Cells

More information

Anticorrosive Properties of Chitosan for the Acid Corrosion of Aluminium

Anticorrosive Properties of Chitosan for the Acid Corrosion of Aluminium Portugaliae Electrochimica Acta 2015, 33(4), 231-239 DOI: 10.4152/pea.201504231 PORTUGALIAE ELECTROCHIMICA ACTA ISSN 1647-1571 Anticorrosive Properties of Chitosan for the Acid Corrosion of Aluminium B.A.

More information

1. Introduction. 2. Experimental

1. Introduction. 2. Experimental Cationic surfactant as corrosion inhibitor for aluminum in acidic and basic solutions Chemistry Department, Jordan University of Science & Technology, Irbid, Jordan Abstract Purpose To investigate the

More information

Inhibition of C-steel corrosion in acidic solution using the aqueous extract of zallouh root

Inhibition of C-steel corrosion in acidic solution using the aqueous extract of zallouh root Available online at www.sciencedirect.com Materials Chemistry and Physics 108 (2008) 278 282 Inhibition of C-steel corrosion in acidic solution using the aqueous extract of zallouh root A.Y. El-Etre Department

More information

Corrosion inhibition effect of hydroxy pyrazoline derivatives on mild steel in sulphuric acid solution together with Quantum chemical studies

Corrosion inhibition effect of hydroxy pyrazoline derivatives on mild steel in sulphuric acid solution together with Quantum chemical studies Corrosion inhibition effect of hydroxy pyrazoline derivatives on mild steel in sulphuric acid solution together with Quantum chemical studies N. Anusuya 1, P. Sounthari 2, J. Saranya 2, K. Parameswari

More information

AB INITIO MODELING OF THE STRUCTURAL DEFECTS IN AMIDES

AB INITIO MODELING OF THE STRUCTURAL DEFECTS IN AMIDES Int. J. Chem. Sci.: 9(4), 2011, 1564-1568 ISSN 0972-768X www.sadgurupublications.com AB INITIO MODELING OF THE STRUCTURAL DEFECTS IN AMIDES M. FATHIMA BEGUM, HEMA TRESA VARGHESE a, Y. SHEENA MARY a, C.

More information

Corrosion Inhibition and Adsorption Behavior of Clove Oil on Iron in Acidic Medium

Corrosion Inhibition and Adsorption Behavior of Clove Oil on Iron in Acidic Medium ISSN: 0973-4945; CODEN ECJHAO E- Chemistry http://www.ejchem.net 2012, 9(4), 2044-2051 Corrosion Inhibition and Adsorption Behavior of Clove Oil on Iron in Acidic Medium ARCHANA SAXENA* 1, ANURAG SHARMA

More information

Corrosion of carbon steel in a buffered solution like NACE TM 0177 in the presence of hydrocarbon

Corrosion of carbon steel in a buffered solution like NACE TM 0177 in the presence of hydrocarbon Corrosion of carbon steel in a buffered solution like NACE TM 0177 in the presence of hydrocarbon Luis D. López León 1,2, *M. A. Veloz Rodríguez 1, Víctor E. Reyes Cruz 1, Facundo Almeraya Calderón 2,

More information

Aniline as Corrosion Inhibitor for Zinc in Phosphoric acid.

Aniline as Corrosion Inhibitor for Zinc in Phosphoric acid. International Journal of ChemTech Research CODEN( USA): IJCRGG ISSN : 0974-4290 Vol. 3, No.2, pp 864-869, April-June 2011 Aniline as Corrosion Inhibitor for Zinc in Phosphoric acid. R. T. Vashi 1 * and

More information

Inhibitory Effect of Newly Synthesized Organic Compound in Corrosion of Aluminum: Electrochemical Investigation

Inhibitory Effect of Newly Synthesized Organic Compound in Corrosion of Aluminum: Electrochemical Investigation Advances in Analytical Chemistry 215, 5(3A): 19-25 DOI: 1.5923/s.aac.2151.3 Inhibitory Effect of Newly Synthesized Organic Compound in Corrosion of Aluminum: Electrochemical Investigation Ali Ehsani 1,2,*,

More information

Quantum Chemical Studies and Corrosion Inhibitive Properties of Mild Steel by Some Pyridine Derivatives in 1 N HCl Solution

Quantum Chemical Studies and Corrosion Inhibitive Properties of Mild Steel by Some Pyridine Derivatives in 1 N HCl Solution Portugaliae Electrochimica Acta 2014, 32(2), 77-108 DOI: 10.4152/pea.201402077 PORTUGALIAE ELECTROCHIMICA ACTA ISSN 1647-1571 Quantum Chemical Studies and Corrosion Inhibitive Properties of Mild Steel

More information

Department of Materials Science and Engineering, Research Institute of Advanced

Department of Materials Science and Engineering, Research Institute of Advanced Supporting Information High Energy Organic Cathode for Sodium Rechargeable Batteries Haegyeom Kim 1, Ji Eon Kwon 2, Byungju Lee 1, Jihyun Hong 1, Minah Lee 3, Soo Young Park 2*, and Kisuk Kang 1,4 * 1.

More information

INHIBITION OF CORROSION OF MILD STEEL IN 1M SULPHURIC ACID BY A NEW SCHIFF BASE

INHIBITION OF CORROSION OF MILD STEEL IN 1M SULPHURIC ACID BY A NEW SCHIFF BASE INHIBITION OF CORROSION OF MILD STEEL IN 1M SULPHURIC ACID BY A NEW SCHIFF BASE IJCRR Vol 06 issue 12 Section: General Sciences Category: Research Received on: 22/04/14 Revised on: 15/05/14 Accepted on:

More information

Electrodeposited nickel hydroxide on nickel foam with ultrahigh. capacitance

Electrodeposited nickel hydroxide on nickel foam with ultrahigh. capacitance Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance Guang-Wu Yang, Cai-Ling Xu* and Hu-Lin Li* College of Chemistry and Chemical Engineering, Lanzhou University, 73 (PR China) 1.

More information

Available online at ScienceDirect. Energy Procedia 50 (2014 )

Available online at   ScienceDirect. Energy Procedia 50 (2014 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 50 (2014 ) 401 405 The International Conference on Technologies and Materials for Renewable Energy, Environment and Sustainability,

More information

J. Mater. Environ. Sci. 2 (1) (2011) Benali et al.

J. Mater. Environ. Sci. 2 (1) (2011) Benali et al. Influence of the Methylene Blue Dye (MBD) on the corrosion inhibition of mild steel in.5 M sulphuric acid, Part I: weight loss and electrochemical studies Omar Benali a*, Lahcene Larabi b, Salah Merah

More information

Molecular Orbital Theory. Molecular Orbital Theory: Electrons are located in the molecule, not held in discrete regions between two bonded atoms

Molecular Orbital Theory. Molecular Orbital Theory: Electrons are located in the molecule, not held in discrete regions between two bonded atoms Molecular Orbital Theory Valence Bond Theory: Electrons are located in discrete pairs between specific atoms Molecular Orbital Theory: Electrons are located in the molecule, not held in discrete regions

More information

Introduction to Cyclic Voltammetry Measurements *

Introduction to Cyclic Voltammetry Measurements * OpenStax-CNX module: m34669 1 Introduction to Cyclic Voltammetry Measurements * Xianyu Li Andrew R. Barron This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License

More information